KR20000031096A - Stabilization method of lithium ion secondary battery - Google Patents
Stabilization method of lithium ion secondary battery Download PDFInfo
- Publication number
- KR20000031096A KR20000031096A KR1019980046963A KR19980046963A KR20000031096A KR 20000031096 A KR20000031096 A KR 20000031096A KR 1019980046963 A KR1019980046963 A KR 1019980046963A KR 19980046963 A KR19980046963 A KR 19980046963A KR 20000031096 A KR20000031096 A KR 20000031096A
- Authority
- KR
- South Korea
- Prior art keywords
- lithium ion
- active material
- ion battery
- molecular sieve
- fumed silica
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0435—Rolling or calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
본 발명은 리튬이온 2차 전지의 안정화 방법에 관한 것으로, 보다 구체적으로는 리튬이온 2차 전지 내 수분을 제거하고 전해액 함량 유지 및 안전성을 향상시킬 수 있는 방법에 관한 것이다.The present invention relates to a method for stabilizing a lithium ion secondary battery, and more particularly, to a method for removing moisture in a lithium ion secondary battery and maintaining electrolyte content and improving safety.
리튬 2차 전지는 리튬의 흡장, 방출 반응을 이용하여 재충전이 가능하고 소형 및 대용량화가 용이한 전지로서, 대표적으로 리튬이온 2차 전지가 널리 사용되고 있다.A lithium secondary battery is a battery that can be recharged using lithium occlusion and release reactions and is easily compact and large in capacity, and typically lithium ion secondary batteries are widely used.
리튬이온 2차 전지는 양극 활물질로 리튬금속 산화물을 사용하고, 음극 활물질로 탄소계를 사용하며, 전해액으로는 에틸렌 카보네이트(EC)와 디메톡시 카보네이트(DMC)의 혼합 용매에 리튬염인 6플르오르화 포스포로스 리튬(LiPF6) 혹은 4플르오르화 보론 리튬(LiBF4)을 혼합하여 사용한다. 이에 따라, 2차 전지의 충전시 양극에서 방출된 리튬 이온이 음극의 탄소계 내부로 흡장되고, 2차 전지의 방전시 탄소계 내부에 함유된 리튬 이온이 양극의 리튬 금속 산화물로 흡장되어서 충방전이 반복되는 것이다.Lithium ion secondary battery uses lithium metal oxide as a positive electrode active material, uses carbon-based as negative electrode active material, and 6 fluoride which is a lithium salt in a mixed solvent of ethylene carbonate (EC) and dimethoxy carbonate (DMC) as an electrolyte. Phosphorus lithium (LiPF6) or boron tetrafluoride lithium (LiBF4) is mixed and used. Accordingly, lithium ions emitted from the positive electrode are occluded into the carbon-based interior of the negative electrode during charging of the secondary battery, and lithium ions contained in the carbon-based interior are occluded with the lithium metal oxide of the positive electrode during charge-discharge of the secondary battery. This is repeated.
한편, 양·음극에 양·음극 활물질이 도포되는 과정은 다음과 같다.On the other hand, the process of applying the positive and negative electrode active material to the positive and negative electrodes is as follows.
활물질 슬러리가 충전된 용기에 양·음극 기재를 통과시킨 후 건조과정을 거치고, 이어서 롤 프레싱(roll pressing)함으로써 일정한 두께의 활물질이 도포된 전극을 얻게 된다.After passing the positive and negative electrode substrates through the container filled with the active material slurry, the drying process, and then roll pressing to obtain an electrode coated with an active material of a constant thickness.
여기서, 활물질 슬러리는 활물질, 도전제 및 결합제를 페이스트 상으로 혼합한 물질이며, 분말상인 활물질과 도전제를 기재에 용이하게 접착하고 전극 형태로 성형시키기 위하여 결합제(binder)를 사용한다.Here, the active material slurry is a material in which the active material, the conductive agent and the binder are mixed in the form of a paste, and a binder is used to easily adhere the powder-like active material and the conductive material to the substrate and form the electrode.
그러나 리튬 이온 전지에 있어서는 리튬이 물과 반응하여 수소 가스를 발생시켜, 전지의 성능을 저하시키거나 전지 내의 압력이 높아져 폭발할 위험성이 있는 문제점이 있다.However, in a lithium ion battery, lithium reacts with water to generate hydrogen gas, thereby degrading the performance of the battery or increasing the pressure in the battery, thereby causing a risk of explosion.
따라서, 리튬 이온 전지의 안전성 확보를 위하여 리튬염을 활물질, 전극에 첨가하고, 전해액에 유기물을 첨가하여 전지 내부의 안전관련 소재의 기능이 신속하게 이루어 질 수 있도록 하는 것이 알려져 있으나, 이들 또한 그 효과가 미미한 문제점이 있다.Therefore, in order to ensure the safety of the lithium ion battery, it is known to add a lithium salt to the active material and the electrode and to add an organic material to the electrolyte so that the function of the safety-related material inside the battery can be quickly achieved. There is a slight problem.
본 발명은 이러한 종래의 문제점을 해결하기 위하여 안출된 것으로서, 발열시 상승 작용을 억제하는 역할을 할 수 있는 물질을 첨가하여, 이 물질이 전해액 중의 수분을 낮추고 동시에 전해액 함량을 유지시킴으로써 전지의 안전성을 향상시킬 수 있는 전지의 안정화 방법을 제공하는 것을 그 목적으로 한다.The present invention has been made to solve such a conventional problem, by adding a material that can play a role in suppressing synergism when exothermic, the material lowers the moisture in the electrolyte and at the same time maintains the electrolyte content to improve the safety of the battery It is an object of the present invention to provide a method for stabilizing a battery that can be improved.
상기의 목적을 달성하기 위해서, 본 발명은 리튬 이온 2차 전지의 전극이나 전해액에 분자 시브(molecular sieve)나 입자 사이즈가 작은 흄드 실리카 미분을 첨가하여 전지 내 수분을 제거하고 전해액의 함량을 유지하고, 전지의 안전성을 향상시킨다.In order to achieve the above object, the present invention adds a molecular sieve or a small particle sized fumed silica fine powder to the electrode or electrolyte of the lithium ion secondary battery to remove moisture in the battery and to maintain the content of the electrolyte To improve battery safety.
여기서, 분자 시브는 4-5Å 정도의 균일 세공경(細孔徑)을 가져 세공경보다 작은 분자는 세공내에 흡착되고, 세공경보다 큰 사이즈의 분자는 세공내에 들어갈 수 없어 흡착되지 않아 양자를 분리하는 작용이 있는 다공성 물질을 말하며, 이는 수분의 흡습제, 이산화탄소등의 흡수제로서 사용되고, 본 발명에서는 나트륨이나 리튬이온을 함유한 마그네슘 옥사이드(MgO)나 알루미늄 옥사이드(Al₂O₃)를 사용하며, 그 함량은 전극 활물질이나 전해액의 0.01- 5% 질량비를 사용한다.Here, the molecular sieve has a uniform pore diameter of about 4-5 mm 3, and molecules smaller than the pore diameter are adsorbed into the pores, and molecules larger than the pore diameter cannot enter the pores and are not adsorbed to separate them. It refers to a porous material having an action, which is used as an absorbent of moisture, carbon dioxide, and the like, and in the present invention, magnesium oxide (MgO) or aluminum oxide (Al₂O₃) containing sodium or lithium ions is used, and the content thereof is an electrode active material. Or use a mass ratio of 0.01-5% of the electrolyte.
본 발명의 분자 시브나 입자 사이즈가 작은 흄드 실리카 미분은 전해액을 자체적으로 흡수, 유지하고, 수분을 흡착하고 상온에서 방출하지 않으므로 리튬 이온 전지 내의 수분을 효과적으로 제어할 수 있으며, 또한 고온에서의 내열성이 우수하여 전극 활물질의 반응에 의한 온도 상승이 있을 경우 활물질간 또는 활물질과 전해액간의 계면에서의 반응을 억제할 수 있다.The molecular sieve of the present invention or the fumed silica fine particles having a small particle size absorb and maintain the electrolyte itself, adsorb moisture, and do not release at room temperature, thereby effectively controlling moisture in the lithium ion battery, and having high heat resistance at high temperatures. When the temperature rise due to the reaction of the electrode active material is excellent, the reaction at the interface between the active materials or between the active material and the electrolyte solution can be suppressed.
이하 본 발명의 구성을 바람직한 실시예에 따라 더욱 상세히 설명한다.Hereinafter, the configuration of the present invention in more detail according to a preferred embodiment.
일반적으로, 리튬이온 전지에서 전극은, 정극과 부극에 있어서 활물질이 다른 차이는 있지만, 정극과 부극의 각각의 활물질과, 카본으로 된 도전제와, 폴리비닐리덴 플루오로라이드(PVDF)로 된 결합제 및 N-메틸피롤리돈(NMP)로 된 유기 용매를 혼합하여 활물질 슬러리를 제조한 다음, 이것을 진공 분리 후 알루미늄 호일로 된 기재에 코팅하고, 건조, 압연하므로써 제조한다.In general, in a lithium ion battery, the electrode has a different active material between the positive electrode and the negative electrode, but each active material of the positive electrode and the negative electrode, a conductive agent made of carbon, and a binder made of polyvinylidene fluoride (PVDF) And an organic solvent of N-methylpyrrolidone (NMP) are mixed to prepare an active material slurry, which is then vacuum-separated and coated on a substrate made of aluminum foil, followed by drying and rolling.
따라서, 본발명에서는 상기와 같은 전극의 제조에 있어서,Therefore, in the present invention, in the manufacture of the electrode as described above,
나트륨이나 리튬이온을 함유하는 마그네슘 옥사이드(MgO)나 알루미늄 옥사이드(Al₂O₃) 또는 입자 사이즈가 작은 흄드 실리카 미분을 PVDF/NMP 용액 또는 활물질 및 도전제 혼합물에 첨가하고 ;Magnesium oxide (MgO) or aluminum oxide (Al 2 O 3) containing sodium or lithium ions or fumed silica fine powder having a small particle size is added to the PVDF / NMP solution or the active material and the conductive agent mixture;
슬러리 혼합기를 사용하여 균질한 활물질 슬러리를 제조하고 ;Producing a homogeneous active material slurry using a slurry mixer;
도포기를 사용하여 전극 기재(substrate)에 활물질 슬러리를 도포하고, 프레싱, 슬리팅한 후 건조하여 본 발명의 전극을 제조한다. 그리고 상기와 같이 제조된 전극판을 와인딩한 후 조립한 후 화성하므로 리튬이온 2차전지가 완성되는 것이다.The electrode of the present invention is prepared by applying an active material slurry to an electrode substrate using an applicator, pressing, slitting and drying. Then, after the electrode plate manufactured as described above is assembled after winding, the lithium ion secondary battery is completed.
또한, 본 발명에서는 나트륨이나 리튬이온을 함유하는 마그네슘 옥사이드(MgO)나 알루미늄(Al₂O₃) 옥사이드 또는 입자 사이즈가 작은 흄드 실리카 미분을, 에틸렌 카보네이트(EC)와 디메톡시 카보네이트(DMC)의 혼합 용매에 리튬염인 6플르오르화 포스포로스 리튬(LiPF6) 혹은 4플르오르화 보론 리튬(LiBF4)이 용해된 전해액에 잘 혼합한 다음 전해액을 리튬이온 2차 전지의 캔 내부에 주입하는 방법으로도 동일한 효과를 얻을 수 있다.In the present invention, magnesium oxide (MgO), aluminum (Al₂O₃) oxide containing sodium or lithium ions, or fumed silica fine particles having a small particle size are added to a mixed solvent of ethylene carbonate (EC) and dimethoxy carbonate (DMC). The same effect can be obtained by mixing well in a solution in which a salt of 6 fluoride phosphorus lithium (LiPF6) or 4 fluoride boron lithium (LiBF4) is dissolved and then injecting the electrolyte into a can of a lithium ion secondary battery. have.
여기서, 상기 나트륨이나 리튬이온을 함유하는 마그네슘 옥사이드(MgO)나 알루미늄(Al₂O₃) 옥사이드 또는 입자 사이즈가 작은 흄드 실리카 미분은 상기 전극 활물질 또는 전해액에 대하여 0.01-5 wt% 로 첨가한다.Here, magnesium oxide (MgO), aluminum (Al 2 O 3) oxide containing sodium or lithium ions, or fumed silica fine particles having a small particle size are added at 0.01-5 wt% with respect to the electrode active material or electrolyte.
또한, 상기 분자시브는 금속 부분이 리튬이온으로 치환된 것이 바람직하다.In addition, the molecular sieve is preferably a metal part is substituted with lithium ions.
이상에서 살펴본 바와 같이 본 발명의 특징에 따른 실시예들은 종래의 문제점들을 실질적으로 해소하고 있다.As described above, embodiments according to the features of the present invention substantially solve the conventional problems.
즉, 본 발명은 전극의 발열시 상승 작용을 억제하는 역할을 할 수 있는 분자 시브나 흄드 실리카 미분을 첨가하여, 이 물질이 전해액 중의 수분을 낮추고 동시에 전극내 전해액 함량을 유지시켜 전지의 안전성을 향상시킬 수 있다.That is, the present invention adds a molecular sieve or fumed silica fine powder which may play a role of suppressing synergism when the electrode generates heat, thereby lowering the moisture in the electrolyte and maintaining the electrolyte content in the electrode, thereby improving battery safety. You can.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980046963A KR100280718B1 (en) | 1998-11-03 | 1998-11-03 | Stabilization method of lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980046963A KR100280718B1 (en) | 1998-11-03 | 1998-11-03 | Stabilization method of lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000031096A true KR20000031096A (en) | 2000-06-05 |
KR100280718B1 KR100280718B1 (en) | 2001-03-02 |
Family
ID=19557010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980046963A KR100280718B1 (en) | 1998-11-03 | 1998-11-03 | Stabilization method of lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100280718B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9136531B2 (en) | 2011-03-02 | 2015-09-15 | Samsung Sdi Co., Ltd. | Positive electrode for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same |
CN110892558A (en) * | 2018-01-16 | 2020-03-17 | 株式会社Lg化学 | Slitting apparatus and method for secondary battery |
-
1998
- 1998-11-03 KR KR1019980046963A patent/KR100280718B1/en active IP Right Grant
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9136531B2 (en) | 2011-03-02 | 2015-09-15 | Samsung Sdi Co., Ltd. | Positive electrode for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same |
CN110892558A (en) * | 2018-01-16 | 2020-03-17 | 株式会社Lg化学 | Slitting apparatus and method for secondary battery |
CN110892558B (en) * | 2018-01-16 | 2022-11-25 | 株式会社Lg新能源 | Notching apparatus and method for secondary battery |
US11581520B2 (en) | 2018-01-16 | 2023-02-14 | Lg Energy Solution, Ltd. | Notching apparatus and method for secondary battery |
Also Published As
Publication number | Publication date |
---|---|
KR100280718B1 (en) | 2001-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | A lightweight multifunctional interlayer of sulfur–nitrogen dual-doped graphene for ultrafast, long-life lithium–sulfur batteries | |
JP5640324B2 (en) | Lithium sulfur battery | |
CN107359310B (en) | Method for modifying lithium metal negative electrode material of lithium secondary battery and modified lithium metal negative electrode material | |
CN108963152B (en) | g-C applied to lithium-sulfur battery diaphragm3N4Preparation method of/RGO coating | |
KR101350168B1 (en) | Cathode Material for Lithium Secondary Battery and Manufacturing Method of the Same | |
US4379817A (en) | Organic solvent-treated manganese dioxide-containing cathodes | |
JP2000149922A (en) | Electrode active material composition for lithium ion polymer battery, polymer electrolyte matrix composition, and manufacture of lithium ion polymer battery using this | |
JP7252988B2 (en) | Prelithiated negative electrode, method of making same, lithium ion battery containing prelithiated negative electrode, and supercapacitor | |
JP6042511B2 (en) | Positive electrode active material for secondary battery and method for producing the same | |
JP2005310764A (en) | Nonaqueous electrolyte battery | |
JP2022514995A (en) | Electrolytes and electrochemical devices | |
CN112661163A (en) | Silica-based composite anode material, preparation method thereof and lithium ion battery | |
WO2018043431A1 (en) | Lithium ion battery | |
WO2019097739A1 (en) | Gas absorbing material for lithium ion batteries | |
CN108306007B (en) | Method for improving negative electrode surface loading capacity of nano silicon of lithium ion battery by adopting sulfur template and hydrogen peroxide activation | |
JP2016072029A (en) | Positive electrode material for lithium secondary battery | |
JP2015095316A (en) | Nonaqueous electrolyte power storage device | |
KR20200087076A (en) | Gas absorber for lithium ion batteries | |
WO2018012485A1 (en) | Lithium ion battery | |
CN117352668A (en) | Preparation method of pyrophosphate secondary battery positive electrode material with high air stability | |
Markevich et al. | The effect of porosity of activated carbon cloth cathodes on the cyclic performance of Li–S cells | |
KR100280718B1 (en) | Stabilization method of lithium ion secondary battery | |
WO2018025422A1 (en) | Electrolyte for nonaqueous electrolyte secondary batteries | |
CN115548476A (en) | Lithium-supplement positive pole piece and preparation method and application thereof | |
JP6197541B2 (en) | Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121022 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20131024 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20141023 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20151020 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20161028 Year of fee payment: 17 |
|
FPAY | Annual fee payment |
Payment date: 20171019 Year of fee payment: 18 |