KR20000018763A - Method for producing polyester recycled fiber - Google Patents

Method for producing polyester recycled fiber Download PDF

Info

Publication number
KR20000018763A
KR20000018763A KR1019980036516A KR19980036516A KR20000018763A KR 20000018763 A KR20000018763 A KR 20000018763A KR 1019980036516 A KR1019980036516 A KR 1019980036516A KR 19980036516 A KR19980036516 A KR 19980036516A KR 20000018763 A KR20000018763 A KR 20000018763A
Authority
KR
South Korea
Prior art keywords
polyester
viscosity
waste
great
terminal carboxyl
Prior art date
Application number
KR1019980036516A
Other languages
Korean (ko)
Other versions
KR100290564B1 (en
Inventor
은용수
조성호
호요승
Original Assignee
김윤
주식회사 삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김윤, 주식회사 삼양사 filed Critical 김윤
Priority to KR1019980036516A priority Critical patent/KR100290564B1/en
Publication of KR20000018763A publication Critical patent/KR20000018763A/en
Application granted granted Critical
Publication of KR100290564B1 publication Critical patent/KR100290564B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: A method for producing a polyester recycled fiber is provided to improve the natural viscosity, and to have the stable pyrolysis by using the 2,2'-vis oxazoline as an agent for extending a chain having the good reactivity with the end carboxyl of the polyester and having the excellent thermal characteristic. CONSTITUTION: A recycled fiber is produced by melting and mixing 0.1-10wt% of the 2,2'-vis oxazoline as an agent for extending a chain for the waste polyester or for the copolymer thereof. Thereby the terminal carboxyl operated as a catalyst about a pyrolysis of the polyester is blocked, and the more improved natural viscosity than the starting polyester is obtained by pair reacting between the terminal carboxyl of the starting waste polyester. Therefore, the pyrolysis is prevented though receiving a melted processing again.

Description

폴리에스터 재생섬유의 제조방법Method for producing polyester recycled fiber

본 발명은 폐 폴리에틸렌테레프탈레이트(이하 폐 폴리에스터라고 함)를 사용하는 폴리에스터 재생섬유의 제조방법에 관한 것이다.The present invention relates to a method for producing polyester recycled fibers using waste polyethylene terephthalate (hereinafter referred to as waste polyester).

더욱 구체적으로는 고유점도가 낮고 말단 카르복시함량이 많은 폐 폴리에스터, 즉 폴리에스터섬유등 제품을 생산할 때 발생하는 폐폴리에스터에 2, 2´-비스옥사졸린을 첨가하여 용융방사함을 특징으로 하는 폴리에스터 재생섬유의 제조방법에 관한 것이다.More specifically, waste polyester, which has low intrinsic viscosity and high terminal carboxy content, that is, melt spinning by adding 2, 2′-bisoxazoline to waste polyester produced when producing a product such as polyester fiber. It relates to a method for producing polyester recycled fiber.

오늘날 대량의 폴리에스터 폐기물이 필름, 병, 섬유 등의 형태로 폐기되고 있으며 이를 재활용하기 위한 많은 노력들이 진행되고 있다. 그러나 폴리에스터의 재활용 범위는 주로 사출 또는 압출등의 소재에 국한되고 있는바, 그 이유는 상기 소재가 폴리에스터의 고유점도에 크게 영향을 받지 않으며 비교적 낮은 고유점도에서 사용되고 있기 때문이다. 재생섬유로 재활용되는 것은 일부 고점도의 폐 폴리에스터뿐이다. 폴리에스터가 한번 방사 또는 압출등의 공정을 거치게되면 열이력을 받아서 열분해 등이 일어남으로 고유점도가 저하되어 기계적인 특성이 저하되기 마련이다. 또 폐 폴리에스터를 사용 가능한 칩으로 재생, 가공하고 이를 재생섬유 등의 재생제품으로 제조할 때 이차, 삼차의 열이력을 다시 받아서 계속적으로 열분해를 일으키므로 폴리에스터의 고유점도가 더욱더 저하되어서 재생제품의 기계적 특성을 크게 저하시키게 되는 것이다.Today, a large amount of polyester waste is disposed of in the form of films, bottles, fibers, etc., and much effort is being made to recycle it. However, the recycling range of polyester is mainly limited to materials such as injection or extrusion, because the material is not significantly affected by the intrinsic viscosity of the polyester and is used at a relatively low intrinsic viscosity. It is only some high viscosity waste polyester that is recycled into recycled fibers. Once the polyester undergoes a process such as spinning or extruding, it undergoes thermal history and pyrolysis occurs, resulting in a decrease in intrinsic viscosity and deterioration in mechanical properties. In addition, when recycled and processed waste polyester into a usable chip and manufactured it as regenerated products such as regenerated fibers, the secondary and tertiary heat history is continuously received and thermal decomposition occurs, so the intrinsic viscosity of polyester is further lowered. It will greatly reduce the mechanical properties of.

