KR20000026221A - Method for controlling torque current of driving motor of electric vehicle - Google Patents

Method for controlling torque current of driving motor of electric vehicle Download PDF

Info

Publication number
KR20000026221A
KR20000026221A KR1019980043674A KR19980043674A KR20000026221A KR 20000026221 A KR20000026221 A KR 20000026221A KR 1019980043674 A KR1019980043674 A KR 1019980043674A KR 19980043674 A KR19980043674 A KR 19980043674A KR 20000026221 A KR20000026221 A KR 20000026221A
Authority
KR
South Korea
Prior art keywords
torque current
battery
electric vehicle
charge
state
Prior art date
Application number
KR1019980043674A
Other languages
Korean (ko)
Inventor
차정훈
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019980043674A priority Critical patent/KR20000026221A/en
Publication of KR20000026221A publication Critical patent/KR20000026221A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Abstract

PURPOSE: A method for controlling a torque current of driving motor of electric vehicle is provided to solve a problem that the traveling distance of an electric vehicle is reduced by a wrong obstacle judgement and to prevent the obstacle of a system by controlling a torque current factor based on the state of charge of a battery in the electric vehicle. CONSTITUTION: Firstly, a key of a vehicle is turned on, and a state of charge of a battery is read. Then, a peak power data map of the battery is read, and the maximum torque current is calculated. Lastly, the maximum torque current value is sent to an inverter. Herein, The maximum torque current is subsequently controlled by a soft program for preventing the voltage of the battery from approaching the limit voltage of the previously set up system through a basic equation, P=VxI.

Description

전기 자동차 구동 모터의 토크 전류 제어 방법( Method for controlling the torque current of a driving motor in electric cars )Method for controlling the torque current of a driving motor in electric cars

본 발명은 전기 자동차의 구동 모터에 관한 것이며, 보다 상세히는 전기 자동차의 배터리 충전상태(SOC; State Of Charge)에 따라서 구동 모터의 토크 제어 성분에 해당하는 토크 전류 팩터(Iq. Factor)를 순시적으로 제어하도록 된 전기 자동차 구동 모터의 토크 전류 제어 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive motor of an electric vehicle, and more specifically, instantaneously calculates a torque current factor (Iq. Factor) corresponding to a torque control component of the drive motor according to a state of charge (SOC) of the electric vehicle. It relates to a torque current control method of an electric vehicle drive motor to be controlled by.

일반적으로 전기 자동차의 구동 방식에 있어서 구동 모터의 구동 전원은 300 ∼ 400V의 배터리 DC 입력 전압을 인버터를 통해 3상 AC 모터를 구동시키기 위한 3상 AC 교류 전원으로 변환하므로써 만들어 진다.In general, in the driving method of an electric vehicle, the driving power of the driving motor is made by converting a battery DC input voltage of 300 to 400 V into a three phase AC AC power for driving a three phase AC motor through an inverter.

또한, 모터를 구동하기 위한 구동 전원의 전류 성분으로는 Id 성분과 Iq 성분이 존재하는데, 여기서 Iq 성분은 모터의 토크 제어에 해당하는 성분으로 차량의 순간 가속력등에 영향을 준다. 일반 승용차를 기준으로 할 때 상기 토크 전류(Iq)의 최대 전류값은 보통 최대 250A 정도로 제한된다.In addition, the current components of the driving power source for driving the motor include an Id component and an Iq component, where the Iq component corresponds to the torque control of the motor and affects the instantaneous acceleration force of the vehicle. On the basis of a general passenger car, the maximum current value of the torque current Iq is usually limited to a maximum of about 250A.

종래의 전기 자동차 구동 방식에서는 구동 모터의 토크 제어를 위해서 상기 토크 전류(Iq)를 일정한 상수값(Constant)으로 제한하도록 되어 있으며, 상기와 같은 토크 전류 제어 방법에 따른 전기 자동차 시스템의 피크 전원과 배터리 전압 및 토크 전류(Iq)의 상호 관계를 그래프로 도시하면 도 1과 같이 나타난다.In the conventional electric vehicle driving method, the torque current Iq is limited to a constant value for torque control of the driving motor, and the peak power source and the battery of the electric vehicle system according to the torque current control method as described above. When the relationship between the voltage and the torque current Iq is shown graphically, it is shown in FIG.

도 1에 도시된 바에 의하면, 토크 전류(Iq)가 배터리의 충전상태(SOC)와 관계없이 항상 일정한 상수값(예컨대, 250A)으로 제한될 때 배터리 내부의 임피던스 증가로 인해 배터리의 충전상태(SOC)가 낮아질수록 모터를 구동하기 위한 피크 전원이 감소하고, 피크 전원이 감소할수록 배터리 전압의 드롭이 증가하는 것을 알 수 있다.As shown in FIG. 1, when the torque current Iq is always limited to a constant constant value (eg, 250 A) regardless of the state of charge (SOC) of the battery, the state of charge (SOC) of the battery is increased due to an increase in impedance inside the battery. It can be seen that the lower the), the lower the peak power for driving the motor, and as the peak power decreases, the drop of the battery voltage increases.

특히, 배터리의 충전상태(SOC)가 50% 이상일 경우에는 배터리의 방전 전류가 250A 정도의 큰 전류로 소모되더라도 드롭되는 배터리 전압값은 그다지 크지 않음을 알 수 있다.In particular, when the state of charge (SOC) of the battery is more than 50%, even if the discharge current of the battery is consumed by a large current of about 250A, it can be seen that the drop of the battery voltage value is not very large.

하지만, 배터리의 충전상태(SOC)가 50% 이하일 경우에는 드롭되는 배터리 전압값이 커져 미리 설정된 시스템의 제한 전압 이하로 드롭됨을 알 수 있다.However, when the state of charge (SOC) of the battery is 50% or less, it can be seen that the drop of the battery voltage value is increased to drop below the limit voltage of the preset system.

즉, 종래의 토크 전류 제어 방법에 의해 토크 전류(Iq)가 배터리의 충전상태(SOC)와 관계없이 항상 일정한 상수값을 유지하도록 제한하면 도 1에 도시된 바와 같이, 배터리의 충전상태(SOC)가 50% 이하일 경우에 피크 전원은 정상 상태임에도 불구하고 배터리 전압값이 시스템의 제한 전압 이하로 드롭되므로, 전기 자동차 구동 시스템에서 메인 배터리의 전압값을 읽고 제한 전압 이하의 장애가 발생하였다는 잘못된 판단을 하여 전기 자동차의 주행거리 한계에 악영향을 미치는 문제점이 있다.That is, when the torque current Iq is limited to always maintain a constant value regardless of the state of charge SOC of the battery by the conventional torque current control method, as shown in FIG. 1, the state of charge SOC of the battery is shown. Is less than 50%, the peak power is normal, but the battery voltage drops below the system's limit voltage. Therefore, the electric vehicle drive system reads the voltage value of the main battery and makes a false determination that a fault below the limit voltage has occurred. There is a problem that adversely affects the mileage limit of the electric vehicle.

따라서, 본 발명은 상술한 종래의 문제점을 극복하기 위한 것으로서, 본 발명의 목적은 전기 자동차의 배터리 충전상태(SOC)에 따라서 구동 모터의 토크 제어 성분에 해당하는 토크 전류 팩터를 순시적으로 제어하므로써 시스템의 장애를 막고 잘못된 장애 판정에 의해 전기 자동차의 주행 거리가 감소하는 문제점을 해결하도록 된 전기 자동차 구동 모터의 토크 전류 제어 방법을 제공하는데 있다.Accordingly, the present invention is to overcome the above-mentioned conventional problems, an object of the present invention by instantaneously controlling the torque current factor corresponding to the torque control component of the drive motor in accordance with the state of charge (SOC) of the electric vehicle. The present invention provides a method of controlling torque current of an electric vehicle driving motor to prevent a failure of the system and to solve a problem in that the mileage of the electric vehicle is reduced by an incorrect failure determination.

상기 본 발명의 목적을 달성하기 위한 전기 자동차 구동 모터의 토크 전류 제어 방법은 자동차 키를 온시키는 단계와, 배터리의 충전상태(SOC)를 읽는 단계, 배터리의 피크 전원 데이터 맵을 읽는 단계, 최대 토크 전류를 계산하는 단계 및, 최대 토크 전류값을 인버터로 보내는 단계로 이루어진다.Torque current control method of the electric vehicle drive motor for achieving the object of the present invention comprises the steps of turning on the car key, reading the state of charge (SOC) of the battery, reading the peak power data map of the battery, the maximum torque Calculating the current and sending the maximum torque current value to the inverter.

상기와 같이 이루어진 본 발명의 전기 자동차 구동 모터의 토크 전류 제어 방법은 전기 자동차의 배터리 충전상태(SOC)에 따라서 구동 모터의 토크 제어 성분에 해당하는 토크 전류(Iq) 팩터를 순시적으로 제어하므로써 정확한 배터리 상태를 파악하여 잘못된 시스템의 장애 판정을 방지하고 주행거리를 연장하며 시스템 자체의 신뢰성을 향상시키도록 되어 있다.Torque current control method of the electric vehicle drive motor of the present invention made as described above is accurate by instantaneously controlling the torque current (Iq) factor corresponding to the torque control component of the drive motor in accordance with the state of charge (SOC) of the electric vehicle The battery status is determined to prevent fault determination of the faulty system, extend the mileage and improve the reliability of the system itself.

도 1은 종래의 토크 전류 제어 방법에 따른 피크 전원과 배터리 전압 및 토크 전류의 상호 관계를 도시한 그래프,1 is a graph illustrating a relationship between a peak power supply, a battery voltage, and a torque current according to a conventional torque current control method;

도 2는 본 발명에 따른 전기 자동차 구동 모터의 토크 전류 제어 방법을 도시한 플로차트,2 is a flowchart illustrating a torque current control method of an electric vehicle driving motor according to the present invention;

도 3은 본 발명에 따른 피크 전원과 배터리 전압 및 토크 전류의 상호 관계를 도시한 그래프이다.3 is a graph illustrating a correlation between a peak power supply, a battery voltage, and a torque current according to the present invention.

이하, 본 발명의 실시예를 첨부한 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 전기 자동차 구동 모터의 토크 전류 제어 방법을 도시한 플로차트이다.2 is a flowchart illustrating a torque current control method of an electric vehicle driving motor according to the present invention.

S10단계는 자동차 키를 온시키는 단계이다.Step S10 is a step of turning on the car key.

S12단계는 배터리의 충전상태(SOC)를 읽는 단계이다.Step S12 is a step of reading the state of charge (SOC) of the battery.

S14단계는 배터리의 피크 전원 데이터 맵을 읽는 단계이다.Step S14 is a step of reading the peak power data map of the battery.

S16단계는 최대 토크 전류(Iq)를 계산하는 단계이다.Step S16 is a step of calculating the maximum torque current Iq.

S18단계는 최대 토크 전류값을 인버터로 보내고 S10단계로 리턴하는 단계이다.Step S18 is to send the maximum torque current value to the inverter and return to step S10.

상기와 같이 이루어진 본 발명에 따른 전기 자동차 구동 모터의 토크 전류 제어 방법은 다음과 같이 작동한다.The torque current control method of the electric vehicle drive motor according to the present invention made as described above operates as follows.

도 3은 본 발명에 따른 피크 전원과 배터리 전압 및 토크 전류의 상호 관계를 도시한 그래프이다.3 is a graph illustrating a correlation between a peak power supply, a battery voltage, and a torque current according to the present invention.

먼저, 자동차 키가 온되면(S10), 충방전 시험기를 통해 배터리에 대한 성능분석을 하여 배터리의 충전상태(SOC)를 읽는다(S12).First, when the car key is turned on (S10), the performance analysis of the battery through the charge and discharge tester to read the state of charge (SOC) of the battery (S12).

이어서, 상기 배터리의 충전상태(SOC)에 따른 배터리의 피크 전원 및 방전 전류에 따른 배터리 전압의 드롭을 측정하며(S14,S16), 이 데이터를 이용하여 배터리의 충전상태(SOC)에 따른 전류 제한 관계를 도출하여 계산한 최대 토크 전류값을 인버터로 보낸다(S18).Subsequently, the drop of the battery voltage according to the peak power supply and the discharge current of the battery according to the state of charge (SOC) of the battery is measured (S14, S16), and the current limit according to the state of charge (SOC) of the battery is used using this data. The maximum torque current value calculated by deriving the relationship is sent to the inverter (S18).

이때, 상기 전류 제한 관계를 도출하여 계산한 최대 토크 전류(Iq)는 "P=V×I"의 기본적인 수식을 통해 배터리 전압이 미리 설정된 시스템의 제한 전압으로 접근하는 것을 방지하기 위한 소프트웨어(프로그램)에 의해 순시적으로 제어된다.At this time, the maximum torque current Iq calculated by deriving the current limit relationship is software (program) for preventing the battery voltage from approaching the limit voltage of the preset system through a basic formula of "P = V × I". Is controlled instantaneously.

또한, 배터리의 충전상태(SOC)에 따라서 피크 전원이 달라지는 이유는 배터리의 물성에 기인한 것으로 도 3에 도시된 바에 의하면, 내부 임피던스의 증가로 배터리의 충전상태(SOC)가 낮아질수록 배터리 전압의 드롭이 크다는 것을 알 수 있다. 그러므로, 상기 소프트웨어에 피크 전원 변동에 따른 데이터 맵을 만들어 소정의 배터리 충전상태(SOC)에 따라서 "I=P/V"의 공식을 이용하여 배터리 전압값이 상기 시스템의 제한 전압 이상으로 유지되도록 최대의 토크 전류값을 만들어 낸다.In addition, the reason that the peak power source varies depending on the state of charge (SOC) of the battery is due to the physical properties of the battery. As shown in FIG. 3, as the state of charge (SOC) of the battery decreases due to an increase in internal impedance, You can see that the drop is large. Therefore, create a data map according to the peak power fluctuations in the software and use the formula "I = P / V" according to the predetermined battery charge state (SOC) to maximize the battery voltage value above the system's limit voltage. Produces a torque current of.

본 발명에 따른 피크 전원과 배터리 전압 및 토크 전류(Iq)의 상호 관계를 도시한 도 3에 있어서, 배터리 전압이 제한 전압 이하로 떨어지는 시점은 배터리의 충분한 라이프 사이클을 보장하기 위한 보호 측면에서 배터리의 충전상태(SOC)가 20% 이하인 지점으로 설정하는 것이 바람직하다.In FIG. 3 showing the relationship between the peak power supply and the battery voltage and the torque current Iq according to the present invention, the timing at which the battery voltage falls below the limit voltage is determined in terms of protection to ensure a sufficient life cycle of the battery. It is preferable to set the point at which the state of charge SOC is 20% or less.

상술한 바와 같이 본 발명에 따른 전기 자동차 구동 모터의 토크 전류 제어 방법은 전기 자동차의 배터리 충전상태(SOC)에 따라서 구동 모터의 토크 제어 성분에 해당하는 토크 전류(Iq) 팩터를 순시적으로 제어하도록 되어 있기 때문에, 토크 전류(Iq)가 배터리의 충전상태(SOC)와 관계없이 항상 일정한 상수값을 유지하도록 제한할 때 제한 전압 이하의 장애가 발생하였다는 잘못된 판단을 하여 전기 자동차의 주행거리 한계에 악영향을 미치는 문제점을 해결할 수 있을 뿐만 아니라, 정확한 배터리 상태를 파악하여 잘못된 시스템의 장애 판정을 방지하고 주행거리를 연장하며 시스템 자체의 신뢰성을 향상시키는 효과가 있다.As described above, the torque current control method of the electric vehicle driving motor according to the present invention is to control the torque current (Iq) factor corresponding to the torque control component of the driving motor in an instant according to the battery state of charge (SOC) of the electric vehicle. Since the torque current Iq is limited to always maintain a constant value regardless of the state of charge (SOC) of the battery, the erroneous judgment that a fault below the limit voltage has occurred is detrimental to the mileage limit of the electric vehicle. In addition to solving this problem, it is possible to determine the exact battery condition to prevent fault determination of the wrong system, to extend the mileage and to improve the reliability of the system itself.

이상에서 설명한 것은 본 발명에 따른 전기 자동차 구동 모터의 토크 전류 제어 방법을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구의 범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능할 것이다.What has been described above is only one embodiment for implementing the torque current control method of the electric vehicle drive motor according to the present invention, the present invention is not limited to the above-described embodiment, which is claimed in the following claims Various changes can be made by those skilled in the art without departing from the gist of the present invention.

Claims (1)

자동차 키를 온시키는 단계(S10)와,Turning on the car key (S10), 배터리의 충전상태(SOC)를 읽는 단계(S12),Reading the state of charge (SOC) of the battery (S12), 배터리의 피크 전원 데이터 맵을 읽는 단계(S14),Reading the peak power data map of the battery (S14), 최대 토크 전류를 계산하는 단계(S16) 및,Calculating a maximum torque current (S16), and 최대 토크 전류값을 인버터로 보내고 상기 S10단계로 리턴하는 단계(S18)Sending the maximum torque current value to the inverter and returning to step S10 (S18) 로 이루어진 것을 특징으로 하는 전기 자동차 구동 모터의 토크 전류 제어 방법.Torque current control method of an electric vehicle drive motor, characterized in that consisting of.
KR1019980043674A 1998-10-19 1998-10-19 Method for controlling torque current of driving motor of electric vehicle KR20000026221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980043674A KR20000026221A (en) 1998-10-19 1998-10-19 Method for controlling torque current of driving motor of electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980043674A KR20000026221A (en) 1998-10-19 1998-10-19 Method for controlling torque current of driving motor of electric vehicle

Publications (1)

Publication Number Publication Date
KR20000026221A true KR20000026221A (en) 2000-05-15

Family

ID=19554501

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980043674A KR20000026221A (en) 1998-10-19 1998-10-19 Method for controlling torque current of driving motor of electric vehicle

Country Status (1)

Country Link
KR (1) KR20000026221A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040009368A (en) * 2002-07-23 2004-01-31 현대자동차주식회사 Method of maintaining the balance of a battery for hybrid electric vehicle
KR20160050266A (en) * 2014-10-29 2016-05-11 쌍용자동차 주식회사 Charge and vehicle speed the electric vehicle based on the torque control method
KR20160050268A (en) * 2014-10-29 2016-05-11 쌍용자동차 주식회사 Charging the electric vehicle based on the torque control method
DE10164463B4 (en) * 2001-11-26 2017-04-27 Volkswagen Ag Method and device for vehicle electrical system management in a motor vehicle
KR102219185B1 (en) 2019-11-29 2021-02-23 주식회사 브이씨텍 Real time current offset correction method for control unit of electric vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10164463B4 (en) * 2001-11-26 2017-04-27 Volkswagen Ag Method and device for vehicle electrical system management in a motor vehicle
KR20040009368A (en) * 2002-07-23 2004-01-31 현대자동차주식회사 Method of maintaining the balance of a battery for hybrid electric vehicle
KR20160050266A (en) * 2014-10-29 2016-05-11 쌍용자동차 주식회사 Charge and vehicle speed the electric vehicle based on the torque control method
KR20160050268A (en) * 2014-10-29 2016-05-11 쌍용자동차 주식회사 Charging the electric vehicle based on the torque control method
KR102219185B1 (en) 2019-11-29 2021-02-23 주식회사 브이씨텍 Real time current offset correction method for control unit of electric vehicle

Similar Documents

Publication Publication Date Title
US7276880B2 (en) Devices and/or methods for determining the availability of electric energy, in particularly in vehicle electric systems comprising several energy accumulators
US6970807B2 (en) Diagnostic system and method for electric leak detecting device
US20170145977A1 (en) Vehicular control apparatus
EP1443626B1 (en) Electric power generating system for a vehicle
US6422331B1 (en) Hybrid vehicle
US20130106180A1 (en) Power supply device for vehicle
US10962597B2 (en) Measurement apparatus, energy storage apparatus, measurement system, and offset error measurement method
CN107428254B (en) Power supply device for vehicle
US6597072B2 (en) System and method for charging a high voltage bus within a hybrid electric vehicle
EP2693592A1 (en) Power supply system, vehicle mounted therewith, and method of controlling power supply system
JPH08275407A (en) Power generating equipment for motor vehicle
US11400917B2 (en) Power supply system for vehicle
JP4844044B2 (en) Battery state detection system and automobile equipped with the same
US10377239B2 (en) Auxiliary battery status determination device and auxiliary battery status determination method
KR20000026221A (en) Method for controlling torque current of driving motor of electric vehicle
US11891001B2 (en) Vehicle power supply system
US10106037B2 (en) Battery control device
US9531286B2 (en) Control of a converter for an electric vehicle
JP2000166105A (en) Charged state controller for battery
JP2003127807A (en) Method and device for determining residual capacity of secondary battery mounted on vehicle having idling stop function
JP3893744B2 (en) Electric vehicle control device
JP6617653B2 (en) Power supply
CN115515819A (en) Apparatus and method for increasing a range of travel of an electric vehicle
JP2005263068A (en) Battery state detecting device
US20230092730A1 (en) Vehicle power supply system

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid