KR20000007951A - Method of manufacturing light strong board for double floor using cement concrete compound with enforcing fiber - Google Patents

Method of manufacturing light strong board for double floor using cement concrete compound with enforcing fiber Download PDF

Info

Publication number
KR20000007951A
KR20000007951A KR1019980027543A KR19980027543A KR20000007951A KR 20000007951 A KR20000007951 A KR 20000007951A KR 1019980027543 A KR1019980027543 A KR 1019980027543A KR 19980027543 A KR19980027543 A KR 19980027543A KR 20000007951 A KR20000007951 A KR 20000007951A
Authority
KR
South Korea
Prior art keywords
fiber
strength
specific gravity
fibers
mixing
Prior art date
Application number
KR1019980027543A
Other languages
Korean (ko)
Other versions
KR100267735B1 (en
Inventor
박승범
Original Assignee
박승범
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박승범 filed Critical 박승범
Priority to KR19980027543A priority Critical patent/KR100267735B1/en
Publication of KR20000007951A publication Critical patent/KR20000007951A/en
Application granted granted Critical
Publication of KR100267735B1 publication Critical patent/KR100267735B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/34Flow improvers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/50Defoamers, air detrainers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Nanotechnology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)

Abstract

PURPOSE: Glass fiber, imported so far, is chemically unstable, gets weak through use, and is not suitable for high temperature curing. Asbestos fiber has low shock strength, generates heavy dust and harms the human body, so that the asbestos fiber is seldom used. Polypropylene fiber is not suitable for intensifying the strength of cement concrete compound because of its low elasticity, which promises neither stability nor reliability. CONSTITUTION: With 0.6mmx36MM, both-end-hook type, specific gravity of 7.85, aspect ratio of 60, and tensile strength of 110kg/cm¬3, the carbon fiber is made from both coal and petroleum pitch, by firing at a low temperature, it has the tensile elasticity of 50GPa, and 12 micro-meter¯20 micro-meter diameter. On the surface of the fiber are used both the pitch carbon fiber which is oxidized to have the atomic ratio of oxygen to carbon of 0.1¯0.6dl and the polyacrylonitrile carbon fiber which has the tensile elasticity of 200¯400GPa with 6.5¯7.0 micrometer diameter. The board for double floor is light, very strong, and endurable, also contributing to recycling, saving energy and saving foreign currency due to its substitution effect for import.

Description

섬유보강 시멘트 콘크리트 복합체와 이중바닥용 상판의 제조방법Manufacturing method of fiber reinforced cement concrete composite and double floor top plate

본 발명은 각종 구조물에 사용되고 있는 막대한 수입 경량화용 소재 및 철강재의 절감을 위한 경량, 고강도의 섬유보강 시멘트 콘크리트 복합체의 제조기술의 개발 및 용도개발의 일환으로 양단 후크(Hook)형 강섬유와 PAN(polyacrylonitrile)계 및 피치(Pitch)계 탄소섬유를 사용하고 골재로써 미분말의 실리카 파우더(Silica Powder)를 사용한 섬유보강 시멘트 콘크리트 복합체의 제조방법과, 상기 복합체를 이용하여 역학적 성능이 우수한 구조부재의 개발을 목적으로 한 경량, 고강도·내력의 이중바닥용 상판(FREE ACCESS FLOOR)의 제조방법에 관한 것이다.The present invention is a hook-type steel fiber and PAN (polyacrylonitrile) as a part of the development and application of the manufacturing technology of light weight, high strength fiber reinforced cement concrete composite for the reduction of enormous imported lightweight materials and steel materials used in various structures A method of manufacturing fiber-reinforced cement concrete composites using silica-based and pitch-based carbon fibers and fine powder silica powder as aggregate, and to develop structural members having excellent mechanical performance using the composites. It is related with the manufacturing method of the light weight, high strength, and stress-resistant double-floor top plate.

종래의 섬유보강 시멘트 콘크리트 복합체의 섬유강화 소재 중, 그 동안 수입 사용하여 오던 유리섬유는 화학적으로 불안정하여 장시간 경과 후 강도 감소가 필연적이고 고온양생에 취약한 문제점이 있으며, 석면섬유는 충격강도가 작고 분진에 의한 공해가 심하고 인체에 해로운 문제점이 있기 때문에 그 사용이 억제되고 있으며, 폴리프로피렌섬유는 탄성률이 낮아 시멘트 콘크리트 복합체의 강도증진에 문제가 있어 안정성과 신뢰성을 제고시킬 수 없는 것 이었다.Among the fiber-reinforced materials of conventional fiber-reinforced cement-concrete composites, the glass fibers that have been imported and used for some time are chemically unstable, which inevitably leads to a decrease in strength after a long time, and vulnerable to high temperature curing. Asbestos fibers have low impact strength and dust Due to severe pollution and harmful to the human body, its use is suppressed, and polypropylene fiber has a low elastic modulus, which is a problem in increasing the strength of the cement concrete composite, and thus it was unable to improve stability and reliability.

본 발명은 이와 같은 종래의 섬유보강 시멘트 콘크리트 복합체의 제조방법의 결점을 해결하고자 한 것으로 역학적 특성, 내열성 및 화학적 안정성 등이 다른 섬유에 비하여 월등히 우수하고 이들 섬유에는 없는 밸런스 성능을 갖고 있는 탄소섬유와 매트릭스의 역학적 성능향상에 탁월한 양단 후크형 강섬유 및 내력 보강용 메쉬를 사용한 경량 고강도 및 고내력의 신뢰성이 높은 건재의 개발을 목적으로 하는 것이다.The present invention is to solve the drawbacks of the conventional manufacturing method of the fiber-reinforced cement-concrete composite, and the mechanical properties, heat resistance and chemical stability, etc. are superior to other fibers and have a balance performance that is not in these fibers and It is aimed at the development of lightweight, high strength and high strength reliable building materials using both ends of hook-type steel fiber and strength reinforcing mesh which have excellent mechanical performance.

본 발명은, 양단 후크형 강섬유와 PAN계 및 피치계 탄소섬유를 보강함에 의하여 우수한 역학적 성능은 물론, 내구성, 수밀성이 양호하고 미관이 좋으면서 슬렌더(slender)한 부재를 제작할 수 있고 중량의 대폭경감으로 공기를 크게 단축할 수 있기 때문에 산업용재로서의 활용과 고부가가치의 건설산업용 2차제품의 제작이 가능하도록 한 것이다.The present invention, by reinforcing both ends of the hook-type steel fiber and PAN-based and pitch-based carbon fiber, as well as excellent mechanical performance, durability, watertightness, good aesthetics can be produced slender member and a large weight Since the air can be shortened greatly by the reduction, it is possible to use it as an industrial material and to manufacture high value-added secondary products for the construction industry.

도1은 본 발명의 상판공시체 휨내하력 측정용 장치의 상세도1 is a detailed view of the apparatus for measuring the bending strength of the plate specimen of the present invention

도2는 본 발명의 상판공시체의 상세도Figure 2 is a detailed view of the upper plate specimen of the present invention

도3은 본 발명의 매트릭스 보강용 메쉬(mesh)의 상세도Figure 3 is a detailed view of the mesh (mesh) for reinforcing the matrix of the present invention

도 4는 본 발명의 메쉬(mesh)에 설치한 앵커(anchor)의 종류 및 규격의 상세도Figure 4 is a detailed view of the type and specification of the anchor (anchor) installed in the mesh (mesh) of the present invention

도5는 본 발명의 보강용 양단 후크(Hook)형 강섬유의 상세도Figure 5 is a detailed view of the reinforcing both ends hook-type steel fiber of the present invention

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : 봉강 2 : 공시체1 steel bar 2 specimen

3 : 지지대 4 : 변위측정기3: support 4: displacement measuring instrument

5 : 유니버설 테스트 머신 10 : 메쉬5: universal test machine 10: mesh

20 : 후크형강섬유20: hook type steel fiber

본 발명에 사용된 강섬유는 국내에서 제조된 제품으로 치수 Ø0.6mm×36mm의 양단 후크형으로 비중 7.85, 아스펙트비(ℓ/d) 60, 인장강도 110㎏/㎠이며, 탄소섬유는 석탄계 및 석유계 핏치를 원료로 한 비교적 저온에서 소성하여 만들어진 인장탄성률 50GPa 이상이고 탄소섬유 직경 12㎛∼20㎛, 섬유의 표층에 산소와 탄소의 원자비의 값이 0.1∼0.6이 되도록 산화처리한 핏치계 탄소섬유와 인장탄성률 200∼400GPa이고 섬유직경 6.5∼7.0㎛인 Polyacrylonitrile (PAN)계의 탄소섬유를 사용했고, 본 발명품의 제조를 위한 최적길이는 공히 3㎜∼20㎜였고, 시멘트는 비중 3.14의 조강 포틀랜드 시멘트를 사용하였으며, 사용골재는 비중 2.7, 입경 0∼80㎛의 실리카 파우더(Silica Powder)를 사용하였고, 또한 혼화제로는 유동화제로써 나프타렌 설폰산염 고축합물인 Mighty 150을 시멘트중량의 1%의 비율로, 증점제로써 메칠셀루로즈와 소포제로써 안티폼(Antifoam)을 각각 시멘트 중량의 0.5, 1%의 비율로 사용하였다.Steel fiber used in the present invention is a product manufactured in Korea with a hook type of both ends of the size Ø0.6mm × 36mm specific gravity 7.85, aspect ratio (ℓ / d) 60, tensile strength 110kg / ㎠, carbon fiber is coal-based and Pitch system oxidized to a tensile modulus of 50 GPa or more produced by firing at a relatively low temperature using a petroleum pitch as a raw material and having a carbon fiber diameter of 12 µm to 20 µm and an oxygen-to-carbon atomic ratio of 0.1 to 0.6 at the surface layer of the fiber. Carbon fiber and polyacrylonitrile (PAN) carbon fiber with tensile modulus of 200-400 GPa and a fiber diameter of 6.5-7.0 μm were used. The optimum length for the production of the present invention was 3 mm-20 mm, and the cement had a specific gravity of 3.14. The crude steel portland cement was used, and the aggregate used was silica powder having a specific gravity of 2.7 and a particle size of 0 to 80 µm. At a rate of 1%, methylcellulose as a thickener and antifoam as an antifoaming agent were used at a ratio of 0.5 and 1% of the cement weight, respectively.

본 발명에 사용된 배합은 복합체 제조에 있어 섬유와 매트릭스가 분리하지 않고 파이버 볼(Fiber-ball)이 생기지 않도록 섬유를 매트릭스 내에 균등 분산시키면서 적당한 워커빌리티(walkablity)를 확보하도록 시험배합을 통하여 믹싱방법과 배합조건을 선정하였다.The formulation used in the present invention is mixed with a test method through a test mixture to ensure proper walkablity while uniformly dispersing the fibers in the matrix so that the fibers and the matrix do not separate and do not produce fiber balls in the composite preparation. Formulation conditions were selected.

시멘트 매트릭스는 각각 PAN계 CF단섬유(CF길이 : 5, 10, 20mm)와 피치계 CF단섬유(CF길이 : 3, 6, 10, 20mm)를 시멘트 매트릭스 전용적의 Vf= 0, 1, 2, 3% 혼입하여 제조하였고, 그 배합 예는 아래의 표 (1)에 나타낸 바와 같으며, 여기에 고내력 보강판의 경우는 양단 후크형 강섬유(20)를 0.2∼0.4 Vol.%를 혼입하였다.The cement matrix is composed of PAN CF short fibers (CF length: 5, 10, 20 mm) and pitch CF short fibers (CF length: 3, 6, 10, 20 mm), respectively. V f = 0, 1, 2 , 3% was mixed, and the mixing example is as shown in Table (1) below, in the case of high strength reinforcement plate was mixed 0.2 to 0.4 Vol.% Of both ends hook-type steel fiber (20) .

믹싱은 섬유의 시멘트 매트릭스 내에서의 랜덤 균등분산을 위하여 섬유분산용 고성능 Omni-Mixer를 사용하였고, 비빔시간은 a) Dry blend(cement, dispersing agent and silica powder) : 30초, b) Primary blend(Add water and admixtures) : 3-5분, c) Secondary blend(Add carbon fiber) : 4.5-6.5분으로 토탈(Total) 약 10분간으로 하여 혼합함에 의하여 균질한 성능의 섬유보강 시멘트 콘크리트 복합체를 제조할 수 있다.Mixing used high-performance Omni-Mixer for fiber dispersion for random uniform dispersion in the cement matrix of the fiber, and the beam time was: a) Dry blend (cement, dispersing agent and silica powder): 30 seconds, b) Primary blend ( Add water and admixtures): 3-5 minutes, c) Secondary blend (Add carbon fiber): 4.5-6.5 minutes, total 10 minutes to produce a homogeneous fiber reinforced cement concrete composite Can be.

본 발명에서 섬유분산용 Omni-Mixer로 믹싱할 경우 균등분산이 이루어지는 양호한 배합상태는 섬유길이 3∼5㎜의 경우는 용적비로 3%까지이며, 6∼10㎜까지는 용적비로 2%까지이고, 11∼20㎜의 길이인 경우는 용적비로 1%의 혼입율이다.In the present invention, when mixing with the Omni-Mixer for fiber dispersion, a good mixing condition in which uniform dispersion is achieved is up to 3% by volume ratio for fiber lengths of 3 to 5 mm, up to 2% by volume ratio for 6 to 10 mm, and 11 In the case of the length of -20 mm, it is 1% of mixing ratio by volume ratio.

섬유보강 시멘트 콘크리트 복합체의 배합Formulation of fiber reinforced cement concrete composite Type ofCFType of CF CFContent(vol.%)CFContent (vol.%) Mix.No.Mix.No. W/C(%)W / C (%) CFLength(mm)CFLength (mm) Unit Weight(kg/m3)Unit Weight (kg / m 3 ) CementCement WaterWater SilicaPowderSilicapowder CFCF AdmixtureAdmixture S.P.* SP * M.C.M.C. A.F.A.F. PAN-basedCFPAN-basedCF 1One 1One 7575 33 843843 632632 253253 17.817.8 8.438.43 4.224.22 8.438.43 22 7575 33 759759 632632 253253 17.817.8 8.438.43 4.224.22 8.438.43 33 7575 33 674674 632632 253253 17.817.8 8.438.43 4.224.22 8.438.43 44 7575 33 590590 632632 253253 17.817.8 8.438.43 4.224.22 8.438.43 22 55 7575 33 843843 632632 253253 35.635.6 8.438.43 4.224.22 8.438.43 66 7575 33 759759 632632 253253 35.635.6 8.438.43 4.224.22 8.438.43 77 7575 33 674674 632632 253253 35.635.6 8.438.43 4.224.22 8.438.43 88 7575 33 590590 632632 253253 35.635.6 8.438.43 4.224.22 8.438.43 33 99 7575 33 843843 632632 253253 53.453.4 8.438.43 4.224.22 8.438.43 1010 7575 33 759759 632632 253253 53.453.4 8.438.43 4.224.22 8.438.43 1111 7575 33 674674 632632 253253 53.453.4 8.438.43 4.224.22 8.438.43 1212 7575 33 590590 632632 253253 53.453.4 8.438.43 4.224.22 8.438.43 Pitch-basedCFPitch-basedCF 1One 1313 7575 33 843843 632632 253253 16.316.3 8.438.43 4.224.22 8.438.43 1414 7575 33 759759 632632 253253 16.316.3 8.438.43 4.224.22 8.438.43 1515 7575 33 674674 632632 253253 16.316.3 8.438.43 4.224.22 8.438.43 1616 7575 33 590590 632632 253253 16.316.3 8.438.43 4.224.22 8.438.43 22 1717 7575 33 843843 632632 253253 32.632.6 8.438.43 4.224.22 8.438.43 1818 7575 33 759759 632632 253253 32.632.6 8.438.43 4.224.22 8.438.43 1919 7575 33 674674 632632 253253 32.632.6 8.438.43 4.224.22 8.438.43 2020 7575 33 590590 632632 253253 32.632.6 8.438.43 4.224.22 8.438.43 33 2121 7575 33 843843 632632 253253 48.948.9 8.438.43 4.224.22 8.438.43 2222 7575 33 759759 632632 253253 48.948.9 8.438.43 4.224.22 8.438.43 2323 7575 33 674674 632632 253253 48.948.9 8.438.43 4.224.22 8.438.43 2424 7575 33 590590 632632 253253 48.948.9 8.438.43 4.224.22 8.438.43

* Superplasticizer : Mighty 150 V* Superplasticizer: Mighty 150 V

또한, 공시체의 양생은 공시체 탈형 후 기건양생(23 ± 2℃, 60 ± 5% R.H.), 수중양생(23 ± 2℃) 및 오토클래브(autoclave) 양생을 하였고, 오토클래브 양생은 최고온도 180℃(10기압)에서 5시간으로 하여 양생을 종료한 후, 다시 23 ± 2℃, 60 ± 5% R.H.의 조건에서 기건양생 하였다. 시험재령은 공시체의 종류에 따라 다소 차이가 있으나 평균 7일로 하였다.In addition, the curing of the specimens was a cure (23 ± 2 ℃, 60 ± 5% RH), underwater curing (23 ± 2 ℃) and autoclave curing after demoulding the specimen, autoclave curing was the highest temperature After curing was completed at 180 ° C. (10 atm) for 5 hours, air curing was again performed at 23 ± 2 ° C. and 60 ± 5% RH. Test age was somewhat different depending on the type of specimen, but averaged 7 days.

섬유보강 시멘트 콘크리트 복합체의 시험방법은 플로우(Flow)시험 및 단위용적중량시험은 각각 KS L 5105 및 KS F 2409에 준하여 실시하며, 압축강도의 시험은 KS L 5105에 준하여 5.08cm×5.08cm×5.08cm의 입방공시체를 제조하여 측정하였고, 압축응력-변형률 관계를 파악하기 위하여 ø5×10cm의 원주공시체를 제작하여 공시체 중앙부에 와이어 스트레인 게이지(Wire Strain gage)(길이 30mm)를 부착하여 변형을 측정하였다. 휨강도 및 휨응력-처짐량 측정은 JIS R 5201에 준하여 4cm×4cm×16cm의 각주공시체를 제조하여 용량 25ton의 Computer Controlled Universal Testing Machine(Autograph)을 사용하여 3점 휨하중 시험방법에 의해 크로스헤드 속도 0.5mm/min의 변위제어 방식으로 휨시험을 행하였고, 이때의 하중-처짐곡선을 X-Y레코더에 의하여 구하였다. 휨내하력 측정을 위하여 공시체의 크기 50×50×(2.0∼3.5)cm인 상판공시체를 제조하여 1일간 습윤양생을 실시한 다음, 오토클래브 양생(180℃, 10기압의 조건에서 5시간 양생)을 실시하였고, 공시체 제작시 메쉬보강을 하였으며, 고내력 보강판의 경우 메쉬 대신 양단 후크형 강섬유(20)로 보강하였다. 상판공시체의 휨내하력 측정은 도 1 에 나타낸 바와 같이 100ton UTM(universal testing machine)(5)을 사용하여 공시체(2)의 4모서리를 ø25mm 지지대(3) 위에 얹은 다음, 중앙에 ø50mm의 봉강(1)을 올려 놓고 그 위에 재하하여 파괴에 이를때 까지 재하시 중앙점의 처짐을 변위측정기(4)를 이용하여 측정하였다.The test method for fiber reinforced cement concrete composites is carried out in accordance with KS L 5105 and KS F 2409 for the flow test and unit volume weight test, respectively. The compressive strength test is performed in accordance with KS L 5105 5.08cm × 5.08cm × 5.08 A cubic specimen of cm was fabricated and measured, and a ø5 × 10 cm cylindrical specimen was fabricated to determine the compressive stress-strain relationship, and a strain was measured by attaching a wire strain gage (length 30 mm) to the center of the specimen. . Bending strength and bending stress-deflection measurements were made in 4cm × 4cm × 16cm square specimens in accordance with JIS R 5201. Crosshead speed 0.5mm by 3-point bending load test method using a 25ton Computer Controlled Universal Testing Machine (Autograph). The bending test was carried out by the displacement control method of / min, and the load-deflection curve at this time was obtained by an XY recorder. In order to measure the flexural load capacity, the specimens of 50 × 50 × (2.0∼3.5) cm of specimens were prepared and subjected to wet curing for 1 day, followed by autoclave curing (curing for 5 hours under conditions of 10 ℃). When the specimen was manufactured, the mesh was reinforced, and in the case of the high strength reinforcing plate, the hook-type steel fibers 20 were reinforced instead of the mesh. The flexural load measurement of the specimens was carried out by placing four edges of the specimens (2) on the ø25mm support (3) using a 100ton universal testing machine (5) as shown in FIG. ) And loaded on it, and the deflection of the center point at the time of loading until the breakage was measured by using the displacement measuring instrument (4).

상술한 바와 같은 시험을 통하여 최적배합을 찾아보면 워커빌리티를 고려한 섬유혼입율과 플로우(Flow)값과의 관계는 섬유혼입율의 증가에 따라 그 비표면적이 현저히 증대하여 혼합수가 그 표면에 부착하기 때문에 워커빌리티의 저하를 초래하므로 적당한 워커빌리티를 확보하기 위하여 섬유혼입율은 1∼3%가 적당하며, PAN계 CF는 피치계 CF에 비하여 비중이 다소 크나 섬유직경이 작아 아스펙트비(ℓ/d)가 대단히 크므로 동일 CF혼입율이라도 섬유의 혼입본수가 훨씬 많기 때문에 플로우(Flow)값은 현저히 저하된다. 또한 매트릭스는 물시멘트비의 변화에 따라서도 워커빌리티가 크게 영향을 받는데 물시멘트비 70∼110%에서 섬유보강 시멘트 콘크리트 매트릭스의 워커빌리티는 양호하다.As a result of searching for the optimum blend through the test as described above, the relationship between the fiber mixing rate and the flow value considering the workability is significantly increased with the increase of the fiber mixing rate so that the mixed water adheres to the surface. In order to ensure proper workability, the fiber mixing ratio is 1 to 3%, and the PAN-based CF has a relatively large specific gravity compared to the pitch-based CF but the fiber diameter is so small that the aspect ratio (ℓ / d) is very large. Even at the same CF mixing rate, since the number of mixed fibers is much larger, the Flow value is significantly lowered. In addition, the workability of the matrix is greatly affected by the change in the water cement ratio. The workability of the fiber reinforced cement concrete matrix is good at the water cement ratio of 70 to 110%.

섬유보강 시멘트 콘크리트 매트릭스의 단위용적중량은 매트릭스와 섬유비중의 차에 의하여 섬유혼입율을 크게 하면 단위용적중량이 계산상 다소 저하하지만 실제적으로는 이론적인 값보다 저하율은 큰 경향을 나타내었고, 메칠셀룰로즈 혼용시와 오토클래브 양생시 이러한 경향은 더욱 현저해지는데 이것은 섬유의 체적증가에 따른 다공성의 증대에 원인이 있으며 섬유혼입율 3% 까지는 단위용적중량은 저하하였으나 4%의 경우는 단위용적중량이 증대하는 경향을 나타내므로 매트릭스의 경량화 측면에서 섬유혼입율은 4% 이하가 좋다. 또한 CF단섬유의 길이가 3,6,10㎜로 증가함에 따라 플로우값이 약 30%정도로 현저히 저하하므로 섬유의 길이는 3∼6㎜가 적당하다.The unit volume weight of fiber-reinforced cement-concrete matrix was slightly lower in calculation if the fiber mixing ratio was increased due to the difference between matrix and fiber specific gravity, but in reality, the decrease rate was larger than the theoretical value. This tendency becomes more prominent in the curing of Si and autoclave, which is caused by the increase of porosity due to the increase of the volume of the fiber, and the unit volume weight is decreased up to 3% of the fiber content but the unit volume weight is increased in the case of 4%. In terms of weight reduction of the matrix, the fiber content is preferably 4% or less. In addition, as the length of the CF short fibers increases to 3, 6, 10 mm, the flow value is significantly reduced to about 30%, so the length of the fiber is preferably 3 to 6 mm.

섬유혼입량에 따른 매트릭스의 기건비중은 CF혼입율의 증가에는 별영향을 나타내지 않고, 섬유의 종류에 따라 PAN계의 경우 피치계에 비하여 다소 높은 값을 나타낸다. 이것은 섬유자체의 비중이 PAN계가 크기 때문이며, 또한 경량화를 주목적으로 하는 경우, 물·시멘트 70%∼110%로 하고 골재/시멘트비를 0.3∼0.5, 탄소섬유 혼입율은 1∼3%로 하고 증점제인 메칠셀루로즈를 시멘트 중량비로 0.5∼ 1.5%의 비율로 사용하면 기건비중 1.41∼1.65의 섬유보강 시멘트 콘크리트 복합체를 제조할수 있는 특징을 가지고 있다.The dry weight of the matrix according to the fiber mixing amount does not show a significant influence on the increase of the CF mixing rate, and the PAN system shows a slightly higher value than the pitch system depending on the type of fiber. This is because the specific gravity of the fiber itself is large in the PAN system, and when weight reduction is the main purpose, water and cement are 70% to 110%, aggregate / cement ratio is 0.3 to 0.5, and carbon fiber content is 1 to 3%. When cellulose is used in a proportion of 0.5 to 1.5% by weight of cement, it has the characteristics of producing a fiber-reinforced cement concrete composite of 1.41 to 1.65.

CF단섬유의 혼입량 증가에 따라 압축강도의 변화는 그다지 크지 않으나 전반적으로 약간 저하하는데 이는 섬유혼입율과 단위용적중량과의 관계와 마찬가지로 섬유혼입율 증가에 따른 기공증대 및 다짐불량에 기인하는 것으로 본 발명에서 섬유혼입율 3%이하로 하였으며, PAN계 탄소섬유를 혼입한 경우가 Pitch계 탄소섬유를 혼입한 경우에 비하여 다소 높은 강도를 나타내었는데, 이는 동일 섬유혼입율이라도 PAN계 CF가 피치계 CF에 비하여 섬유직경이 작기 때문에 혼입되는 섬유본수가 많고, 섬유자체의 강도가 고강도이기 때문이다. 탄소섬유보강 시멘트 콘크리트 복합체의 압축강도는 실리카 파우더를 사용함으로써 섬유의 균등분산과 유동성 및 성형성이 양호하고 부재의 경량화와 오토클래브 양생시 미분말의 실리카 파우더에 의한 반응생성물이 매트릭스중의 공극에 충전되어 조직이 밀실화되어 오토클래브 양생의 경우가 기건양생의 경우에 비하여 7∼20% 정도 높은 강도를 나타내는 것을 발견하였다.As the amount of CF short fiber increases, the change in compressive strength is not so large, but slightly decreases. This is due to the increase in pore size and compaction due to the increase of fiber content as well as the relationship between fiber content and unit volume weight. The fiber mixing rate was 3% or less, and the mixing of PAN-based carbon fiber showed somewhat higher strength than the mixing of Pitch-based carbon fiber. This is because the number of fibers is mixed because of the small size, and the strength of the fibers themselves is high. The compressive strength of the carbon fiber reinforced cement concrete composite is made by using silica powder, so that the uniform dispersion, fluidity and formability of the fiber are good, and the weight of the member and the reaction product by the fine powder of silica powder during autoclave curing are reduced to the voids in the matrix. It was found that the tissue was sealed and the autoclave curing showed 7 to 20% higher strength than the air curing.

CF단섬유의 혼입율과 휨강도와의 관계는 CF단섬유의 혼입량의 증가에 수반하여 휨강도는 현저히 증가하는 경향을 나타내었으며, 이는 실리카 파우더에 의해 CF의 분산성이 향상되고, 동시에 시멘트 매트릭스와 섬유의 부착력을 향상시켜 그 보강효과가 증대하기 때문이다. 또한, PAN계 탄소섬유를 혼입한 경우가 피치계 탄소섬유를 혼입한 경우에 비하여 다소 높은 강도를 나타내었으며, 이는 섬유자체가 PAN계가 피치계에 비해 월등히 높은 고인장강도와 고탄성을 가지기 때문이다.The relationship between the mixing rate and the bending strength of the CF short fibers showed a tendency to increase the bending strength significantly with the increase of the mixing amount of the CF short fibers, which improved the dispersibility of CF by silica powder and at the same time This is because the reinforcing effect is increased by improving the adhesion. In addition, the PAN-based carbon fibers showed somewhat higher strength than that of the pitch-based carbon fibers, because the fibers themselves had significantly higher tensile strength and higher elasticity than the PAN-based carbon fibers.

휨응력을 받는 CFRC의 휨응력과 처짐량과의 관계를 확인하기 위하여 PAN계 CF단섬유를 Vf= 0, 1, 2, 3%를 혼입한 경우, 섬유혼입율의 증가에 따른 휨응력-처짐관계는 Vf= 0% 인 Plain의 경우 직선적으로 저하하는데 비하여, CFRC의 경우에는 현저한 비선형으로서 최대 휨응력을 나타낸 이후에도 급격히 저하하지 않고 현저한 연성적 특성을 나타내었다. 이것은 CF혼입율의 증가에 따라 휨응력의 증가와 함께 변형 성능도 크게 증대함을 알수있고, 특히 휨인성(흡수에너지)은 급격히 증대하는 경향을 나타내었다.In order to check the relationship between bending stress and deflection amount of CFRC subjected to bending stress, when V f = 0, 1, 2, and 3% of PAN-based CF short fibers were mixed, the bending stress-sag relation with increasing fiber mixing rate was V f In the case of plain = 0%, the linear drop decreased, whereas CFRC showed a remarkable non-linearity and showed a ductile characteristic without sharp drop even after showing the maximum bending stress. It can be seen that the deformation performance increases greatly with the increase of the bending stress as the CF mixing rate increases. In particular, the bending toughness (absorption energy) tends to increase rapidly.

또한, 오토클래브 양생의 경우 우수한 휨변형 특성을 나타내었는데 이는 매트릭스 자체가 고강도화 됨과 아울러 섬유와 매트릭스의 부착력이 현저히 증대하여 섬유가 매트릭스로부터 인발이 감소하고 파단섬유가 증가하기 때문이다.In addition, the autoclave curing showed excellent flexural deformation characteristics, because the matrix itself was strengthened and the adhesion between the fibers and the matrix was significantly increased, resulting in a decrease in the number of fibers from the matrix and an increase in fracture fibers.

섬유보강 시멘트 콘크리트 복합체의 제조시 실리카 파우더/시멘트 비를 30%로 하면 실리카 파우더의 분산작용 및 증점효과로 화이버볼의 생김이 없이 섬유혼입율 3%까지의 단섬유를 시멘트 매트릭스 중에 균일하게 분산시킬수 있고, 경량, 고강도를 얻기 위한 최적배합 조건은 실리카 파우더/시멘트 비를 30%, 탄소섬유 혼입율은 3% 이하가 좋으며, 섬유의 길이는 3∼6㎜가 최적이다.When manufacturing the fiber-reinforced cement-concrete composite, if the silica powder / cement ratio is 30%, it is possible to uniformly disperse the short fibers up to 3% of fiber in the cement matrix without the occurrence of fiber balls due to the dispersion and thickening effect of the silica powder. The optimum mixing condition for obtaining light weight and high strength is that the silica powder / cement ratio is 30%, the carbon fiber mixing ratio is 3% or less, and the fiber length is 3 to 6 mm.

상기와 같이 본 발명에서 역학적 특성 및 경제적 측면을 고려하여 개발된 최적배합조건에 따라 도 2 와 같은 상판공시체(2)를 제조하여 휨내하력을 측정하였다.As described above, according to the optimum mixing conditions developed in consideration of the mechanical properties and economic aspects in the present invention was prepared a specimen specimen 2 as shown in Figure 2 to measure the flexural strength.

여기서, 상판공시체(2)의 응력상태는 다음과 같이 평가한다. 탄성범위내에 있는 4모퉁이 지지의 정방형의 상판공시체(2)의 중앙에 P㎏을 재하한 경우 발생하는 최대 휨모멘트 M은 근사적으로Here, the stress state of the upper specimen 2 is evaluated as follows. The maximum bending moment M generated when P kg is loaded at the center of the square upper plate specimen 2 of 4 corner support within the elastic range is approximately

(1) (One)

여기서 a : 공시체의 한변의 길이,Where a is the length of one side of the specimen,

u : 정사각형 재하판의 한변의 길이, 재하판이 원형인u is the length of one side of the square plate,

경우의 u값을 환산하면,In terms of the u value,

(2) (2)

(c : 재하봉강의 반지름)(c: radius of loading steel)

로 나타내었다.Represented by.

앵커(Anchor)형상에 따른 상판공시체의 하중-처짐관계는 강성의 지표로서 하중과 처짐이 직선관계인 300kg 재하시의 처짐, 최대하중 및 강성비를 다음의 표 (2)에 나타내었다.The load-deflection relationship of the specimens according to the anchor shape is an index of stiffness. The deflection, maximum load, and stiffness ratios of 300 kg loads with linear load and deflection are shown in Table (2).

앵커형상의 영향을 처짐의 역수비인 강성의 비로 평가하면 도 4 의 A와 C는 B의 0.88, 0.93이 되고, 처짐성능을 비교하면 A는 최대하중시의 처짐이 작으며, 최대하중후는 급격히 하중이 저하하게 된다. 한편, B, C는 최대하중시의 처짐이 각각 A의 1.4배, 1.5배 이다. 이러한 경우, A는 CFRC와 메쉬(10)와의 미끄러짐(활동)변형에 대하여 상판 전면에서 저항하기 때문에 최대하중까지의 강성저하는 작지만 파괴와 동시에 메쉬(10)가 CFRC와 박리하기 때문에 급격한 하중저하가 생긴다. 반면에 B, C는 응력이 높은 상판공시체 중앙 부근의 앵커가 미끄러짐 변형에 저항하며, B는 주로 CFRC의 압축소성변형이, C는 주로 앵커의 인장소성변형이 서서히 진행되기 때문에 최대하중시의 처짐이 커진다고 생각된다. 또한 최대하중 이후에도 메쉬(10)가 CFRC와 박리하는 일이 적으며 하중저하도 완화된다.When the influence of the anchor shape is evaluated by the ratio of stiffness, which is the inverse ratio of deflection, A and C in Fig. 4 become 0.88 and 0.93 of B. When deflection performance is compared, A deflection at maximum load is small, The load suddenly drops. On the other hand, B and C have sag at maximum load 1.4 times and 1.5 times A, respectively. In this case, since A resists the sliding (activity) deformation between CFRC and the mesh 10 at the front of the upper plate, the rigidity decrease to the maximum load is small, but the sudden drop in load is caused because the mesh 10 peels from the CFRC at the same time as the fracture. Occurs. On the other hand, B and C resist the sliding deformation of the anchor near the center of the specimen with high stress, and B is the compression plastic deformation of CFRC mainly, and C is the tensile plastic deformation of the anchor. I think this becomes big. In addition, even after the maximum load, the mesh 10 is less likely to peel off from the CFRC, and the load reduction is alleviated.

Anchor형상에 따른 강도특성과 최대 휨모멘트Strength Characteristics and Maximum Bending Moment According to Anchor Shape SignSign Deflection(300kg)Deflection (300kg) Maximum LoadMaximum Load MaximumBendingMoment(kg mm)MaximumBendingMoment (kg mm) mmmm RelativeStiffnessRelativeStiffness kgkg RatioRatio A2* A2 * 0.800.80 0.880.88 12601260 0.840.84 300300 B2B2 0.700.70 1.001.00 15001500 1.001.00 358358 C2C2 0.750.75 0.930.93 17001700 1.131.13 405405

* A2 : Anchor Shape A, CF=2vol.%* A2: Anchor Shape A, CF = 2vol.%

앵커형상을 B로 하고 상판공시체(2)의 두께 30mm와 35mm의 두가지 경우에 대하여 앵커의 간격을 각각 30, 60, 90, 120mm로 했을 경우에 대하여 실험한 하중-처짐관계는 표 (3)와 같으며, 앵커간격 60mm까지는 간격이 좁을 수록 앵커의 갯수가 많아져 앵커1개가 부담하는 힘이 작아지고 최대하중이 높아지지만, 30mm와 60mm의 경우는 대부분 차이가 없다. 이것은 앵커의 갯수 증가에 의한 내력향상에는 한계가 있기 때문이며, 또한 파괴형식은 앵커간격 90, 120mm가 휨파괴에 이르고 앵커간격 30, 60mm는 재하부의 전단파괴가 있다. 그러한 것의 차이는 간격이 작은 쪽이 메쉬(10)와 CFRC의 미끄러짐(활동) 또는 박리력에 대한 앵커 1개가 부담하는 힘이 작기 때문이다. 즉, 휨내력이 커지고 전단내력을 상회하기 때문에 전단파괴가 먼저 일어나므로 앵커간격 60mm이하가 적당하다.The load-deflection relationship was tested for the case where the anchor shape was B and the distance between the anchors was 30, 60, 90, and 120 mm for the two cases of thickness 30mm and 35mm of the specimen (2). The same, the smaller the interval between the anchor interval 60mm, the more the number of anchors, the smaller the force burdened by one anchor, the higher the maximum load, but 30mm and 60mm is mostly the same. This is because the increase in the number of anchors has a limit in the improvement of strength, and in the form of failure, the anchor spacing reaches 90 and 120 mm in flexural failure, and the anchor spacing 30 and 60 mm in the lower shear shear failure. The difference between them is that the smaller the distance is, the smaller the force exerted by one anchor on the sliding (activity) or peeling force of the mesh 10 and the CFRC is. That is, because the flexural strength is greater and the shear strength is higher, shear failure occurs first, so the anchor interval of 60mm or less is appropriate.

Anchor 간격에 따른 강도특성과 최대 휨모멘트Strength Characteristics and Maximum Bending Moment with Anchor Spacing SignSign Deflection(300kg)Deflection (300kg) Maximum LoadMaximum Load MaximumBendingMoment(kg mm)MaximumBendingMoment (kg mm) mmmm RelativeStiffnessRelativeStiffness kgkg RatioRatio T30T30 3030 0.700.70 1.001.00 15001500 1.001.00 358358 6060 0.710.71 0.990.99 14401440 0.960.96 343343 9090 0.840.84 0.830.83 11401140 0.760.76 272272 120120 0.950.95 0.740.74 850850 0.570.57 203203 T35T35 3030 0.570.57 1.231.23 17401740 1.161.16 415415 6060 0.570.57 1.231.23 16801680 1.121.12 401401 9090 0.780.78 0.900.90 13601360 0.910.91 324324 120120 1.011.01 0.690.69 10501050 0.700.70 250250

상판공시체 두께에 따른 강도특성과 최대 휨모멘트Strength Characteristics and Maximum Bending Moment According to the Thickness of the Upper Plate Specimen SignSign Deflection(300kg)Deflection (300kg) Maximum LoadMaximum Load MaximumBendingMoment(kg mm)MaximumBendingMoment (kg mm) mmmm RelativeStiffnessRelativeStiffness kgkg RatioRatio T20T20 1.021.02 0.690.69 890890 0.590.59 355355 T25T25 0.850.85 0.820.82 13501350 0.900.90 538538 T30T30 0.700.70 1.001.00 15001500 1.001.00 598598 T35T35 0.570.57 1.231.23 17401740 1.161.16 693693

앵커의 형상을 B로 하고 상판공시체(2)의 두께를 각각 20, 25, 30, 35mm로 하였을 경우, 300kg재하시의 처짐, 최대하중 및 강성비를 표 (4)에 나타내었다. 이때 상판공시체의 두께에 따른 처짐의 역수비를 강성의 비로 나타내면 상판공시체의 두께가 20, 25, 30, 35mm일때 각각 0.69, 0.82, 1.0, 1.23이 되고, 파괴형식은 두께 20, 25, 30mm가 휨파괴에 이르고 두께 35mm는 재하부의 전단파괴가 있다.When the shape of the anchor is B and the thickness of the upper plate specimen 2 is 20, 25, 30, and 35 mm, respectively, the deflection, the maximum load, and the stiffness ratio at 300 kg are shown in Table (4). In this case, if the reciprocal ratio of deflection according to the thickness of the upper specimen is represented by the ratio of stiffness, when the thickness of the upper specimen is 20, 25, 30, and 35 mm, the thickness is 0.69, 0.82, 1.0, and 1.23, respectively. Flexural failure and 35mm thickness has shear failure in the lower part.

보강형태에 따른 상판공시체의 시험결과Test results of specimens according to the reinforcement type No.No. 두께(mm)Thickness (mm) 보강형태Reinforcement form 각 하중별 처짐(mm)Deflection by each load (mm) 100kg100 kg 200kg200 kg 300kg300 kg 400kg400 kg 1One Nil 0.280.28 0.840.84 1.561.56 3.183.18 22 3030 mesh보강mesh reinforcement 0.220.22 0.690.69 1.311.31 2.212.21 33 강섬유 보강Steel fiber reinforcement 0.150.15 0.320.32 0.900.90 1.421.42

또한, 보강형태에 따른 상판공시체(2)의 내력을 알아보기 위해 두께 30mm의 상판공시체(2)를 제작하여 내부보강을 하지 않은 것과 메쉬(10)로 보강한 것, 메쉬(10) 대신 양단 후크형 강섬유(20)로 보강했을 때의 각하중별 처짐을 비교하여 표 (5)에 나타내었다. 이때 내부보강을 하지 않은 것 보다 메쉬(10)로 보강하였을 경우 약 30% 정도 처짐량이 저하하였고, 양단 후크형 강섬유(20)로 보강하였을 경우 약 55%의 처짐 저하가 나타났다.In addition, in order to find out the strength of the upper specimen (2) according to the reinforcement form, the upper specimen (2) having a thickness of 30mm is manufactured and not reinforced by the internal reinforcement and mesh (10), hooks at both ends instead of the mesh (10) Table 5 compares the deflection for each load when reinforced with the shape steel fiber 20. At this time, when the reinforcement with the mesh 10 than the internal reinforcement was less than about 30% deflection, when the reinforcement with both ends hook-type steel fiber 20, about 55% deflection was found.

이는 매트릭스내에 보강용 메쉬(10) 대신 양단 후크형 강섬유(20)를 0.2∼0.4 Vol.%를 혼입한 고내력 보강판의 경우는 양단 후크형 강섬유(20)의 양단이 매트릭스내에서 앵커의 역할을 하여 매트릭스의 파괴를 구속함으로써 최대응력에 도달한 후에도 섬유가 뽑히지 않고 신장되어 휨거동시 균열발생후의 저항능력이 증대되어 메쉬(10)사용시의 박리로인한 급격한 하중저하의 문제를 해결하였다.In the case of the high strength reinforcing plate in which 0.2-0.4 Vol.% Of the both ends hook type steel fibers 20 are mixed in the matrix instead of the reinforcing mesh 10, both ends of the hook type steel fibers 20 act as anchors in the matrix. By restraining the breakage of the matrix, even after reaching the maximum stress, the fibers are stretched without being pulled out to increase the resistance after cracking during flexural behavior, thereby solving the problem of sudden load drop due to peeling when the mesh 10 is used.

이같이 본 발명은 양단 후크형 강섬유와 산업부산물인 탄소섬유를 사용한 섬유보강 시멘트 콘크리트 복합체를 이용하고, 인장에 약한 콘크리트의 결점을 보완하기 위하여 시멘트 콘크리트와 섬유, 메쉬를 복합화한 합리적인 구조부재의 개발로 경량, 고강도·내력의 이중바닥용 상판(FREE ACCESS FLOOR)을 제조할 수 있어 자원의 재활용면에서 매우 큰 실용 가치가 있고 에너지절약 및 수입대체에 따른 외화절감효과가 매우 클 것으로 전망되는 발명인 것이다.As such, the present invention utilizes fiber reinforced cement concrete composites using both ends of hook-type steel fibers and carbon fiber, which is an industrial by-product, and to develop a rational structural member that combines cement concrete, fibers, and mesh to compensate for the weaknesses of the weak concrete. It is an invention that it is possible to manufacture a lightweight, high strength and strength double floor floor plate, which has great practical value in terms of recycling of resources, and that the effect of saving foreign currency due to energy saving and import substitution is expected to be very large.

Claims (2)

직경 6.5∼20㎛, 비중 1.60∼1.80, 인장강도 7,500∼38,000㎏/㎠, 탄성계수 3.5∼25.0×105㎏/㎠, 섬유길이 3∼20㎜, 혼입량 1.0∼3.0%의 PAN계 탄소섬유와 피치계 탄소섬유와 비중 3.14의 조강 포틀랜드 시멘트, 비중 2.7, 입경 0∼80㎛의 실리카 파우더를 골재로 사용하고, 혼화제로는 유동화제로써 나프타렌 설폰산염 고축합물인 Mighty 150, 증점제로는 메칠셀루로즈,소포제로는 안티폼을 함께 슬러리 상태로 혼합하여 성형하므로써, 기건비중 1.4∼1.7 정도이고 압축강도는 190∼260 ㎏/㎠, 휨강도 65∼120 ㎏/㎠ 이고, 휨인성은 보통 시멘트모르터의 50∼80배의 경량, 고강도이면서 내열, 내화성능이 탁월하고, 우수한 내구성 및 수밀성을 특징으로 하는 섬유보강 시멘트 콘크리트 복합체의 제조방법.PAN-based carbon fibers with a diameter of 6.5 to 20 µm, specific gravity of 1.60 to 1.80, tensile strength of 7,500 to 38,000 kg / cm 2, elastic modulus of 3.5 to 25.0 × 10 5 kg / cm 2, fiber length of 3 to 20 mm, and mixing amount of 1.0 to 3.0% Pitch carbon fiber and crude steel portland cement with a specific gravity of 3.14, silica powder with a specific gravity of 2.7 and a particle size of 0 to 80 µm are used as aggregates. Rose and antifoaming agent are formed by mixing antifoam together in slurry state, and the specific gravity is 1.4-1.7, compressive strength is 190-260 ㎏ / ㎠, flexural strength is 65-120 ㎏ / ㎠, and the flexural toughness of cement motor is usually 50-80 times light weight, high strength, excellent heat and fire resistance, and a method of producing a fiber-reinforced cement concrete composite characterized by excellent durability and water tightness. 직경 6.5∼20㎛, 비중 1.60∼1.80, 인장강도 7,500∼38,000㎏/㎠, 탄성계수 3.5∼25.0×105㎏/㎠, 섬유길이 3∼20㎜, 혼입량 1.0∼3.0%의 PAN계 탄소섬유와 피치계 탄소섬유와 비중 3.14의 조강 포틀랜드 시멘트, 비중 2.7, 입경 0∼80㎛의 실리카 파우더를 골재로 사용하고, 혼화제로는 유동화제로써 나프타렌 설폰산염 고축합물인 Mighty 150, 증점제로는 메칠셀루로즈,소포제로는 안티폼을 함께 슬러리 상태로 혼합하여 성형한 섬유보강 시멘트 콘크리트 복합체를 이용하여 지름 2.5mm 의 메쉬, 치수 Ø0.6mm×36mm, 비중 7.85, 아스펙트비(ℓ/d) 60, 인장강도 110㎏/㎠인 양단 후크형 강섬유를 사용하여 인장에 약한 콘크리트의 결점을 보완한 콘크리트와 섬유, 메쉬를 복합화한 합리적인 구조부재인 경량, 고강도·내력의 이중바닥용 상판의 제조방법.PAN-based carbon fibers with a diameter of 6.5 to 20 µm, specific gravity of 1.60 to 1.80, tensile strength of 7,500 to 38,000 kg / cm 2, elastic modulus of 3.5 to 25.0 × 10 5 kg / cm 2, fiber length of 3 to 20 mm, and mixing amount of 1.0 to 3.0% Pitch carbon fiber and crude steel portland cement with a specific gravity of 3.14, silica powder with a specific gravity of 2.7 and a particle size of 0 to 80 µm are used as aggregates. Rose, antifoaming agent is a mesh of 2.5mm diameter, Ø0.6mm × 36mm, specific gravity 7.85, aspect ratio (ℓ / d) 60, using fiber reinforced cement concrete composite formed by mixing antifoam together in slurry. A method of manufacturing a lightweight, high strength and strength double floor top plate, a reasonable structural member that combines concrete, fiber, and mesh that compensates for the weakness of concrete that is weak in tension by using hook type steel fibers having a tensile strength of 110㎏ / ㎠.
KR19980027543A 1998-07-09 1998-07-09 Textile enforced concrete mixed method and free access floor manufacturing method using this concrete KR100267735B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR19980027543A KR100267735B1 (en) 1998-07-09 1998-07-09 Textile enforced concrete mixed method and free access floor manufacturing method using this concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR19980027543A KR100267735B1 (en) 1998-07-09 1998-07-09 Textile enforced concrete mixed method and free access floor manufacturing method using this concrete

Publications (2)

Publication Number Publication Date
KR20000007951A true KR20000007951A (en) 2000-02-07
KR100267735B1 KR100267735B1 (en) 2000-12-01

Family

ID=19543521

Family Applications (1)

Application Number Title Priority Date Filing Date
KR19980027543A KR100267735B1 (en) 1998-07-09 1998-07-09 Textile enforced concrete mixed method and free access floor manufacturing method using this concrete

Country Status (1)

Country Link
KR (1) KR100267735B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508555B1 (en) * 2002-04-12 2005-08-17 (주) 선엔지니어링종합건축사사무소 method of producing for bleeding reduction agent on ready mixed concrete
WO2009035654A3 (en) * 2007-09-13 2009-05-22 Univ Michigan Impact resistant strain hardening brittle matrix composite for protective structures
KR101606840B1 (en) * 2014-09-30 2016-03-28 주식회사 포스코건설 Concrete composition for reinforcing structure and manufacturing method of thereof
CN109336465A (en) * 2018-11-23 2019-02-15 杨贵香 A kind of hydraulic wood board sectional material of light energy-saving environmental-protection stalk powder steam and its preparation process
KR20210022772A (en) * 2009-06-12 2021-03-03 엔브이 베카에르트 에스에이 High elongation fibres

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102292424B1 (en) * 2020-09-22 2021-08-23 건양대학교산학협력단 Hybrid fiber-reinforced mortar composition containing steel fiber and carbon fiber, and cement composite with improved flexural performance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508555B1 (en) * 2002-04-12 2005-08-17 (주) 선엔지니어링종합건축사사무소 method of producing for bleeding reduction agent on ready mixed concrete
WO2009035654A3 (en) * 2007-09-13 2009-05-22 Univ Michigan Impact resistant strain hardening brittle matrix composite for protective structures
KR20210022772A (en) * 2009-06-12 2021-03-03 엔브이 베카에르트 에스에이 High elongation fibres
KR101606840B1 (en) * 2014-09-30 2016-03-28 주식회사 포스코건설 Concrete composition for reinforcing structure and manufacturing method of thereof
CN109336465A (en) * 2018-11-23 2019-02-15 杨贵香 A kind of hydraulic wood board sectional material of light energy-saving environmental-protection stalk powder steam and its preparation process

Also Published As

Publication number Publication date
KR100267735B1 (en) 2000-12-01

Similar Documents

Publication Publication Date Title
Banthia et al. Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices
Ramaswamy et al. Behaviour of concrete reinforced with jute, coir and bamboo fibres
US7875211B1 (en) Multifunctional cementitious nanocomposite material and methods of making the same
Aslani et al. The effect of hollow glass microspheres, carbon nanofibers and activated carbon powder on mechanical and dry shrinkage performance of ultra-lightweight engineered cementitious composites
Aslani et al. Development of strain‐hardening lightweight engineered cementitious composites using hollow glass microspheres
Kim et al. Mechanical properties of fiber reinforced lightweight concrete containing surfactant
Rustamov et al. Mechanical behavior of fiber-reinforced lightweight concrete subjected to repeated freezing and thawing
Hong et al. A review on concrete creep characteristics and its evaluation on high-strength lightweight concrete
Wishwesh et al. PVA fiber-fly ash cementitious composite: assessment of mechanical properties
Liu et al. Mode II fracture of fibre reinforced concrete materials
KR100267735B1 (en) Textile enforced concrete mixed method and free access floor manufacturing method using this concrete
Pham et al. Tensile behavioral characteristics of lightweight carbon textile-reinforced cementitious composites
Zhang et al. Mechanical Properties and Durability of Fiber-reinforced Concrete.
Yi et al. Preparation and mechanical-electrical performance of carbon fibre sensing concrete
Donnini et al. Concrete columns confined with different composite materials
Abid et al. Mechanical properties of ECC incorporating low-cost PVA fibers
Ghugal et al. Experimental investigation on high strength steel fiber reinforced concrete with metakaolin
Harish et al. Performance of lightweight aggregate concrete containing expanded polystyrene, cinder and ground-granulated blast-furnace slag
Al-Jaberi et al. Bending Behavior of Fiberglass Textile-Reinforced Thin Geopolymer Mortar Panels
Luo et al. Experimental study on compressive behaviors and meso-scale structure of SFRFC based on CT scanning technique
Somasundaram et al. Development of light weight engineered cementitious composites
Zhou et al. Flexural behavior of layered CTRC-ECC reinforced cementitious composite plates
Mizerová et al. Conductive Metakaolin Geopolymer with Steel Microfibres​
Al-Daraji et al. The Effect of Kevlar Fibers on the Mechanical Properties of Lightweight Perlite Concrete
Gião et al. UFRG—Unidirectional Fibre Reinforced Grout as strengthening material for reinforced concrete structures

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120628

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20120727

Year of fee payment: 19

EXPY Expiration of term