이와같이 저하된 고유점도를 향상시키는 방법으로는 재용융하여 용융축합중합을 실시하는 방법과, 고상에서 후축합 중합법을 실시하는 방법 그리고 사슬 연장제를 사용하여 짝지음 반응을 일으키는 방법이 있다.As such methods for improving the reduced intrinsic viscosity, there are a method of performing melt condensation polymerization by remelting, a method of performing postcondensation polymerization in a solid phase, and a method of causing a coupling reaction using a chain extender.

위에 설명한 방법들 중에서 용융축합중합방법은 폐 폴리에스터를 재용융시 열분해에 따른 부가반응이 발생할 뿐만아니라 그 방법이 복잡하여 실시가 용이하지 않으며 또 실시하더라도 용융점도가 지수 함수적으로 증가하므로 교반이 곤란하다.Among the above-mentioned methods, the melt condensation polymerization method not only causes addition reaction due to pyrolysis when re-melting waste polyester, but also it is not easy to implement due to its complicated method. It is difficult.

또한 고상에서의 후축합 중합법은 처리온도가 낮아서 열분해는 적게 발생하나 반응속도가 느리고 다량의 폴리에스터를 처리하기 위해서는 별도의 처리장비를 구비하여야 하는 단점이 있다.In addition, the post-condensation polymerization method in the solid phase has a low treatment temperature due to the low thermal decomposition, but the reaction rate is slow and has a disadvantage in that a separate treatment equipment must be provided to process a large amount of polyester.

이에 반하여 폴리에스터의 하드록시기와 카르복시기가 쉽게 반응하는 2작용성 화합물인 사슬연장제를 사용하면, 분자간 짝지음 반응에 의하여 분자량을 증가시킬 수 있을 뿐아니라 반응시간이 매우 짧아서 방사, 압출 또는 사출성형과 같은 일반적인 용융공정 단계에서 직접 작용할 수 있으므로 고유점도가 향상된 폴리에스터를 제조할 수 있는 가장 바람직한 방법으로 주목되고 있다.In contrast, the use of a chain extender, a bifunctional compound in which the hydroxy group and the carboxyl group of the polyester easily react, not only increases the molecular weight by the intermolecular coupling reaction, but also the reaction time is very short, so that spinning, extrusion or injection molding is possible. Attention has been paid to the most preferred method for producing polyesters having improved intrinsic viscosity since they can act directly in the general melting process step.

사슬 연장제를 이용하는 짝지음 반응에 의하여 폴리에스터를 제조하는 방법이 일본국 특개소 제 50 - 59525 호에 제시된바 있다.A method for producing polyester by a coupling reaction using a chain extender has been shown in Japanese Patent Laid-Open No. 50-59525.

이방법은 폴리에스터에 페닐렌비스옥사졸린 화합물을 첨가하여 방사하는 방법으로서 폴리에스터의 카르복시 말단기가 감소되며 동시에 점도가 향상되고 방사과정에서 발생하는 열분해를 적게 하는 효과가 있는 것으로 기술되어있다.This method is a method of spinning by adding a phenylenebisoxazoline compound to polyester, and has been described as having an effect of reducing the carboxy terminal group of the polyester, improving viscosity and reducing thermal decomposition occurring in the spinning process.

그러나 상기 페닐렌비스옥사졸린은 폴리에스터와 반응시 열분해에 의한 고유점도의 감소를 억제하는 효과는 있지만, 페닐렌비스옥사졸린과 폴리에스터의 카르복시 말단기와의 반응성이 충분하지 못하여 출발 폴리에스터에 비하여 최종 폴리에스터의 고유점도의 향상효과는 그다지 높지 못하다.However, the phenylene bisoxazoline has an effect of suppressing a decrease in intrinsic viscosity due to thermal decomposition when reacting with the polyester, but the reactivity between the phenylene bisoxazoline and the carboxy terminal group of the polyester is not sufficient, compared to the starting polyester The effect of improving the intrinsic viscosity of the final polyester is not so high.

또 상기 페닐렌 비스옥사졸린은 내열성이 없어서(융점 14℃)혼합하여 용융가공할 때 열에 쉽게 분해되는 단점이 있다.In addition, the phenylene bisoxazoline is not heat-resistant (melting point 14 ℃) has a disadvantage in that it is easily decomposed to heat when melt processing by mixing.

본발명은 폴리에스터의 말단 카르복시기와 반응성이 좋으며 열적특성(융점 214℃)이 우수한 2,2´-비스옥사졸린을 사슬연장제로 사용함으로서 고유점도가 크게 향상되고 열분해에 안정한 폴리에스터 재생섬유를 제조할 수 있는 방법을 제공하는데 기술적과제를 삼고 있는 것이다.The present invention uses polyester 2,2′-bisoxazoline, which has good reactivity with polyester terminal carboxyl group and excellent thermal properties (melting point of 214 ℃) as a chain extender, thereby producing polyester regenerated fiber which is highly intrinsic in viscosity and stable to thermal decomposition. The technical challenge is to provide a way to do this.

본발명은 폐 폴리에스터 또는 그 공중합체를 이용하여 폴리에스터 재생섬유를 제조함에 있어서, 폐 폴리에스터 또는 그 공중합체에 대하여 사슬연장제인 2, 2´-비스옥사졸린 0.1 ∼ 10중량%를 용융혼합하여 제조함을 특징으로 한다.In the present invention, in the production of polyester regenerated fibers using waste polyester or its copolymer, 0.1 to 10% by weight of 2, 2′-bisoxazoline, which is a chain extender, is melt-mixed with respect to the waste polyester or its copolymer. It is characterized in that the manufacturing.

또 본발명은 내열성을 더욱 향상시키기 위하여 상기 폐폴리에스터와 2,2´-비스옥사졸린의 혼합물에 열안정제를 전체중량에 대하여 0.1 ∼ 5중량%를 첨가, 용융혼합시켜서 제조할 수도 있다.In addition, the present invention may be prepared by adding and mixing 0.1-5% by weight of a heat stabilizer with respect to the total weight of the waste polyester and 2,2'-bisoxazoline in order to further improve the heat resistance.

본발명에서 2,2´-비스옥사졸린은 폴리에스터의 카르복시 말단기와 짝지음 반응을 만들어 폴리에스터의 고유점도를 향상시켜주는 역할을 하며, 그 사용량이 0.1중량% 미만이면 폴리에스터 말단 카르복시기의 짝지음 반응효과가 없으며, 10 중량%를 초과하면 2,2'-비스옥사졸린의 열분해로 재생 폴리에스터의 색상이 변하고 오히려 점도가 저하되는 문제점이 발생된다.In the present invention, 2,2′-bisoxazoline serves to improve the intrinsic viscosity of the polyester by forming a coupling reaction with the carboxy terminal group of the polyester, if the amount of the amount is less than 0.1% by weight of the polyester terminal carboxyl group There is no coupling reaction effect, and if it exceeds 10% by weight, thermal decomposition of 2,2'-bisoxazoline causes a problem that the color of the regenerated polyester is changed and the viscosity is lowered.

또, 열 안정제를 5중량% 초과하여 첨가하면, 열안정제의 효과가 오히려 감소되며 재생 폴리에스터의 기계적 성질이 저하되고, 0.1중량%미만으로 첨가하면 첨가의 효과가 없다.In addition, when the heat stabilizer is added in excess of 5% by weight, the effect of the heat stabilizer is rather reduced, and the mechanical properties of the regenerated polyester are lowered, and when added at less than 0.1% by weight, there is no effect of addition.

상술한 바와같이 본 발명은 짝지음 반응을 하는 사슬 연장제로서 2,2´-비스옥사졸린을 첨가하여 제조하는 방법이므로 폴리에스터의 열분해에 대하여 촉매작용을 하는 말단 카르복시기가 봉쇄되고 또 출발 폐 폴리에스터의 말단 카르복시기간의 짝지음 반응을 하여 출발 폴리에스터보다 향상된 고유점도를 가지게 된다. 따라서 재생된 폴리에스터는 재차의 용융가공을 받더라도 열에 의한 분해가 억제될 뿐만아니라 출발 폐 폴리에스터에 비하여 향상된 고유점도를 가지며, 이와같은 효과는 열안정제를 추가로 첨가하는 경우에 더욱 상승된다.As described above, the present invention is a method of preparing by adding 2,2′-bisoxazoline as a chain extender for the coupling reaction, so that the terminal carboxyl group catalyzing the thermal decomposition of the polyester is blocked and the starting waste poly The coupling reaction between the terminal carboxyl groups of the ester has an improved intrinsic viscosity than the starting polyester. Therefore, the recycled polyester not only suppresses thermal decomposition even when subjected to melt processing again, but also has an improved intrinsic viscosity compared to the starting waste polyester, and this effect is further enhanced when additional heat stabilizers are added.

본 발명에 관련되는 폴리에스터의 특성평가는 다음과 같은 방법으로 실시하였다.The characteristic evaluation of the polyester which concerns on this invention was performed by the following method.

(1) 고유점도(IV)(1) intrinsic viscosity (IV)

우벨로드 점도계를 사용하여 오르소클로로페놀 100ml에 대하여 시료 80g을 용해한 용액의 상대점도 ηr을 25℃에서 측정하여 다음의 근사식에 의해 IV를 산출한다.The relative viscosity η r of the solution in which 80 g of the sample was dissolved in 100 ml of orthochlorophenol was measured at 25 ° C. using an Ubelrod viscometer to calculate IV by the following approximation formula.

IV = 0.0242ηr+ 0.2634IV = 0.0242 η r + 0.2634

t × dt × d

단, ηr= ━━━━━━━Where η r = ━━━━━━━

t0× d0 t 0 × d 0

t : 용액의 낙하시간 (초)t: dropping time of solution (seconds)

t0: 오르소클로로페놀의 낙하시간 (초)t 0 : Falling time of orthochlorophenol (seconds)

d : 용액의 밀도 (g/cc)d: density of solution (g / cc)

d0: 오르소클로로페놀의 밀도 (g/cc)d 0 : density of orthochlorophenol (g / cc)

(2) 말단 카르복시기 함량(2) terminal carboxyl group content

분쇄한 시료를 203℃의 벤질 알콜에 용해하고 페놀레드 지시약을 가한 후 가성카리벤질 알콜용액으로 폴리머중의 말단 카르복시기를 중화 적정하여 다음의 식에 의하여 말단 카르복시기의 g당량/1000g을 산출한다.The pulverized sample was dissolved in benzyl alcohol at 203 ° C, phenol red indicator was added, and neutralization titration of the terminal carboxyl group in the polymer with a caustic carbenzyl alcohol solution was carried out to calculate g equivalent / 1000 g of the terminal carboxyl group by the following formula.

말단 카르복시기의 함량으로 열분해의 정도를 상대 비교한다.The degree of pyrolysis is compared relative to the content of terminal carboxyl groups.

( A - B ) × f(A-B) × f

C = ━━━━━━━━ × 100C = ━━━━━━━━ × 100

WW

C : 말단 카르복시기 함량(당량/1000g)C: terminal carboxyl group content (equivalent / 1000 g)

A : 본 시험 0.1노르말 가성카리 벤질 알콜 적정량 (ml)A: 0.1 normal caustic carry benzyl alcohol appropriate amount (ml)

B : 공 시험 0.1노르말 가성카리 벤질 알콜 적정량 (ml)B: ball test 0.1 normal caustic benzyl alcohol appropriate amount (ml)

f : 가성카리 벤질 알콜의 인자(Factor)f: Factor of caustic benzyl alcohol

W : 시료 무게W: sample weight

◆ 폴리에스터 용융혼합물(컴파운딩)의 제조예 ;◆ Preparation example of polyester melt mixture (compounding);

출발 폐 폴리에스터와 2,2´-비스옥사졸린 또는 상기 두성분에 열안정제를 첨가한후 통상의 방법으로 마스터 뱃치화하여 재생 폴리에스터 칩을 제조하였다.Regenerated polyester chips were prepared by adding a thermal stabilizer to the starting waste polyester and 2,2′-bisoxazoline or the two components and then masterbatching in a conventional manner.

이방법에 사용된 출발 폐폴리에스터는 고유점도 0.4 ∼ 1.1 dl/g이고 말단 카르복시기의 함량이 20∼100 meq/kg을 갖는 것을 사용하였다.Starting waste polyesters used in this method were those having an intrinsic viscosity of 0.4 to 1.1 dl / g and a content of terminal carboxyl groups of 20 to 100 meq / kg.

◆ 재생 폴리에스터 섬유의 제조예 ;◆ Production example of recycled polyester fiber;

상기한 바와같이 제조된 재생 폴리에스터 칩을 사용하거나 표 1의 조성비로 혼합시킨 출발폴리에스터와 2,2´-비스옥사졸린 또는 상기 두성분에 열안정제를 첨가한후 직접 섬유 용융방사기의 투입부에 공급하여 통상의 의류용 폴리에스터 섬유 제조방법으로 방사하여 폴리에스터 재생섬유를 제조하였다.Using the recycled polyester chip prepared as described above or mixed with the composition ratio of Table 1 starter polyester and 2,2'-bisoxazoline or the heat stabilizer added to the two components directly into the fiber melt spinning machine It was supplied to and spun in a conventional polyester fiber manufacturing method for producing a polyester recycled fiber.

실시예 1 ∼ 4Examples 1-4

고유점도가 0.58dl/g이고, 말단 카르복실기가 52meq/kg인 폐 폴리에스터를 사용하고, 표 1의 조성비로 용융 혼합하여 재생 폴리에스터 칩을 만들고, 이 재생된 칩을 사용하여 상기한 바와같은 재생 폴리에스터섬유의 제조방법으로 방사 연신하여 섬유로 형성하였다. 이때의 재생 폴리에스터 칩의 용융작업성과 방사작업성을 평가하여 그 결과를 다음 표1에 나타내었다.Using recycled polyester having an intrinsic viscosity of 0.58 dl / g and a terminal carboxyl group of 52 meq / kg, melt mixing at the composition ratios of Table 1 to make a regenerated polyester chip, and using the regenerated chip to regenerate as described above The fiber was stretched by stretching in the manufacturing method of the polyester fiber. The melt workability and spinning workability of the recycled polyester chip at this time was evaluated and the results are shown in Table 1 below.

실시예 5 ∼ 8Examples 5-8

고유 점도가 0.76dl/g이고 말단 카르복시기가 35meq/kg인 폐 폴리에스터를 사용하고, 표 1의 조성비에 따라 용융 혼합하여 재생 폴리에스터 칩을 만들고 이 재생된 칩을 사용하여 상기의 재생섬유의 제조방법으로 방사 연신하여 섬유로 형성하였다. 이때의 재생 폴리에스터 칩의 용융작업성과 방사작업성을 평가하여 그 결과를 다음 표 1에 나타내었다.Using waste polyester having an intrinsic viscosity of 0.76 dl / g and a terminal carboxyl group of 35 meq / kg, and melt-mixing according to the composition ratios of Table 1 to make a regenerated polyester chip, and producing the regenerated fiber using the regenerated chip. Spin-drawn by the method to form a fiber. The melt workability and spinning workability of the recycled polyester chip at this time was evaluated and the results are shown in Table 1 below.

비교예 1 ∼ 2(사슬연장제 첨가않함)Comparative Examples 1-2 (without chain extension)

폐 폴리에스터가 아닌 초기 중합된 폴리에스터로서 고유점도가 0.64dl/g이고 말단 카르복시기가 35meq/kg인 일반 의류용 폴리에스터 및 고유점도가 0.80dl/g이고 말단 카르복시기가 28meq/kg인 일반 고점도 폴리에스터를 각각 사용하여 상기의 방법으로 방사 연신하여 섬유로 형성하였다. 이때의 폴리에스터 섬유를 방사할 때의 작업성을 평가하여 그 결과를 다음 표 1에 나타내었다.Initially polymerized polyester, not waste polyester, polyester for general garments with an intrinsic viscosity of 0.64 dl / g and a terminal carboxyl group of 35 meq / kg, and a general high viscosity polyester with an intrinsic viscosity of 0.80 dl / g and a terminal carboxyl group of 28 meq / kg Each of the esters was spin-drawn in the above manner to form fibers. The workability at the time of spinning the polyester fiber at this time was evaluated and the results are shown in Table 1 below.

비교예 3 ∼ 4Comparative Examples 3 to 4

고유점도가 0.58dl/g이고 말단 카르복시기가 52meq/kg인 폐 폴리에스터와 고유점도가 0.76dl/g이고 말단 카르복시기가 35meq/kg인 폐 폴리에스터 각각에 페닐렌비스옥사졸린을 표 1의 조성비에 따라 용융 혼합하여 재생 폴리에스터 칩을 만들고, 이 재생된 칩을 사용하여 상기의 방법으로 방사 연신하여 섬유로 형성하였다. 이때의 재생 폴리에스터 칩의 작업성 및 이를 가지고 섬유를 방사할 때의 작업성을 평가하여 그 결과를 다음 표 1에 나타내었다.Phenylenebisoxazoline was added to each of the waste polyesters having an intrinsic viscosity of 0.58 dl / g and the terminal carboxyl group of 52 meq / kg, and the waste polyesters having the intrinsic viscosity of 0.76 dl / g and the terminal carboxyl group of 35 meq / kg. Melt blended together to make a regenerated polyester chip, which was spun and stretched by the above method to form a fiber. The workability of the recycled polyester chip at this time and the workability when spinning the fiber with it is evaluated and the results are shown in Table 1 below.

비교예 5 ∼ 6Comparative Examples 5-6

고유 점도가 0.58dl/g이고 말단 카르복시기가 52meq/kg인 폐 폴리에스터를 사용하고, 표 1의 조성비에 따라 용융 혼합하여 재생 폴리에스터 칩을 만들고 이 재생된 칩을 사용하여 상기의 방법으로 방사 연신하여 섬유로 형성하였다. 이때의 재생 폴리에스터 칩의 작업성 및 이를 가지고 섬유를 방사할 때의 작업성을 평가하여 그 결과를 다음 표 1에 나타내었다.Using waste polyester having an intrinsic viscosity of 0.58 dl / g and a terminal carboxyl group of 52 meq / kg, melt blending according to the composition ratios in Table 1 to make regenerated polyester chips, and spin-stretching using the regenerated chips as described above. To form a fiber. The workability of the recycled polyester chip at this time and the workability when spinning the fiber with it is evaluated and the results are shown in Table 1 below.

비교예 7 ∼ 8Comparative Examples 7 to 8

고유점도가 0.76dl/g이고 말단 카르복시기가 35meq/kg인 폐 폴리에스터를 사용하고, 표 1의 조성비에 따라 용융 혼합하여 재생 폴리에스터 칩을 만들고 이 재생된 칩을 사용하여 상기의 방법으로 방사 연신하여 섬유로 형성하였다. 이때의 재생 폴리에스터 칩의 작업성 및 이를 가지고 섬유를 방사할 때의 작업성을 평가하여 그 결과를 다음 표 1에 나타내었다.Using waste polyester with an intrinsic viscosity of 0.76 dl / g and a terminal carboxyl group of 35 meq / kg, melt blending according to the composition ratios in Table 1 to make a regenerated polyester chip, and using this regenerated chip to spin-stretch it. To form a fiber. The workability of the recycled polyester chip at this time and the workability when spinning the fiber with it is evaluated and the results are shown in Table 1 below.

물성예Physical property 조 성 비(중량%)Composition ratio (% by weight) 점도(dl/g)Viscosity (dl / g) 점도향상효과Viscosity Enhancement Effect 말단 카르복시기(meq/kg)Terminal carboxyl groups (meq / kg) 열분해억제효과Pyrolysis Inhibition Effect 용 융혼 합작업성Dragon blending workability 방사작업성Radiation workability (폐)폴리에스터(Waste) polyester 2,2'-비스옥사졸린2,2'-bisoxazoline 열안정제Heat stabilizer 폐폴리에스터Waste polyester (재생)폴리에스터칩(Recycled) Polyester Chip 재생섬유Recycled fiber 폐폴리에스터Waste polyester (재생)폴리에스터칩(Recycled) Polyester Chip 재생섬유Recycled fiber 실시예1Example 1 99.999.9 0.10.1 0.00.0 0.580.58 0.600.60 0.600.60 양호Good 5252 3838 3838 양호Good 우수Great 양호Good 실시예2Example 2 95.095.0 5.05.0 0.00.0 0.580.58 0.640.64 0.650.65 우수Great 5252 2222 2020 우수Great 우수Great 우수Great 실시예3Example 3 94.094.0 1.01.0 5.05.0 0.580.58 0.620.62 0.630.63 우수Great 5252 1515 1414 우수Great 우수Great 우수Great 실시예4Example 4 99.199.1 0.80.8 0.10.1 0.580.58 0.670.67 0.680.68 우수Great 5252 1212 1010 우수Great 우수Great 우수Great 실시예5Example 5 99.999.9 0.10.1 0.00.0 0.760.76 0.780.78 0.780.78 양호Good 3535 3131 3131 양호Good 우수Great 우수Great 실시예6Example 6 95.095.0 5.05.0 0.00.0 0.760.76 0.800.80 0.810.81 우수Great 3535 2020 2121 우수Great 우수Great 우수Great 실시예7Example 7 94.094.0 1.01.0 5.05.0 0.760.76 0.810.81 0.820.82 우수Great 3535 1212 1010 우수Great 우수Great 우수Great 실시예8Example 8 99.199.1 0.80.8 0.10.1 0.760.76 0.820.82 0.840.84 우수Great 3535 88 88 우수Great 우수Great 우수Great 비교예1Comparative Example 1 100100 0.00.0 0.00.0 -- 0.640.64 0.620.62 불량Bad -- 3535 4040 불량Bad -- 우수Great 비교예2Comparative Example 2 100100 0.00.0 0.00.0 -- 0.800.80 0.780.78 불량Bad -- 2828 3434 불량Bad -- 우수Great 비교예3Comparative Example 3 95.095.0 5.05.0 0.00.0 0.580.58 0.580.58 0.570.57 불량Bad 5252 4141 4242 양호Good 우수Great 양호Good 비교예4Comparative Example 4 95.095.0 5.05.0 0.00.0 0.760.76 0.760.76 0.750.75 불량Bad 3535 3131 3535 양호Good 우수Great 우수Great 비교예5Comparative Example 5 100100 0.00.0 0.00.0 0.580.58 0.530.53 0.510.51 불량Bad 5252 6868 7979 불량Bad 불량Bad 불량Bad 비교예6Comparative Example 6 99.599.5 0.050.05 0.00.0 0.580.58 0.570.57 0.570.57 불량Bad 5252 4848 4545 보통usually 보통usually 불량Bad 비교예7Comparative Example 7 100100 0.00.0 0.00.0 0.760.76 0.730.73 0.710.71 불량Bad 3535 4242 5858 불량Bad 우수Great 보통usually 비교예8Comparative Example 8 99.599.5 0.050.05 0.00.0 0.760.76 0.750.75 0.740.74 불량Bad 3535 3232 3535 보통usually 우수Great 우수Great

※ 표 1 의 비교예 3, 4 는 폐닐렌 비스옥사졸린을 첨가한 것임※ The comparative examples 3 and 4 of Table 1 are the thing which added waste-nilene bisoxazoline

※ 점도 향상 효과 평가 기준 : 폐폴리에스터를 재생 폴리에스터 칩으로 만들 때의 점도변화로 평가※ Criteria for Viscosity Enhancement Effect: Evaluated by viscosity change when waste polyester is made into recycled polyester chip

- 우수 : 초기 폴리에스터의 점도에 대비하여 점도가 0.03dl/g 이상 향상-Excellent: Viscosity improves more than 0.03dl / g compared to the viscosity of initial polyester

- 양호 : 초기 폴리에스터의 점도에 대비하여 점도가 0.03dl/g 미만 향상-Good: Viscosity improves less than 0.03dl / g compared to the viscosity of initial polyester

- 불량 : 초기 폴리에스터의 점도에 대비하여 점도가 감소-Poor: Reduced viscosity compared to the viscosity of initial polyester

※ 열분해 억제 효과 평가 기준 : (폐)폴리에스터를 재생 폴리에스터 칩으로 만들 때의 점도변화 및 말단 카르복시기의 변화로 평가※ Evaluation criteria for the effect of inhibiting pyrolysis: It is evaluated by the change of viscosity and the change of terminal carboxyl group when (waste) polyester is made into recycled polyester chip.

- 우수 : 초기 폴리에스터에 대비하여 점도가 0.03dl/g 이상 향상되고-Excellent: Viscosity improves more than 0.03dl / g compared to initial polyester

말단카르복시기가 15meq/kg 이상 감소Reduced terminal carboxyl group by more than 15 meq / kg

- 양호 : 초기 폴리에스터의 점도에 대비하여 점도가 0.03dl/g 미만 향상되고Good: Viscosity improves less than 0.03 dl / g against the initial polyester viscosity

말단카르복시기가 4 이상 15meq/kg 미만 감소Terminal carboxyl groups are reduced by more than 4 and less than 15 meq / kg

- 보통 : 초기 폴리에스터의 점도에 대비하여 점도가 -0.02이상 0dl/g 미만으로-Normal: Viscosity of -0.02 or more and less than 0dl / g compared to the viscosity of initial polyester

감소하고 말단카르복시기가 0이상 4meq/kg 미만 감소Decrease in terminal carboxyl groups from 0 to less than 4 meq / kg

- 불량 : 초기 폴리에스터의 점도에 대비하여 점도가 -0.02dl/g 미만으로 감소 하고 말단카르복시기가 증가-Poor: Viscosity decreases below -0.02dl / g and terminal carboxyl group increases compared to viscosity of initial polyester

※ 방사 작업성 평가 기준 : (재생) 폴리에스터 칩으로 섬유를 방사할 때의 사절율 로 평가※ Evaluation criterion for spinning workability: Evaluation by trimming rate when spinning fiber with (regenerated) polyester chip

- 우수 : 방사작업중 사절율이 0.5% 미만-Excellent: trimming rate is less than 0.5% during spinning

- 양호 : 방사작업중 사절율이 0.5∼1%-Good: trimming rate is 0.5 ~ 1% during spinning

- 보통 : 방사작업중 사절율이 1∼2%-Normal: Trimming rate is 1 ~ 2% during spinning

- 불량 : 방사작업중 사절율이 2% 이상-Poor: more than 2% of trimming rate during spinning

본발명으로 얻어지는 폴리에스터 또는 그 공중합체의 재생칩과 상기 재생칩으로 제조한 폴리에스터 재생섬유는 점도가 향상되고 열분해에 대한 억제효과도 증대된다.The regenerated chip of the polyester or its copolymer obtained according to the present invention and the polyester regenerated fiber made from the regenerated chip have an improved viscosity and an inhibitory effect on thermal decomposition.

아울러 본발명은 용융혼합성이 좋기 때문에 방사작업성도 향상된다.In addition, the present invention improves spinning workability because of good melt mixing.

본 발명에 관련되는 재생 폴리에스터 칩은 섬유뿐만아니라 필름이나 병의 제조원료로 활용할 수 있다.The recycled polyester chip according to the present invention can be utilized not only as a fiber but also as a raw material for producing films or bottles.

Claims (2)

폐 폴리에스터 또는 그 중합체에 대하여 2,2´-비스옥사졸린 0.1 ∼ 10중량%를 용융혼합하여 제조하는 것을 특징으로 하는 폴리에스터 재생섬유의 제조방법.A method for producing a polyester regenerated fiber, characterized by melting and mixing 0.1 to 10% by weight of 2,2′-bisoxazoline to waste polyester or polymers thereof. 제 1 항에 있어서, 열안정제를 전체중량에 대하여 0.1 ∼ 5중량% 첨가하여 용융혼합하는 것을 특징으로 하는 폴리에스터 재생섬유의 제조방법.The method for producing a polyester regenerated fiber according to claim 1, wherein the thermal stabilizer is added by 0.1 to 5% by weight based on the total weight and melt mixed.
KR1019980036516A 1998-09-04 1998-09-04 Manufacturing method of polyester recycled fiber KR100290564B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980036516A KR100290564B1 (en) 1998-09-04 1998-09-04 Manufacturing method of polyester recycled fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980036516A KR100290564B1 (en) 1998-09-04 1998-09-04 Manufacturing method of polyester recycled fiber

Publications (2)

Publication Number Publication Date
KR20000018763A true KR20000018763A (en) 2000-04-06
KR100290564B1 KR100290564B1 (en) 2001-11-14

Family

ID=19549621

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980036516A KR100290564B1 (en) 1998-09-04 1998-09-04 Manufacturing method of polyester recycled fiber

Country Status (1)

Country Link
KR (1) KR100290564B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417193B1 (en) * 2010-09-30 2014-07-09 코오롱인더스트리 주식회사 Recycled polyester polymer and Method for manufacturing the same, Spun bond nonwoven fabric using the same
KR101429686B1 (en) * 2013-01-14 2014-09-23 주식회사 효성 Process for preparing high viscosity and high intensity industrial polyester fibre
WO2021091170A1 (en) * 2019-11-08 2021-05-14 코오롱인더스트리 주식회사 Spunbonded non-woven fabric, and tile carpet using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0180090B1 (en) * 1996-06-29 1999-02-01 김상응 Method of manufacturing polyester monofilament

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417193B1 (en) * 2010-09-30 2014-07-09 코오롱인더스트리 주식회사 Recycled polyester polymer and Method for manufacturing the same, Spun bond nonwoven fabric using the same
KR101429686B1 (en) * 2013-01-14 2014-09-23 주식회사 효성 Process for preparing high viscosity and high intensity industrial polyester fibre
WO2021091170A1 (en) * 2019-11-08 2021-05-14 코오롱인더스트리 주식회사 Spunbonded non-woven fabric, and tile carpet using same
CN114641596A (en) * 2019-11-08 2022-06-17 可隆工业株式会社 Spunbonded nonwoven fabric and modular carpet using the same

Also Published As

Publication number Publication date
KR100290564B1 (en) 2001-11-14

Similar Documents

Publication Publication Date Title
US3218372A (en) Molding material and molded articles
EP0127981A2 (en) Molding composition
WO2016010893A1 (en) Modification of engineering plastics using olefin-maleic anhydride copolymers
KR100642289B1 (en) Biodegradable resin composition, method of producing the same and biodegradable film
DE3237401A1 (en) IMPACT POLYAMIDE
Zhang et al. Insight into roles of different types of additives on mechanical and crystalline properties of polylactic acid
KR100290564B1 (en) Manufacturing method of polyester recycled fiber
CN112662143A (en) PBT composition with high elongation at break and preparation method thereof
EP0378700B1 (en) Polyacetal resin composition
JP5465506B2 (en) Modified recycled polyester resin and molded product using the same
CN113831711B (en) High-toughness polylactic acid composition and preparation method thereof
US5994451A (en) Polytrimethylene terephthalate composition
EP0637606A2 (en) A non-halogen flame retardant thermoplastic composition
JP3380774B2 (en) Products made of glass fiber reinforced polyester resin
KR20240154942A (en) Method for producing polyester recycled fiber
CN116355653B (en) Polyester compatibilizer and preparation method and application thereof
EP2609133B1 (en) Copolymers based on polyester and aromatic polycarbonate
EP0119150A1 (en) High performance rubber-polyester blends
JPS607659B2 (en) Manufacturing method of resin composition
KR102494714B1 (en) Method of preparing biodegradable polymer composition and biodegradable film prepared therefrom
EP4121482B1 (en) Composition comprising polycarbonate and poly butylene terephthalate
JP2001011729A (en) Polyolefin-based fiber
KR102249171B1 (en) Biodegradable resin composition having improved mechanical property and processability and biodegradable film manufactured by the composition
KR102055833B1 (en) Polybutylene terephthalate resin composition and molded product prepared therefrom
CN116410452A (en) Polyester compatibilizer and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121130

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20131209

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20141217

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20151204

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee