KR20000014416A - Metal oxide catalyst for oxidizing volatile organic compound - Google Patents
Metal oxide catalyst for oxidizing volatile organic compound Download PDFInfo
- Publication number
- KR20000014416A KR20000014416A KR1019980033851A KR19980033851A KR20000014416A KR 20000014416 A KR20000014416 A KR 20000014416A KR 1019980033851 A KR1019980033851 A KR 1019980033851A KR 19980033851 A KR19980033851 A KR 19980033851A KR 20000014416 A KR20000014416 A KR 20000014416A
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- volatile organic
- organic compounds
- oxidation
- nitride
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/688—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8986—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
Description
본 발명은 휘발성유기화합물과 공기 또는 산소를 함유한 기체의 기상접촉산화반응에 의하여 휘발성유기화합물을 제거하는데 사용되는 촉매에 관한 것이다. 좀 더 구체적으로 설명하면 알루미나, 실리카 및 지르코늄 등의 담체상에 담지하거나 담지하지 않은 망간, 마그네슘, 코발트, 철, 구리, 니켈, 크롬, 바나듐, 아연, 몰리브덴, 티타늄, 텅스텐, 비스무스, 지르코늄, 안티몬, 세슘, 란타늄 등의 화합물 중 하나 또는 둘이상의 혼합금속산화물과 함께 은을 이용하여 높은 활성을 나타내는 촉매를 제조하여 휘발성유기화합물의 산화반응에 의해 유기화합물을 제거하는데 사용하는 것을 특징으로 하고 있다.The present invention relates to a catalyst used to remove volatile organic compounds by vapor phase catalytic oxidation of a gas containing volatile organic compounds and air or oxygen. More specifically, manganese, magnesium, cobalt, iron, copper, nickel, chromium, vanadium, zinc, molybdenum, titanium, tungsten, bismuth, zirconium, antimony, supported or unsupported on a carrier such as alumina, silica, and zirconium And a catalyst having high activity using silver together with one or two or more mixed metal oxides of compounds such as cesium and lanthanum, are used to remove organic compounds by oxidation of volatile organic compounds.
휘발성유기화합물 산화에 사용되는 촉매의 성능은 실질적으로 활성에 의해서 결정된다. 활성은 어떤 일정한 조건(예를들면 압력, 기체량 및 촉매량)에서 반응기 출구의 휘발성유기화합물의 농도가 5% 미만이 되는 온도로 표시할 수 있다. 즉 휘발성유기화합물을 95%이상 산화하는데 필요한 온도가 낮으면 낮을수록 활성은 높은 것이다. 활성이 떨어지면 휘발성유기화합물을 산화시키기위해 더욱 높은 온도에서 반응을 시켜 같은 활성을 유지하게 되는데 이 때문에 촉매의 수명이 단축되어 원가상승의 원인이 된다.The performance of the catalyst used to oxidize volatile organic compounds is substantially determined by the activity. Activity may be expressed at temperatures at which the concentration of volatile organic compounds at the outlet of the reactor is less than 5% under certain constant conditions (eg pressure, gas amount and catalyst amount). In other words, the lower the temperature required to oxidize more than 95% of volatile organic compounds, the higher the activity. When the activity is reduced, the reaction is maintained at a higher temperature to oxidize the volatile organic compound, thereby maintaining the same activity, which shortens the life of the catalyst and causes a cost increase.
휘발성유기화합물은 탄화수소화합물의 총칭으로 방향족탄화수소와 지방족탄화수소(파라핀계와 올레핀계) 등의 일반탄화수소와 질소, 산소 및 할로겐원소를 포함하는 비균질탄화수소(예, 알데히드, 케톤류 등)로 분류된다. 특히 휘발성유기화합물은 방향족탄화수소와 할로겐화탄화수소와 같이 화합물 자체로서도 환경 및 건강에 직접 유해하거나 지방족탄화수소와 같이 주로 대기중의 광화학반응에 참여하여 광화학산화물 등의 2차오염물질을 생성할 수 있다. 올레핀계 탄화수소화합물은 광화학반응성이 큰 것으로 잘 알려져 있다. 이들 휘발성유기화합물은 낮은 농도에서도 대단히 자극적이고 불쾌한 냄새를 함유하고 있어서 인체 및 생태계에 막대한 영향을 끼치고 있다.Volatile organic compounds are generic terms of hydrocarbon compounds and are classified into general hydrocarbons such as aromatic hydrocarbons and aliphatic hydrocarbons (paraffinic and olefinic), and heterogeneous hydrocarbons containing nitrogen, oxygen, and halogen elements (eg, aldehydes, ketones, etc.). Particularly, volatile organic compounds may be directly harmful to the environment and health as the compounds themselves, such as aromatic hydrocarbons and halogenated hydrocarbons, or may participate in photochemical reactions in the atmosphere, such as aliphatic hydrocarbons, to generate secondary pollutants such as photochemical oxides. Olefin hydrocarbon compounds are well known for their high photochemical reactivity. These volatile organic compounds contain extremely irritating and unpleasant odors even at low concentrations, and have a profound effect on human bodies and ecosystems.
휘발성유기화합물의 촉매산화(촉매소각) 방법은 고온산화방법과 매우 유사하다. 휘발성유기화합물 함유가스를 포집해서 예열하고 혼합한 후 촉매가 충전된 연소실에서 고온으로 연소시켜 휘발성유기화합물을 이산화탄소와 물로 전환시킨다. 그러나 연소실내에 있는 촉매가 휘발성유기화합물 연소에 필요한 활성화 에너지를 낮춰주기 때문에 열소각보다 낮은 온도에서 이루어지고, 장치 크기가 훨씬 적어질 수 있다. 휘발성유기화합물의 촉매산화에 사용되는 촉매로는 백금이나 팔라듐같은 귀금속과 망간, 마그네슘, 코발트, 철, 구리, 니켈, 크롬, 바나듐, 아연, 몰리브덴, 티타늄, 텅스텐, 비스무스, 지르코늄, 안티몬, 세슘, 란타늄 등의 화합물 중 하나 또는 둘이상의 혼합산화물과 같은 금속산화물 등이 있다. 촉매의 수명은 평균 2년에서 5년정도로 그 이후에는 촉매의 기공(Pore)이 막히거나 열에 의한 노화로 촉매성능이 급격히 저하된다. 촉매를 연소실에 장착하는 방법으로는 입자상의 촉매를 충전시키거나 벌집모양(Honeycomb Type)촉매 지지체에 촉매를 함침시켜 사용한다. 촉매산화에서는 배출가스 성분이나 조업조건이 그 성능에 많은 영향을 미치기 때문에 공정의 최적 조업조건을 결정하는 것이 필요하다. 촉매 산화는 납, 비소, 황, 안티몬, 수은, 아연 또는 다른 촉매유도체를 포함하는 배출가스에서 촉매활성이 급격히 저하되어 효과적이지 못하며, 유기화합물농도가 높아 발열량이 크면 열에 의해 촉매가 쉽게 활성을 잃어버릴 수 있기 때문에 휘발성유기화합물 농도가 낮은 배출가스를 처리하는데 사용된다. 그리고 촉매활성이 잘 유지될 수 있도록 촉매층 사이의 온도와 압력을 계속 측정·감시해야 한다. 촉매층의 온도상승은 휘발성유기화합물 산화정도를 나타내는 것으로 만일 온도가 감소되면 휘발성유기화합물 산화가 불완전하다는 것을 나타낸다. 과도한 열은 촉매를 불활성화시키기 때문에 촉매층으로의 유입온도는 촉매활성이 유지될 수 있도록 충분히 낮게 유지시켜 주어야 한다. 촉매산화는 보통 산화온도가 260∼480℃ 범위에서 조업한다. 촉매층의 압력강하도 역시 촉매의 성능을 나타내는 것으로 압력강하가 감소하면 촉매가 배출가스와 함께 외부로 빠져나가는 것을 뜻하며 이로 인해 휘발성유기화합물 제거능력이 저하된다. 따라서 촉매의 수명을 연장하기 위해서는 주기적으로 촉매에 묻어있는 불활성물질이나 미세입자들을 제거해 주어야 한다. 촉매를 세정하는 방법으로는 공기나 스팀을 촉매층으로 통과시킴으로써 촉매에 묻어있는 미세입자를 제거해 주거나, 촉매산화시의 조업온도 이상으로 깨끗한 공기를 가열해서 이를 이용해 촉매활성을 저해하고 있던 휘발성유기화합물을 산화시켜 촉매세정을 한다. 다른 방법으로는 촉매를 산이나 염기성 용액으로 처리해서 화학적 불활성물질을 제거해준다.Catalytic oxidation (catalytic incineration) of volatile organic compounds is very similar to high temperature oxidation. The volatile organic compound-containing gas is collected, preheated and mixed, and then burned at a high temperature in a combustion chamber filled with a catalyst to convert the volatile organic compound into carbon dioxide and water. However, because the catalyst in the combustion chamber lowers the activation energy required for the combustion of volatile organic compounds, it is at a lower temperature than thermal incineration, and the device size can be much smaller. Catalysts used in the catalytic oxidation of volatile organic compounds include precious metals such as platinum or palladium and manganese, magnesium, cobalt, iron, copper, nickel, chromium, vanadium, zinc, molybdenum, titanium, tungsten, bismuth, zirconium, antimony, cesium, Metal oxides such as one or two or more mixed oxides of compounds such as lanthanum. The average lifetime of the catalyst is about 2 to 5 years. After that, the catalytic performance decreases rapidly due to clogging of pores of the catalyst or aging by heat. As a method of mounting the catalyst in the combustion chamber, a particulate catalyst is charged or a honeycomb type catalyst support is impregnated with the catalyst. In catalytic oxidation, it is necessary to determine the optimum operating conditions of the process because the composition of the off-gas and the operating conditions have a great effect on its performance. Catalytic oxidation is not effective due to a sharp decrease in catalytic activity in the exhaust gas containing lead, arsenic, sulfur, antimony, mercury, zinc or other catalyst derivatives. As it can be discarded, it is used to treat exhaust gases with low concentration of volatile organic compounds. In order to maintain the catalytic activity well, the temperature and pressure between the catalyst layers must be continuously measured and monitored. The increase in temperature of the catalyst layer indicates the degree of oxidation of the volatile organic compound. If the temperature decreases, the oxidation of the volatile organic compound is incomplete. Since excessive heat inactivates the catalyst, the inlet temperature into the catalyst bed must be kept low enough to maintain the catalytic activity. Catalytic oxidation usually operates at an oxidation temperature in the range of 260 to 480 캜. The pressure drop of the catalyst layer also indicates the performance of the catalyst. When the pressure drop decreases, it means that the catalyst is released to the outside together with the exhaust gas. As a result, the ability to remove volatile organic compounds decreases. Therefore, in order to prolong the life of the catalyst, it is necessary to periodically remove the inert materials or fine particles on the catalyst. In order to clean the catalyst, air or steam is passed through the catalyst layer to remove fine particles from the catalyst, or volatile organic compounds that inhibit the catalytic activity by heating clean air above the operating temperature at the time of catalytic oxidation. Oxidize and clean the catalyst. Alternatively, the catalyst can be treated with an acid or basic solution to remove chemical inerts.
공기중의 휘발성유기화합물을 촉매적으로 산화시키는 것은 1000ppm보다 더 낮은 반응물 농도와 높은 과잉 산소 분위기에서 실행된다. 산화반응은 대단히 높은 발열반응이고 산업적으로는 이러한 반응들이 높은 농도의 반응물에서 실행되기 때문에 이러한 공정들은 열을 생산하는 순생산자이다. 낮은 반응물 농도에서 만약 전체 가스흐름이 더 높은 온도로 가열되어져야 한다면 그 공정은 열에 대해 순소비자이다. 그리고 높은 반응 속도를 달성하기 위해 높은 온도(>400℃)로 전체 가스 흐름을 가열하는 것은 대단히 많은 비용을 요구한다. 그러한 결과 때문에 미량의 휘발성유기화합물을 촉매산화시킬 때는 낮은 온도에서 행해진다면 더 경제적이다. 이렇게 하기 위해서는 활성이 높고 비선택적인 촉매가 필요하다.Catalytic oxidation of volatile organic compounds in the air is carried out in a reactant concentration lower than 1000 ppm and in a high excess oxygen atmosphere. Since oxidation is a very high exothermic reaction and industrially these reactions are carried out in high concentrations of reactants, these processes are net producers of heat. At low reactant concentrations the process is a net consumer of heat if the entire gas stream has to be heated to a higher temperature. And heating the entire gas stream to high temperatures (> 400 ° C.) to achieve high reaction rates is very expensive. As a result, it is more economical to carry out catalytic oxidation of trace amounts of volatile organic compounds if they are carried out at low temperatures. This requires a highly active and non-selective catalyst.
금속 산화물계 촉매는 망간, 마그네슘, 코발트, 철, 구리, 니켈, 크롬, 바나듐, 아연, 몰리브덴, 티타늄, 텅스텐, 비스무스, 지르코늄, 안티몬, 세슘, 란타늄 등의 화합물중 하나 또는 둘 이상의 혼합 금속 산화물이 주로 사용된다. 이들 산화물들은 담지된 귀금속보다는 휘발성유기화합물 산화활성이 떨어진다. 그러나 금속산화물은 귀금속 촉매와 비교해서 볼 때 촉매독에 대해서는 금속 산화물의 높은 활성 표면적 때문에 더 저항적이다.The metal oxide catalyst is composed of one or more mixed metal oxides of compounds such as manganese, magnesium, cobalt, iron, copper, nickel, chromium, vanadium, zinc, molybdenum, titanium, tungsten, bismuth, zirconium, antimony, cesium, and lanthanum. Mainly used. These oxides are less volatile organic compounds in oxidation activity than the supported precious metals. However, metal oxides are more resistant to catalyst poisons due to the high active surface area of metal oxides compared to noble metal catalysts.
귀금속촉매는 백금, 팔라듐, 은 및 금이 주로 사용된다. 이러한 귀금속들은 보통 루테늄, 로듐, 오스뮴과 이리듐과 합금시켜 알루미나, 실리카 및 지르코늄 같은 산화물 지지체에 담지되어 사용된다. 그러나 실제로는 대부분의 산화촉매에 적용된 온도가 금속의 소결과 휘발손실 그리고 다른 금속들의 비가역적인 반응이기 때문에 단지 백금, 팔라듐과 합금만이 사용된다. 그리고 이들 귀금속은 높은 비용으로 인해 본 발명에서와 같이 값이 싼 금속산화물 촉매의 필요성을 가져왔다.Precious metal catalysts are mainly platinum, palladium, silver and gold. These precious metals are usually used by alloying with ruthenium, rhodium, osmium and iridium supported on oxide supports such as alumina, silica and zirconium. In practice, however, only platinum, palladium and alloys are used because the temperatures applied to most oxidation catalysts are the sintering and volatilization losses of metals and the irreversible reaction of other metals. And these precious metals have led to the need for inexpensive metal oxide catalysts as in the present invention due to their high cost.
촉매산화 기술의 핵심은 촉매에 있으며, 현재 사용되고 있는 촉매는 백금이나 팔라듐 같은 귀금속 촉매로서 휘발성유기화합물의 산화에 대단히 높은 효과를 나타내고 있긴 하지만, 그 비용이 매우 고가이며 피독물질에 의한 촉매의 활성저하 현상이 뚜렷하기 때문에, 귀금속 촉매와 비슷한 성능을 가지면서 비교적 피독물질에 대한 저항성이 높고, 저렴한 가격으로도 제조할 수 있는 금속 산화물계 촉매의 개발이 필요하다. 그러나 금속산화물은 귀금속보다도 휘발성유기화합물에 대한 활성이 낮기 때문에, 유용한 촉매의 개발은 간단하지가 않고, 희망하는 촉매의 탐색이나 특성구명에도 상당한 어려움이 있다.The core of catalytic oxidation technology lies in catalysts. Currently used catalysts are noble metal catalysts such as platinum and palladium, which have a very high effect on the oxidation of volatile organic compounds, but the cost is very expensive and deactivation of catalysts by poisonous substances Since the phenomenon is clear, it is necessary to develop a metal oxide catalyst which has similar performance to a noble metal catalyst and has a relatively high resistance to poisoning substances and can be manufactured at a low price. However, since metal oxides have lower activity on volatile organic compounds than noble metals, the development of useful catalysts is not simple, and there are considerable difficulties in the search for desired catalysts and the characterization of them.
휘발성유기화합물산화제거에 사용되는 촉매는 사용조건이 매우 혹독하다. 즉, 광범위한 반응온도 영역(상온∼700℃), 극저농도의 반응물(ppm단위), 고농도의 공존가스(보통 공기, 산소), 큰유속, 반응조건의 수시변동 등 반응조건이 매우 까다롭다. 또한 합성반응의 경우 개발된 촉매에 반응조건을 맞추면 되지만, 휘발성유기화합물산화제거의 경우 휘발성유기화합물의 배출현장의 조건에 촉매를 맞추어야 하기 때문에 어려움이 더욱 크다.Catalysts used for the oxidation and removal of volatile organic compounds are very harsh. That is, the reaction conditions are very demanding, such as a wide reaction temperature range (room temperature to 700 ° C), extremely low concentrations of reactants (in ppm), high concentrations of coexisting gases (usually air and oxygen), large flow rates, and occasional variations in reaction conditions. In addition, in the case of the synthesis reaction, the reaction conditions may be adjusted to the developed catalyst, but in the case of oxidation removal of the volatile organic compound, the difficulty is further increased because the catalyst must be adapted to the conditions of the emission site of the volatile organic compound.
따라서 휘발성유기화합물을 산화제거하는데 필요한 촉매는 저온에서 완전산화활성이 높고, 사용온도 영역이 넓으며, 촉매독에 강하고, 수명이 길며, 비교적 쉬운 방법으로 재생이 가능한 촉매적 요건을 갖춰야한다. 그런데 휘발성유기화합물의 촉매산화제거에서 백금이나 팔라듐같은 귀금속 촉매의 경우 완전산화활성이 높지만 피독물질에 대한 저항성이 낮아서 배출되는 휘발성유기화합물에 극히 미량으로 함유되어 있는 피독물질에 대해서도 사용상 제약이 많다. 그러나 금속산화물 촉매는 귀금속촉매에 비해서 활성은 낮지만 금속 산화물의 큰 활성 표면적의 영향으로 촉매독에 대해서는 더 안정적이며, 다양한 촉매성분을 복합화시킬 수 있는 장점이 있어서 본 발명에서 휘발성유기화합물 산화에 사용되는 금속산화물촉매를 개발했다.Therefore, the catalyst required to oxidatively remove volatile organic compounds should have a catalytic requirement that has a high degree of complete oxidation activity at low temperatures, a wide use temperature range, a strong catalyst poison, a long life, and a regeneration in a relatively easy manner. However, in the catalytic oxidation and removal of volatile organic compounds, noble metal catalysts such as platinum and palladium have high complete oxidation activity but have low resistance to poisoning substances, and therefore, there are many restrictions on use of poisonous substances contained in extremely small amounts of volatile organic compounds emitted. However, metal oxide catalysts have lower activity than noble metal catalysts, but are more stable against catalyst poisons due to the large active surface area of metal oxides, and have the advantage of complexing various catalyst components. Developed a metal oxide catalyst.
본 발명은 휘발성유기화합물과 공기 또는 산소를 함유한 기체의 기상접촉산화 반응에 의하여 휘발성유기화합물을 제거하는데 사용되는 촉매에 관한 것으로서 값이 비싼 담지된 귀금속 촉매를 대신하여 알루미나, 실리카 및 지르코늄 담체상에 망간, 마그네슘, 코발트, 철, 구리, 니켈, 크롬, 바나듐, 아연, 몰리브덴, 티타늄, 텅스텐, 비스무스, 지르코늄, 안티몬, 세슘, 란타늄 등의 화합물중 하나 또는 둘이상의 혼합산화물과 함께 은을 소량 함침시키므로서 높은 활성을 나타내는 촉매를 제조하여 휘발성유기화합물의 산화반응에 의하여 유기화합물을 제거하는데 사용되는 것을 특징으로 하는 것이다.The present invention relates to a catalyst used to remove volatile organic compounds by vapor phase catalytic oxidation of a gas containing volatile organic compounds and air or oxygen, and replaces expensive supported noble metal catalysts on alumina, silica and zirconium carriers. Impregnating a small amount of silver with one or more mixed oxides of compounds such as manganese, magnesium, cobalt, iron, copper, nickel, chromium, vanadium, zinc, molybdenum, titanium, tungsten, bismuth, zirconium, antimony, cesium, and lanthanum It is characterized in that it is used to remove the organic compound by the oxidation reaction of the volatile organic compound by producing a catalyst showing a high activity.
본 발명에 의한 휘발성유기화합물 산화용 촉매는 망간, 마그네슘, 코발트, 철, 구리, 니켈, 크롬, 바나듐, 아연, 몰리브덴, 티타늄, 텅스텐, 비스무스, 지르코늄, 안티몬, 세슘, 란타늄 등의 화합물중 하나 또는 둘이상의 혼합산화물에 은을 소량 함유하고 있는 촉매로서 알루미나, 실리카 및 지르코늄 등의 담체에 담지시켜서 제조한 것을 특징으로 한다. 금속화합물과 결합되어있는 음이온 부분의 종류는 촉매의 성능에 중대한 영향을 미치지는 않는 것으로 알려져 있다. 예로서 수산화물(hydroxide), 탄산염(carbonate), 중탄산염(bicarbonate), 질산염(nitrite), 아질산염(nitrite), 개미산염(formate), 초산염(acetate), 수산염(oxalate), 구연산염(citrate), 유산염(lactate), 산화물(oxide) 등이 있으며 할로겐화합물(halides), 황산염(sulfate) 등을 사용한 예도 있다.Catalysts for volatile organic compound oxidation according to the present invention is one of compounds such as manganese, magnesium, cobalt, iron, copper, nickel, chromium, vanadium, zinc, molybdenum, titanium, tungsten, bismuth, zirconium, antimony, cesium, lanthanum or the like. A catalyst containing a small amount of silver in two or more mixed oxides is characterized in that it is prepared by being supported on a carrier such as alumina, silica and zirconium. It is known that the type of anion moiety combined with the metal compound does not significantly affect the performance of the catalyst. Examples include hydroxides, carbonates, bicarbonates, nitrites, nitrites, formates, acetates, acetates, oxalates, citrates and lactates. lactate, oxide, and the like, and examples of using halogenated compounds and sulfates.
본 발명의 촉매는 반응온도 150∼400℃에서 사용하는 것이 적당하며, 반응압력 0∼40kg/㎠G 범위에서 사용가능하며, 5,000∼30,000㏄/h의 범위에서 사용하는 것이 적당하다.The catalyst of the present invention is suitable to use at a reaction temperature of 150 ~ 400 ℃, can be used in the reaction pressure 0 ~ 40kg / ㎠G range, it is suitable to use in the range of 5,000 ~ 30,000㏄ / h.
본 발명을 휘발성유기화합물중 비교적 높은 온도에서 산화되는 벤젠에 적용한 실시예를 들어 설명하면 다음과 같다. 그러나 하기의 실시예만으로 본 발명을 한정하는 것은 아니다.When the present invention is described with reference to the embodiment applied to benzene oxidized at a relatively high temperature of the volatile organic compounds. However, the present invention is not limited only to the following examples.
실시예 1Example 1
감마 알루미나 담지체에 질화 망간 2.0g, 질화 마그네슘 9.48g, 질화 란탄늄 4.69g 그리고 질화 코발트 2.35g을 한꺼번에 증류수에 용해시킨 용액을 진공 회전 증발기에 넣고 40℃에서 감마 알루미나 담지체에 함침시켰다. 함침이 완료된 이후 120℃에서 15시간 이상 건조시킨 다음 800℃에서 소성시켜 촉매를 제조했다. 제조된 촉매 2g을 내경 17mm인 Pyrex 반응기에 충진한 후 벤젠 500ppm, 산소 21v% 그리고 나머지가 질소로 된 반응혼합가스를 20,000 hr-1의 속도로 공급하여 표 1에 나타난 결과를 얻었다.A solution in which 2.0 g of manganese nitride, 9.48 g of magnesium nitride, 4.69 g of lanthanum nitride, and 2.35 g of cobalt nitride was dissolved in distilled water was put in a vacuum rotary evaporator and impregnated in the gamma alumina carrier at 40 ° C. After the impregnation was completed, the catalyst was dried at 120 ° C. for at least 15 hours and then calcined at 800 ° C. 2 g of the prepared catalyst was charged in a Pyrex reactor having an internal diameter of 17 mm, and then a reaction mixture gas containing 500 ppm of benzene, 21 v% of oxygen and the rest of nitrogen was supplied at a rate of 20,000 hr −1 to obtain the results shown in Table 1.
실시예 2Example 2
감마 알루미나 담지체에 란탄늄과 코발트를먼저 담시 시킨 후 120℃에서 15시간 이상 건조 시킨후 다시 망간과 마그네슘을 담시시켜 제조한 촉매를 사용하여 실시예 1과 동일한 촉매와 방법으로 벤젠대신에 반응시킨 결과를 다음 표 1에 나타냈다.After lanthanum and cobalt were first immersed in the gamma alumina carrier, dried at 120 ° C. for at least 15 hours, and then reacted with benzene instead of benzene using the same catalyst and method as in Example 1 using a catalyst prepared by immersing manganese and magnesium. The results are shown in Table 1 below.
실시예 3Example 3
감마 알루미나 담지체에 망간과 마그네슘을 먼저 담시 시킨 후 120℃에서 15시간 이상 건조 시킨후 다시 란탄늄과 코발트를 담시시켜 제조한 촉매를 사용하여 실시예 1과 동일한 방법으로 반응 시킨 결과를 다음 표 1에 나타냈다.Manganese and magnesium were first immersed in the gamma alumina carrier, followed by drying at 120 ° C. for at least 15 hours, and then reacting in the same manner as in Example 1 using a catalyst prepared by lanthanum and cobalt. Indicated.
실시예 4Example 4
질화 망간 2.0g, 질화 마그네슘 9.48g 그리고 질화 코발트 2.35g을 증류수에 용해시킨 용액을 진공 회전 증발기에 넣고 40℃에서 감마 알루미나 담지체에 함침시켰다. 함침이 완료된 이후 120℃에서 15시간 이상 건조시킨 다음 800℃에서 소성시켜 촉매를 제조했다. 제조된 촉매를 사용하여 실시예 1과 동일한 방법으로 반응시킨 결과를 표 2에 나타냈다.A solution of 2.0 g of manganese nitride, 9.48 g of magnesium nitride, and 2.35 g of cobalt nitride was dissolved in distilled water, and placed in a vacuum rotary evaporator to impregnate the gamma alumina carrier at 40 ° C. After the impregnation was completed, the catalyst was dried at 120 ° C. for at least 15 hours and then calcined at 800 ° C. Table 2 shows the results of the reaction in the same manner as in Example 1 using the prepared catalyst.
실시예 5-8Example 5-8
실시예 4와 같은 방법으로 란탄늄의 담지량을 달리하여 제조된 촉매를 사용하여 실시예 1과 동일한 방법으로 반응시킨 결과를 다음 표 2에 나타냈다.The results of the reaction in the same manner as in Example 1 using a catalyst prepared by varying the amount of lanthanum supported in the same manner as in Example 4 are shown in Table 2 below.
실시예 9Example 9
질화 망간 2.0g, 질화 마그네슘 9.48g, 질화 코발트 2.35g 그리고 질화 란탄늄 3.13g을 증류수에 용해시킨 용액을 진공 회전 증발기에 넣고 40℃에서 감마 알루미나 담지체에 함침시켰다. 함침이 완료된 이후 120℃에서 15시간 이상 건조시킨 다음 800℃에서 소성시켜 촉매를 제조했다. 제조된 촉매를 사용하여 실시예 1과 동일한 방법으로 반응시켰다.A solution in which 2.0 g of manganese nitride, 9.48 g of magnesium nitride, 2.35 g of cobalt nitride, and 3.13 g of lanthanum nitride was dissolved in distilled water was placed in a vacuum rotary evaporator and impregnated with a gamma alumina carrier at 40 ° C. After the impregnation was completed, the catalyst was dried at 120 ° C. for at least 15 hours and then calcined at 800 ° C. The prepared catalyst was reacted in the same manner as in Example 1.
실시예 10-11Example 10-11
실시예 9와 같은 방법으로 니오비움의 담지량을 달리 첨가하여 제조된 촉매를 사용하여 실시예 1과 동일한 방법으로 반응시킨 결과를 다음 표 3에 나타냈다.In the same manner as in Example 9, the reaction was carried out in the same manner as in Example 1 using a catalyst prepared by adding a loading amount of niobium differently, as shown in Table 3 below.
실시예 12-15Example 12-15
실시예 9와 같은 방법으로 은의 담지량을 달리 첨가하여 제조된 촉매을 사용하여 실시예 1과 동일한 방법으로 반응시킨 결과를 다음 표 4에 나타냈다.The results of the reaction in the same manner as in Example 1 using a catalyst prepared by adding different amounts of silver in the same manner as in Example 9 are shown in Table 4 below.
실시예 16Example 16
실시예 15와 같은 방법으로 코발트를 제외하고 제조된 촉매를 사용하여 실시예 1과 동일한 방법으로 반응시킨 결과 290℃에서 100% 완전 전화를 이루었고 같은 온도에서 코발트가 존재한 촉매보다 활성이 높았다.The reaction was carried out in the same manner as in Example 1 using a catalyst prepared in the same manner as in Example 15 except for cobalt, and 100% complete conversion was performed at 290 ° C., and the activity was higher than that of the catalyst in which cobalt was present.
실시예 17Example 17
질화 망간 2.0g, 질화 마그네슘 9.39g, 질화 란탄늄 3.13g, 질화 은 1.58g 그리고 질화 구리 0.38g을 증류수에 용해시킨 용액을 진공 회전 증발기에 넣고 40℃에서 감마 알루미나 담지체에 함침시켰다. 함침이 완료된 이후 120℃에서 15시간 이상 건조시킨 다음 800℃에서 소성시켜 촉매를 제조했다. 제조된 촉매를 사용하여 실시예 1과 동일한 방법으로 반응시킨 결과를 다음 표 5에 나타냈다.A solution in which 2.0 g of manganese nitride, 9.39 g of magnesium nitride, 3.13 g of lanthanum nitride, 1.58 g of silver nitride, and 0.38 g of copper nitride was dissolved in distilled water was placed in a vacuum rotary evaporator and impregnated with a gamma alumina carrier at 40 ° C. After the impregnation was completed, the catalyst was dried at 120 ° C. for at least 15 hours and then calcined at 800 ° C. The result of the reaction in the same manner as in Example 1 using the prepared catalyst is shown in Table 5 below.
실시예 18-19Example 18-19
실시예 17과 같은 방법으로 구리의 담지량을 달리하여 제조된 촉매를 사용하여 실시예 1과 동일한 방법으로 반응시킨 결과를 다음 표 5에 나타냈다.The result of the reaction in the same manner as in Example 1 using a catalyst prepared by varying the supported amount of copper in the same manner as in Example 17 is shown in Table 5 below.
실시예 20Example 20
질화 망간 2.0g, 질화 마그네슘 9.39g, 질화 란탄늄 3.13g 그리고 질화 은 1.58g을 증류수에 용해시킨 용액을 진공 회전 증발기에 넣고 40℃에서 감마 알루미나 담지체에 함침시켰다. 함침이 완료된 이후 120℃에서 15시간 이상 건조시킨 다음 400℃에서 소성시켜 촉매를 제조했다. 제조된 촉매를 사용하여 실시예 1과 동일한 방법으로 반응시킨 결과가 다음 표 6에 나타냈다.A solution of 2.0 g of manganese nitride, 9.39 g of magnesium nitride, 3.13 g of lanthanum nitride, and 1.58 g of silver nitride was dissolved in distilled water in a vacuum rotary evaporator and impregnated with a gamma alumina carrier at 40 ° C. After the impregnation was completed, the catalyst was dried at 120 ° C. for at least 15 hours and then calcined at 400 ° C. The results of the reaction in the same manner as in Example 1 using the prepared catalyst are shown in Table 6 below.
실시예 21Example 21
질화 망간 0.56g, 질화 마그네슘 2.64g, 질화 란탄늄 0.85g 그리고 질화 은 0.44g을 증류수에 용해시킨 용액을 진공 회전 증발기에 넣고 40℃에서 감마 알루미나 담지체에 함침시켰다. 함침이 완료된 이후 120℃에서 15시간 이상 건조시킨 다음 400℃에서 소성시켜 촉매를 제조했다. 제조된 촉매를 사용하여 실시예 1과 동일한 방법으로 반응시킨 결과가 표 7에 나타냈다.A solution in which 0.56 g of manganese nitride, 2.64 g of magnesium nitride, 0.85 g of lanthanum nitride, and 0.44 g of silver nitride was dissolved in distilled water was put in a vacuum rotary evaporator and impregnated with a gamma alumina carrier at 40 ° C. After the impregnation was completed, the catalyst was dried at 120 ° C. for at least 15 hours and then calcined at 400 ° C. Table 7 shows the results of the reaction in the same manner as in Example 1 using the prepared catalyst.
실시예 22Example 22
질화 망간 1.13g, 질화 마그네슘 5.28g, 질화 란탄늄 1.76g 그리고 질화 은 0.89g을 증류수에 용해시킨 용액을 진공 회전 증발기에 넣고 40℃에서 감마 알루미나 담지체에 함침시켰다. 함침이 완료된 이후 120℃에서 15시간 이상 건조시킨 다음 400℃에서 소성시켜 촉매를 제조했다. 제조된 촉매를 사용하여 실시예 1과 동일한 방법으로 반응시킨 결과가 표 7에 나타냈다.A solution obtained by dissolving 1.13 g of manganese nitride, 5.28 g of magnesium nitride, 1.76 g of lanthanum nitride, and 0.89 g of silver nitride in distilled water was placed in a vacuum rotary evaporator and impregnated with a gamma alumina carrier at 40 ° C. After the impregnation was completed, the catalyst was dried at 120 ° C. for at least 15 hours and then calcined at 400 ° C. Table 7 shows the results of the reaction in the same manner as in Example 1 using the prepared catalyst.
실시예 23Example 23
질화 망간 2.0g, 질화 마그네슘 9.39g, 질화 란탄늄 3.13g 그리고 질화 은 1.58g을 증류수에 용해시킨 용액을 진공 회전 증발기에 넣고 40℃에서 감마 알루미나 담지체에 함침시켰다. 함침이 완료된 이후 120℃에서 15시간 이상 건조시킨 다음 400℃에서 소성시켜 촉매를 제조했다. 제조된 촉매를 사용하여 실시예 1과 동일한 방법으로 반응시킨 결과가 표 7에 나타냈다.A solution of 2.0 g of manganese nitride, 9.39 g of magnesium nitride, 3.13 g of lanthanum nitride, and 1.58 g of silver nitride was dissolved in distilled water in a vacuum rotary evaporator and impregnated with a gamma alumina carrier at 40 ° C. After the impregnation was completed, the catalyst was dried at 120 ° C. for at least 15 hours and then calcined at 400 ° C. Table 7 shows the results of the reaction in the same manner as in Example 1 using the prepared catalyst.
본 발명에 의해서 금속산화물 촉매의 활성이 높아진다. 즉 본 발명에 의한 촉매의 경우에 휘발성유기화합물의 산화온도를 낮출 수 있다. 이같이 낮은 온도에서는 촉매의 수명 단축을 방지하고, 촉매산화장치 및 휘발성유기화합물을 배출하는 공정의 안전성을 유지할 수 있으며, 촉매의 비용을 줄일 수 있기 때문에 매우 중요하다.According to the present invention, the activity of the metal oxide catalyst is increased. That is, in the case of the catalyst according to the present invention, the oxidation temperature of the volatile organic compound can be lowered. This low temperature is very important because it can prevent the shortening of the catalyst life, maintain the safety of the catalytic oxidation device and the process of volatile organic compounds and reduce the cost of the catalyst.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980033851A KR20000014416A (en) | 1998-08-21 | 1998-08-21 | Metal oxide catalyst for oxidizing volatile organic compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980033851A KR20000014416A (en) | 1998-08-21 | 1998-08-21 | Metal oxide catalyst for oxidizing volatile organic compound |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20000014416A true KR20000014416A (en) | 2000-03-15 |
Family
ID=19547774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980033851A KR20000014416A (en) | 1998-08-21 | 1998-08-21 | Metal oxide catalyst for oxidizing volatile organic compound |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20000014416A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100481805B1 (en) * | 1999-02-19 | 2005-04-11 | 니폰 쇼쿠바이 컴파니 리미티드 | Catalyst for gas phase partial oxidation |
-
1998
- 1998-08-21 KR KR1019980033851A patent/KR20000014416A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100481805B1 (en) * | 1999-02-19 | 2005-04-11 | 니폰 쇼쿠바이 컴파니 리미티드 | Catalyst for gas phase partial oxidation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6486360B2 (en) | Carbon monoxide and / or oxidation catalyst for volatile organic compounds | |
US20040028589A1 (en) | Catalyst for destruction of co, voc, and halogenated organic emissions | |
JPH0592140A (en) | Exchange of carbon monoxide using mixed transition metal oxide catalyst | |
CZ219299A3 (en) | Ammonia gas oxidation process | |
JP3760717B2 (en) | Low temperature harmful gas purification catalyst | |
JP2009542772A (en) | Dehydrogenation of alcohol | |
JP2007229559A (en) | Catalyst for decomposing ethylene | |
Watanabe et al. | Removal of unpleasant odor gases using an Ag—Mn catalyst | |
JP2009297715A (en) | Catalytic reduction and oxidation method | |
KR100336967B1 (en) | A process for preparing honeycomb type monolithic catalyst | |
EP0706816B1 (en) | Process for decomposing ammonia in an off-gas | |
KR100614893B1 (en) | Method for preparing catalyst for carbon monoxide shift reaction | |
US6267941B1 (en) | Catalyst system for deodorization of a mixture of sulfur compounds and compounds such as aldehydes, alcohols and/or hydrocarbons | |
KR20000014416A (en) | Metal oxide catalyst for oxidizing volatile organic compound | |
CN111151123A (en) | Method for purifying tail gas of acrylonitrile device | |
KR20240032077A (en) | Method and HVAC system for treatment of exhaust gases | |
KR20010044002A (en) | Honeycomb type monolithic catalyst for removing VOCs | |
KR20050069178A (en) | Catalytic composition for destroying volatile organic compound and carbon monoxide and method of catalytic conversion using the same | |
KR100355016B1 (en) | Manufac turing method of high-active composite catalyst for HVOC control | |
Sarbak et al. | Oxidation of methane over Pt− Cr (Mo, W)/Al2O3 catalysts | |
AU705413B2 (en) | Catalytic oxidation | |
KR100511564B1 (en) | Catalyst for simultaneous removing poisonous gas and odor material exhausted from chemical process, preparing method for the same, and use thereof | |
RU2205688C1 (en) | Catalyst and a method for production of phenol from benzene | |
TWI433721B (en) | Preparation and pretreatment of cerium oxide supported nano-palladium catalysts and its application in destruction of volatile organic compounds in air | |
JP4133432B2 (en) | Methanol steam reforming catalyst and method for producing hydrogen by steam reforming of methanol using the catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |