KR19990084134A - The method of coating optical lens - Google Patents

The method of coating optical lens Download PDF

Info

Publication number
KR19990084134A
KR19990084134A KR1019990039813A KR19990039813A KR19990084134A KR 19990084134 A KR19990084134 A KR 19990084134A KR 1019990039813 A KR1019990039813 A KR 1019990039813A KR 19990039813 A KR19990039813 A KR 19990039813A KR 19990084134 A KR19990084134 A KR 19990084134A
Authority
KR
South Korea
Prior art keywords
lens
gas
room temperature
plasma
diamond
Prior art date
Application number
KR1019990039813A
Other languages
Korean (ko)
Inventor
박덕규
Original Assignee
박덕규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박덕규 filed Critical 박덕규
Priority to KR2019990019953U priority Critical patent/KR200171150Y1/en
Priority to KR1019990039813A priority patent/KR19990084134A/en
Publication of KR19990084134A publication Critical patent/KR19990084134A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0433Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being a reactive gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0486Operating the coating or treatment in a controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0493Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • B05D2203/35Glass

Abstract

[목적][purpose]

본 발명은 안경렌즈에 긁힘, 자외선, 전자파차단, 김서림 등을 방지하는 안경렌즈를 제공하고자 하는 안경렌즈의 코팅방법에 관한 것이다.The present invention relates to a method of coating a spectacle lens to provide a spectacle lens to prevent scratches, ultraviolet rays, electromagnetic wave blocking, fog and the like.

[구성][Configuration]

탄소(C)를 함유하고 있는 기체 또는 액체를 진공용기에 주입한 후, 실온에서 60㎐저주파로 플라즈마방전을 유도하여 기체를 해리시켜 CH, CH2, CH3가 분해된 활성종(radical)을 생성하여 이들이 렌즈에 부착되면서 다이아몬드성 탄소박막(a-C:H)이 코팅되는 것이다After injecting a gas or liquid containing carbon into a vacuum container, plasma discharge is induced at a low frequency of 60 에서 at room temperature to dissociate the gas, thereby degrading the radicals in which CH, CH 2 and CH 3 are decomposed. Generated and attached to the lens to coat the diamond-like carbon thin film (aC: H)

[효과][effect]

실온에서 상용주파수인 60㎐로 플라즈마를 발생시킨 후 화학적 증발정착법으로 안경렌즈에 다이아몬드 카본박막을 코딩하는 방법을 제공하므로써 안경렌즈의 긁힘, 자외선, 전자파차단, 김서림 등이 방지되어 렌즈의 수명연장, 눈의 건강을 향상시킬 수 있는 특징이 있다.Produces plasma at a commercial frequency of 60 kHz at room temperature and provides a method of coding diamond carbon thin films on spectacle lenses by chemical vapor deposition to prevent scratches, ultraviolet rays, electromagnetic interference, and blurring of the spectacle lenses, thus extending the life of the lens. In addition, there are characteristics that can improve eye health.

Description

안경렌즈의 코팅방법{The method of coating optical lens}The method of coating optical lens

본 발명은 안경렌즈의 코팅방법에 관한 것으로, 보다 상세하게는 실온에서 상용주파수로 플라즈마를 발생시킨 후 화학적 증발정착법(chemical vapor deposition)으로 통상의 안경렌즈에 다이아몬드 카본박막을 코딩하는 방법을 제공하여 안경렌즈에 긁힘, 자외선, 전자파차단, 김서림 등을 방지하여 렌즈의 수명연장, 눈의 건강을 향상시킬 수 있는 안경렌즈를 제공하고자 하는 안경렌즈의 코팅방법에 관한 것이다.The present invention relates to a method for coating a spectacle lens, and more particularly, to generate a plasma at a commercial frequency at room temperature and to provide a method of coding a diamond carbon thin film on a conventional spectacle lens by chemical vapor deposition. The present invention relates to a method of coating a spectacle lens to provide a spectacle lens that can improve the life of the lens, eye health by preventing scratches, ultraviolet rays, electromagnetic shielding, and fog on the spectacle lens.

종래에는 안경렌즈는 투명한 프라스틱 또는 유리를 가공하여 사용하고 있는 바, 안경을 사용하는 과정에 취급부주의로 렌즈의 표면에 흠집이 발생하여 안경렌즈의 특성상 투명도가 유지되어야 함에도 그러하지 못하여 렌즈를 교체하거나 안경 전체를 교체하는 경제적 손실이 많았으며, 또한 습도가 높은 날씨나 따뜻한 음식을 먹을 때 발생되는 김(기체)에 의해 렌즈 표면에 성에가 발생하여 투명성을 잃게 되어 그 때마다 자주 닦아주어야 하는 번거로움이 있었다.Conventionally, the spectacle lens is processed by using transparent plastic or glass. In the process of using the spectacles, the surface of the lens may be inadvertently handled, and the transparency of the spectacle lens may not be maintained. There was a lot of economic loss to replace the whole, and there was frost on the surface of the lens due to steam (gas) generated in high humidity weather or eating hot foods, which lost transparency. there was.

이에 광학렌즈에 다이아몬드를 코팅하는 방법이 제공되기는 했으나 적어도 200℃이상의 상온과 고주파를 필요로 하기 때문에 이에 따른 장비와 코팅작업에 번거로움이 있어 실현되지 않고 있다.Although a method of coating diamond on the optical lens is provided, at least a room temperature and a high frequency of at least 200 ° C are required, and thus, the equipment and the coating work are cumbersome.

본 발명은 상기의 종래 문제점을 해결하기 위하여 안출한 것으로 실온에서 저주파 플라즈마(plasma) 화학적 증발정착법으로 안경렌즈에 다이아몬드를 코팅하는 방법을 제공하고자 하는 것이다.The present invention is to provide a method for coating a diamond on the spectacle lens by a low-frequency plasma chemical vapor deposition method at room temperature to solve the above conventional problems.

상기의 방법으로 코팅하여서 화학적 불활성, 열전도도, 전기저항, 광투과도, 경도, 윤활성이 높은 안경렌즈를 제공하여 렌즈에 흠집의 발생 우려가 없어 수명을 연장할 수 있고, 성에가 끼이지 않는 제품의 우수성과 편리함을 얻고자 하는 것이다.It is possible to prolong the life of the product by coating it in the above way so that there is no risk of scratches on the lens by providing spectacle lenses with high chemical inertness, thermal conductivity, electrical resistance, light transmittance, hardness and lubricity. To achieve excellence and convenience.

이하, 본 발명의 구성을 일실시례에 의하여 상세히 설명하면 다음과 같다.Hereinafter, the configuration of the present invention will be described in detail by one embodiment as follows.

탄소(C)를 함유하고 있는 기체 또는 액체를 진공용기에 주입한 후, 저주파로 플라즈마방전을 유도하여 기체를 해리시켜 CH, CH2, CH3가 분해된 활성종(radical)을 생성하여서, 이를 렌즈에 분사 또는 도포하여서 다이아몬드성 탄소박막(a-C:H)을 코팅하는 것이다.After injecting a gas or liquid containing carbon into a vacuum container, plasma discharge is induced at a low frequency to dissociate the gas to generate radicals in which CH, CH 2 and CH 3 are decomposed. A diamond-like carbon thin film (aC: H) is coated by spraying or applying to a lens.

이와 같이 기체 또는 액체 상태로 된 메탄(CH4), 아세틸렌(C2H2), 부탄(C3H8), 등과 같은 탄소(C)를 함유하고 있는 물질을 진공용기에 주입한 후 국내 상용 주파수인 60㎐ 저주파로 방전시키면 기체가 해리되면서 CH, CH2, CH3같이 분해된 활성종이 생성된다. 따라서 생성된 활성종을 안경렌즈에 부착되면서 다이아몬드 카본박막이 형성되는 것이다.In this way, materials containing carbon (C), such as methane (CH 4 ), acetylene (C 2 H 2 ), butane (C 3 H 8 ), etc., which are in gaseous or liquid form, are injected into a vacuum container, When discharged at a low frequency of 60 kHz, dissociated gases produce decomposed active species such as CH, CH 2 and CH 3 . Therefore, diamond carbon thin film is formed while attaching the generated active species to the spectacle lens.

상기와 같은 본 발명을 실시례에 의한 실험을 통하여 이루어진 과정을 설명하면 다음과 같다.Referring to the process made through the experiment according to the present invention as described above are as follows.

지름이 20㎝이고, 높이가 25㎝인 원통형 반응실에 메탄(CH4)과 수소(H2)의 혼합 기체를 넣고 국내상용 주파수인 60㎐ 전원을 사용한 글로우 방전으로 반응성 플라즈마를 발생시킨다.A mixed plasma of methane (CH 4 ) and hydrogen (H 2 ) is placed in a cylindrical reaction chamber having a diameter of 20 cm and a height of 25 cm, and a reactive plasma is generated by using a glow discharge using a domestic commercial frequency of 60 Hz.

상기 반응실내의 각 전극은 지름이 10㎝로 같은 크기의 스테인레스 스틸 원판을 사용하였고, 두 전극사이의 간격은 3㎝로 하였으며, 기판의 가열은 카트릿지형으로 하여 반응실의 아래쪽 외부에서 가열기를 삽입할 수 있도록 장치하였다.Each electrode in the reaction chamber was made of stainless steel discs of the same size with a diameter of 10 cm, the distance between the two electrodes is 3 cm, the heating of the substrate is a cartridge type to insert the heater from the outside of the reaction chamber. It was equipped to be able.

전원장치는 60㎐인 국내 전기를 그대로 사용하였으며, 전력밀도는 0.03∼0.08W/㎠로 하였다.As the power supply, domestic electricity of 60 kW was used as it was, and the power density was 0.03 to 0.08 W / cm 2.

상기 기판은 무알칼리성 Corning7059 유리나 현미경용 슬라이드 유리를 사용하였으며, 증류수, 메탄올, 아세톤 등으로 다단계 초음파 세척을 실행하여 최대의 청결도를 유지하도록 하였다. 또 FTIR측정을 위하여 실리콘 기판도 사용할 수 있으나 이 경우에는 희석된 불산용액에서 처리하여 표면의 산화막을 제거한 후 사용하면 된다.As the substrate, an alkali-free Corning7059 glass or a slide glass for microscope was used, and multi-stage ultrasonic cleaning was performed with distilled water, methanol, acetone, etc. to maintain maximum cleanliness. In addition, a silicon substrate may be used for FTIR measurement, but in this case, it may be used after removing the surface oxide film by treating with diluted hydrofluoric acid solution.

위와 같은 본 발명에 실험용으로 사용된 시료는 메탄(CH4)과 수소(H2)가 혼합된 기체속에서 메탄의 압력비를 1%에서 30%까지 변화시키면서 전체 기압이 1.5torr를 유지하돌고 기체를 흘려주면서 제작하였다.The sample used for the experiments in the present invention as described above, while maintaining the total pressure of 1.5torr while changing the pressure ratio of methane from 1% to 30% in the gas mixture of methane (CH 4 ) and hydrogen (H 2 ) Produced while shedding.

기판의 온도는 실온으로 하였으며, 전극에 걸어준 저주파(60㎐)전원의 전압은 250∼300Ⅴ, 전류는 10∼20㎃가 되도록 하였다.The temperature of the board | substrate was room temperature, and the voltage of the low frequency (60 kV) power supply applied to the electrode was set to 250-300V, and the current was 10-20 mA.

위와 같은 실험에 의해서 제작한 시료는Sample produced by the above experiment

Sample noSample no CH1 CH 1 CH2 CH 2 CH3 CH 3 CH4 CH 4 CH5 CH 5 CH6 CH 6 CH4/(CH4/H2)(%)CH 4 / (CH 4 / H 2 ) (%) 1One 2.52.5 55 1010 2020 3030 Appl. (V)Appl. (V) 248248 280280 289289 285285 272272 298298 Current(mA)Current (mA) 2020 1313 1313 1212 1212 1111 Thickness(Å)Thickness 14001400 17001700 20002000 27002700 28002800 31403140 Band gap(eV)Band gap (eV) -- 1.31.3 1.21.2 1.91.9 2.02.0 -- H-cont(at%)H-cont (at%) -- 1515 3232 4949 6868 --

위 표에서와 같이 주로 메탄의 압력비 변화에 따른 결과치이다.As shown in the above table, the results are mainly due to the change in the pressure ratio of methane.

이에 따른 시료의 특성을 살펴보면, 플라즈마발생용 저주파 전원의 방전 전압(280V)과 방전전류(13mA)을 일정하게 유지(전력밀도:0.05W/㎠)하고 반응실내 메탄과 수소의 혼합기체중 메탄의 압력비를 1%에서 30%까지 변화시켜 실온에서 증착하는 과정에 메탄의 압력비가 10%정도가 될 때 까지 증착률이 급격하게 증가하다가 그 이후부터는 포화되고, 전체 영역에서 2∼7Å/min 정도인 값을 유지했으며 일반적으로 RF플라즈마CVD로 증착하는 경우의 40Å/min보다 상당히 낮은 값을 나타낸다. 그 이유는 LF플라즈마가 RF플라즈마에 비하여 플라즈마의 밀도가 낮기 때문이다.According to the characteristics of the sample, the discharge voltage (280V) and the discharge current (13mA) of the low frequency power source for plasma generation were kept constant (power density: 0.05W / cm 2) and the pressure ratio of methane in the mixed gas of methane and hydrogen in the reaction chamber Is changed from 1% to 30%, and the deposition rate increases rapidly until the pressure ratio of methane is about 10% in the process of deposition at room temperature. It is generally considerably lower than 40 mW / min when deposited by RF plasma CVD. This is because LF plasma has a lower plasma density than RF plasma.

또, LF플라즈마에 의하여 사일렌(SiH4) 분해로 증착한 a-Si;H박막보다 메탄(CH4)분해로 증착한 a-C;H 박막쪽이 증착률이 떨어지는데, 이는 메탄이 사일렌보다 binding 에너지가 더 크기 때문에 일어나는 현상이다.In addition, a-Si; H thin film deposited by methane (CH 4 ) decomposition was lower than a-Si deposited by methylene (SiH 4 ) decomposition by LF plasma. This is because of the greater energy.

그리고 박막의 제작과정중 메탄의 압력비에 따라 플라즈마의 특성을 더 알아보기 위하여 전자온도와 전자밀도를 측정한 바, 전자온도는 4∼7eV로 메탄의 함량의 증가에 따라서 감소하였는데, 그 이유는 메탄함량이 증가함에 따라 분해되지 않는 메탄분자가 상대적으로 증가하기 때문이고, 전자밀도는 107/㎤정도로 메탄함량의 증가에도 거의 변화가 없으며, 그 이유는 플라즈마발생용 전원의 주파수에 따라 크게 의존하고 있기 때문임을 실험에 의해서 확인된 것이다.In addition, the electron temperature and electron density were measured to investigate the characteristics of plasma according to the pressure ratio of methane during the manufacturing process of the thin film. The electron temperature was reduced to 4-7 eV with the increase of the methane content. This is because the amount of methane that is not decomposed increases with increasing content, and the electron density is about 10 7 / cm 3, which is almost unchanged due to the increase in methane content. It is confirmed by the experiment.

그리고 시료의 물리적 성질을 살펴보면, 우선 제작된 시료의 기본 전기적 성질을 알아보기 위하여 온도에 따른 시료의 암전기전도도를 측정하였다. 결국 이 시료의 암전기전도도는 실온에서 10-11[Ω·㎝]-1,100℃에서 10-9[Ω·㎝-1]정도이며,비저항으로는 1011및 109Ω·㎝인 높은 저항값을 나타냄을 알 수 있다.And looking at the physical properties of the sample, first to determine the dark electrical conductivity of the sample according to the temperature in order to determine the basic electrical properties of the produced sample. After all cancer electrical conductivity of the sample at room temperature for 10 -11 [Ω · ㎝] -1 , from 100 ℃ 10 -9 [Ω · ㎝ -1] level, and the specific resistance is 10 11, and 10 9 Ω · ㎝ the high It can be seen that the resistance value.

또한 측정온도에 따른 광전기전도도를 나타내었는데 a-Si:H에서의 광예민도(photosensetivity;σp/σa)인 105보다 훨씬 낮은 20 정도의 결과를 보여 주었으며, 온도의 증가에 따라서 감소하였다. 이것은 a-C:H시료내에 광에 의하여 여기되는 나르개(carrier)들을 포획하는 상태밀도가 있다는 것을 의미한다.Also, the photoelectric conductivity according to the measured temperature was shown. The result was about 20, which is much lower than 10 5, which is photosensetivity ( σ p / σ a) at a-Si: H, and decreased with increasing temperature. This means that there is a density of states in the aC: H sample that trap carriers excited by light.

제작된 a-C:H박막의 파장에 따른 투과도를 %로 표현해 보면, 400 nm로부터 900 nm에 걸쳐서 90%이상의 투과도를 나타내며, 특히 600 nm에서 900 nm사이에서는 95%나 되는 좋은 투과도를 가지고 있다. 이와같이 측정한 투과도를 흡수계수를 변환시켜서 Tauc관계식인When the transmittance according to the wavelength of the manufactured a-C: H thin film is expressed in%, the transmittance is more than 90% from 400 nm to 900 nm, and particularly has a good transmittance of 95% between 600 nm and 900 nm. The measured transmittance is converted into an absorption coefficient

(αhν)1/2=C(hν-Eopt)(αhν) 1/2 = C (hν-E opt )

로부터 광학적 에너지 갭(Eopt)을 구할 수 있다. 여기에는 α는 광 흡수계수, hν는 광자의 에너지, C는 흡수단의 특성에 관계되는 상수를 각각 나타낸다.From the optical energy gap (E opt ) can be obtained. Where α is the light absorption coefficient, hν is the energy of photons, and C is a constant relating to the characteristics of the absorption edge, respectively.

이 광학적 에너지 갭의 메탄 기체의 함량에 따른 변화는 메탄 함량이 압력비를 2%에서 20%까지 증가함에 따라 1.2 eV에서 2.0 eV까지 증가하는 경향을 나타낸다. 이 사실은 메탄 함량이 증가하면 시료내의 수소함량이 증가하게 되고, 이 수소 함량의 증가는 곧 광학적에너지 갭의 증가를 의미함으로 결국 메탄 함량의 증가에 따라 광학적 에너지 갭의 증가하는 것으로 해석된다.The change in the methane gas content of this optical energy gap tends to increase from 1.2 eV to 2.0 eV as the methane content increases from 2% to 20% of the pressure ratio. This fact indicates that as the methane content increases, the hydrogen content in the sample increases, which means that the increase in the optical energy gap means that the optical energy gap increases with the increase in the methane content.

제작한 a-C:H 박막의 원소성분을 알아 보기 위하여 XRS 측정을 해 보았다. 측정장치는 AES,XPS,SIMS,RHEED등이 가능한 복합표면 분석장치(ULVAC-PH1사제품)를 사용하였다. 이 장치의 특징은 광전자 분석관으로 CMA(Cylindrical Mirror Analyzer), X선 source는 1253.6 eV, 265W의 Mg-Kα를 채용한 것이다. 이 장치로 AES 측정도 가능하나 본 시료의 기판이 절연체인 유리이므로 스펙트럼이 시료의 대전 영향을 받아서 정상적인 측정이 불가능하였다.XRS measurements were performed to determine the elemental composition of the produced aC: H thin film. As a measuring device, a compound surface analyzer (made by ULVAC-PH1) capable of AES, XPS, SIMS, and RHEED was used. The device features a CMA (Cylindrical Mirror Analyzer) and an X-ray source of 1253.6 eV and 265 W M g -K α as an optoelectronic tube. AES measurement is possible with this device, but since the substrate of this sample is glass, which is an insulator, the spectrum could not be measured normally due to the charging effect of the sample.

XPS 측정할 때 사용한 아르곤 이온은 Ar+로 이온 가속 전압은 2 kV, 방출 전류는 20 ㎃이다. 결합에너지(binding energy)0~1100 eV범위를 주사시킨 것으로, CKLL,OKLL란 X-선에 의하여 여기된 오제 전자의 피크이다. 주된 광전자의 피크는 C1s와 O1s인데, O1s는 스퍼터 후에는 거의 관측되지 않으므로 최외표면의 흡착기체층에 존재했던 것으로 추정된다. 따라서 이 a-C:H박막의 주 성분은 탄소일 것으로 추정된다. 그리고 그 외 현저한 피크가 관측되지 않으므로 기타 불순물은 이 측정장치의 한계를 벗어났다고 볼 수 있다.The argon ion used in the XPS measurement was Ar + with an ion acceleration voltage of 2 kV and an emission current of 20 mA. The binding energy was scanned in the range of 0 to 1100 eV, and C KLL and O KLL are peaks of Auger electrons excited by X-rays. The main photoelectron peaks are C 1s and O 1s , and since O 1s is rarely observed after sputtering, it is assumed that the peaks were in the outermost adsorption gas layer. Therefore, it is assumed that the main component of this aC: H thin film is carbon. And since no significant peaks are observed, other impurities can be considered to be beyond the limits of this measuring device.

C1s인 탄소 피크는 결합에너지가 287.05 eV(as deposited), 282.6 eV(after sputtering)인 곳이고, 이들 피크에 반값폭(FWHM)은 각각 1.75 eV, 1.84 eV임을 분석할 수도 있었다. 이 결과는 다른 연구자들이 DLC에 관하여 측정한 결과와도 잘 일치한다.The carbon peak of C 1s is where the binding energy is 287.05 eV (as deposited) and 282.6 eV (after sputtering), and the half width (FWHM) of these peaks was 1.75 eV and 1.84 eV, respectively. This result is in good agreement with what other researchers have measured on DLC.

시료의 구성 성분을 알아보기 위하여 FTIR분광계(MIDAC)로 스펙트럼을 측정하였다. 이 결과에서 3000cm-1부근에 나타난 C-H결합의 stretching에 주목하고 이것에 의한 흡수 피크의 면적을 K.Mui 등이 개발한 식으로부터 구하고, 이 값에서 수소 함량(CH)을 결정할 수 있었다. 그 결과가 Fig8에 나타나 있는데, 메탄 함량이 2%에서 20%까지 증가함에 따라서 수소함량(CH)은 15-70 atm.%까지 증가하면서 변화하였다.Spectrum was measured by FTIR spectrometer (MIDAC) to determine the composition of the sample. In this result, attention was paid to the stretching of the CH bond in the vicinity of 3000cm -1 , and the area of absorption peak was calculated from the equation developed by K.Mui et al., And the hydrogen content (C H ) was determined from this value. The results are shown in Fig. 8. As the methane content increases from 2% to 20%, the hydrogen content (C H ) changes with increasing 15-70 atm.%.

실험결과 메탄 함량비가 10%인 시료가 비교적 증착율이 높고 결함상태가 적은 최적의 제작조건을 만족하였으며,a-Si:H에서 주로 나타나는 준안정 상태들도 관측되었다.As a result, the sample with 10% methane content satisfies the optimum fabrication conditions with relatively high deposition rate and few defects, and the metastable states, which are mainly in a-Si: H, were also observed.

따라서 이상과 같이 제작 중 시료의 증착률은 2-7∀Å/min로 다른 방법보다 떨어지는 편이나 반면에 투명도(95%)와 저항(비저항 109-1011Ω·cm) 은 아주 좋고, 순도도 좋은 양질의 a-C:H박막을 얻을 수 있었다.Therefore, as mentioned above, the deposition rate of the sample during manufacture is 2-7∀Å / min, which is lower than other methods, while the transparency (95%) and the resistance (specific resistance 10 9 -10 11 Ω · cm) are very good and purity. A good quality aC: H thin film was obtained.

박막의 제작과정 중에 플라즈마의 전자온도는 4-7 eV 정도, 전자밀도는 107/cm3정도이다.During the fabrication process, the electron temperature of plasma is about 4-7 eV and the electron density is about 10 7 / cm 3 .

제작된 시료의 광학적 에너지 갭은 1.2~2.0 eV 정도, 수소 함량은 15-70 atm.%정도로 메탄 기체의 압력비에 따라서 상당한 차이가 나타남을 알 수 있다. LF를 이용한 a-C:H박막 제조는 상용화에는 미흡한 결과이지만 나름대로의 장점을 충분히 활용한다면 좋은 결과가 예상된다. 앞으로의 과제는 증착율의 향상과 광예민도의 증가를 가져올 수 있는 개선된 방법을 찾는 것이다.The optical energy gap of the fabricated sample is about 1.2 ~ 2.0 eV, and the hydrogen content is about 15-70 atm.%. It can be seen that there is a significant difference depending on the pressure ratio of methane gas. Manufacture of a-C: H thin film using LF is insufficient for commercialization, but good results can be expected if it fully utilizes its advantages. The challenge in the future is to find an improved method that can lead to improved deposition rates and increased photosensitivity.

따라서 이상과 같이 안경렌즈를 상온에서 60㎐ 저주파 플라즈마 화학적증발정착법으로 수소화시킨 다이아몬드를 코팅하였다.Therefore, as described above, the spectacle lens was coated with hydrogenated diamond at room temperature by 60 ㎐ low-frequency plasma chemical vapor deposition.

따라서 이상과 같이 실온에서 상용주파수인 60㎐로 플라즈마를 발생시킨 후 화학적 증발정착법으로 안경렌즈에 다이아몬드 카본박막을 코딩하는 방법을 제공하므로써 안경렌즈의 긁힘, 자외선, 전자파차단, 김서림 등이 방지되어 렌즈의 수명연장, 눈의 건강을 향상시킬 수 있는 특징이 있다.Therefore, as above, plasma is generated at 60Hz, which is a commercial frequency at room temperature, and a method of coding a diamond carbon thin film on the spectacle lens by chemical vapor deposition is prevented, so that scratches, ultraviolet rays, electromagnetic wave blocking, and blurring of the spectacle lens are prevented. It has the characteristics of extending the life of the lens and improving the health of the eyes.

Claims (1)

탄소(C)를 함유하고 있는 기체 또는 액체를 진공용기에 주입한 후, 실온에서 60㎐저주파로 플라즈마방전을 유도하여 기체를 해리시켜 CH, CH2, CH3가 분해된 활성종(radical)을 생성하여 이들이 렌즈에 부착되면서 다이아몬드성 탄소박막(a-C:H)을 코팅되는 것을 특징으로 하는 안경렌즈의 코팅방법.After injecting a gas or liquid containing carbon into a vacuum container, plasma discharge is induced at a low frequency of 60 에서 at room temperature to dissociate the gas, thereby degrading the radicals in which CH, CH 2 and CH 3 are decomposed. The method of coating the spectacle lens, characterized in that the diamond carbon film (aC: H) is coated as they are attached to the lens.
KR1019990039813A 1999-09-16 1999-09-16 The method of coating optical lens KR19990084134A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR2019990019953U KR200171150Y1 (en) 1999-09-16 1999-09-16 Optical lens covered with diamondlike carbon film
KR1019990039813A KR19990084134A (en) 1999-09-16 1999-09-16 The method of coating optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990039813A KR19990084134A (en) 1999-09-16 1999-09-16 The method of coating optical lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR2019990019953U Division KR200171150Y1 (en) 1999-09-16 1999-09-16 Optical lens covered with diamondlike carbon film

Publications (1)

Publication Number Publication Date
KR19990084134A true KR19990084134A (en) 1999-12-06

Family

ID=19611826

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019990039813A KR19990084134A (en) 1999-09-16 1999-09-16 The method of coating optical lens
KR2019990019953U KR200171150Y1 (en) 1999-09-16 1999-09-16 Optical lens covered with diamondlike carbon film

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR2019990019953U KR200171150Y1 (en) 1999-09-16 1999-09-16 Optical lens covered with diamondlike carbon film

Country Status (1)

Country Link
KR (2) KR19990084134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030071054A (en) * 2002-02-27 2003-09-03 주식회사 림스텍 Plasma coating method for plastic lenz

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403902B1 (en) * 2001-03-21 2003-11-03 한독옵텍 주식회사 An ophthalmic lens with multi-layer thin film for shielding ultra violet wavelength

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000831A (en) * 1987-03-09 1991-03-19 Minolta Camera Kabushiki Kaisha Method of production of amorphous hydrogenated carbon layer
JPH0560902A (en) * 1991-09-04 1993-03-12 Seiko Epson Corp Lens
US5268217A (en) * 1990-09-27 1993-12-07 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5508368A (en) * 1994-03-03 1996-04-16 Diamonex, Incorporated Ion beam process for deposition of highly abrasion-resistant coatings
US5547714A (en) * 1991-12-23 1996-08-20 Comision Nacional De Energia Atomica Ion beam deposition of diamond-like carbon films
KR960038428A (en) * 1995-04-25 1996-11-21 김광호 Diamond Carbon Coated Lens
KR970052563A (en) * 1995-12-19 1997-07-29 배순훈 How to prevent crack spread

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000831A (en) * 1987-03-09 1991-03-19 Minolta Camera Kabushiki Kaisha Method of production of amorphous hydrogenated carbon layer
US5268217A (en) * 1990-09-27 1993-12-07 Diamonex, Incorporated Abrasion wear resistant coated substrate product
JPH0560902A (en) * 1991-09-04 1993-03-12 Seiko Epson Corp Lens
US5547714A (en) * 1991-12-23 1996-08-20 Comision Nacional De Energia Atomica Ion beam deposition of diamond-like carbon films
US5508368A (en) * 1994-03-03 1996-04-16 Diamonex, Incorporated Ion beam process for deposition of highly abrasion-resistant coatings
KR960038428A (en) * 1995-04-25 1996-11-21 김광호 Diamond Carbon Coated Lens
KR970052563A (en) * 1995-12-19 1997-07-29 배순훈 How to prevent crack spread

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030071054A (en) * 2002-02-27 2003-09-03 주식회사 림스텍 Plasma coating method for plastic lenz

Also Published As

Publication number Publication date
KR200171150Y1 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
Choi et al. Diamond-like carbon protective anti-reflection coating for Si solar cell
US7033649B2 (en) Hydrophilic DLC on substrate with UV exposure
JPS63262474A (en) Plasma accumulation type coating and low temperature plasma method for forming the same
BE1019991A3 (en) METHOD FOR DEPOSITION OF LAYERS ON LOW PRESSURE PECVD GLASS SUBSTRATE.
JPH04280975A (en) Production of zno transparent conductive film
Oliveira Jr et al. Diamond like carbon used as antireflective coating on crystalline silicon solar cells
US20040235286A1 (en) Method of depositing an oxide layer on a substrate and a photovoltaic cell using said substrate
Yoshino et al. Large-area ZnO thin films for solar cells prepared by photo-induced metalorganic chemical vapor deposition
Kitagawa et al. Properties of hydrogenated amorphous silicon prepared by ECR plasma CVD method
Shabbir et al. Diamond-like carbon film deposited via electrochemical route for antireflection applications in photovoltaic
Kruzelecky et al. The preparation of amorphous Si: H thin films for optoelectronic applications by glow discharge dissociation of SiH4 using a direct‐current saddle‐field plasma chamber
Saloum et al. Structural, optical and electrical properties of plasma deposited thin films from hexamethyldisilazane compound
Fung et al. Effect of nitrogen incorporation into diamond-like carbon films by ECR-CVD
Lien et al. Influence of CH4 flow rate on properties of HF-PECVD a-SiC films and solar cell application
KR19990084134A (en) The method of coating optical lens
JPH08333684A (en) Formation of deposited film
Fuyuki et al. Deposition of high‐quality a‐Si: H by direct photodecomposition of Si2H6 using vacuum ultraviolet light
KR20140050057A (en) Antireflection glazing unit equipped with a porous coating
He et al. Optical properties of diamond-like carbon synthesized by plasma immersion ion processing
JPH0477281B2 (en)
Shin et al. Investigation of structural disorder using electron temperature in VHF-PECVD on hydrogenated amorphous silicon films for thin film solar cell applications
Will et al. a-Si: H deposited at high rate on the cathode of a rf-PECVD reactor
Inoue et al. High-rate deposition of amorphous silicon films by microwave-excited high-density plasma
Kruzelecky et al. The preparation of hydrogenated amorphous silicon by plasma-enhanced reactive evaporation
Sha et al. Optical properties of carbon films obtained by plasma-enhanced chemical vapor deposition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application