KR20000015590U - Unit plate of a parallel heat exchanger - Google Patents

Unit plate of a parallel heat exchanger Download PDF

Info

Publication number
KR20000015590U
KR20000015590U KR2019990000153U KR19990000153U KR20000015590U KR 20000015590 U KR20000015590 U KR 20000015590U KR 2019990000153 U KR2019990000153 U KR 2019990000153U KR 19990000153 U KR19990000153 U KR 19990000153U KR 20000015590 U KR20000015590 U KR 20000015590U
Authority
KR
South Korea
Prior art keywords
heat exchanger
water
hot water
path
plate
Prior art date
Application number
KR2019990000153U
Other languages
Korean (ko)
Inventor
김진곤
Original Assignee
김진곤
주식회사 두발가스엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김진곤, 주식회사 두발가스엔지니어링 filed Critical 김진곤
Priority to KR2019990000153U priority Critical patent/KR20000015590U/en
Publication of KR20000015590U publication Critical patent/KR20000015590U/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

본 고안은 병렬형 열교환기를 구성하는 구성판의 개선에 대해 개시한다.The present invention discloses an improvement of a component plate constituting a parallel heat exchanger.

열교환 효율의 촉진을 위해 본 고안은 구성판은 경로리브를 파형으로 굴곡형성함으로써 흐름경로의 표면적을 증가시켜 열교환효율을 향상시켰다.In order to promote the heat exchange efficiency, the present invention improves the heat exchange efficiency by increasing the surface area of the flow path by forming the curved path ribs.

그 결과 연료소비율이 낮고 소형 경량화가 가능한 열교환기를 제공하는 효과가 있다.As a result, there is an effect of providing a heat exchanger capable of low fuel consumption and small size and light weight.

Description

병렬형 열교환기의 구성판 {UNIT PLATE OF A PARALLEL HEAT EXCHANGER}Components of Parallel Heat Exchanger {UNIT PLATE OF A PARALLEL HEAT EXCHANGER}

본 고안은 싱글(single)방식 가스보일러 시스템에 관한 것으로, 특히 그 온수 열교환기로 사용되는 판형(板形) 열교환기중에서 병렬형(parallel type) 열교환기를 구성하는 단위 구성판에 관한 것이다.The present invention relates to a single-type gas boiler system, and more particularly to a unit component plate constituting a parallel type heat exchanger in the plate heat exchanger used as the hot water heat exchanger.

보일러는 물을 가열하여 발생시킨 가열수 또는 스팀을 이용하여 난방 또는 온수를 제공하는 장치이다. 이러한 보일러는 다양한 연료를 사용하고 있는데, 연료의 가열특성에 따라 순간가열식과 저탕식(貯湯式)으로 구분될 수 있다.A boiler is a device that provides heating or hot water by using heated water or steam generated by heating water. These boilers use a variety of fuels, and can be classified into instant heating type and low boiling type according to the heating characteristics of the fuel.

저탕식 보일러는 연탄이나 기름통을 연료로 하여 물을 가열한 뒤 이를 온수저장 탱크에 저장하여 두고 필요에 따라 난방이나 온수공급을 행하게 된다. 이에 비하여 순간 가열식 보일러는 보일러 몸체내에 주(主) 열교환기 및/또는 온수용 열교환기를 구비하여 필요경우 즉시 난방 또는 온수를 공급할 수 있다. 가스보일러는 순간 가열식 보일러에 해당하는 바, 도시가스의 보급과 사용의 편의성에 의해 최근 가정용 난방 보일러로서 그 보급이 매우 활발하다.Low-boiling boilers heat water using briquettes or oil barrels and store them in hot water storage tanks to provide heating or hot water as needed. In contrast, instantaneous heating boilers may be provided with a main heat exchanger and / or a hot water heat exchanger in the boiler body to immediately supply heating or hot water if necessary. Gas boilers correspond to instantaneous heating boilers. Recently, the gas boilers are widely used as household heating boilers due to the widespread use of city gas and ease of use.

가스보일러는 또한 난방수와 온수의 공급방식에 따라 즉 열교환기의 구성에 따라 싱글(single)방식과 듀얼(dual)방식으로 구분되고 있다. 싱글방식의 시스템은 주열교환기로는 난방수의 열교환만을 수행하고 온수는 별도의 2차 열교환기 또는 온수용 열교환기로 주열교환기에서 가열된 난방수를 이용하여 가열시키게 된다.Gas boilers are also divided into single type and dual type according to the supply method of heating water and hot water, that is, the configuration of the heat exchanger. In the single-type system, the main heat exchanger performs only heat exchange of the heating water, and the hot water is heated using a separate secondary heat exchanger or a hot water heat exchanger using the heating water heated in the main heat exchanger.

한편 듀얼방식의 시스템은 주열교환기에서 난방수와 온수의 가열을 동시에 수행하게 된다.On the other hand, the dual type system simultaneously heats the heating water and hot water in the main heat exchanger.

도 1에는 상술한 싱글방식을 채택한 가스보일러 시스템을 개략적으로 도시하였다. 도 1에서, 버너(B)의 상측에는 열교환기(X)가 설치되어 난방수를 가열하도록 되어 있다. 보충탱크(도시안됨)가 구비된 개방형 시스템의 경우, 보충탱크로부터 공급되는 순환수는 열교환기(X) 외주에 설치된 예열관(P)을 순환하여 예열된 후 열교환기(X) 내부의 가열관(H)을 통해 가열된 후, 삼방변(three-way valve:V)를 거쳐 난방공급된다.1 schematically shows a gas boiler system employing the above-described single method. In FIG. 1, a heat exchanger X is provided above burner B to heat the heating water. In an open system equipped with a supplementary tank (not shown), the circulating water supplied from the supplementary tank is preheated by circulating the preheating tube P installed at the outer circumference of the heat exchanger X, and then the heating tube inside the heat exchanger X Heated through (H), then heated via a three-way valve (V).

한편 이 삼방변(V)의 후류측에는 온수가열관(W)을 통해 2차 열교환기(X2)가 연결되는데, 2차 열교환기(X2)는 난방수 관로와 직수관로가 서로 샌드위치 (sandwitch)형으로 교차하고 있다. 사용자가 온수변을 개방하는 경우 삼방변(V)은 난방관로의 공급을 차단하고 열교환기(X)에서 가열된 난방수를 온수가열관(W)으로 전환시키게 되고 직수를 온수로 가열한 난방수는 다시 보충탱크를 거쳐 열교환기(X)로 복귀된다.On the other hand, the downstream side of the three-sided (V) is connected to the secondary heat exchanger (X2) through the hot water heating tube (W), the secondary heat exchanger (X2) is a sandwich (sandwitch) of the heating water pipe and the direct water pipe Is crossing. When the user opens the hot water valve, the three-way valve (V) cuts off the supply to the heating pipe, converts the heating water heated in the heat exchanger (X) into the hot water heating pipe (W), and heats the direct water with hot water. Is returned to the heat exchanger (X) via the refill tank.

이와 같은 싱글방식 가스보일러 시스템에 있어서 2차 열교환기(X2), 즉 온수 열교환기로는 종래 원통형 열교환기가 주로 사용되고 있었으나, 최근에는 제작과 조립이 용이하고 소형화가 가능한 도 2에 도시된 판형 열교환기가 주로 사용되고 있다.In such a single-type gas boiler system, a secondary heat exchanger (X2), that is, a conventional heat exchanger was mainly used as a hot water heat exchanger. However, in recent years, the plate heat exchanger illustrated in FIG. It is used.

도 2에서 판형 열교환기의 한 구성판(U)은 90°간격으로 두 관통구멍(H1,H2)이 형성되는데, 한 관통구멍(H2)은 원형리브(R3)내에 형성되어 다른 관통구멍(H1)과 이 리브(R1~R3) 높이 만큼의 단차(段差)가 형성된다.In FIG. 2, one component plate U of the plate heat exchanger is formed with two through holes H1 and H2 at intervals of 90 °, and one through hole H2 is formed in the circular rib R3 to form another through hole H1. ) And a step by the height of the ribs R1 to R3 is formed.

이러한 구성의 복수의 구성판(U)은 90°씩 엇갈려 가며 적층하여 접합하면 구성판(U)의 원형리브(R3)내의 관통구멍(H2)이 위의 구성판(U)의 관통구멍(H1)에 접합되어 구성판(U)들은 하나 걸러 서로 연통되는 판형 열교환기를 구성한다. 이때 각 경로상의 입구와 출구는 180°의 간격을 가져 입구가 되는 관통구멍(H1)으로 유입되는 순환수는 리브들로 형성된 공간내를 복잡한 경로로 유동한 후 위 구성판(U)의 원형리브(R3)내의 관통구멍(H2)을 출구로 상층 또는 하층의 후류측으로 유출된다.When the plurality of component plates U having such a configuration are alternately stacked by 90 °, the through holes H2 in the circular ribs R3 of the component plates U have the through holes H1 of the component plates U above. ) And the component plates U constitute a plate heat exchanger in communication with each other. At this time, the inlet and the outlet on each path have a space of 180 °, and the circulating water flowing into the through hole H1, which is the inlet, flows through a complicated path in the space formed by the ribs, and then the circular rib of the upper component plate U. Through-hole H2 in R3 flows out to the downstream side of an upper layer or a lower layer as an exit.

이에 따라 판형 열교환기로 유입된 열교환기(X)로부터 가열수와 직수관으로 부터의 직수는 서로 섞이지 않고 열교환하여 보충탱크로의 귀환수와 온수관으로의 온수로 배출된다.As a result, the heat from the heat exchanger X introduced into the plate heat exchanger X and the direct water from the direct pipe are not mixed with each other, and are heat-exchanged and discharged as return water to the replenishment tank and hot water to the hot water pipe.

이러한 열교환기에 있어서 가열수로부터 귀환수까지의 경로와 직수로부터 온수까지의 경로는 서로 복잡하게 교차하지만 각각 단일한 경로를 가진다. 따라서 이와 같은 방식의 열교환기를 직렬형(direct type)으로 호칭하고 있다.In such a heat exchanger, the path from the heated water to the return water and the path from the direct water to the hot water cross each other in complex but each has a single path. Therefore, such a heat exchanger is called a direct type.

그런데 직렬형 열교환기는 상술한 바와 같이 복잡한 경로를 가지게 되므로 관로저항이 상당히 커서 압력손실도 크며, 이에 따라 직수압력이 낮은 저수압대에서는 사용이 곤란한 문제가 있으며 열교환효율도 낮은 문제가 있었다.However, since the series heat exchanger has a complicated path as described above, the pipe resistance is large and the pressure loss is large. Accordingly, the series heat exchanger has a problem that it is difficult to use in a low pressure range with low direct pressure and has a low heat exchange efficiency.

이러한 압력손실의 문제는 특히 직수가압설비가 없는 저층아파트의 상부층에서 충분한 온수공급이 이루어지지 못하게 하고 있으며, 사용자는 이러한 문제를 보일러 시스템에 기인하는 것으로 판단하기 쉬워 보일러 시스템의 신뢰성을 크게 손상시키고 있다.This problem of pressure loss prevents the supply of sufficient hot water, especially in the upper floors of low-rise apartments without direct pressure facilities, and it is easy for users to judge this problem as being caused by the boiler system, which greatly impairs the reliability of the boiler system. .

이에 따라 주로 대용량의 산업용 보일러에 사용되고 있던 병렬형 열교환기를 소형화하여 가정용 가스보일러 시스템의 온수 열교환기로 사용하고자 하는 시도가 이루어지고 있다.Accordingly, attempts have been made to reduce the size of parallel heat exchangers, which are mainly used for large-scale industrial boilers, and to use them as hot water heat exchangers for domestic gas boiler systems.

이러한 병렬형 열교환기는 도 3에 도시된 바와 같이, 각 구성판(U)에는 관통구멍(H1)과 차폐리브(R3)내의 관통구멍(H2)이 각각 2개씩 형성되어 있어서, 가열수 입구로 진입한 가열수가 복수의 경로를 통해 귀환수 출구로 배출되고, 직수입구로 진입한 직수가 역시 복수의 경로를 통해 온수 출구로 배출된다.As shown in FIG. 3, the parallel heat exchanger includes two through-holes H1 and two through-holes H2 in the shielding rib R3 in each component plate U to enter the heated water inlet. One heated water is discharged to the return water outlet through a plurality of paths, and the direct water entering the direct inlet is also discharged to the hot water outlet through a plurality of paths.

이에 따라 관로저항이 직렬식에 비해 크게 감소되고 열교환효율이 향상되어 열교환기의 크기를 축소시킬 수 있게 된다.Accordingly, the pipe resistance is greatly reduced compared to the series type, and the heat exchange efficiency is improved, thereby reducing the size of the heat exchanger.

도 4에는 이와 같은 병렬형 열교환기의 실제 구성의 일례가 도시되어 있는 바, 이것은 본원인에 의한 실용신안등록출원 제95-39048호(병렬형 열교환기), 제96-21854호(열교환기의 니플결합구조), 의장등록 제212841호(열교환기의 전열핀)등에 의해 개선된 구성이다.Figure 4 shows an example of the actual configuration of such a parallel heat exchanger, which is a utility model registration application No. 95-39048 (parallel heat exchanger), 96-21854 (of heat exchanger) Nipple coupling structure) and design registration No. 212841 (heat transfer fin of heat exchanger).

이러한 열교환기는 복수의 구성판(U1~U3)의 적층으로 구성되는 바, 각 구성판(U1~U3)은 기본적으로 그 외주가 절곡된 플랜지(flange;F)로 둘러싸인 장방형 그릇 형태로 구성되어 그 네 모서리에 각각 관통구멍(H; 배열에 따라 H1 또는 H2를 형성함)이 형성되고, 네 관통구멍(H)중 두 관통구멍(H)을 차폐리브(R3)가 둘러싸게 된다.The heat exchanger is composed of a stack of a plurality of component plates (U1 ~ U3), each component plate (U1 ~ U3) is basically composed of a rectangular bowl shape surrounded by a flange (F) bent its outer periphery Through-holes H (forming H1 or H2 depending on the arrangement) are formed at four corners, and shielding ribs R3 surround two through-holes H of the four through-holes H.

한편 구성판(U1~U3)의 몸체에는 피시본(fish bone)형, 즉 V 자형의 경로리브(R4)가 배열되어 구성판(U1~U3)간의 적층시 그 사이에 직수와 온수간의 분리된 경로(V)를 형성하게 된다.On the other hand, the body of the component plates (U1 ~ U3) is arranged in the form of fishbone (V-shaped path ribs R4) is separated between the direct water and hot water between the laminated plates (U1 ~ U3) The path V is formed.

한편 최상단의 구성판(U3)에는 외부배관과의 연결을 위해 니플(nipple;N)이 결합되는 것이 바람직한 바, 이를 위해 최상단 구성판(U3)의 관통구멍(H) 주위에는 니플(N)의 내부에 접촉될 슬리이브(sleeve;S)가 형성된다.Meanwhile, a nipple (N) is preferably coupled to the uppermost component plate (U3) for connection with an external pipe. For this purpose, a nipple (N) is formed around the through hole (H) of the uppermost component plate (U3). A sleeve S is formed to be in contact with the inside.

한편 최하단의 구성판(U2)에는 경로의 차폐를 위해 관통구멍(H)이 형성되지 않는다.On the other hand, the through hole (H) is not formed in the lowermost component plate (U2) to shield the path.

여기서 차폐리브(R3)가 구비되지 않는 것과 구비된 것을 모두 동일한 구성판(U1)으로 지시하고 있는 바, 이것은 네 관통구멍(H)중 일측 또는 대각선의 2개에 차폐리브(R3)를 형성하고, 구성판(U1)을 서로 반대방향으로 엇갈리게 적층하면 이러한 구성을 얻을 수 있게 되는 것이다.In this case, all of the shielding ribs R3 and the ones having the same are indicated by the same component plate U1, which forms the shielding ribs R3 at one of the four through holes H or two of the diagonals. When the component plates U1 are stacked alternately in opposite directions, such a configuration can be obtained.

한편 이와 같은 구성판(U1~U3)들은 판재를 일련의 프로그레시브 (progressive) 금형들에 의해 순차적으로 블랭킹(blanking)하여 성형(forming) 및 천공(piercing)함으로써 구성된다. 이에 따라 U2 구성판은 U1 구성판의 제조과정에서 관통구멍(H)을 천공하기전에 취출하고, U3 구성판은 관통구멍(H)의 확개(擴開) 과정에서 취출하면 모든 구성판(U1~U3)들은 한 프로그레시브 금형에서 얻을 수 있게 된다.On the other hand, the component plates (U1 ~ U3) are configured by blanking the plate material by a series of progressive molds (forming) and forming (piercing). Accordingly, the U2 component plate is taken out before drilling the through hole H in the manufacturing process of the U1 component plate, and the U3 component plate is taken out during the expansion of the through hole H. U3) can be obtained from one progressive mold.

이와 같은 각 구성판(U1~U3)및 니플(N)들은 그 접촉부에 페이스트(paste)등 적절한 접합재를 도포 또는 위치시켜 도 4(A)와 같이 적층한 뒤, 이를 접합로 (brazing furnace)에 투입하여 가열하면 도 4(B)와 같이 각 구성판(U1~U3) 및 니플(N)이 일체로 접합되어 병렬방식의 판형 열교환기를 구성하게 된다. 도시된 구성은 이 판형 열교환기의 직수 입구 또는 온수출구측을 나타낸다.Each of the component plates U1 to U3 and the nipples N are coated or placed with a suitable bonding material such as a paste at the contact portion thereof, and laminated as shown in FIG. 4 (A), and then laminated to a brazing furnace. When input and heated, as shown in FIG. 4B, each of the component plates U1 to U3 and the nipples N are integrally joined to form a parallel plate heat exchanger. The configuration shown represents the direct inlet or hot water outlet side of this plate heat exchanger.

도 5에는 이와 같은 열교환기의 몸체를 구성하는 구성판(U1)을 예시하고 있는 바, 이는 특히 전술한 의장등록 제212841호에 의한 것이다.Figure 5 illustrates a component plate U1 constituting the body of such a heat exchanger, which is in particular according to the aforementioned design registration No. 212841.

이 구성판(U1)은 전술한 바와 같이 네 모서리에 관통구멍(H)을 형성하고 대각선의 두 관통구멍(H)에 차폐리브(R3)를 형성하여 그 사이에 방향성을 가지는 피시본형의 경로리브(R4)를 형성하고 있어서, 이를 도 4(A),(B)와 같이 서로 반대방향으로 교호적으로 엇갈리도록 적층하면 도 3과 같이 직수및 온수경로와 가열수및 귀환수 경로가 분리된 열교환기를 구성할 수 있게 된다.As described above, the component plate U1 forms a through-hole H at four corners and a shielding rib R3 at two diagonal through-holes H, and has a directional rib in between. (R4) is formed and stacked alternately in the opposite direction as shown in Fig. 4 (A), (B), the heat exchange in which the direct and hot water path and the heating water and return path are separated as shown in FIG. The group can be configured.

이와 같은 본원인의 선등록 고안들은 단순한 V자형의 경로리브(R4)를 가지는 종래의 피시본형 구성판(U1~U3)에 있어서, 네 관통구멍(H)의 대각선 방향에 두 돌출리브(R3)를 구비하여 단일한 종류의 구성판(U1~U3)의 교호적 적층으로 판형 열교환기의 제조가 가능하게 하고, 관통구멍(H) 주위에 유도리브(R1,R2)를 배열함으로써 열교환되는 물의 각 층간의 이동을 원활하게 유도하도록 구성한 것이다.Such pre-registered designs of the present inventors have two protruding ribs R3 in the diagonal direction of the four through holes H in the conventional fishbone-type structural plates U1 to U3 having a simple V-shaped path rib R4. It is possible to manufacture a plate heat exchanger by alternating stacking of a single type of component plates (U1 to U3), and the heat exchanged by arranging guide ribs (R1, R2) around the through hole (H). It is configured to induce the movement between floors smoothly.

여기서 가열수-귀환수, 직수-온수의 물의 흐름은 그 흐름 경로가 후술하는 바와 같이 복잡하므로 난류(亂流)상태로 흐르게 되는 바, 이 열교환 효율은 주로 흐름경로의 표면적에 의해 결정된다.Here, the flow of the water of the heated water-returned water and the direct water-hot water flows in a turbulent state because the flow path is complicated as will be described later. This heat exchange efficiency is mainly determined by the surface area of the flow path.

이러한 고찰에 기초하여 본 고안의 목적은 열교환 효율을 현저히 향상시킬수 있는 병렬형 열교환기의 구성판을 제공하는 것이다.Based on these considerations, an object of the present invention is to provide a component plate of a parallel heat exchanger capable of significantly improving heat exchange efficiency.

도 1은 판형 열교환기를 사용하는 싱글방식 가스보일러의 시스템도.1 is a system diagram of a single gas boiler using a plate heat exchanger.

도 2는 판형 열교환기중 직렬형 열교환기의 순화를 보이는 개략단면도.Figure 2 is a schematic cross-sectional view showing the purification of the in-line heat exchanger of the plate heat exchanger.

도 3은 병렬형 열교환기의 순환을 보이는 개략단면도.Figure 3 is a schematic cross-sectional view showing the circulation of the parallel heat exchanger.

도 4는 병렬형 열교환기의 실제 구성의 일례를 도시한 도면들로, (A)는 분해상태. (B)는 조립상태 단면도.4 is a view showing an example of the actual configuration of a parallel heat exchanger, (A) is an exploded state. (B) is a cross-sectional view of the assembled state.

도 5는 도 4의 구성판의 일례로서 본원인의 선등록의장 212841호의 구성을 보이는 사시도.FIG. 5 is a perspective view showing a configuration of a pre-registered design 212841 of the present application as an example of the component plate of FIG. 4. FIG.

도 6는 본 고안의 구성을 보이는 사시도.Figure 6 is a perspective view showing the configuration of the present invention.

도 7(A)및 (B)는 선등록의장과 본원의 구성판의 작용을 비교하는 온수의 경로도이다.7 (A) and (B) are path diagrams of hot water comparing the action of the pre-registered chairman and the component plate of the present application.

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

1 : (열교환기의) 구성판1: construction plate (of heat exchanger)

H;H1.H2: (구성판의) 관통구멍H; H1.H2: Through hole (of component board)

R1.R2: 유도리브(rib)R1.R2: guide rib

R3: 차폐리브R3: Shielded Rib

4: 경로리브4: Path rib

P: 흐름경로P: flow path

상술한 목적의 달성을 위해, 본 고안에 의한 구성판은 전체적으로 V자형을 이루도록 배열된 경로리브가 파형(波形)으로 굴곡 형성되는 것을 특징으로 한다.In order to achieve the above object, the component plate according to the present invention is characterized in that the path ribs arranged to form a V-shape as a whole is bent to form a wave (wave).

이에 따라 각 구성판간에 형성되는 흐름경로의 표면적이 현저히 증가되어 이에 따른 열교환 효율의 현저한 향상이 가능하다.Accordingly, the surface area of the flow paths formed between the respective component plates is significantly increased, and thus, the heat exchange efficiency can be remarkably improved.

그 결과 본 고안은 연료소비율이 낮으며 소형으로 구성이 가능한 병렬형 열교환기를 제공하게 된다.As a result, the present invention provides a parallel heat exchanger having a low fuel consumption and a small size.

이와 같은 본 고안의 구체적 특징과 이점들은 첨부된 도면을 참조한 이하의 바람직한 실시예의 설명으로 더욱 명확해질 것이다.Such specific features and advantages of the present invention will become more apparent from the following description of the preferred embodiments with reference to the accompanying drawings.

도 6및 도 7에서, 본 고안에 의한 구성판(1)은 대략 장방향으로 형성되어 네 모서리에 각각 관통구멍(H;H1,H2)이 형성되고, 그중 대각선 방향의 두 관통구멍(H)에 차폐리브(R3)가 형성되어 구성판(1)을 서로 엇갈리게 겹치면 가열수-귀환수및 직수-온수의 흐름 경로가 한층 걸러 교호적으로 형성되도록 되어 있다. 부호 R1및 R2는 각각 각 층간의 물의 흐름을 촉진하는 유도리브들이다.In FIGS. 6 and 7, the component plate 1 according to the present invention is formed in a substantially long direction so that through holes H; H1 and H2 are formed at four corners, and two through holes H in a diagonal direction. When the shielding rib R3 is formed in and overlaps the component plates 1 with each other, the flow paths of the heating water return water and the direct water hot water are alternately formed. Symbols R 1 and R 2 are induction ribs which respectively promote the flow of water between the layers.

이와 같은 구성에 있어서, 경로리브(4)는 종래와 같이 대략 V자형, 즉 피시본 형태로 배열되는데, 각 경로리브(4)는 본 고안에 따라 파형으로 굴곡형성된다.In such a configuration, the path ribs 4 are arranged in a substantially V-shape, that is, in the form of a fishbone, as in the prior art, and each path rib 4 is bent into a waveform according to the present invention.

여기서 경로리브(4)는 다른 굴곡부위와 함께 구성판(1)의 블랭크(blank)를 금형에 의해 딥드로잉(deep drawing) 성형함으로써 구성되는데, 이는 1축 방향의 성형으로 이루어지므로 경로리브(4)의 굴곡파형이 복잡하더라도 제조상의 문제는 없다.Here, the path ribs 4 are formed by deep drawing molding a blank of the component plate 1 together with other bent portions by means of a mold, which is formed by forming in the uniaxial direction. Even if the bend waveform is complex, there is no manufacturing problem.

이와 같이 굴곡파형의 경로리브(4)를 가지는 구성판(1)은 도 8에 도시된 바와 같이 서로 반대방향으로 엇갈리게 적층된 후 상호 접합됨으로써 열교환기를 구성하게 된다. 여기서 접합방법은 종래와 같이 각 구성판(1) 사이에 얇은 구리계등의 접합재의 박판을 적층한 뒤 고온의 접합로에 투입및 가열하는 브레이징(brazing) 접합방법으로 수행될 수 있다.As described above, the component plates 1 having the curved wave ribs 4 are alternately stacked in the opposite directions as shown in FIG. 8 and then bonded to each other to form a heat exchanger. Here, the bonding method may be performed by a brazing bonding method in which a thin plate of a thin copper-based bonding material is laminated between the component plates 1 and then charged and heated in a high temperature bonding furnace.

이와 같이 구성된 본 고안 열교환기의 기능및 효과를 설명하기 위해 도 9에 종래의 구성판(U)에 의한 흐름경로와 비교도시하였다.In order to explain the functions and effects of the inventive heat exchanger configured as described above, FIG. 9 is shown in comparison with the flow path by the conventional component plate (U).

도9(A)및 (B)에 도시된 것은 가열수-귀환수 또는 직수-온수의 양 흐름 경로중 어느 한 흐름경로만을 도시한 것으로 다른 한 흐름경로는, 도시된 경로에 대해 구성판(1)에 의해 경계 지워져 서로 맞물리는 형태가 된다.9 (A) and (B) show only one of the flow paths of both the hot water-returned water or the hot water-hot water, and the other flow path is the component plate 1 for the path shown. ) Is bounded by and becomes the form which meshes with each other.

먼저 도 9(A)에 도시된 것은 도 5의 선출원및 등록고안에 의한 흐름경로(P’)로 이 흐름경로(P’)는 서로 엇갈리게 배열되는 구성판(U)의 경로리브(R4)에 의해 상부에서 보면 서로 교차하는 격자(lattice) 형태를 형성하고, 입체적으로 보면 일측으로 경사진 사다리꼴 단면의 상부경로(P1)와 타측으로 경사진 역 사다리꼴 단면의 하부경로(P2)가 그 교차점에서 서로 연통(連通)된 형태로 교차하게 된다.First, shown in FIG. 9 (A) is a flow path P 'by the filing application and registration proposal of FIG. 5, which flow path P' is arranged on the path ribs R4 of the component plate U which are alternately arranged. When viewed from the top to form a lattice (lattice) to cross each other, three-dimensionally viewed the upper path (P1) of the trapezoidal cross section inclined to one side and the lower path (P2) of the inverted trapezoidal cross section inclined to the other side at each other Intersect in the form of communication.

이와 같이 흐름경로(P’)가 복잡하므로 이를 흐르는 물은 난류상태로 흐르게 되며, 이에 따라 난류의 촉진등, 그 흐름상태의 변경에 의해 열교환 효율을 촉진시킬 가능성은 낮다고 볼수 있다.As such, the flow path P 'is complicated, so that the flowing water flows into the turbulent state, and thus, the possibility of promoting heat exchange efficiency by the change of the flow state such as the acceleration of turbulence is low.

이에 비교할때 도 9(B)에 도시된 본 고안에 의한 흐름경로(P)는 그 기본적 형태의 도 9(A)의 종래 구성과 유사하나, 경로리브(4)의 파형굴곡에 의해 흐름경로(P)의 표면에 굴곡이 형성된다.In comparison with this, the flow path P according to the present invention shown in FIG. 9 (B) is similar to the conventional configuration of FIG. 9A in its basic form, but the flow path (B) by the wave bend of the path rib 4 A bend is formed on the surface of P).

그 결과 흐름경로(P)의 표면적이 종래에 비해 크게 증가되며, 부대적으로 흐름의 난류도가 더욱 증가되어, 결과적으로 열교환효율이 크게 향상된다.As a result, the surface area of the flow path P is greatly increased as compared with the related art, and consequently, the turbulence of the flow is further increased, and as a result, the heat exchange efficiency is greatly improved.

본원의 구성 단계에서 실시한 본원인의 개발시험에 의하면, 본 고안 구성판(1)에 의해 구성된 열교환기의 경우, 도 5의 선출원및 등록 구성판(U)에 의한 열교환기에 비해 10%의 열교환 효율의 향상이 기록되었다.According to the development test of the applicant conducted in the configuration step of the present application, in the case of the heat exchanger constituted by the structural plate 1 of the present invention, the heat exchange efficiency of 10% compared to the heat exchanger by the pre-application and the registration structural plate (U) of FIG. Improvements were recorded.

이러한 결과는 본 고안이 주로 사용될 가스보일러등에 있어서 연료소모를 10% 절감시킬수 있다는 것일뿐 아니라, 동일한 난방용량의 경우 열교환기의 크기를 종래에 비해 10% 축소할 수 있다는 것이다.These results indicate that the present invention not only can reduce fuel consumption by 10% in a gas boiler or the like, but also can reduce the size of the heat exchanger by 10% compared with the conventional heating capacity.

그러므로 본 고안은 열교환 효율의 향상으로 이에 의한 열교환기의 소형 경량화와 연료소비율 절감의 효과를 발휘하여, 특히 가정용 가스보일러에 사용되기에 특히 적합하다.Therefore, the present invention has an effect of improving the heat exchange efficiency, thereby reducing the size and weight of the heat exchanger and reducing the fuel consumption rate, and is particularly suitable for use in domestic gas boilers.

Claims (1)

각각 V자형의 복수의 경로리브가 배열되며 복수로 적층되어 가열수-귀환수및 직수-온수의 흐름경로를 교호적으로 형성하는 병렬형 열교환기를 구성하는 구성판에 있어서,In the component plate constituting a parallel heat exchanger is a plurality of V-shaped ribs are arranged and stacked in plurality to alternately form a flow path of hot water-return water and hot water-hot water, 상기 경로리브(4)가 파형으로 굴곡 형성되는 것을 특징으로 하는 병렬형 열교환기 구성판.Parallel path heat exchanger component plate, characterized in that the path ribs (4) are bent in a wave form.
KR2019990000153U 1999-01-11 1999-01-11 Unit plate of a parallel heat exchanger KR20000015590U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR2019990000153U KR20000015590U (en) 1999-01-11 1999-01-11 Unit plate of a parallel heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR2019990000153U KR20000015590U (en) 1999-01-11 1999-01-11 Unit plate of a parallel heat exchanger

Publications (1)

Publication Number Publication Date
KR20000015590U true KR20000015590U (en) 2000-08-05

Family

ID=54758044

Family Applications (1)

Application Number Title Priority Date Filing Date
KR2019990000153U KR20000015590U (en) 1999-01-11 1999-01-11 Unit plate of a parallel heat exchanger

Country Status (1)

Country Link
KR (1) KR20000015590U (en)

Similar Documents

Publication Publication Date Title
JP5043859B2 (en) Condenser boiler heat exchanger for heating and hot water supply
JP2019510952A (en) Tube type heat exchanger
CN106197091A (en) All-aluminium type plate type heat exchanger is used in heat generating member cooling on electric vehicle
CN107664444A (en) Effluent journey shell-and-plate heat exchanger plates and multipaths Dismantable plate shell type radiator
CN202747865U (en) High efficiency heat exchanger for water dispenser
CN104930884B (en) A kind of box-type heat exchanger of plurality of plates permutation and combination
EP0719991B1 (en) Heat exchanger
JP2017083048A (en) Heat exchanger, secondary heat exchanger and heat source machine
KR20000015590U (en) Unit plate of a parallel heat exchanger
KR100651642B1 (en) System of heat exchanger a board type
CN201072247Y (en) Separating heat pipe heat exchanger for solar water heater
KR20000050519A (en) Unit plate of a parallel heat exchanger
CN206037786U (en) What electric vehicle was last sends out heat -insulating material cooling with full aluminium formula plate heat exchanger
CN206410590U (en) HV heat exchanger plates and efficient plate-type heat-exchanger
CN205690683U (en) Bushing type combustion gas condensing heat exchanger and condenser
CN108534569A (en) A kind of efficient heat exchanger
CN205679098U (en) Heat exchanger and water heater with same
KR200159065Y1 (en) Parallel type heat exchanger
CN209310076U (en) A kind of UTILIZATION OF VESIDUAL HEAT IN cooker racks and residual heat using device
CN206523078U (en) A kind of stainless steel heat exchanger
KR200148797Y1 (en) Nipple connecting structure in heat exchanger
KR200195801Y1 (en) Finned heat exchanger
KR200173160Y1 (en) Paralell type heat exchanger
CN208635609U (en) A kind of efficient heat exchanger
CN203148039U (en) Compact heat exchanger of gas appliance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application