KR20000010194A - Manufacturing method of image sensor - Google Patents

Manufacturing method of image sensor Download PDF

Info

Publication number
KR20000010194A
KR20000010194A KR1019980030957A KR19980030957A KR20000010194A KR 20000010194 A KR20000010194 A KR 20000010194A KR 1019980030957 A KR1019980030957 A KR 1019980030957A KR 19980030957 A KR19980030957 A KR 19980030957A KR 20000010194 A KR20000010194 A KR 20000010194A
Authority
KR
South Korea
Prior art keywords
color filter
etching
image sensor
filter material
color
Prior art date
Application number
KR1019980030957A
Other languages
Korean (ko)
Inventor
심경진
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019980030957A priority Critical patent/KR20000010194A/en
Publication of KR20000010194A publication Critical patent/KR20000010194A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses

Abstract

PURPOSE: It is to solve lower sensitivity problem of the color filter array image censor caused by the thickness difference of each filter due to the green filter made thick by the flatness of the organic coating. CONSTITUTION: The first color filter pattern(24) with more than one color is formed on the board(21)with the optic detection micro-electronics(22), and the second color filter substance film(25) is applied on the front side of the board, and the first color filter pattern(24) is exposed by the anisotropic erosion with O2 plasma, and the second color filter substance film(25) is exposed to light/developed and patterned to manufacture a color filter array with a flat face. Since the height of the color filter is getting lower, its array increases the sensitivity and the margin in the micro lens array production of the post process.

Description

이미지센서 제조방법Image sensor manufacturing method

본 발명은 이미지센서(image sensor) 제조방법에 관한 것으로, 특히 평탄화된 칼라필터어레이를 형성하기 위한 이미지센서 제조방법에 관한 것이다.The present invention relates to a method of manufacturing an image sensor, and more particularly, to a method of manufacturing an image sensor for forming a flattened color filter array.

칼라필터어레이(CFA : Color Filter Array) 이미지센서는 최근에 상용화되기 시작한 반도체소자로 디지털 이미지 프로세싱 기술에 중요한 소자이다.Color Filter Array (CFA) image sensors are semiconductor devices that have recently been commercialized and are important for digital image processing technology.

도1 및 도2는 각각 종래의 CFA 이미지센서에 대한 평면도 및 단면도로서, 도1 및 도2에 도시된 바와 같이 종래의 CFA 이미지센서는 외부로부터의 빛을 받아 광전하를 생성 및 축적하는 광감지소자(12) 상부에 칼라필터가 어레이되어 있다. 칼라필터어레이는 통상 적색(Red), 녹색(Green) 및 청색(Blue)의 3가지 칼라로 이루어져 있고, 특정 파장의 빛이 투과되도록 하는 방법으로 피사체에 대한 칼라 이미지를 기록하게 된다. 칼라필터어레이는 노랑(Yellow), 자홍색 (Magenta), 청록색(Cyan)의 3가지 칼라로 이루어질 수도 있다.1 and 2 are plan and cross-sectional views of a conventional CFA image sensor, respectively. As shown in FIGS. 1 and 2, the conventional CFA image sensor receives light from the outside to generate and accumulate photocharges. The color filters are arranged on the element 12. The color filter array is generally composed of three colors of red, green, and blue, and records a color image of a subject in such a manner that light of a specific wavelength is transmitted. The color filter array may be composed of three colors: yellow, magenta, and cyan.

이러한 CFA 이미지센서는 먼저 CMOS 공정으로 반도체기판(11)에 광감지소자(12)를 형성하고, 그 밖의 다른 소자(예컨대 로직회로)를 형성한 다음, 절연층 및 금속층 등 일련의 이미지센서를 이루는 박막들(13)을 제조한 상태에서, 각각의 광감지소자 셀에 대응되는 칼라필터를 어레이하게된다.The CFA image sensor first forms a photosensitive device 12 on the semiconductor substrate 11 by a CMOS process, forms another device (for example, a logic circuit), and then forms a series of image sensors such as an insulating layer and a metal layer. In the state in which the thin films 13 are manufactured, color filters corresponding to each photosensitive device cell are arrayed.

칼라필터를 어레이하는 방법은, 통상 적색 칼라필터 물질을 먼저 코팅하고 노광 및 현상에 의해 패터닝한 후, 청색 칼라필터 물질을 코팅하고 노광 및 현상에 의해 패터닝한 다음, 녹색 칼라필터 물질을 코팅하고 노광 및 현상에 의해 패터닝하는 공정으로 이루어진다.The method of arraying color filters typically involves first coating the red color filter material and patterning by exposure and development, then coating the blue color filter material and patterning by exposure and development, then coating and exposing the green color filter material. And patterning by development.

따라서, 마지막에 형성되는 녹색 칼라필터 물질이 코팅될 때 유기계 코팅의 특징인 평탄화 특성으로 녹색 칼라필터는 다른 청색 및 적색 칼라필터에 비해 1.5배 이상으로 두꺼워지게 되고 이에 의해 도2에 도시된 바와 같이, 이후 패터닝된 녹색 칼라필터는 청색 및 적색 칼라필터에 대해 단차를 갖게 된다.Therefore, when the green color filter material formed at the end is coated, the green color filter becomes thicker by 1.5 times or more than other blue and red color filters due to the flattening characteristic of the organic coating. As shown in FIG. Then, the patterned green color filter has a step with respect to the blue and red color filters.

이에 의해 녹색광이 광감지소자로 들어가기 위해서는 녹색 칼라필터를 거쳐야 하는데, 녹색 칼라필터의 두께가 두꺼워지므로 빛 흡수로 인한 빛의 세기가 줄어들어 센서의 감도를 저하시키게 된다.As a result, the green light passes through the green color filter in order to enter the photosensitive device. Since the thickness of the green color filter becomes thick, the light intensity due to light absorption is reduced, thereby degrading the sensitivity of the sensor.

본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로써, 단차 유발 없이 평탄화된 3가지 칼라필터를 어레이시키기 위한 이미지센서 제조방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, and an object thereof is to provide a method of manufacturing an image sensor for arraying three flattened color filters without causing step difference.

도1 및 도2는 각각 종래의 CFA 이미지센서에 대한 평면도 및 단면도.1 and 2 are a plan view and a cross-sectional view of a conventional CFA image sensor, respectively.

도3a 내지 도3d는 본 발명의 일실시예에 따른 이미지센서 제조방법을 나타내는 공정 단면도.3A to 3D are cross-sectional views illustrating a method of manufacturing an image sensor according to an embodiment of the present invention.

도4는 본 발명에서 O2플라즈마 식각멈춤을 설정하기 위한 제반 장치를 나타내는 개략적인 도면.Fig. 4 is a schematic diagram showing an overall apparatus for setting an O 2 plasma etch stop in the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

22 : 광감지소자 24 : 적색 칼라필터 패턴22: photosensitive device 24: red color filter pattern

25 : 녹색 칼라필터 물질막 25a : 녹색 칼라필터 패턴25 green color filter material film 25a green color filter pattern

상기 목적을 달성하기 위한 본 발명의 이미지센서 제조방법은, 소정공정이 완료된 기판 상에 적어도 한가지 색의 제1 칼라필터 패턴을 형성하는 제1단계; 상기 제1단계가 완료된 기판 전면에 제2 칼라필터 물질막을 코팅하는 제2단계; 상기 제1칼라필터 패턴의 표면이 노출되기 직전까지 상기 제2 칼라필터 물질막을 이방성 전면식각하는 제3단계; 상기 전면식각된 상기 제2 칼라필터 물질막을 선택적으로 노광 및 현상하여 패터닝하는 제4단계를 포함하여 이루어진다.The image sensor manufacturing method of the present invention for achieving the above object comprises a first step of forming a first color filter pattern of at least one color on a substrate is completed a predetermined process; A second step of coating a second color filter material film on the entire surface of the substrate on which the first step is completed; A third step of anisotropically etching the second color filter material layer until immediately before the surface of the first color filter pattern is exposed; And selectively exposing and developing the entire surface-etched second color filter material layer to pattern the second color filter material layer.

바람직하게, 상기 이방성 전면식각은 02플라즈마 식각을 사용하며, 상기 이방성 전면식각시은 식각멈춤을 위해 상기 제1 칼라필터 패턴으로부터 반사되는 반사광을 모니터링하면서 실시하하고, 반사광이 실리적으로 6% 일 때 식각을 멈춘다.Preferably, the anisotropic front etching uses 0 2 plasma etching, and the anisotropic front etching is performed while monitoring the reflected light reflected from the first color filter pattern to stop the etching, and when the reflected light is substantially 6% Stops etching

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부된 도면을 참조하여 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. do.

도3a 내지 도3d는 본 발명의 일실시예에 따른 이미지센서 제조방법을 나타내는 공정 단면도이다.3A to 3D are cross-sectional views illustrating a method of manufacturing an image sensor according to an exemplary embodiment of the present invention.

먼저, 도3a는 공지의 방법으로 반도체기판(21)에 예컨대 포토다이오드와 같은 광감지소자(22) 및 로직회로를 형성하고, 층간절연 및 금속배선 또는 보호막 형성 등의 일련의 제조공정을 위한 박막들(23)을 형성한 다음, 적색 칼라필터(24)와 청색 칼라필터(도면에 도시되지 않음)를 어레이한 상태에서, 녹색 칼라필터 물질막(25)이 코팅된 상태를 도시하고 있다. 칼라필터 물질은 유기계 물질이므로 유기계 코팅의 특징인 평탄화 특성으로 인해, 적색과 청색 칼라필터 사이의 녹색 칼라필터가 어레이될 부분에서 녹색 칼라필터 물질막(25)의 두께는 다른 칼라필터에 비해 1.5배 이상 커지게 된다.First, FIG. 3A shows a photosensitive device 22 such as a photodiode and a logic circuit, for example, on a semiconductor substrate 21 by a known method, and a thin film for a series of manufacturing processes such as interlayer insulation and metal wiring or protective film formation. The green color filter material film 25 is coated with the red color filter 24 and the blue color filter (not shown in the drawing) formed after the field 23 is formed. Since the color filter material is an organic material, the thickness of the green color filter material film 25 is 1.5 times higher than that of other color filters due to the planarization characteristic of the organic coating. It will grow bigger.

이어서, 도3b에 도시된 바와 같이, 녹색 칼라필터 물질막(25)의 두께를 감소시키기 위하여 02플라즈마를 이용하여 이방성 전면식각을 실시한다. 이때 이방성 식각조건은 분당 1000Å정도의 식각속도를 갖게하기 위해서 파워를 200∼300 Watt, 압력을 100∼200mTorr, 02플로우율(flow rate)을 20∼30 sccm, Ar 플로우율을 30∼90 sccm 정도의 조건으로 설정한다.Then, as shown in FIG. 3B, anisotropic front etching is performed using 0 2 plasma to reduce the thickness of the green color filter material film 25. At this time, the anisotropic etching condition is 200 ~ 300 Watt power, 100 ~ 200mTorr, 0 2 flow rate 20 ~ 30 sccm, Ar flow rate 30 ~ 90 sccm in order to have the etching speed of about 1000Å / min. Set in terms of accuracy.

한편, 이미 패터닝되어 있는 청색이나 적색 칼라필터 패턴(24)이 식각되는 것을 방지하고 녹색 칼라필터 물질막(25)의 적정한 식각 높이를 얻기 위해서는, 즉 청색 및 적색 칼라필터 패턴(24) 상에 약간의 녹색 칼라필터 물질막(25)이 남도록한 상태에서 식각을 멈추기 위해서는, 식각멈춤 조건을 설정하여야 하는바, 이를 위해 식각멈춤조건은 적색과 청색칼라필터가 식각됨에 따라 적색광과 청색광의 반사가 증가되는 것을 이용하여 적색과 청색 칼라필터에서의 반사율이 6%가 되는 시점으로 설정한다. 6%로 설정한 이유는 각 칼라물질의 투과파장에서의 굴절률이 1.7이므로 상부에 다른 물질이 없는 경우의 반사율이 6.7% 정도이기 때문이다.On the other hand, in order to prevent the blue or red color filter pattern 24 which is already patterned from being etched and to obtain an appropriate etching height of the green color filter material film 25, that is, slightly on the blue and red color filter patterns 24. In order to stop the etch while leaving the green color filter material film 25 remaining, the etch stop condition should be set. For this purpose, the etch stop condition is increased as the red and blue color filters are etched. By using this method, the reflectance at the red and blue color filters is set to 6%. The reason for setting it to 6% is that the refractive index of each color material at the transmission wavelength is 1.7, so that when there is no other material at the top, the reflectance is about 6.7%.

또한, 식각멈춤조건을 공정을 진행하면서 모니터링하기 위해서는, 도4에 도시된 바와 같이, 식각장비내에 백색광원(42)을 공정이 진행중인 기판(웨이퍼)(44)에 조사하고 적색광과 청색광을 검출할 수 있는 포토다이오드(46)를 설치하여 반사광을 측정하면 된다.In addition, in order to monitor the etch stop condition as the process proceeds, as shown in FIG. 4, the white light source 42 is irradiated to the substrate (wafer) 44 in the process and the red light and the blue light are detected. The photodiode 46 can be provided to measure the reflected light.

이어서, 도3c는 마스크를 사용한 노광 및 현상 공정으로 녹색 칼라필터 물질을 패터닝하므로써 녹색 칼라필터 패턴(25a)의 어레이를 완성한 상태이다.3C shows the completed state of the array of green color filter patterns 25a by patterning the green color filter material in an exposure and development process using a mask.

본 실시예에서는 3가지 칼라필터중 마지막에 어레이될 칼라필터 물질을 코팅한 후, O2플라즈마 식각에 의해 에치백하고, 선택적 노광 및 현상에 의해 마지막에 어레이될 칼라필터 물질을 패터닝하는 방법을 설명하고 있으나, 3가지 칼라필터중 두 번째 칼라필터를 어레이할때에도 본 발명의 기술적 사상은 적용될수 있으며, 또한 에치백시 O2플라즈마 식각이 아닌 다른 식각 처리를 적용할 수도 있으며, 칼라필터어레이는 노랑색(Yellow), 자홍색 (Magenta), 청록색(Cyan)의 3가지 칼라로 이루어질 수도 있다.In this embodiment, a method of coating the color filter material to be arrayed last among the three color filters, then etching back by O 2 plasma etching, and patterning the color filter material to be finally arrayed by selective exposure and development is described. However, the technical idea of the present invention may be applied to the second color filter array among the three color filters, and an etching process other than O 2 plasma etching may be applied to the etch back, and the color filter array may be yellow. It can also consist of three colors: Yellow, Magenta, and Cyan.

이렇듯, 본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.As such, although the technical idea of the present invention has been described in detail according to the above-described preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

본 발명은 평탄화된 칼라필터어레이를 구현하여 각 칼라필터에서의 광투과도를 증가시키므로써 이미지센서의 감도를 증가시키는 효과가 있다. 또한, 칼라필터어레이가 평탄화되어 있으므로 이후 칼라필터 상에 마이크로렌즈를 형성함에 있어 그 공정 마진을 증대시키는 효과가 있다.The present invention has the effect of increasing the sensitivity of the image sensor by implementing a flattened color filter array to increase the light transmittance in each color filter. In addition, since the color filter array is flattened, there is an effect of increasing the process margin in forming the microlens on the color filter.

Claims (5)

이미지센서 제조방법에 있어서,In the image sensor manufacturing method, 소정공정이 완료된 기판 상에 적어도 한가지 색의 제1 칼라필터 패턴을 형성하는 제1단계;A first step of forming a first color filter pattern of at least one color on a substrate on which a predetermined process is completed; 상기 제1단계가 완료된 기판 전면에 제2 칼라필터 물질막을 코팅하는 제2단계;A second step of coating a second color filter material film on the entire surface of the substrate on which the first step is completed; 상기 제1칼라필터 패턴의 표면이 노출되기 직전까지 상기 제2 칼라필터 물질막을 이방성 전면식각하는 제3단계; 및A third step of anisotropically etching the second color filter material layer until immediately before the surface of the first color filter pattern is exposed; And 상기 전면식각된 상기 제2 칼라필터 물질막을 선택적으로 노광 및 현상하여 패터닝하는 제4단계A fourth step of selectively patterning the patterned second color filter material layer by exposing and developing the second color filter material layer; 를 포함하여 이루어진 이미지센서 제조방법.Image sensor manufacturing method comprising a. 제1항에 있어서,The method of claim 1, 상기 이방성 전면식각은 02플라즈마 식각을 사용하는 것을 특징으로 하는 이미지센서 제조방법.The anisotropic front etching is an image sensor manufacturing method characterized in that using the 0 2 plasma etching. 제2항에 있어서,The method of claim 2, 상기 02플라즈마 식각은, 파워를 200∼300 Watt, 압력을 100∼200mTorr, 02플로우율(flow rate)을 20∼30 sccm, Ar 플로우율을 30∼90 sccm 로 설정하여 실시하는 것을 특징으로 하는 이미지센서 제조방법.The 0 2 plasma etching is performed by setting the power to 200 to 300 Watts, the pressure to 100 to 200 mTorr, the 0 2 flow rate to 20 to 30 sccm, and the Ar flow rate to 30 to 90 sccm. Image sensor manufacturing method. 제1항 내지 제3항중 어느한 항에 있어서,The method according to any one of claims 1 to 3, 상기 이방성 전면식각은 식각멈춤을 위해 상기 제3단게가 실시중인 웨이퍼에 빛을 조사하고 상기 제1 칼라필터 패턴으로부터 반사되는 상기 빛의 반사빛을 모니터링하면서 실시하는 것을 특징으로 하는 이미지센서 제조방법.The anisotropic front etching is performed by irradiating light to the wafer being subjected to the third stage to stop the etching and monitoring the reflected light of the light reflected from the first color filter pattern. 제4항에 있어서,The method of claim 4, wherein 상기 반사빛이 실질적으로 6% 일때 식각을 멈추는 것을 특징으로 하는 이미지센서 제조방법.The method of claim 11, wherein the etching stops when the reflected light is substantially 6%.
KR1019980030957A 1998-07-30 1998-07-30 Manufacturing method of image sensor KR20000010194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980030957A KR20000010194A (en) 1998-07-30 1998-07-30 Manufacturing method of image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980030957A KR20000010194A (en) 1998-07-30 1998-07-30 Manufacturing method of image sensor

Publications (1)

Publication Number Publication Date
KR20000010194A true KR20000010194A (en) 2000-02-15

Family

ID=19545865

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980030957A KR20000010194A (en) 1998-07-30 1998-07-30 Manufacturing method of image sensor

Country Status (1)

Country Link
KR (1) KR20000010194A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649857B1 (en) * 2000-12-11 2006-11-24 매그나칩 반도체 유한회사 Image sensor capable of omitting planarization process befeore color filter formation process and method for fabricating the same
KR100658921B1 (en) * 2000-12-26 2006-12-15 매그나칩 반도체 유한회사 CMOS image sensor formation method capable of omitting planarization process before color filter formation process and method for fabricating the same
KR100691137B1 (en) * 2005-12-26 2007-03-12 동부일렉트로닉스 주식회사 Method of manufacturing image sensor
KR100720496B1 (en) * 2005-12-29 2007-05-22 동부일렉트로닉스 주식회사 Method for manufacturing of cmos image sensor
KR100880530B1 (en) * 2002-07-15 2009-01-28 매그나칩 반도체 유한회사 Method for forming color filter of image sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649857B1 (en) * 2000-12-11 2006-11-24 매그나칩 반도체 유한회사 Image sensor capable of omitting planarization process befeore color filter formation process and method for fabricating the same
KR100658921B1 (en) * 2000-12-26 2006-12-15 매그나칩 반도체 유한회사 CMOS image sensor formation method capable of omitting planarization process before color filter formation process and method for fabricating the same
KR100880530B1 (en) * 2002-07-15 2009-01-28 매그나칩 반도체 유한회사 Method for forming color filter of image sensor
KR100691137B1 (en) * 2005-12-26 2007-03-12 동부일렉트로닉스 주식회사 Method of manufacturing image sensor
KR100720496B1 (en) * 2005-12-29 2007-05-22 동부일렉트로닉스 주식회사 Method for manufacturing of cmos image sensor

Similar Documents

Publication Publication Date Title
US7678604B2 (en) Method for manufacturing CMOS image sensor
KR960016178B1 (en) Solid-state imaging device and method of manufacturing the same
KR100303774B1 (en) Manufacturing method of CMOS image sensor with improved light sensitivity
KR100526466B1 (en) Method for manufacturing cmos image sensor
JP2011171328A (en) Solid-state image pickup element and method of manufacturing the same
KR20000010194A (en) Manufacturing method of image sensor
KR100329782B1 (en) Method for fabricating image sensor with improved photo sensitivity
US6242277B1 (en) Method of fabricating a complementary metal-oxide semiconductor sensor device
KR100788596B1 (en) Method of manufacturing a image device
KR100293719B1 (en) Image sensor with improved light transmission for short wavelength light and its manufacturing method
KR100663595B1 (en) Method of manufacturing image sensor having mircro lens
KR100733706B1 (en) A cmos image sensor and the manufacturing method thereof
KR20020052713A (en) Method for forming color filter array
KR100399937B1 (en) Method of manufacturing image sensor to improve sensitivity
KR100442294B1 (en) Image Sensor
KR20030039712A (en) Image sensor and method of fabricating the same
KR100821477B1 (en) Cmos image sensor and method for manufacturing thereof
JPH06302794A (en) Manufacture of solid-state image sensing element
KR100952766B1 (en) Method of manufacturing cmos image sensor having redundancy module
KR20010061341A (en) Method for fabricating image sensor
KR20040083173A (en) Method of manufacturing a image device
KR100648800B1 (en) Method for forming color filer and microlens of image sensor
KR100875160B1 (en) Method for fabricating cmos image sensor
KR100838952B1 (en) Method for fabricating image sensor
KR19980023069A (en) Micro Lenticular Mask and Manufacturing Method Thereof

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination