KR20000026438A - Metallocene catalyst for preparing polyethylene and process for preparing polyethylene using catalyst - Google Patents

Metallocene catalyst for preparing polyethylene and process for preparing polyethylene using catalyst Download PDF

Info

Publication number
KR20000026438A
KR20000026438A KR1019980043965A KR19980043965A KR20000026438A KR 20000026438 A KR20000026438 A KR 20000026438A KR 1019980043965 A KR1019980043965 A KR 1019980043965A KR 19980043965 A KR19980043965 A KR 19980043965A KR 20000026438 A KR20000026438 A KR 20000026438A
Authority
KR
South Korea
Prior art keywords
group
alkyl
catalyst
polyethylene
sir
Prior art date
Application number
KR1019980043965A
Other languages
Korean (ko)
Other versions
KR100548614B1 (en
Inventor
우태우
박준려
한택규
김종욱
Original Assignee
남창우
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 남창우, 에스케이 주식회사 filed Critical 남창우
Priority to KR1019980043965A priority Critical patent/KR100548614B1/en
Publication of KR20000026438A publication Critical patent/KR20000026438A/en
Application granted granted Critical
Publication of KR100548614B1 publication Critical patent/KR100548614B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Abstract

PURPOSE: A catalyst is provided which has a good thermal stability. A polyethylene is also provided which has a uniform composition and molecular distribution degree by using the catalyst. CONSTITUTION: A metallocene catalyst of formula 1 and 2 is provided, wherein M is transition metal selected from 3- 10 group and lanthanide metal; Cp is cyclopentanyl; D is N or P; LB is Lewis base electron donor selected from OR, SR, PR2 or NR2; LA is organic compound Lewis acid selected from trialkyl aluminum, dialkyl haloaluminum, alkyl dihaloaluminum, dialkyl magnesium and alkyl halomagnesium; B is cross linking group selected from SiR2, CR2, SiR2SiR2, CR2CR2, CR=CR, CR2SiR2, GeR2, BR2; L is one or two substituted group selected from halogen, alkyl, allyl, sillyl, amine, amide, allyloxy, alkoxy, haloalkyl and haloallyl; R is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, cyclohexyl, dicyclohexyl methyl, phenyl, methyl phenyl and adamantyl. Polyethylene is prepared at 0-300°C, 1-1,000 atm in the presence of the metallocene catalyst, and methyl aluminoxane, alkyl haloaluminum or boron organic amine as a co catalyst, 1-100 mole ratio of alkyl aluminum to remove impurity of monomer and solvent.

Description

폴리에틸렌 제조용 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법Metallocene catalyst for producing polyethylene and method for producing polyethylene using the same

본 발명은 폴리에틸렌 제조용 메탈로센(metallocene) 촉매 및 이를 이용한 폴리에틸렌의 제조방법에 관한 것으로, 좀 더 상세하게는 에틸렌의 단독중합 또는 에틸렌과 α-올레핀의 공중합시에 촉매로서 사용하는 메탈로센 촉매 및 이를 이용하여 조성분포가 균일한 폴리에틸렌을 제조하는 방법에 관한 것이다.The present invention relates to a metallocene catalyst for producing polyethylene and a method for producing polyethylene using the same, and more particularly, to a metallocene catalyst used as a catalyst in homopolymerization of ethylene or copolymerization of ethylene and α-olefin. And it relates to a method for producing a polyethylene with a uniform composition distribution using the same.

이제까지 에틸렌의 단독중합체 또는 에틸렌과 α-올레핀과의 공중합체를 제조함에 있어서는 일반적으로 티타늄 또는 바나듐 화합물의 주촉매 성분과 알킬알루미늄 화합물의 조촉매 성분으로 구성되는 이른바 찌글러-나타 촉매(Ziegler-Natta catalyst)계가 사용되고 있다. 찌글러-나타 촉매계는 에틸렌 중합에 대하여 고활성을 나타내지만, 불균일한 촉매 활성점 때문에 일반적으로 생성 중합체의 분자량분포가 넓으며, 특히 에틸렌과 α-올레핀의 공중합체에 있어서는 조성분포가 균일하지 못한 단점이 있다.So far, in the preparation of homopolymers of ethylene or copolymers of ethylene and α-olefins, so-called Ziegler-Natta catalysts generally composed of a main catalyst component of a titanium or vanadium compound and a promoter component of an alkylaluminum compound catalyst system is used. Although the Ziegler-Natta catalyst system exhibits high activity against ethylene polymerization, the molecular weight distribution of the resulting polymer is generally wide due to the heterogeneous catalytic activity point, and the composition distribution is not uniform especially in the copolymer of ethylene and α-olefin. There are disadvantages.

최근에는 Ti, Zr, Hf 등의 주기율표 4A족 천이금속의 메탈로센 화합물과 조촉매인 메틸알루민옥산(methylaluminoxane, 이하 "MAO"라 칭함)으로 구성되는 이른바 메탈로센 촉매계가 개발되었다. 메탈로센 촉매계는 단일종의 촉매 활성점을 갖는 균일계 촉매이기 때문에 종래의 찌글러-나타 촉매계에 비하여 분자량분포가 좁고 조성분포가 대단히 균일한 폴리에틸렌을 제조할 수 있는 특징을 가지고 있다. 예를 들면, 유럽 공개특허 제 320762호 및 제 3726325호, 일본 공개특허 제 63092621호, 제 02084405호, 제 032347호에는 Cp2TiCl2, Cp2ZrCl2, Cp2ZrMeCl, Cp2ZrMe2, 에틸렌(IndH4)2ZrCl2등의 메탈로센 화합물을 조촉매 MAO로 활성화시킴으로써, 에틸렌을 고활성으로 중합시켜 분자량분포(Mw/Mn)가 1.5∼2.0범위인 폴리에틸렌을 제조할 수 있음이 개시되어 있다.Recently, a so-called metallocene catalyst system has been developed, which is composed of a metallocene compound of a periodic table group 4A transition metal such as Ti, Zr, Hf, and methylaluminoxane (hereinafter referred to as "MAO") as a promoter. Since the metallocene catalyst system is a homogeneous catalyst having a single catalytic activity point, the metallocene catalyst system has a characteristic of producing polyethylene having a narrower molecular weight distribution and a very uniform composition distribution than the conventional Ziegler-Natta catalyst system. For example, European Patent Nos. 320762 and 3726325, Japanese Patent Nos. 63092621, 02084405, and 032347 describe Cp 2 TiCl 2 , Cp 2 ZrCl 2 , Cp 2 ZrMeCl, Cp 2 ZrMe 2 , Ethylene It is disclosed that by activating a metallocene compound such as (IndH 4 ) 2 ZrCl 2 with a promoter MAO, ethylene can be polymerized with high activity to produce polyethylene having a molecular weight distribution (Mw / Mn) in the range of 1.5 to 2.0. have.

그러나, 상기 촉매계로는 충분히 높은 고분자량까지의 중합체를 얻기가 어려우며, 특히 140℃ 이상의 고온에서 실시되는 용액중합법에 적용할 경우 중합 활성과 분자량이 급격히 감소하여 고분자량의 중합체를 제조하기에는 부적절한 문제점이 있다.However, in the catalyst system, it is difficult to obtain a polymer having a sufficiently high molecular weight, and in particular, when applied to a solution polymerization method carried out at a high temperature of 140 ° C. or higher, the polymerization activity and molecular weight are drastically reduced, which is inappropriate to prepare a high molecular weight polymer. There is this.

이러한 문제점을 극복하기 위하여 본 발명자들은 광범위한 연구를 수행한 결과, 에틸렌의 단독중합 또는 에틸렌과 α-올레핀의 공중합시에 있어서, 촉매의 열안정성이 우수하여 고온에서 실시되는 용액중합 공정에서도 효과적으로 사용될 수 있는 촉매를 개발하였으며, 이 촉매를 이용하여 조성분포가 균일하고 분자량 및 분자량 분포도를 조절할 수 있는 폴리에틸렌을 고수율로 제조할 수 있음을 발견하였고, 본 발명은 이에 기초하여 완성되었다.In order to overcome this problem, the present inventors have conducted extensive research, and thus, when homopolymerization of ethylene or copolymerization of ethylene and α-olefin, the thermal stability of the catalyst is excellent, so that it can be effectively used in a solution polymerization process performed at high temperature. The catalyst was developed, and it was found that the catalyst can be produced in a high yield using polyethylene having a uniform composition distribution and controlling molecular weight and molecular weight distribution, and the present invention has been completed based on this.

따라서, 본 발명의 목적은 열안정성이 우수하여 고온의 용액중합 공정에 효과적인 촉매를 제공하는데 있다.Accordingly, it is an object of the present invention to provide a catalyst which is excellent in thermal stability and is effective in a high temperature solution polymerization process.

본 발명의 또다른 목적은 상기 촉매를 이용하여 조성분포가 균일하며 분자량 및 분자량 분포도 등의 물성 조절이 가능한 고분자량의 폴리에틸렌을 제조하는 방법을 제공하는데 있다.Still another object of the present invention is to provide a method for producing a high molecular weight polyethylene having a uniform composition distribution and controlling physical properties such as molecular weight and molecular weight distribution using the catalyst.

상기 목적을 달성하기 위한 본 발명에 따른 촉매는 하기 화학식 1 또는 2로 표시되는 기하 구속형 메탈로센 촉매이다.The catalyst according to the present invention for achieving the above object is a geometrically constrained metallocene catalyst represented by the following formula (1) or (2).

여기서, M은 주기율표의 3족, 4∼10족, 및 란탄나이드계 금속으로 이루어진 군으로부터 선택된 하나의 천이금속이고, Cp는 상기 M과 π-결합할 수 있는 시클로펜타디에닐 유도체이며, D는 질소 또는 인의 원소이고, LB는 OR*, SR*, PR* 2,및 NR* 2로 이루어진 군으로부터 선택된 하나의 루이스 염기 전자공여 치환체이며, LA는 트리알킬알루미늄, 디알킬할로알루미늄, 알킬디할로알루미늄, 디알킬마그네슘, 및 알킬할로마그네슘으로 이루어진 군으로부터 선택된 하나의 유기금속 화합물 루이스 산이고, B는 SiR* 2, CR* 2, SiR* 2SiR* 2, CR* 2CR* 2, CR*=CR*, CR* 2SiR* 2, GeR* 2, BR* 2, 및 BR* 2로 이루어진 군으로부터 선택된 하나의 가교기이며, L은 수소 이외에 20이하의 총 원자수를 갖는 할로겐기, 알킬기, 알릴기, 실릴기, 아민기, 아미드기, 알릴로시기, 알콕시기, 할로알킬기, 및 할로알릴기로 이루어진 군으로부터 하나 또는 둘이상 선택된 치환기이고, R*는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, tert-부틸, 시클로헥실, 디시클로헥실메틸, 페닐, 메틸페닐, 및 아다멘틸로 이루어진 군으로부터 선택된 하나이다.Here, M is one transition metal selected from the group consisting of Group 3, Group 4-10, and lanthanide-based metal of the periodic table, Cp is a cyclopentadienyl derivative capable of π-bond with M, D is is nitrogen or phosphorus element, LB is oR *, SR *, PR * 2, and NR * 2 is a Lewis base electron donor substituents selected from the group consisting of, LA is a trialkyl aluminum, an aluminum alkyl di di alkylhalo One organometallic compound Lewis acid selected from the group consisting of haloaluminum, dialkylmagnesium, and alkylhalo magnesium, B is SiR * 2 , CR * 2 , SiR * 2 SiR * 2 , CR * 2 CR * 2 , CR * = CR * , CR * 2 SiR * 2 , GeR * 2 , BR * 2 , and BR * 2 , one crosslinking group selected from the group consisting of halogen having a total number of atoms of 20 or less in addition to hydrogen Group, alkyl group, allyl group, silyl group, amine group, amide group, allyl group, al Group, wherein one or more than one substituent selected from a haloalkyl group, a haloalkoxy group consisting allyl, R * is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert- butyl, cyclohexyl, dicyclohexyl methyl, phenyl , Methylphenyl, and adamantyl.

본 발명의 또 다른 목적을 달성하기 위한 폴리에틸렌의 제조방법은 에틸렌의 단독중합 또는 에틸렌과 α-올레핀의 공중합시에 있어서, 0∼300℃의 중합온도 및 1∼1000기압의 에틸렌 압력하에서 주촉매로서는 상기 화학식 1 또는 2의 화합물로 이루어진 메탈로센 촉매를, 조촉매로서는 메틸알루민옥산, 알킬할로알루미늄 및 붕소유기화합물계 음이온으로 이루어진 군으로부터 선택된 하나의 촉매를 사용하며, 중합시의 모노머 또는 용매에 함유된 불순물을 제거하기 위해 알킬알루미늄을 촉매에 대하여 1∼100몰비의 범위로 첨가시키는 것으로 이루어진다.A method for producing polyethylene for achieving another object of the present invention is a main catalyst at the time of homopolymerization of ethylene or copolymerization of ethylene and α-olefin, under a polymerization temperature of 0 to 300 ° C. and ethylene pressure of 1 to 1000 atm. The metallocene catalyst consisting of the compound of Formula 1 or 2, as a promoter is one catalyst selected from the group consisting of methyl aluminoxane, alkyl halo aluminum, and boron organic compound-based anion, monomer or at the time of polymerization Alkyl aluminum is added in the range of 1-100 molar ratio with respect to a catalyst in order to remove the impurity contained in a solvent.

도 1은 본 발명의 일실시예에 따른 메탈로센 촉매인 Me2Si(Me4Cp)(NNMe2)Ti(NMe2)2의 분자구조도이고,1 is a molecular structure diagram of Me 2 Si (Me 4 Cp) (NNMe 2 ) Ti (NMe 2 ) 2 , which is a metallocene catalyst according to one embodiment of the present invention,

도 2는 본 발명의 다른 실시예에 따른 메탈로센 촉매인 Me2Si(Me4Cp)(NNMe2)TiCl2의 분자구조도이며,FIG. 2 is a molecular structure diagram of Me 2 Si (Me 4 Cp) (NNMe 2 ) TiCl 2 as a metallocene catalyst according to another embodiment of the present invention.

도 3은 본 발명의 또 다른 실시예에 따른 메탈로센 촉매인 Me2Si(Me4Cp)(NNMe2)(AlMe3)TiMe2의 분자구조도이고,3 is a molecular structure diagram of Me 2 Si (Me 4 Cp) (NNMe 2 ) (AlMe 3 ) TiMe 2 as a metallocene catalyst according to another embodiment of the present invention,

도 4는 본 발명의 또 다른 실시예에 따른 메탈로센 촉매인 Me2Si(Me4Cp)(NNMe2)TiMe2의 분자구조도이다.4 is a molecular structure diagram of Me 2 Si (Me 4 Cp) (NNMe 2 ) TiMe 2 which is a metallocene catalyst according to another embodiment of the present invention.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

하기 화학식 1에 표시된 바와 같이, 본 발명의 촉매는 기하구속형 리간드의 구성성분에 전자 공여성 치환체, 즉 루이스 염기(LB)를 부가하여 4A족 천이금속인 중심금속원소(M)와 배위된 유기금속화합물(L)로 구성된다. 또한 하기 화학식 2에 표시된 바와 같이, 본 발명의 또 다른 촉매는 상기 화학식 1의 화합물에서 중심금속(M)으로의 전자 공여 정도를 조절하기 위하여 루이스 염기 치환체에 적당한 정도의 루이스 산기(LA)를 부여한 유기금속화합물로 구성된다.As shown in Formula 1, the catalyst of the present invention is an organic metal coordinated with the central metal element (M), which is a Group 4A transition metal, by adding an electron donating substituent, that is, Lewis base (LB), to the components of the geometric ligand It consists of compound (L). In addition, as shown in the following Chemical Formula 2, another catalyst of the present invention provides an appropriate amount of Lewis acid group (LA) to the Lewis base substituent in order to control the degree of electron donation from the compound of Chemical Formula 1 to the central metal (M). It consists of organometallic compounds.

화학식 1 화학식 2Chemical Formula 1 Chemical Formula 2

여기서, M은 주기율표의 3족, 4∼10족, 및 란탄나이드계 금속으로 이루어진 군으로부터 선택된 하나의 천이금속으로서, 바람직하게는 티타늄, 지르코늄 및 하프늄을 들 수 있다.Here, M is one transition metal selected from the group consisting of Groups 3, 4 to 10, and lanthanide-based metals of the periodic table, preferably titanium, zirconium and hafnium.

또한, Cp는 중심 금속(M)과 π-결합할 수 있는 시클로펜타디에닐 유도체로서, 더욱 바람직하게는 시클로펜타디에닐, 메틸시클로펜타디엔닐, 디메틸시클로펜타디에닐, 테트라메틸시클로펜타디에닐, 부틸시클로펜타디에닐, t-부틸메틸시클로펜타디에닐, 트리메틸실릴시클로펜타디에닐, 인덴닐, 메틸인덴닐, 및 플로렌닐을 들 수 있다.Cp is a cyclopentadienyl derivative capable of π-bonding with a central metal (M), more preferably cyclopentadienyl, methylcyclopentadienyl, dimethylcyclopentadienyl, tetramethylcyclopentadienyl , Butylcyclopentadienyl, t-butylmethylcyclopentadienyl, trimethylsilylcyclopentadienyl, indenyl, methylindenyl, and florenyl.

상기 D는 질소 또는 인으로부터 선택된 하나의 원소이며, LB는 루이스 염기 전자공여 치환체로 OR*, SR*, PR* 2, 또는 NR* 2이고 이들은 한 개 이상의 비결합 전자쌍을 소유하며 중심금속과 상호작용하며, 여기서 R*는 탄소수 1에서 20까지 갖는 알킬기, 알릴기, 실릴기, 할로겐화된 알킬기, 또는 알릴기이다. 또한, LA는 루이스 산으로, 바람직하게 트리알킬알루미늄, 디알킬할로알루미늄, 알킬디할로알루미늄, 및 디알킬마그네슘, 알킬할로마그네슘으로 이루어진 군으로부터 선택된 하나의 유기금속화합물이다.D is one element selected from nitrogen or phosphorous, LB is a Lewis base electron donor substituent OR * , SR * , PR * 2 , or NR * 2 , which possess one or more unbonded electron pairs and interact with the central metal R * is an alkyl group having 1 to 20 carbon atoms, an allyl group, a silyl group, a halogenated alkyl group, or an allyl group. LA is also a Lewis acid, preferably an organometallic compound selected from the group consisting of trialkylaluminum, dialkylhaloaluminum, alkyldihaloaluminum, and dialkylmagnesium, alkylhalomagnesium.

B는 SiR* 2, CR* 2, SiR* 2SiR* 2, CR* 2CR* 2, CR*=CR*, CR* 2SiR* 2, GeR* 2, 및 BR* 2로 이루어진 군으로부터 선택된 하나의 가교기(bridging group)이다. 여기서 R*는 탄소수 1에서 20까지 갖는 알킬기, 알릴기, 실릴기, 할로겐화된 알킬기, 알릴기이다. 그 구체적인 예로는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, tert-부틸, 시클로헥실, 디시클로헥실메틸, 페닐, 메틸페닐, 아다멘틸(adamantyl) 등이 있다.B is selected from the group consisting of SiR * 2 , CR * 2 , SiR * 2 SiR * 2 , CR * 2 CR * 2 , CR * = CR * , CR * 2 SiR * 2 , GeR * 2 , and BR * 2 One bridging group. R * is an alkyl group having 1 to 20 carbon atoms, allyl group, silyl group, halogenated alkyl group, allyl group. Specific examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, cyclohexyl, dicyclohexylmethyl, phenyl, methylphenyl and adamantyl.

L은 수소 이외에 20이하의 총원자수를 갖는 할로겐기, 알킬기, 알릴기, 실릴기, 아민기, 아미드기, 알릴로시기, 알콕시기, 할로알킬기, 할로알릴기로 이루어진 음이온 또는 루이스 염군으로부터 중심금속의 산화가에 따라 선택된 하나 또는 둘의 치환기이다. 더욱 바람직하게는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 시클로헥실기, 디시클로헥시메틸기, 페닐기, 메틸펜닐기, 벤질기, 염화기, 디메틸아민기, 디에틸아미드기, 디페닐아미드기, 디벤질아미드기, 디헥실아미드기, 메틸에틸아미드기, 메틸펜닐아미드기, 메틸벤질아미드기, 메틸헥실아미기, 펜닐벤질아미드기, 펜닐헥실아미기, 벤질헥실아미드기, 트리메틸실릴기, 트리에틸실릴기, 메톡시기, 에톡시기, 프로폭시기, 이소프로폭시기, 부톡시기, 또는 이소부톡시기 등이다.L is a core metal from an anion or Lewis salt group consisting of halogen, alkyl, allyl, silyl, amine, amide, allyl, alkoxy, haloalkyl and haloallyl groups other than hydrogen The oxidation of is one or two substituents selected according to. More preferably, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, cyclohexyl group, dicyclohexyl methyl group, phenyl group, methylphenyl group, benzyl group, chloride group, dimethyl Amine group, diethylamide group, diphenylamide group, dibenzylamide group, dihexylamide group, methylethylamide group, methylphenylamide group, methylbenzylamide group, methylhexylami group, phenylbenzylamide group, phenylhexyl Ami groups, benzyl hexylamide groups, trimethylsilyl groups, triethylsilyl groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, butoxy groups, isobutoxy groups, and the like.

본 발명의 촉매성분을 합성하는데 사용되는 각 성분 및 중간 생성물들은 산소 및 수분 등의 각종 불순물과 쉽게 반응하기 때문에, 이들 불순물을 완전히 제거시킨 시약 및 용매를 사용하여야 하며, 반응 및 분리의 모든 과정을 질소 또는 아르곤 등의 불활성 가스 분위기하에서 진행시켜야 한다.Since each component and intermediate products used to synthesize the catalyst component of the present invention easily reacts with various impurities such as oxygen and moisture, it is necessary to use reagents and solvents from which these impurities have been completely removed. It should proceed under an inert gas atmosphere such as nitrogen or argon.

먼저, 상기 촉매를 합성하는데 필요한 리간드를 합성하기 위하여, 대표적으로 CpLi의 화합물과, R2R3SiX2 또는 R2R3CX2로 이루어진 군으로부터 선택된 하나의 화합물을 정량적으로 -78∼50℃에서 반응시켜 생성물을 분리한 다음, 상기 분리한 생성물과 대표적으로 R4R5NCH2NR6R7, NH2NR4R5, NH2PR4R5, PH2NR4R5, 및 PH2PR4R5으로 이루어진 군으로부터 선택된 하나의 화합물을 1:2의 몰비이상으로 -78∼50℃에서 반응시켜 분리시킴으로써 리간드 화합물을 합성한다. 여기서, Cp는 시클로펜타디엔닐 유도체이고, X는 Cl 또는 Br로부터 선택되며, R1, R2, R3, R4, R5, R6, R7은 서로 같거나 다르게 수소 또는 탄소수 1 내지 20의 탄화수소 라디칼이다. 각 반응에는 용매로서 디에틸에테르, 테트라하이드로퓨란(THF), 노말펜탄, 노말헥산, 톨루엔, 벤젠, 디클로로메탄 등을 사용할 수 있다.First, in order to synthesize a ligand necessary for synthesizing the catalyst, typically a compound of CpLi and R2R3SiX2 Or R2R3CX2One compound selected from the group consisting of quantitatively reacted at -78 ~ 50 ℃ to separate the product, and then to the separated product typically4R5NCH2NR6R7, NH2NR4R5, NH2PR4R5, PH2NR4R5, And PH2PR4R5A ligand compound is synthesized by reacting and separating one compound selected from the group consisting of at a molar ratio of 1: 2 at -78 to 50 ° C. Wherein Cp is a cyclopentadienyl derivative, X is selected from Cl or Br, and R isOne, R2, R3, R4, R5, R6, R7Are the same or different from each other hydrogen or a hydrocarbon radical of 1 to 20 carbon atoms. Diethyl ether, tetrahydrofuran (THF), normal pentane, normal hexane, toluene, benzene, dichloromethane, etc. can be used for each reaction.

상기에서 합성된 리간드 화합물과 n-BuLi 또는 그리냐르(Grignard) 시약, 예를 들어 BuMgCl, EtMgCl, 및 MeMgCl로 이루어진 군으로부터 선택된 하나를 1:2의 몰비로 -78∼50℃에서 반응시켜 음이온화시킨 다음, MClx(6-x)THF로 표시되는 화합물과 1:1 몰비로 -78∼50℃에서 반응시킨다. 여기서, M은 Ti, Zr 또는 Hf이고, x=3 또는 4의 정수이다. 다음, 상기 생성물을 디에틸에테르 또는 노말펜탄에 침지시켜 이에 녹는 용액부분을 재결정화시킨 후 분리하여 하기 화학식 3으로 표시되는 화합물을 합성한다. 상기 화학식 1은 하기 화학식 3을 대표적으로 표시한 것이다.The ligand compound synthesized above and an n-BuLi or Grignard reagent, for example, one selected from the group consisting of BuMgCl, EtMgCl, and MeMgCl, are reacted at -78 to 50 ° C. at a molar ratio of 1: 2 to anionization. And then reacted with a compound represented by MCl x (6-x) THF at -78 to 50 ° C in a 1: 1 molar ratio. Here, M is Ti, Zr or Hf and is an integer of x = 3 or 4. Subsequently, the product is immersed in diethyl ether or normal pentane to recrystallize the solution portion dissolved therein and separated to synthesize a compound represented by the following Chemical Formula 3. Formula 1 is represented by the following formula (3).

또 다른 방법으로는 상기에서 합성된 리간드 화합물과 ML4로 표시되는 화합물을 용매없이 0∼200℃조건에서 1:1의 몰비로 반응시킨 후, 감압 조건에서 승화 결정법으로 추출하여 상기 화학식 1로 표시되는 화합물을 합성한다. 여기서, M은 Ti, Zr 또는 Hf이고, L은 NR8R9, PR8R9, OR, 또는 SR이며, R, R8, 및 R9는 탄소수 1 내지 20의 알킬기 또는 아릴기이다.In another method, the ligand compound synthesized above and the compound represented by ML 4 are reacted in a molar ratio of 1: 1 at 0 to 200 ° C. without a solvent, and then extracted by sublimation crystallization under reduced pressure to be represented by Formula 1 above. The compound which becomes is synthesize | combined. Here, M is Ti, Zr or Hf, L is NR 8 R 9 , PR 8 R 9 , OR, or SR, R, R 8 , and R 9 is an alkyl or aryl group having 1 to 20 carbon atoms.

합성된 상기 화학식 1로 표시된 화합물을 알루미늄 알킬 또는 마그네슘 알킬과 -78∼50℃에서 반응시키면 본 발명의 화합물인 화학식 2로 표시되는 화합물을 합성할 수 있다.When the compound represented by Chemical Formula 1 is reacted with aluminum alkyl or magnesium alkyl at −78 to 50 ° C., the compound represented by Chemical Formula 2 may be synthesized.

전술한 방법에 의해 합성된 촉매 성분 또는 구조분석은13C-NMR,1H-NMR 또는 단결정 구조분석을 이용할 수 있다.The catalyst component or structural analysis synthesized by the method described above may use 13 C-NMR, 1 H-NMR or single crystal structure analysis.

상기 제조된 촉매를 이용하여 폴리에틸렌을 제조하는 방법은 다음과 같다.Method for producing polyethylene using the prepared catalyst is as follows.

중합방법Polymerization Method

상기의 촉매를 사용하여 에틸렌의 단독중합 또는 에틸렌과 α-올레핀을 공중합시킬 때는 일반적으로는 기상중합법 또는 액상중합법이 모두 이용될 수 있으나, 촉매성분을 고체담체에 담지시키지 않고, 용액상태로 사용하기 위해서는 액상중합법이 더욱 바람직하다. 액상중합시에는 적절한 유기용매의 존재하에서 상기의 촉매를 주촉매로 하여, 조촉매와 반응 모노머를 접촉시켜 진행된다.When homopolymerization of ethylene or copolymerization of ethylene and α-olefin using the catalyst described above, gas phase polymerization or liquid phase polymerization can generally be used. However, the catalyst component is not supported on a solid carrier, but in solution state. In order to use, the liquid-phase polymerization method is more preferable. In the liquid phase polymerization, the catalyst is used as the main catalyst in the presence of a suitable organic solvent, and the cocatalyst is brought into contact with the reaction monomer.

본 발명에 바람직한 유기용매는 탄소수 3 내지 20의 탄화수소이며, 그 구체적인 예로는 부탄, 이소부탄, 펜탄, 헥산, 헵탄, 옥탄, 노난, 데칸, 도데칸, 시클로헥산, 메틸시클로헥산, 벤젠, 톨루엔, 및 자일렌 등으로 이루어진 군으로부터 선택된다.Preferred organic solvents for the present invention are hydrocarbons having 3 to 20 carbon atoms, specific examples of which are butane, isobutane, pentane, hexane, heptane, octane, nonane, decane, dodecane, cyclohexane, methylcyclohexane, benzene, toluene, And xylene and the like.

고밀도폴리에틸렌의 제조시에는 모노머로서 에틸렌을 단독으로 사용하며, 본 발명에 적합한 에틸렌의 압력은 1∼1000기압이며, 더 바람직하게는 10∼100기압이다. 에틸렌의 압력이 1기압 미만이면 제조 수율이 저하되고, 1000기압을 초과하면 고밀도 폴리에틸렌의 제조가 불가능하다.In the production of high density polyethylene, ethylene is used alone as a monomer, and the pressure of ethylene suitable for the present invention is 1 to 1000 atm, and more preferably 10 to 100 atm. If the pressure of ethylene is less than 1 atmosphere, the production yield is lowered. If it exceeds 1000 atmospheres, production of high density polyethylene is impossible.

또한 저밀도폴리에틸렌의 제조시에는 에틸렌과 함께 공동단량체로서 탄소수 3 내지 18의 α-올레핀을 사용하며, 바람직하게는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐, 1-데센, 1-도데센, 1-헥사데센, 1-옥타데센 등으로 이루어진 군으로부터 선택된다. 바람직한 에틸렌의 압력은 상기 고밀도폴리에틸렌의 제조시와 동일하고 α-올레핀의 사용량은 에틸렌 중량에 대하여 0.01∼100배이며, 더 바람직하게는 0.1∼10배이다.In the production of low density polyethylene, an olefin having 3 to 18 carbon atoms is used as a co-monomer together with ethylene, and preferably propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 1-octadecene and the like. Preferable pressure of ethylene is the same as in the production of the high density polyethylene, and the amount of the α-olefin is 0.01 to 100 times the weight of ethylene, more preferably 0.1 to 10 times.

본 발명에 따라, 상기 화학식 1과 2로 표시되는 화합물을 주촉매로 사용하며 그에 필요한 조촉매는 메틸알루민옥산(MAO), 알킬할로알루미늄 또는 붕소유기화합물계 음이온으로 이루어진 군으로부터 선택된 하나이다. 상기 화학식 1과 2로 표시되는 화합물의 성분의 하나인 L이 할로겐, 또는 알킬기중 하나이면 조촉매로 MAO를 사용하며 적절한 주촉매 대 조촉매의 몰농도는 특별히 제한되는 것은 아니지만, 주촉매에 대한 조촉매의 비율(Al/Ti 몰비)은 10∼10000의 범위가 바람직하며, 100∼1000의 범위가 더욱 바람직하다. 비율이 10미만이면 촉매가 활성화되지 못하여 에틸렌 중합반응이 일어나지 않으며, 10000을 초과하면 생성된 폴리에틸렌에 과량의 알루미늄 잔사량이 포함될 수 있다.According to the present invention, the compounds represented by the above formulas (1) and (2) are used as the main catalyst and the cocatalyst required therefor is one selected from the group consisting of methyl aluminoxane (MAO), alkyl haloaluminum or boron organic compound-based anions. If L, which is one of the components of the compounds represented by Formulas 1 and 2, is one of halogen or an alkyl group, MAO is used as a cocatalyst, and the appropriate molar concentration of the main catalyst to the promoter is not particularly limited, but The range of the cocatalyst ratio (Al / Ti molar ratio) is preferably in the range of 10 to 10000, more preferably in the range of 100 to 1000. If the ratio is less than 10, the catalyst is not activated and ethylene polymerization does not occur. If the ratio exceeds 10000, the excess polyethylene residue may be included in the produced polyethylene.

상기 L이 아미드, 알콕시기이면 조촉매로 트리메틸알루미늄, 트리에틸알루미늄, 디에틸클로로알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄 등으로 이루어진 군으로부터 선택된 하나의 알킬할로알루미늄을 사용한다. 주촉매에 대한 조촉매의 몰농도 비율(Al/Ti 몰비)은 1∼1000으로 MAO를 사용할때보다 훨씬 적으며 바람직하게는 5∼500배이다. 비율이 1미만이면 촉매가 활성화되지 않아서 중합활성이 거의 존재하지 않고, 1000을 초과하면 촉매활성이 저하되고, 생성된 폴리에틸렌이 과량의 알루미늄을 함유할 수 있다.When L is an amide or an alkoxy group, one alkyl haloaluminum selected from the group consisting of trimethylaluminum, triethylaluminum, diethylchloroaluminum, tributylaluminum, triisobutylaluminum and the like is used as a promoter. The molar concentration ratio (Al / Ti molar ratio) of the promoter to the main catalyst is 1 to 1000, much less than when using MAO, and preferably 5 to 500 times. If the ratio is less than 1, the catalyst is not activated and there is almost no polymerization activity. If the ratio exceeds 1000, the catalytic activity is lowered, and the resulting polyethylene may contain excess aluminum.

상기 L이 아미드기, 알킬기, 벤질기, 및 펜닐기이면 조촉매로 B(C6F5)3, (R1R2NH)+B-(C6F5)4, 및 (R1R2R3C)+B-(C6F5)4로 이루어진 군으로부터 선택된 하나의 붕소유기화합물계 음이온을 사용하며, 이때 모노머 또는 용매에 포함하는 불순물 제거제로 알킬알루미늄을 첨가할수도 있다. 여기서, R1, R2, R3은 서로 같거나 다르게 수소 또는 탄소수 1 내지 20의 탄화수소 라디칼이다. 바람직한 붕소유기화합물 이온계의 사용량은 주촉매에 대한 조촉매의 몰농도 비율(B/Ti 몰비)이 0.5∼10의 범위이며, 바람직한 불순물 제거제의 사용량은 주촉매에 대한 비율(Al/Ti 몰비)이 0∼500의 범위이며, 더 바람직하게는 1∼100의 범위이다. 조촉매의 비율이 0.5 미만이면 촉매의 활성화가 이루어지지 않으며, 10을 초과하면 오히려 촉매활성이 저하되며, 불순물 제거제의 사용량이 500을 초과하면 붕소유기화합물의 촉매활성화 반응에 방해되어 촉매의 중합활성이 저하된다.Wherein L is an amide group, an alkyl group, a benzyl group, and the pen group is as cocatalysts B (C 6 F 5) 3 , (R 1 R 2 NH) + B - (C 6 F 5) 4, and (R 1 R 2 R 3 C) + B - (C 6 F 5) using a boron compound-based organic anion selected from the group consisting of 4, and this time may be added to the alkyl aluminum with an impurity remover that contains a monomer or solvent. Wherein R 1 , R 2 , R 3 are the same as or different from each other hydrogen or a hydrocarbon radical of 1 to 20 carbon atoms. The preferred amount of the boron organic compound ion system is in the range of molar concentration (B / Ti molar ratio) of the promoter to the main catalyst in the range of 0.5 to 10, and the preferred amount of the impurity remover is the ratio (Al / Ti molar ratio) to the main catalyst. It is the range of 0-500, More preferably, it is the range of 1-100. If the ratio of the cocatalyst is less than 0.5, the catalyst is not activated. If it exceeds 10, the catalytic activity is deteriorated. If the amount of the impurity remover is more than 500, the catalyst activation reaction of the boron organic compound is interrupted and the polymerization activity of the catalyst is prevented. Is lowered.

상기 촉매들의 두 성분을 별도로 반응기내에 투입하거나 또는 두 성분을 미리 혼합하여 반응기에 투입한다. 여기에 촉매와 조촉매를 미리 혼합하는 경우, 온도 및 농도 등의 혼합조건은 특별히 제한되지 않는다.The two components of the catalysts are separately introduced into the reactor or the two components are premixed and introduced into the reactor. In the case where the catalyst and the cocatalyst are mixed in advance, mixing conditions such as temperature and concentration are not particularly limited.

이하 실시예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 하기의 예에 의하여 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited by the following examples.

실시예 1Example 1

Me2Si(Me4Cp)(NNMe2)TiNMe2의 제조Preparation of Me 2 Si (Me 4 Cp) (NNMe 2 ) TiNMe 2

질소분위기로 치환된 500ml의 구형유리반응기에 Me4CpLi(Cp는 시클로펜타디에닐, 10.0g, 78mmol)을 200ml의 THF로 희석하여 -78℃로 냉각시킨 후 Me2SiCl210.7g(93.6mmol)을 서서히 적하하여 3시간 동안 교반시키면서 반응시켰다. 반응용액중의 THF와 미반응 Me2SiCl2를 진공으로 제거한 후, 노말헥산을 사용하여 LiCl 침전을 여과하여 제거한 다음, 진공으로 노말헥산을 제거하여 노란색 액체상태의 Me2Si(Me4Cp)Cl (15.6g, 73.2mmol)을 얻었다. 다른 500ml의 구형반응기에 NH2NMe25.28g(87.8mmol)을 넣고 200ml의 THF에 희석하여 -78℃로 냉각시킨 후 n-BuLi 55ml (87.8mmol, 1.6M 노말헥산 희석액)을 천천히 적하하였다. 진공하에서 THF를 제거하고 에틸에테르 200ml를 넣어 흰색 슬러리를 만들었다. -78℃로 냉각시킨 후 상기 합성한 Me2Si(Me4Cp)Cl 15.6g(73.2mmol)을 디에틸에테르 120ml에 희석하여 -78℃로 냉각시킨 후 흰색 슬러리쪽으로 서서히 적하하였다. 상온으로 서서히 승온시킨 후 24시간 동안 교반하였다. 디에틸에테르를 사용하여 LiCl침전을 여과하고 진공으로 디에틸에테르를 제거하고 오렌지색 점성액체를 얻었다. 이 점성액체를 110℃에서 진공 분별증류에 의해 분리하여 연두색 점성액체 10.95g(63%)을 얻었다.In a 500 ml spherical glass reactor substituted with nitrogen, Me 4 CpLi (Cp is cyclopentadienyl, 10.0 g, 78 mmol) was diluted with 200 ml of THF, cooled to -78 ° C, and then Me 2 SiCl 2 10.7 g (93.6 mmol) ) Was slowly added dropwise and reacted with stirring for 3 hours. After THF and unreacted Me 2 SiCl 2 in the reaction solution were removed in vacuo, LiCl precipitate was filtered off using normal hexane, and normal hexane was removed in vacuo to give Me 2 Si (Me 4 Cp) as a yellow liquid. Cl (15.6 g, 73.2 mmol) was obtained. In another 500 ml spherical reactor, 5.28 g (87.8 mmol) of NH 2 NMe 2 was diluted in 200 ml of THF, cooled to −78 ° C., and 55 ml (87.8 mmol, 1.6 M normal hexane dilution) of n-BuLi was slowly added dropwise thereto. THF was removed in vacuo and 200 ml of ethyl ether was added to form a white slurry. After cooling to −78 ° C., 15.6 g (73.2 mmol) of the synthesized Me 2 Si (Me 4 Cp) Cl was diluted in 120 ml of diethyl ether, cooled to −78 ° C., and slowly added dropwise to the white slurry. After slowly warming to room temperature, the mixture was stirred for 24 hours. LiCl precipitate was filtered using diethyl ether, and diethyl ether was removed in vacuo to give an orange viscous liquid. This viscous liquid was separated by vacuum fractional distillation at 110 ° C. to obtain 10.95 g (63%) of light green viscous liquid.

1H-NMR(CDCl3, 25℃) δ2.44(s, 1H, Me4Cp-H), 2.37(s, 6H, NNMe2), 1 H-NMR (CDCl 3 , 25 ° C.) δ2.44 (s, 1H, Me 4 Cp-H), 2.37 (s, 6H, NNMe 2 ),

1.94(s, 6H, Me4Cp-Me), 1.78(s, 6H, Me4Cp-Me), -0.06(s, 6H, Me2Si).1.94 (s, 6H, Me 4 Cp-Me), 1.78 (s, 6H, Me 4 Cp-Me), -0.06 (s, 6H, Me 2 Si).

질소 분위기하에서 250ml 구형 반응기에 상기 합성한 Me2Si(Me4Cp)Cl 2.37g (10mmol)과 Ti(NMe2)42.24g(10mmol)을 넣고 130℃에서 1시간 동안 가열반응시켰다. 상온으로 냉각하여 10분 정도 진공으로 부산물 Me2NH를 제거하고 다시 아르곤을 채운 후 다시 130℃로 1시간 동안 가열하였다. 이 과정을 4번 반복한 후 노말 펜탄으로 재결정화하여 도 1의 화합물 붉은색 고체 2.0g(53.7%)를 얻었다.2.37 g (10 mmol) of the synthesized Me 2 Si (Me 4 Cp) Cl and 2.24 g (10 mmol) of Ti (NMe 2 ) 4 were added to a 250 ml spherical reactor under a nitrogen atmosphere and heated at 130 ° C. for 1 hour. After cooling to room temperature, by-product Me 2 NH was removed by vacuum for about 10 minutes, and again filled with argon, and then heated to 130 ° C. for 1 hour. This process was repeated four times, followed by recrystallization with normal pentane to obtain 2.0 g (53.7%) of the red solid compound of FIG. 1.

1H-NMR (CDCl3, 25℃) δ2.99(s, 12H, TiNMe2), 2.49(s, 6H, NNMe2), 1 H-NMR (CDCl 3 , 25 ° C.) δ 2.99 (s, 12H, TiNMe 2 ), 2.49 (s, 6H, NNMe 2 ),

2.11(s, 6H, Me4Cp-Me), 2.02(s, 6H, Me4Cp-Me), 0.49(s, 6H, Me2Si).2.11 (s, 6H, Me 4 Cp-Me), 2.02 (s, 6H, Me 4 Cp-Me), 0.49 (s, 6H, Me 2 Si).

13C-NMR(CDCl3, 25℃) δ127.6, 124.9, 103.1, 51.1, 48.6, 14.0, 11.7, 4.6. 13 C-NMR (CDCl 3 , 25 ° C.) δ 127.6, 124.9, 103.1, 51.1, 48.6, 14.0, 11.7, 4.6.

실시예 2Example 2

Me2Si(Me4Cp)(NNMe2)TiCl2의 제조Preparation of Me 2 Si (Me 4 Cp) (NNMe 2 ) TiCl 2

상기 실시예 1에서 제조한 Me2Si(Me4Cp)(NNMe2)Ti(NMe2)21.0g(2.69mmol)를 CH2Cl2용매 60ml에 녹인 후, 상온에서 CH2Cl2용매 20ml에 묽힌 SiMe3Cl 0.72g (6.8mmol)을 서서히 적하하여 5시간 동안 교반하였다. 진공하에서 용매를 제거하고 디에틸에테르로 세척 후 톨루엔하에 여과추출하여 진공으로 용매를 제거하였다. 다시 톨루엔으로 재결정하여 도 2의 화합물 노란색 침상형 결정 0.6g(63%)를 얻었다.Example 1 a Me 2 Si (Me 4 Cp) prepared in (NNMe 2) Ti (NMe 2 ) 2 and then to 1.0g (2.69mmol) dissolved in 60ml CH 2 Cl 2 solvent, CH 2 Cl 2 solvent at room temperature 20ml 0.72 g (6.8 mmol) of diluted SiMe 3 Cl was slowly added dropwise and stirred for 5 hours. The solvent was removed in vacuo, washed with diethyl ether and filtered off under toluene to remove the solvent in vacuo. Again recrystallized with toluene to obtain 0.6g (63%) of the compound yellow needle-like crystal of FIG.

1H-NMR(CDCl3, 25℃) δ2.95(s, 6H, NNMe2), 2.20(s, 6H, Me4Cp-Me), 1 H-NMR (CDCl 3 , 25 ° C.) δ 2.95 (s, 6H, NNMe 2 ), 2.20 (s, 6H, Me 4 Cp-Me),

1.92(s, 6H, Me4Cp-Me), 0.66(s, 6H, Me2Si).1.92 (s, 6H, Me 4 Cp-Me), 0.66 (s, 6H, Me 2 Si).

13C-NMR(CDCl3, 25℃) δ136.4, 133.1, 96.5, 50.0, 15.5, 12.2, 4.2. 13 C-NMR (CDCl 3 , 25 ° C.) δ 136.4, 133.1, 96.5, 50.0, 15.5, 12.2, 4.2.

실시예 3Example 3

Me2Si(Me4Cp)(NNMe2)(AlMe3)TiMe2의 제조방법Method for preparing Me 2 Si (Me 4 Cp) (NNMe 2 ) (AlMe 3 ) TiMe 2

상기 실시예 1에서 제조한 Me2Si(Me4Cp)(NNMe2)Ti(NMe2)21.0g(2.69mmol)를 톨루엔 용매 60ml에 녹이고 -50℃로 냉각시킨 후, 노말펜탄 용매 20ml에 묽힌 AlMe31.96g(27.2mmol)을 -50℃에서 서서히 적하하였다. 상온으로 서서히 승온하면서 4시간 동안 교반하였다. 진공하에서 용매를 제거하고 노말펜탄으로 여과추출하였다. 노말펜탄 용매를 어느정도 제거하고 재결정하여 도 3의 화합물 연두색 침상형 결정 0.9g(43%)를 얻었다.1.0 g (2.69 mmol) of Me 2 Si (Me 4 Cp) (NNMe 2 ) Ti (NMe 2 ) 2 prepared in Example 1 was dissolved in 60 ml of toluene solvent and cooled to −50 ° C., followed by 20 ml of normal pentane solvent. 1.96 g (27.2 mmol) of diluted AlMe 3 was slowly added dropwise at -50 占 폚. The mixture was stirred for 4 hours while gradually warming to room temperature. The solvent was removed in vacuo and filtered off with normal pentane. The normal pentane solvent was removed to some extent and recrystallized to obtain 0.9 g (43%) of the compound light green needle-like crystal of FIG. 3.

1H-NMR(CDCl3, 25℃) δ3.29(s, 6H, NNMe2), 2.18(s, 6H, Me4Cp-Me), 1 H-NMR (CDCl 3 , 25 ° C.) δ3.29 (s, 6H, NNMe 2 ), 2.18 (s, 6H, Me 4 Cp-Me),

1.98(s, 6H, Me4Cp-Me), 0.60(s, 6H, Me2Si), 0.40(s, 6H, Ti-Me),1.98 (s, 6H, Me 4 Cp-Me), 0.60 (s, 6H, Me 2 Si), 0.40 (s, 6H, Ti-Me),

-0.84(s, 9H, AlMe3).-0.84 (s, 9H, AlMe 3 ).

13C-NMR(CDCl3,25℃) δ135.7, 131.5, 101.1, 55.8, 15.2, 12.4, 6.01, -7.4. 13 C-NMR (CDCl 3 , 25 ° C.) δ 135.7, 131.5, 101.1, 55.8, 15.2, 12.4, 6.01, -7.4.

실시예 4Example 4

Me2Si(Me4Cp)(NNMe2)TiMe2의 제조방법Method for preparing Me 2 Si (Me 4 Cp) (NNMe 2 ) TiMe 2

상기 실시예 3에서 제조한 Me2Si(Me4Cp)(NNMe2)(AlMe3)TiMe21.0g(2.6mmol)를 톨루엔 용매 30ml에 녹이고 -78℃로 냉각시킨 후, 톨루엔 용매 10ml에 묽힌 Et3N 0.28g(2.7mmol)을 -78℃에서 서서히 적하하였다. 상온으로 서서히 승온하면서 4시간 동안 교반하였다. 진공하에서 용매를 제거하고 노말펜탄으로 여과추출하였다. 노말펜탄 용매를 어느정도 제거하고 재결정하여 도 4의 화합물 노란색 결정 0.63g (77.4%)를 얻었다.1.0 g (2.6 mmol) of Me 2 Si (Me 4 Cp) (NNMe 2 ) (AlMe 3 ) TiMe 2 prepared in Example 3 was dissolved in 30 ml of toluene solvent, cooled to −78 ° C., and diluted with 10 ml of toluene solvent. 0.28 g (2.7 mmol) of Et 3 N was slowly added dropwise at -78 ° C. The mixture was stirred for 4 hours while gradually warming to room temperature. The solvent was removed in vacuo and filtered off with normal pentane. The normal pentane solvent was removed to some extent and recrystallized to obtain 0.63 g (77.4%) of the yellow crystal of the compound of FIG. 4.

1H-NMR(CDCl3, 25℃) δ3.00(s, 6H, NNMe2), 2.17(s, 6H, Me4Cp-Me), 1 H-NMR (CDCl 3 , 25 ° C.) δ3.00 (s, 6H, NNMe 2 ), 2.17 (s, 6H, Me 4 Cp-Me),

1.72(s, 6H, Me4Cp-Me), 0.43(s, 6H, Me2Si), -0.39(s, 6H, Ti-Me).1.72 (s, 6H, Me 4 Cp-Me), 0.43 (s, 6H, Me 2 Si), -0.39 (s, 6H, Ti-Me).

13C-NMR(CDCl3, 25℃) δ129.4, 125.5, 91.4, 52.2, 41.2, 14.5, 11.7, 5.1. 13 C-NMR (CDCl 3 , 25 ° C.) δ 129.4, 125.5, 91.4, 52.2, 41.2, 14.5, 11.7, 5.1.

실시예 5Example 5

2.5ℓ용량의 스테인레스 스틸 반응기에 노말헥산 1.5ℓ와 1-옥텐 50㎖를 넣은 다음, 조촉매인 MAO(MMAO-4, Tosoh Akzo사 제품) 10mmol을 투입하였다. 반응기의 온도를 140℃까지 가열한 다음, 상기 실시예 1에서 제조한 촉매인 Me2Si(Me4Cp)(NNMe2)TiNMe27.45mg(20μmol)을 투입하고, 에틸렌으로 반응기내의 압력을 30기압까지 채웠다. 30기압의 압력으로 에틸렌이 연속적으로 공급되도록 하여 30분간 중합한 다음, 10㎖의 에탄올을 투입하여 중합을 종료시켰다. 반응기가 냉각된 후, 생성물을 회수하여 60℃의 진공오븐에서 8시간 동안 건조시킨 결과 16.2g의 중합체가 얻어졌다. 중합체의 GPC에 의한 분석결과, 중량평균분자량이 15만이었고 분자량분포(Mw/Mn)가 33.0 이었다.1.5 mL of normal hexane and 50 mL of 1-octene were added to a 2.5 L stainless steel reactor, and 10 mmol of MAO (MMAO-4, manufactured by Tosoh Akzo) as a promoter was added thereto. After the temperature of the reactor was heated to 140 ° C., 7.45 mg (20 μmol) of Me 2 Si (Me 4 Cp) (NNMe 2 ) TiNMe 2 , which was the catalyst prepared in Example 1, was added thereto, and the pressure in the reactor was increased to 30 with ethylene. Filled up to barometric pressure. Ethylene was continuously supplied at a pressure of 30 atm, followed by polymerization for 30 minutes, and then 10 ml of ethanol was added to terminate the polymerization. After the reactor was cooled, the product was recovered and dried in a vacuum oven at 60 ° C. for 8 hours, yielding 16.2 g of polymer. As a result of analysis by GPC of the polymer, the weight average molecular weight was 150,000 and the molecular weight distribution (Mw / Mn) was 33.0.

실시예 6Example 6

상기 실시예 2에서 제조한 Me2Si(Me4Cp)(NNMe2)TiCl27.1mg(20μmol)을 촉매로 투입한 것을 제외하고는 상기 실시예 5와 동일한 방법으로 실시하였으며, 이렇게 하여 얻어진 중합체의 무게는 10.0g이었다. 또한 GPC에 의한 분석결과, 중합체의 중량평균분자량이 90만, 분자량분포(Mw/Mn)가 41.6이었다.The polymer obtained in the same manner as in Example 5, except that 7.1 mg (20 μmol) of Me 2 Si (Me 4 Cp) (NNMe 2 ) TiCl 2 prepared in Example 2 was added as a catalyst. The weight of 10.0 g was. Also, as a result of analysis by GPC, the weight average molecular weight of the polymer was 900,000 and the molecular weight distribution (Mw / Mn) was 41.6.

실시예 7Example 7

중합온도를 80℃, 에틸렌의 압력을 8기압으로 한 것을 제외하고는 상기 실시예 6과 동일한 방법으로 실시하였으며, 얻어진 중합체의 무게는 40.0g이었다. 또한 GPC에 의한 분석결과, 중합체의 중량평균분자량이 220만, 분자량분포(Mw/Mn)가 140이었다.The polymerization was carried out in the same manner as in Example 6 except that the polymerization temperature was 80 ° C and the pressure of ethylene was 8 atm, and the weight of the obtained polymer was 40.0 g. Moreover, as a result of analysis by GPC, the weight average molecular weight of the polymer was 2.2 million and the molecular weight distribution (Mw / Mn) was 140.

실시예 8Example 8

중합온도를 50℃, 에틸렌의 압력을 8기압으로 한 것을 제외하고는 상기 실시예 6과 동일한 방법으로 실시하였으며, 얻어진 중합체의 무게는 40.0g이었다. GPC에 의한 분석결과, 중합체의 중량평균분자량이 79만, 분자량분포(Mw/Mn)가 27이었다.The polymerization was carried out in the same manner as in Example 6 except that the polymerization temperature was 50 ° C and the pressure of ethylene was 8 atm, and the weight of the obtained polymer was 40.0 g. As a result of analysis by GPC, the weight average molecular weight of the polymer was 790,000 and the molecular weight distribution (Mw / Mn) was 27.

실시예 9Example 9

상기 실시예 3에서 제조한 Me2Si(Me4Cp)(NNMe2)(AlMe3)TiMe27.73mg(20μmol)을 촉매로 투입한 것을 제외하고는 상기 실시예 5와 동일한 방법으로 실시하였으며, 이렇게 하여 얻어진 중합체의 무게는 15.2g이었다. GPC에 의한 분석결과, 중합체의 중량평균분자량이 52만, 분자량분포(Mw/Mn)가 23.7이었다.The same procedure as in Example 5 was carried out except that 7.73 mg (20 μmol) of Me 2 Si (Me 4 Cp) (NNMe 2 ) (AlMe 3 ) TiMe 2 prepared in Example 3 was added as a catalyst. The polymer thus obtained had a weight of 15.2 g. As a result of analysis by GPC, the weight average molecular weight of the polymer was 520,000 and the molecular weight distribution (Mw / Mn) was 23.7.

실시예 10Example 10

2.5ℓ용량의 스테인레스 스틸 반응기에 노말헥산 1.5ℓ와 1-옥텐 50㎖를 넣은 다음, 불순물 제거제로서 트리이소부틸알루미늄 1.0ml를 투입하였다. 반응기의 온도를 140℃까지 가열한 다음, 상기 실시예 4에서 제조한 촉매인 Me2Si(Me4Cp)(NNMe2)TiMe231.4mg(100μmol)과 조촉매로서 Ph3C+B-(C6F5)492.2mg(100μmol)을 투입하고, 에틸렌으로 반응기내의 압력을 30기압까지 채웠다. 30기압의 압력으로 에틸렌이 연속적으로 공급되도록 하여 30분간 중합한 다음, 10㎖의 에탄올을 투입하여 중합을 종료시켰다. 반응기가 냉각된 후, 생성물을 회수하여 60℃의 진공오븐에서 8시간 동안 건조시킨 결과 50.0g의 중합체가 얻어졌다. 중합체의 GPC에 의한 분석결과, 중량평균분자량이 130만이었고 분자량분포(Mw/Mn)가 29.2이었다.1.5 mL of normal hexane and 50 mL of 1-octene were added to a 2.5 L stainless steel reactor, and 1.0 mL of triisobutylaluminum was added as an impurity remover. The reactor was heated to 140 ° C., and then 31.4 mg (100 μmol) of Me 2 Si (Me 4 Cp) (NNMe 2 ) TiMe 2 , a catalyst prepared in Example 4, and Ph 3 C + B ( 92.2 mg (100 μmol) of C 6 F 5 ) 4 were added thereto, and the pressure in the reactor was filled with ethylene to 30 atm. Ethylene was continuously supplied at a pressure of 30 atm, followed by polymerization for 30 minutes, and then 10 ml of ethanol was added to terminate the polymerization. After the reactor had cooled down, the product was recovered and dried in a vacuum oven at 60 ° C. for 8 hours, yielding 50.0 g of polymer. Analysis of the polymer by GPC showed a weight average molecular weight of 1.3 million and a molecular weight distribution (Mw / Mn) of 29.2.

실시예 11Example 11

중합온도를 80℃로 한 것을 제외하고는 상기 실시예 10과 동일한 방법으로 실시하였으며, 얻어진 중합체의 무게는 250g이었다. GPC에 의한 분석결과, 중합체의 중량평균분자량이 26만, 분자량분포(Mw/Mn)가 9.03 이었다.Except that the polymerization temperature was 80 ℃ was carried out in the same manner as in Example 10, the weight of the polymer was 250g. As a result of analysis by GPC, the weight average molecular weight of the polymer was 260,000 and the molecular weight distribution (Mw / Mn) was 9.03.

상기 실시예에서 얻어진 중합체의 중량평균분자량은 중합온도가 140℃ 이상에서도 15만 이상으로 매우 높으며, 분자량분포도가 10 이상으로 매우 넓다. 본 발명의 촉매에 의해 고온 용액중합에서도 고분자량의 폴리에틸렌을 제조할 수 있으며, 균일계 메탈로센 촉매 임에도 불구하고 분자량분포도가 매우 넓은 폴리에틸렌 중합체를 제조할 수 있다. 종래의 경우에는 분자량분포도가 2 내지 4로서 매우 좁다.The weight average molecular weight of the polymer obtained in the above embodiment is very high at 150,000 or more even at a polymerization temperature of 140 ° C. or more, and the molecular weight distribution is very wide at 10 or more. The high molecular weight polyethylene can be produced even at high temperature solution polymerization by the catalyst of the present invention, and despite being a homogeneous metallocene catalyst, a polyethylene polymer having a wide molecular weight distribution can be prepared. In the conventional case, the molecular weight distribution is very narrow as 2 to 4.

전술한 바와 같이, 본 발명에 따른 촉매는 열안정성이 우수하여 고온에서 실시되는 용액중합공정에도 효과적이며, 또한 상기 촉매를 이용하여 제조한 폴리에틸렌은 분자량 및 분자량 분포도, 밀도 등의 물성을 용이하게 조절할 수 있으며, 고분자량을 얻을 수 있다.As described above, the catalyst according to the present invention has excellent thermal stability and is effective in a solution polymerization process carried out at a high temperature. In addition, the polyethylene prepared by using the catalyst can easily control physical properties such as molecular weight, molecular weight distribution and density. And high molecular weight.

Claims (8)

하기 화학식 1 또는 2로 표시되는 기하 구속형 메탈로센 촉매인 것을 특징으로 하는 폴리에틸렌 제조용 메탈로센 촉매.Metallocene catalyst for producing polyethylene, characterized in that the geometrically restricted metallocene catalyst represented by the formula (1) or (2). [화학식 1][Formula 1] [화학식 2][Formula 2] 여기서, M은 주기율표의 3족, 4∼10족, 및 란탄나이드계 금속으로 이루어진 군으로부터 선택된 하나의 천이금속이고, Cp는 상기 M과 π-결합할 수 있는 시클로펜타디에닐 유도체이며, D는 질소 또는 인의 원소이고, LB는 OR*, SR*, PR* 2, 및 NR* 2로 이루어진 군으로부터 선택된 하나의 루이스 염기 전자공여 치환체이며, LA는 트리알킬알루미늄, 디알킬할로알루미늄, 알킬디할로알루미늄, 디알킬마그네슘, 및, 알킬할로마그네슘으로 이루어진 군으로부터 선택된 하나의 유기금속 화합물 루이스 산이고, B는 SiR* 2, CR* 2, SiR* 2SiR* 2, CR* 2CR* 2, CR*=CR*, CR* 2SiR* 2, GeR* 2, BR* 2, 및 BR* 2로 이루어진 군으로부터 선택된 하나의 가교기이며, L은 수소 이외에 20이하의 총 원자수를 갖는 할로겐기, 알킬기, 알릴기, 실릴기, 아민기, 아미드기, 알릴로시기, 알콕시기, 할로알킬기, 및 할로알릴기로 이루어진 군으로부터 선택된 하나 또는 둘의 치환기이며, R*는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, tert-부틸, 시클로헥실, 디시클로헥실메틸, 페닐, 메틸페닐, 및 아다멘틸로 이루어진 군으로부터 선택된 하나이다.Here, M is one transition metal selected from the group consisting of Group 3, Group 4-10, and lanthanide-based metal of the periodic table, Cp is a cyclopentadienyl derivative capable of π-bond with M, D is is nitrogen or phosphorus element, LB is oR *, SR *, PR * 2, and NR * 2 is a Lewis base electron donor substituents selected from the group consisting of, LA is a trialkyl aluminum, an aluminum alkyl di di alkylhalo halo-aluminum, di-alkyl magnesium, and one of the organic metal compound Lewis acid selected from the group consisting of magnesium to an alkyl, B is SiR * 2, CR * 2, SiR * 2 SiR * 2, CR * 2 CR * 2 , CR * = CR * , CR * 2 SiR * 2 , GeR * 2 , BR * 2 , and BR * 2 , one crosslinking group selected from the group consisting of L having a total number of atoms of 20 or less in addition to hydrogen Halogen group, alkyl group, allyl group, silyl group, amine group, amide group, allyl group, al One or two substituents selected from the group consisting of a cock group, a haloalkyl group, and a haloallyl group, R * is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, cyclohexyl, dicyclohexylmethyl, Phenyl, methylphenyl, and adamantyl. 제 1항에 있어서, 상기 M이 티타늄, 지르코늄, 및 하프늄으로 이루어진 군으로부터 선택된 하나의 천이금속인 것을 특징으로 하는 폴리에틸렌 제조용 메탈로센 촉매.The metallocene catalyst for producing polyethylene according to claim 1, wherein M is one transition metal selected from the group consisting of titanium, zirconium, and hafnium. 제 1항에 있어서, 상기 Cp가 시클로펜타디에닐, 메틸시클로펜타디엔닐, 디메틸시클로펜타디에닐, 테트라메틸시클로펜타디에닐, 부틸시클로펜타디에닐, t-부틸메틸시클로펜타디에닐, 트리메틸실릴시클로펜타디에닐, 인덴닐, 메틸인덴닐, 및 플로렌닐로 이루어진 군으로부터 선택된 하나의 시클로펜타디에닐 유도체임을 특징으로 하는 폴리에틸렌 제조용 메탈로센 촉매.The method of claim 1, wherein Cp is cyclopentadienyl, methylcyclopentadienyl, dimethylcyclopentadienyl, tetramethylcyclopentadienyl, butylcyclopentadienyl, t-butylmethylcyclopentadienyl, trimethylsilyl Metallocene catalyst for producing polyethylene, characterized in that one cyclopentadienyl derivative selected from the group consisting of cyclopentadienyl, indenyl, methyl indenyl, and florenyl. 제 1항에 있어서, 상기 L이 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 시클로헥실기, 디시클로헥시메틸기, 페닐기, 메틸펜닐기, 벤질기, 염화기, 디메틸아민기, 디에틸아미드기, 디페닐아미드기, 디벤질아미드기, 디헥실아미드기, 메틸에틸아미드기, 메틸펜닐아미드기, 메틸벤질아미드기, 메틸헥실아미기, 펜닐벤질아미드기, 펜닐헥실아미기, 벤질헥실아미드기, 트리메틸실릴기, 트리에틸실릴기, 메톡시기, 에톡시기, 프로폭시기, 이소프로폭시기, 부톡시기, 및 이소부톡시기로 이루어진 군으로부터 선택된 하나 또는 둘의 치환기임을 특징으로 하는 폴리에틸렌 제조용 메탈로센 촉매 .The method of claim 1, wherein L is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, cyclohexyl, dicyclohexymethyl, phenyl, methylphenyl, benzyl , Chloride, dimethylamine group, diethylamide group, diphenylamide group, dibenzylamide group, dihexylamide group, methylethylamide group, methylphenylamide group, methylbenzylamide group, methylhexylami group, phenylbenzyl One selected from the group consisting of an amide group, a phenylhexylami group, a benzylhexylamide group, trimethylsilyl group, triethylsilyl group, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, and isobutoxy group Or a metallocene catalyst for producing polyethylene, characterized in that two substituents. 에틸렌의 단독중합 또는 에틸렌과 α-올레핀의 공중합으로 제조되는 폴리에틸렌 중합에 있어서, 0∼300℃의 중합온도 및 1∼1000기압의 에틸렌 압력하에서 주촉매로서는 하기 화학식 1 또는 2로 표시되는 기하 구속형 메탈로센 촉매를, 조촉매로서는 메틸알루민옥산, 알킬할로알루미늄 및 붕소유기화합물계 음이온으로 이루어진 군으로부터 선택된 하나의 촉매를 사용하며, 중합시의 모노머 또는 용매에 함유된 불순물을 제거하기 위해 알킬알루미늄을 촉매에 대해 1∼100몰비의 범위로 첨가시키는 것을 특징으로 하는 폴리에틸렌의 제조방법.In polyethylene polymerization prepared by homopolymerization of ethylene or copolymerization of ethylene and α-olefin, as a main catalyst under a polymerization temperature of 0 to 300 ° C. and ethylene pressure of 1 to 1000 atm, the geometrically restricted metal represented by the following general formula (1) or (2) As the co-catalyst, one catalyst selected from the group consisting of methyl aluminoxane, alkyl haloaluminum and boron organic compound anions is used as a cocatalyst, and alkyl is removed to remove impurities contained in the monomer or solvent during polymerization. Aluminum is added in the range of 1-100 molar ratio with respect to a catalyst, The manufacturing method of the polyethylene characterized by the above-mentioned. [화학식 1][Formula 1] [화학식 2][Formula 2] 여기서, M은 주기율표의 3족, 4∼10족, 및 란탄나이드계 금속으로 이루어진 군으로부터 선택된 하나의 천이금속이고, Cp는 상기 M과 π-결합할 수 있는 시클로펜타디에닐 유도체이며, D는 질소 또는 인의 원소이고, LB는 OR*, SR*, PR* 2, 및 NR* 2로 이루어진 군으로부터 선택된 하나의 루이스 염기 전자공여 치환체이며, LA는 트리알킬알루미늄, 디알킬할로알루미늄, 알킬디할로알루미늄, 디알킬마그네슘, 및, 알킬할로마그네슘으로 이루어진 군으로부터 선택된 하나의 유기금속 화합물 루이스 산이고, B는 SiR* 2, CR* 2, SiR* 2SiR* 2, CR* 2CR* 2, CR*=CR*, CR* 2SiR* 2, GeR* 2, BR* 2, 및 BR* 2로 이루어진 군으로부터 선택된 하나의 가교기이며, L은 수소 이외에 20이하의 총 원자수를 갖는 할로겐기, 알킬기, 알릴기, 실릴기, 아민기, 아미드기, 알릴로시기, 알콕시기, 할로알킬기, 및 할로알릴기로 이루어진 군으로부터 선택된 하나 또는 둘의 치환기이며, R*는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, tert-부틸, 시클로헥실, 디시클로헥실메틸, 페닐, 메틸페닐, 및 아다멘틸로 이루어진 군으로부터 선택된 하나이다.Here, M is one transition metal selected from the group consisting of Group 3, Group 4-10, and lanthanide-based metal of the periodic table, Cp is a cyclopentadienyl derivative capable of π-bond with M, D is is nitrogen or phosphorus element, LB is oR *, SR *, PR * 2, and NR * 2 is a Lewis base electron donor substituents selected from the group consisting of, LA is a trialkyl aluminum, an aluminum alkyl di di alkylhalo halo-aluminum, di-alkyl magnesium, and one of the organic metal compound Lewis acid selected from the group consisting of magnesium to an alkyl, B is SiR * 2, CR * 2, SiR * 2 SiR * 2, CR * 2 CR * 2 , CR * = CR * , CR * 2 SiR * 2 , GeR * 2 , BR * 2 , and BR * 2 , one crosslinking group selected from the group consisting of L having a total number of atoms of 20 or less in addition to hydrogen Halogen group, alkyl group, allyl group, silyl group, amine group, amide group, allyl group, al One or two substituents selected from the group consisting of a cock group, a haloalkyl group, and a haloallyl group, R * is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, cyclohexyl, dicyclohexylmethyl, Phenyl, methylphenyl, and adamantyl. 제 5항에 있어서, 상기 L이 할로겐, 아미드, 및 알킬기로 이루어진 군으로부터 선택된 하나이면, 조촉매로서 메틸알루민옥산을 사용하고, 상기 주촉매 대 조촉매의 몰농도 비율은 100∼1000의 범위임을 특징으로 하는 폴리에틸렌의 제조방법.6. The method of claim 5, wherein when L is one selected from the group consisting of halogen, amide, and alkyl groups, methylaluminoxane is used as a promoter, and the molar concentration ratio of the main catalyst to the promoter is in the range of 100 to 1000. Method for producing a polyethylene, characterized in that. 제 5항에 있어서, 상기 L이 아미드기 또는 알콕시기이면, 조촉매로서 트리메틸알루미늄, 트리에틸알루미늄, 디에틸클로로알루미늄, 트리부틸알루미늄, 및 트리이소부틸알루미늄으로 이루어진 군으로부터 선택된 하나의 알킬할로알루미늄을 사용하며, 상기 주촉매 대 조촉매의 몰농도 비율은 5 ~ 500의 범위임을 특징으로 하는 폴리에틸렌의 제조방법.6. The alkyl halo of claim 5, wherein when L is an amide group or an alkoxy group, one alkyl halo selected from the group consisting of trimethylaluminum, triethylaluminum, diethylchloroaluminum, tributylaluminum, and triisobutylaluminum as a promoter Using aluminum, wherein the molar concentration ratio of the main catalyst to the promoter is in the range of 5 to 500. 제 5항에 있어서, 상기 L이 아미드기, 알킬기, 벤질기 및 페닐기로부터 선택되면, 조촉매로서 B(C6F5)3, (R1R2NH)+B-(C6F5)4, 및 (R1R2R3C)+B-(C6F5)4로 이루어진 군으로부터 선택된 하나의 붕소유기화합물계 음이온을 사용하며, 주촉매 대 조촉매의 몰농도 비율은 0.5∼10의 범위임을 특징으로 하는 폴리에틸렌의 제조 방법.The method of claim 5, wherein when L is an amide group, an alkyl group, selected from a benzyl group and a phenyl group, B as the co-catalyst (C 6 F 5) 3, (R 1 R 2 NH) + B - (C 6 F 5) 4, and (R 1 R 2 R 3 C ) + B - (C 6 F 5) , and use a single organic boron compound-based anion selected from the group consisting of 4, the molar concentration ratio of the main catalyst to cocatalyst is 0.5 to Method of producing a polyethylene, characterized in that the range of 10.
KR1019980043965A 1998-10-20 1998-10-20 Metallocene catalyst for producing polyethylene and preparation method of polyethylene using the same KR100548614B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980043965A KR100548614B1 (en) 1998-10-20 1998-10-20 Metallocene catalyst for producing polyethylene and preparation method of polyethylene using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980043965A KR100548614B1 (en) 1998-10-20 1998-10-20 Metallocene catalyst for producing polyethylene and preparation method of polyethylene using the same

Publications (2)

Publication Number Publication Date
KR20000026438A true KR20000026438A (en) 2000-05-15
KR100548614B1 KR100548614B1 (en) 2006-06-07

Family

ID=19554729

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980043965A KR100548614B1 (en) 1998-10-20 1998-10-20 Metallocene catalyst for producing polyethylene and preparation method of polyethylene using the same

Country Status (1)

Country Link
KR (1) KR100548614B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645631B1 (en) * 2000-02-10 2006-11-13 에스케이 주식회사 Metallocene catalysts for ethylene polymerization, their preparation and uses
CN115368490A (en) * 2021-05-20 2022-11-22 中国科学技术大学 Borane cocatalyst, synthesis method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055438A (en) * 1989-09-13 1991-10-08 Exxon Chemical Patents, Inc. Olefin polymerization catalysts
NZ235032A (en) * 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
BR9106589A (en) * 1990-06-22 1993-06-01 Exxon Chemical Patents Inc ALUMINUM-FREE MONOCYCLOPENTADYLENE METAL CATALYSTS FOR THE POLYMERIZATION OF OLEFINS
KR100526226B1 (en) * 1998-06-02 2006-01-27 에스케이 주식회사 Metallocene catalyst for producing polyethylene and polymerization method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645631B1 (en) * 2000-02-10 2006-11-13 에스케이 주식회사 Metallocene catalysts for ethylene polymerization, their preparation and uses
CN115368490A (en) * 2021-05-20 2022-11-22 中国科学技术大学 Borane cocatalyst, synthesis method and application thereof
CN115368490B (en) * 2021-05-20 2023-11-28 中国科学技术大学 Borane cocatalyst, synthesis method and application thereof

Also Published As

Publication number Publication date
KR100548614B1 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
US6858558B2 (en) Olefin polymerization catalyst component and catalyst system and polymerization process using such a catalyst system
EP2559710B1 (en) Catalyst composition for polymerizing olefin and method for preparing polyolefin using same
WO1998041529A1 (en) Heteroligand
KR20160147640A (en) Method for preparing polyolefin
US7148174B2 (en) Non-metallocene catalyst system
KR100445364B1 (en) Method for producing olefin polymerization catalyst and olefin polymer
US11358979B2 (en) Metallocene-supported catalyst and method for preparing polypropylene using the same
JP3644095B2 (en) Olefin polymerization catalyst and process for producing olefin polymer
KR100548614B1 (en) Metallocene catalyst for producing polyethylene and preparation method of polyethylene using the same
KR20150017309A (en) Dinuclear metallocene compound, catalyst composition and method for preparing polyolefin using the same
JP7309256B2 (en) Ligand compound, transition metal compound and catalyst composition containing the same
JP2004530653A (en) Non-metallocenes, their preparation and use in the polymerization of olefins
KR101601935B1 (en) Dinuclear metallocene compound, catalyst composition and method for preparing polyolefin using the same
KR20210128360A (en) Ligand compound, transition metal compound, and catalyst composition comprising the same
KR100645631B1 (en) Metallocene catalysts for ethylene polymerization, their preparation and uses
KR20210020424A (en) Novel transition metal compound and method for preparing polyethlene using the same
KR100526226B1 (en) Metallocene catalyst for producing polyethylene and polymerization method using the same
JP3975085B2 (en) Olefin polymerization catalyst
JPH0559077A (en) New transition metal compound
EP0709405A1 (en) Process for the production of olefin polymers
KR100567100B1 (en) Single-site catalysts for ethylene polymerization, their preparation and uses
KR101785705B1 (en) Catalyst composition and method for preparing polyolefin using the same
KR20220101482A (en) Novel metallocene compound, catalyst composition comprising the same, and method for preparing olefin polymer using the same
KR100259941B1 (en) A catalyst for olefin polymerization and polymerization of olefin using the same
JP3446423B2 (en) Method for producing olefin polymer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121122

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131212

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141215

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee