KR20000030148A - Method of searching for impact position of loose part in system - Google Patents
Method of searching for impact position of loose part in system Download PDFInfo
- Publication number
- KR20000030148A KR20000030148A KR1020000002648A KR20000002648A KR20000030148A KR 20000030148 A KR20000030148 A KR 20000030148A KR 1020000002648 A KR1020000002648 A KR 1020000002648A KR 20000002648 A KR20000002648 A KR 20000002648A KR 20000030148 A KR20000030148 A KR 20000030148A
- Authority
- KR
- South Korea
- Prior art keywords
- wigner
- accelerometer
- foreign matter
- impact
- ville
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/18—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C5/00—Moderator or core structure; Selection of materials for use as moderator
- G21C5/02—Details
- G21C5/04—Spatial arrangements allowing for Wigner growth
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Abstract
Description
본 발명은 발전소 등의 공정설비 내에 이물질이 발생하여 공정설비 내벽에 충격을 가할 때 공정설비 외벽에 부착된 가속도계 센서를 이용하여 측정한 충격신호의 신호분석을 통해 공정설비내 이물질의 충격위치를 탐지하는 방법에 관한 것이다.The present invention detects the impact location of foreign matter in the process facility through signal analysis of the impact signal measured using an accelerometer sensor attached to the outside of the process facility when foreign matter is generated in the process equipment such as a power plant to impact the inner wall of the process equipment. It is about how to.
일반적으로 매체가 순환하는 공정설비 내에서 이물질이 발생하면 그 이물질은 매체와 함께 이동하면서 공정설비 내벽에 충격을 가하여 공정설비를 손상시키고 결국에는 공정계통 전체의 안전성을 해칠 수 있다. 이런 이유로 이물질의 충격위치 및 소재를 정확히 파악한 후 그 부위를 분해하여 이물질을 신속히 제거하는 것이 공정계통의 안전성 확보에 중요하다.In general, when foreign matter occurs in the process equipment in which the medium is circulated, the foreign matter may move along with the medium, impacting the inner wall of the process equipment, damaging the process equipment, and eventually damaging the safety of the entire process system. For this reason, it is important to secure the safety of the process system by accurately identifying the impact location and the material of the foreign matter, and then removing the foreign matter quickly by disassembling the area.
이물질의 충격위치 탐지를 위한 기존의 대표적인 방법으로서 첫째, 두 개의 가속도계로부터 측정한 충격신호의 감쇠값과 도착시간의 차이값을 이용하여 충격위치를 탐지하는 방법이 있고, 둘째, 하나의 가속도계로부터 측정한 충격신호중 종파 및 횡파의 도착시간 차이값과 파동의 전파속도값을 이용하여 충격위치를 탐지하는 방법이 있다. 이 방법들은 모두 충격신호의 시간이력 데이터로부터 충격신호가 가속도계에 도착하는 시간의 차이값을 구하여 충격위치를 구하는 것인데 시간이력 데이터의 형상이 복잡하여 충격신호의 가속도계 도착시점을 명확히 구분해 내는데 어려움이 존재함으로 인해 정확한 충격위치를 구하는 데에도 어려움이 있다.As a typical representative method for detecting the impact location of a foreign object, first, there is a method of detecting an impact location by using a difference between the attenuation value and the arrival time of the shock signal measured from two accelerometers. Among the shock signals, there is a method of detecting a shock position by using a difference between arrival times of longitudinal and transverse waves and propagation speed values of waves. All of these methods use the time history data of the shock signal to find the shock location by calculating the difference in the time the shock signal arrives at the accelerometer. The complexity of the time history data makes it difficult to clearly identify the arrival point of the accelerometer. Due to its existence, there is also a difficulty in obtaining an accurate impact position.
상기와 같은 문제점을 해결하고자, 본 발명에서는 이러한 신호의 도착시간 시점을 구분하기가 어려운 문제를 해결하기 위해 위그너-빌 분포함수를 이용한 굽힘파의 주파수별 도착시간의 시점을 명확히 구분할 수 있는 방법을 제시하고 이를 이용하여 공정설비내 이물질의 충격위치를 정확히 추정하는 방법을 제공하는데 그 목적이 있는 것이다.In order to solve the above problems, in the present invention, in order to solve a problem that it is difficult to distinguish the arrival time point of the signal, a method of clearly distinguishing the time points of arrival times for each frequency of the bending wave using the Wigner-Ville distribution function The purpose of this paper is to provide a method for accurately estimating the impact location of foreign substances in the process equipment by using this method.
도 1 : 모의 평판 충격실험시 가속도계의 배치도1: Arrangement of Accelerometer in Simulated Plate Impact Test
도 2 : 모의 평판 충격실험시 측정한 시간이력 데이터2: Time history data measured in simulated plate impact test
도 3 : 위그너-빌 분포함수를 이용하여 충격신호의 시간이력 데이터를 위그너-빌 파워분포로 변환한 전형적인 도면3 is a typical diagram of converting time history data of an impact signal into a Wigner-Ville power distribution using the Wigner-Ville distribution function.
도 4 : 모의평판 충격시험시 3개의 가속도계에 도착한 굽힘파의 주파수별4: Frequency of bending waves arriving at three accelerometers in simulated flat impact test
도착시간을 나타내는 도면Drawing showing arrival time
상기와 같은 목적을 달성하기 위하여, 본 발명에서는 이물질의 충격에 의해 발생되는 굽힘파가 공정설비의 외벽을 따라 전파할 때 전파속도가 주파수에 따라 다른 특성에 착안하여 공정설비내 이물질의 충격위치를 정확히 탐지하는 방법에 관한 것이다.In order to achieve the above object, in the present invention, when the bending wave generated by the impact of the foreign matter propagates along the outer wall of the process equipment, the propagation speed is focused on different characteristics depending on the frequency to determine the impact position of the foreign matter in the process equipment. It is about how to detect correctly.
본 발명에서는 발전소 등의 공정설비 내부에서 이물질이 충격을 가하게 되면 공정설비 외벽을 타고 무수한 주파수 성분의 굽힘파가 충격지점으로부터 방사형으로 전파하게 되고, 이러한 굽힘파들이 공정설비 외벽을 따라 전파할 때 그 전파속도는 주파수의 제곱근에 비례하는 관계를 가지고 전파하는 것으로 알려져 있으며, 이러한 주파수별로 굽힘파의 전파속도가 다른 특성은 실제 측정된 신호에서는 위그너-빌 분포함수를 이용한 신호변환을 통하여 구할 수 있다.In the present invention, when foreign matters are impacted inside the process equipment such as a power plant, a bending wave of countless frequency components propagates radially from the impact point through the outer wall of the process equipment, and when these bend waves propagate along the outer wall of the process equipment, The propagation speed is known to propagate with a relation proportional to the square root of the frequency, and the characteristics of the propagation speed of the bending wave for each frequency can be obtained through the signal conversion using the Wigner-Ville distribution function in the actual measured signal. .
이하 실시예를 통하여 본발명을 상세히 설명하고자 한다.Through the following examples will be described in detail the present invention.
실시예Example
1) 3개의 가속도계를 이물질이 충격을 가할 가능성이 있는 지역의 공정설비 외벽에 적절한 간격을 유지시키면서 미리 배치시켜 놓는다. 도1은 모의 평판 충격실험시 가속도계의 배치도를 나타낸 것이다.1) Arrange three accelerometers at appropriate intervals on the outer wall of the process facility in areas where foreign matter may be impacted. Figure 1 shows the layout of the accelerometer during simulated flat impact test.
2) 이물질이 충격을 가하는 순간, 3개의 가속도계를 이용하여 충격신호의 시간이력 데이터를 측정한다. 도2는 모의 평판 충격실험시 측정한 시간이력 데이터를 보여준다.2) At the moment of the foreign object impact, measure the time history data of the shock signal using three accelerometers. Figure 2 shows the time history data measured during the simulated flat impact test.
3) 3개의 충격신호 시간이력 데이터 각각을 위그너-빌 분포함수를 이용하여 주파수 성분 데이터로 변환한다. 위그너-빌 분포함수의 정의는 다음과 같다.3) Each of the three shock signal time history data is converted into frequency component data using the Wigner-Ville distribution function. The Wigner-Ville distribution function is defined as follows.
실제의 시간이력 데이터는 유한하기 때문에 위그너-빌 분포함수 계산은 다음과 같은 근사식을 이용하여 계산한다.Since the actual time history data are finite, the Wigner-Ville distribution function is calculated using the following approximation.
도3은 위그너-빌 분포함수를 이용하여 충격신호의 시간이력 데이터를 위그너-빌 파워 분포로 변환한 전형적인 그림을 보여준다.FIG. 3 shows a typical picture of converting the time history data of the impact signal into the Wigner-Ville power distribution using the Wigner-Ville distribution function.
4) 주파수 성분 데이터로부터 가속도계 각각에 도착하는 굽힘파(bending wave)의 주파수별 도착시간을 구한다. 도착시간을 구하는 방법은 먼저 위그너-빌 분포함수를 이용하여 도3과 같은 위그너-빌 파워 분포곡선을 구한다. 그리고 위그너-빌 파워 분포곡선에서 시간이 0인 축으로부터 첫 번째로 가까운 첨두(peak) 분포곡선은 이물질의 충격에 의한 굽힘파의 에너지가 가속도계에 도착하는 것을 나타내며 그 이후에 나타나는 첨두 분포곡선들은 굽힘파가 가속도계를 통과한 후 경계면에 반사되어 되돌아오는 굽힘파의 에너지를 나타낸다. 따라서 위그너-빌 파워 분포곡선에서 시간이 0인 축으로부터 첫 번째로 가까운 첨두 분포곡선중 최대값만을 연결한 선이 충격에 의한 굽힘파의 주파수별 도착시간을 나타낸다. 도4는 모의평판 충격시험시 3개의 가속도계에 도착한 굽힘파의 주파수별 도착시간을 나타내는 도면이다. 이 도면으로부터 가속도계가 충격위치로부터 가까운 순서대로 충격신호가 먼저 도착하고, 또한 한 가속도계에 대해서는 고주파의 굽힘파가 저주파의 굽힘파보다 먼저 도착하는 특성이 있음을 알 수 있다.4) Obtain the arrival time for each frequency of the bending wave arriving at each accelerometer from the frequency component data. The arrival time is calculated using the Wigner-Ville distribution function first to obtain the Wigner-Ville power distribution curve as shown in FIG. In the Wigner-Ville power distribution curve, the peak distribution curve closest to the zero time axis indicates that the energy of the bending wave due to the impact of the foreign body reaches the accelerometer. After the bending wave passes through the accelerometer, it represents the energy of the bending wave that is reflected back to the interface. Therefore, in Wigner-Ville power distribution curve, the line connecting only the maximum value among the first peak distribution curves closest to the axis of time 0 represents the arrival time of the bending wave by frequency. 4 is a diagram showing the arrival times for each frequency of bending waves arriving at three accelerometers in a simulated flat impact test. From this figure, it can be seen that the impact signal arrives first in the order in which the accelerometer is close to the impact position, and for one accelerometer, the high frequency bending wave arrives before the low frequency bending wave.
5) 굽힘파의 주파수별 전파속도를 다음과 같은 전파속도 계산식을 이용하여 계산한다.5) Calculate the propagation speed of each bending wave by using the following propagation speed equation.
6) 하나의 가속도계에 도착하는 굽힘파중 임의의 2개 굽힘파의 도착시간 차이값과 해당 굽힘파의 전파속도값을 이용하여 가속도계로부터 이물질의 충격위치까지의 거리를 계산하며, 이러한 방식으로 3개의 가속도계 모두에 대해 가속도계로부터 이물질의 충격위치까지의 거리를 계산한다. 가속도계로부터 이물질의 충격위치까지의 거리를 계산하는 식은 다음과 같다.6) Calculate the distance from the accelerometer to the impact location of the foreign object using the difference in the arrival time of any two bending waves among the bending waves arriving at one accelerometer and the propagation speed of the corresponding bending wave. For all four accelerometers, calculate the distance from the accelerometer to the impact location of the foreign object. The formula for calculating the distance from the accelerometer to the impact location of the foreign material is as follows.
7) 가속도계로부터 이물질의 충격위치까지 거리를 반경으로 하고 가속도계를 원점으로 하는 원을 3개의 가속도계 각각에 대해 그려서 3개의 원이 교차하는 점을 구한다. 이 교차하는 지점이 이물질의 충격위치가 된다. 도1은 3개의 원을 교차시켜 충격위치를 구하는 그림을 나타낸다. 표 1은 본 발명에서 제안하는 방법을 적용하여 모의 평판 충격실험시 구한 충격위치의 추정결과를 나타내며 10%이내의 상대오차를 보여준다.7) Draw a circle with the radius from the accelerometer to the impact location of the foreign material and draw the circle with the accelerometer as the origin for each of the three accelerometers. This intersection point is the impact location of the foreign matter. Fig. 1 shows a figure for finding the impact position by intersecting three circles. Table 1 shows the estimated results of the impact position obtained during the simulated plate impact test by applying the method proposed in the present invention and shows the relative error within 10%.
표 1 충격위치 실험결과Table 1 Impact location test results
본 발명은 발전소 등의 공정설비 내에 이물질이 발생하여 공정설비 내벽에 충격을 가할 때 위그너-빌 분포함수를 이용한 신호분석을 통해 이물질의 충격위치를 기존의 방법보다 좀 더 정확히 탐지할 수 있다.The present invention can detect the impact location of the foreign matter more accurately than the conventional method through the signal analysis using the Wigner-Ville distribution function when the foreign matter is generated in the process equipment, such as power plants to impact the inner wall of the process equipment.
이물질의 충격위치를 정확히 파악하게 되면 이물질의 소재도 함께 정확히 파악하게 되므로 이물질을 제거하기 위한 분해점검 및 검사 등의 작업을 시행착오 없이 수행할 수 있으며 이로 인해 원자력 발전소 작업자의 경우에는 방사능 피폭량을 최소화시킬 수 있다. 또한 이물질이 매체와 함께 이동하면서 공정설비 내벽에 충격을 가하여 공정설비를 손상시키는 것을 최소화 할 수 있어 전체 공정계통의 안전성도 증진시킬 수 있다.Accurately identifying the impact location of the foreign material also accurately identifies the material of the foreign material, so that work such as disassembly inspection and inspection to remove the foreign material can be performed without trial and error. You can. In addition, it is possible to minimize the damage to the process equipment by impacting the inner wall of the process equipment while the foreign matter moves with the medium can improve the safety of the entire process system.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000002648A KR100336064B1 (en) | 2000-01-20 | 2000-01-20 | Method of searching for impact position of loose part in system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000002648A KR100336064B1 (en) | 2000-01-20 | 2000-01-20 | Method of searching for impact position of loose part in system |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000030148A true KR20000030148A (en) | 2000-06-05 |
KR100336064B1 KR100336064B1 (en) | 2002-05-10 |
Family
ID=19640012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000002648A KR100336064B1 (en) | 2000-01-20 | 2000-01-20 | Method of searching for impact position of loose part in system |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100336064B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100798007B1 (en) * | 2006-08-21 | 2008-01-24 | 한국원자력연구원 | Mass estimation method for foreign substances of nuclear equipment and estimation device using the same |
CN107748049A (en) * | 2017-09-04 | 2018-03-02 | 西安交通大学 | Positioning method for loosening member of nuclear power station based on ellipsoid approximate shortest path |
CN112949069A (en) * | 2021-03-05 | 2021-06-11 | 北京化工大学 | EMD-based loose piece quality estimation method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105387883A (en) * | 2015-10-28 | 2016-03-09 | 国家电网公司 | Power station power part looseness positioning system and positioning method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57175952A (en) * | 1981-04-24 | 1982-10-29 | Kyoei Giken:Kk | Non-destructive test device of non-metallic object by impulsive elastic wave |
JPH04299208A (en) * | 1991-03-28 | 1992-10-22 | Toshiba Corp | Device for detecting position of moving body inside tube |
JPH10198364A (en) * | 1996-12-27 | 1998-07-31 | Roland Corp | Impact position detector for electronic percussion instrument |
-
2000
- 2000-01-20 KR KR1020000002648A patent/KR100336064B1/en active IP Right Grant
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100798007B1 (en) * | 2006-08-21 | 2008-01-24 | 한국원자력연구원 | Mass estimation method for foreign substances of nuclear equipment and estimation device using the same |
CN107748049A (en) * | 2017-09-04 | 2018-03-02 | 西安交通大学 | Positioning method for loosening member of nuclear power station based on ellipsoid approximate shortest path |
CN112949069A (en) * | 2021-03-05 | 2021-06-11 | 北京化工大学 | EMD-based loose piece quality estimation method |
CN112949069B (en) * | 2021-03-05 | 2023-10-20 | 北京化工大学 | EMD-based loose piece quality estimation method |
Also Published As
Publication number | Publication date |
---|---|
KR100336064B1 (en) | 2002-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gaul et al. | Identification of the impact location on a plate using wavelets | |
CN103760036B (en) | A kind of method of testing of steel fiber reinforced concrete destructive test initial cracking load | |
CN102422154B (en) | System, device for structural damage detection and method for structural damage detection | |
CN100395547C (en) | System for testing quality of cast in place concrete pile | |
EP1793225B1 (en) | Internal tree nondestructive inspection method and apparatus using acoustic tomography | |
CN102879714B (en) | Partial discharge of transformer detection and location method | |
CN109002673B (en) | Bridge foundation scouring identification method based on vehicle braking impact effect | |
CN104458906A (en) | Ultrasonic pipe measurement apparatus | |
CN107167521A (en) | A kind of detection method for improving identification concrete defect and lesion capability | |
CN101923027A (en) | System, equipment and method for detecting structural damages | |
CN110455917B (en) | Concrete crack repair quality detection method | |
WO2022179247A9 (en) | Damage determination method based on full cable system cable force measurement and error adaptive analysis | |
CN104101648A (en) | Ultrasonic guided-wave defect locating method based on Liapunov index | |
CN108519444A (en) | A kind of accurate measurement method of contact line defective locations | |
CN105954358A (en) | TR and Duffing system combined ultrasonic guided wave small defect positioning and detecting method | |
CN110954033A (en) | Concrete crack depth detection method and system | |
CN104374830A (en) | Near field phased array structure health monitoring method based on piezoelectric array | |
KR100336064B1 (en) | Method of searching for impact position of loose part in system | |
KR100444269B1 (en) | A non-destructive tap test system and its test method | |
US20220397500A1 (en) | Apparatus and method for detecting microcrack using orthogonality analysis of mode shape vector and principal plane in resonance point | |
JP6773878B1 (en) | Concrete structure internal condition inspection method and system used for that method | |
CN1333265C (en) | Back-cupping method and device for sound emission source signal in sound emission detection technology | |
CN115856532A (en) | Transformer partial discharge source positioning method based on ultrasonic propagation path identification | |
CN113639804B (en) | Method and system for detecting quality of cable conduit | |
CN105004795A (en) | Pseudo-flaw signal recognition method and method for improving pipeline nondestructive testing precision through same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130207 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20140318 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20150202 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20160421 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20170519 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20180223 Year of fee payment: 17 |
|
FPAY | Annual fee payment |
Payment date: 20190416 Year of fee payment: 18 |