KR19990066876A - Background chemical treatment method for low lead ED - Google Patents

Background chemical treatment method for low lead ED Download PDF

Info

Publication number
KR19990066876A
KR19990066876A KR1019980059393A KR19980059393A KR19990066876A KR 19990066876 A KR19990066876 A KR 19990066876A KR 1019980059393 A KR1019980059393 A KR 1019980059393A KR 19980059393 A KR19980059393 A KR 19980059393A KR 19990066876 A KR19990066876 A KR 19990066876A
Authority
KR
South Korea
Prior art keywords
ions
ion
chemical conversion
lead
treatment
Prior art date
Application number
KR1019980059393A
Other languages
Korean (ko)
Inventor
겐지 쓰게
사또시 미야모또
슈헤이 야모또
Original Assignee
후지이 히로시
닛본 페인트 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후지이 히로시, 닛본 페인트 가부시끼가이샤 filed Critical 후지이 히로시
Publication of KR19990066876A publication Critical patent/KR19990066876A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

납을 함유하지 않거나, 또는 납을 저농도로밖에 함유하지 않는 저납 전착도장(電着塗裝)용의 전처리 방법을 제공하는 것을 과제로 한다.An object of the present invention is to provide a pretreatment method for low lead electrodeposition coating containing no lead or containing only low concentration of lead.

이의 해결수단으로는, 금속표면에 교류 임피던스(impedance)법에 의한 부식저항치가 2,500 Ω㎠ 이상이 되도록 인산아연 피막을 형성하는 것을 특징으로 하는, 전착욕 중의 납 농도가 300 ppm 이하, 바람직하게는 실질적으로 0 인 양이온형 전착도장에 유용한, 바탕 금속의 화성(化成)처리방법, 화성처리액 1 ℓ 중에 아연이온을 0.5 ~ 1.5 g, 인산이온을 5 ~ 30 g, 니켈이온을 0.1 ~ 4 g, 망간이온을 0.6 ~ 3 g, 불소이온을 0.05 g 이상, 구리이온을 5 ~ 20 ppm 및 피막 화성촉진제를 주성분으로 함유하는 화성처리액으로 침지처리하는 바탕 금속의 화성처리방법이 있다.As a solution for this, a zinc phosphate film is formed on the metal surface so that the corrosion resistance value by the AC impedance method is 2,500 Ωcm 2 or more, and the lead concentration in the electrodeposition bath is 300 ppm or less, preferably Chemical conversion treatment of the base metal, useful for substantially zero cationic electrodeposition coating, 0.5 to 1.5 g of zinc ions, 5 to 30 g of phosphate ions, and 0.1 to 4 g of nickel ions in 1 L of the chemical conversion solution There is a method of chemical conversion of a base metal, which is immersed in a chemical treatment solution containing 0.6 to 3 g of manganese ions, 0.05 g or more of fluorine ions, 5 to 20 ppm of copper ions, and a film formation accelerator.

Description

저납 ED용의 바탕 화성처리방법Background chemical treatment method for low lead ed

본 발명은 전착도장해야 하는 바탕 금속의 표면처리 방법에 관한 것이다. 특히, 납을 함유하지 않거나, 또는 납 함유량이 적은 전착도장욕을 사용하여 금속표면을 전착도장하는 경우의 바탕 금속의 표면처리 방법에 관한 것이다.The present invention relates to a surface treatment method of a base metal to be electrodeposition coated. In particular, the present invention relates to a method for surface treatment of a base metal in the case of electrodeposition coating of a metal surface using an electrodeposition coating bath containing no lead or low lead content.

자동차 보디 등의 금속을 도장하는 방법으로서, 최근에 양이온 전착도장이 널리 사용되고 있다. 이 주요 양이온 전착도료 조성물에는, 아미노기 함유수지로서 에폭시수지 베이스의 필름형성성 수지 및 가교제로서, 블록화 폴리이소시아네이트를 함유하는 것이 일반적이며, 여기에는 도장후의 도막 내구성을 유지하는 목적에서 녹방지 안료가 사용되고, 녹방지 안료로는 주로 염기성 납안료 등의 납 화합물이 사용되고 있다. 이 도료 조성물은 우수한 녹방지성을 가지나, 그 반면에 유독성이란 면에서 납의 사용은 제한되는 경향이 있고, 앞으로는 전착도장욕은 납을 함유하지 않는 것이 되어야 한다. 한편, 도막의 부착성 및 그 내구성을 확보하기 위하여 전착도장에 앞서 전착도장되어야 할 금속 (이하, 바탕 금속으로 약기함) 의 표면은 도 1 에서와 같이 화성(化成)처리액으로 전처리된다. 화성처리액은 통상적으로 아연, 망간, 니켈, 불화물 등을 포함하고, 이 처리에 의하여 바탕 금속의 표면에 인산아연 피막이 형성된다.As a method of coating metals such as automobile bodies, cationic electrodeposition coating has been widely used in recent years. The main cationic electrodeposition coating composition generally contains a blocked polyisocyanate as an amino group-containing resin as an epoxy resin-based film-forming resin and a crosslinking agent. An antirust pigment is used for the purpose of maintaining the coating film durability after coating. As a rust preventive pigment, lead compounds, such as basic lead pigment, are mainly used. This paint composition has excellent rust resistance, while lead use, on the other hand, tends to be limited in terms of toxicity, and the electrodeposition coating bath should be free of lead in the future. On the other hand, in order to secure the adhesion and durability of the coating film, the surface of the metal (hereinafter abbreviated as base metal) to be electrodeposited prior to electrodeposition coating is pretreated with a chemical treatment solution as shown in FIG. 1. The chemical conversion treatment liquid usually contains zinc, manganese, nickel, fluoride, and the like, and a zinc phosphate film is formed on the surface of the base metal by this treatment.

이러한 화성처리액은 전착도장욕에 납이 함유되는 것을 전제로 하여 처방되고 있고, 납을 함유하지 않거나 일정 농도 이상의 납을 함유하지 않는 전착도장욕을 사용하는 전착도장을 하는 경우, 종래의 화성처리액으로는 만족스러운 도막내구성을 얻지 못하고 있다.Such chemical treatment solution is prescribed on the premise that lead is contained in the electrodeposition coating bath, and in the case of electrodeposition coating using an electrodeposition coating bath containing no lead or containing a predetermined concentration or more of lead, conventional chemical treatment Satisfactory coating film durability is not obtained with the liquid.

본 발명의 목적은 납을 함유하지 않거나 납을 저농도로밖에 함유하지 않는 저납 전착도장용의 전처리 방법을 제공하는 것이다.An object of the present invention is to provide a pretreatment method for low lead electrodeposition coating that does not contain lead or contains only lead at low concentrations.

도 1 은 화성처리의 공정도,1 is a process chart of chemical conversion treatment,

도 2 는 교류 임피던스의 등가회로,2 is an equivalent circuit of AC impedance,

*도면의주요부분에대한부호의설명** Explanation of symbols on the main parts of the drawings *

RΩ : 용액의 저항,RΩ: resistance of the solution,

Cd: 계면의 전기용량,C d : capacitance of the interface,

Zf: 패러데이 임피던스,Z f : Faraday impedance,

Rs: Zf의 저항성분 (분극저항),R s : resistance component (polarization resistance) of Z f ,

Cs: Zf의 용량성분,C s : capacity component of Z f ,

Rct: 부식저항치R ct : Corrosion Resistance

본 발명은 금속표면에 교류 임피던스법에 의한 부식저항치가 2,500 Ω㎠ 이상이 되도록 인산아연 피막을 형성하는 것을 특징으로 하는, 전착욕 중의 납 농도가 300 ppm 이하인 양이온형 전착도장에 유용한 바탕 금속의 화성처리 방법에 관한 것이다.The present invention is characterized in that a zinc phosphate film is formed on the metal surface such that the corrosion resistance value of the alternating current method is 2,500 Ωcm 2 or more. The chemical composition of the base metal useful for the cationic electrodeposition coating having a lead concentration of 300 ppm or less in the electrodeposition bath is provided. It is about a processing method.

특히, 본 발명은 전착욕 중의 납 농도가 실질적으로 0 인 양이온형 전착도장에 유용한, 상기 바탕 금속의 화성처리 방법에 관한 것이다.In particular, the present invention relates to a method for chemically treating a base metal, which is useful for a cationic electrodeposition coating having a substantially zero lead concentration in an electrodeposition bath.

상세하게는, 본 발명은 처리액 1 ℓ 중에 아연이온을 0.5 ~ 1.5 g, 인산이온을 5 ~ 30 g, 니켈이온을 0.1 ~ 4 g, 망간이온을 0.6 ~ 3 g, 불소이온을 0.05 g 이상, 구리이온을 5 ~ 20 ppm 및 피막 화성촉진제를 주성분으로 함유하는 화성처리액으로 금속표면을 침지처리하는 상기 바탕 금속의 화성처리 방법에 관한 것이다.Specifically, the present invention provides 0.5 to 1.5 g of zinc ions, 5 to 30 g of phosphate ions, 0.1 to 4 g of nickel ions, 0.6 to 3 g of manganese ions and 0.05 g or more of fluorine ions in 1 L of the treatment liquid. In addition, the present invention relates to a chemical conversion treatment method for the base metal, which is immersed in a metal surface with a chemical conversion treatment solution containing 5 to 20 ppm of copper ions and a coating chemical accelerator as a main component.

양이온 전착도장되어야 할 바탕 금속 표면을 본 발명의 화성처리방법에 의하여 처리함으로써, 그 표면에 교류 임피던스법에 의한 부식저항치가 2,500 Ω㎠ 이상이 되는 산성 인산 아연 피막을 형성할 수 있다. 이러한 부식저항치를 가지는 피막이 형성됨으로써, 저납의 양이온 전착도장욕을 사용하고 전착도장을 해도 내구성이 우수한 도막을 형성할 수 있게 되었다.By treating the base metal surface to be subjected to cationic electrodeposition coating by the chemical conversion treatment method of the present invention, it is possible to form an acidic zinc phosphate film having a corrosion resistance of 2,500 Ωcm 2 or more by the AC impedance method on the surface. By forming a film having such a corrosion resistance value, it is possible to form a coating film having excellent durability even when electrodeposition coating is carried out using a low lead cationic electrodeposition coating bath.

본 발명의 화성처리는 실질적으로 납을 함유하지 않는 양이온 전착도장에 앞서, 처리될 바탕 금속의 표면을 처리하는데 바람직한 방법을 제공하는 것이다.The chemical conversion treatment of the present invention provides a preferred method for treating the surface of the underlying metal to be treated prior to cationic electrodeposition coating that is substantially free of lead.

본 발명이 대상으로 하는 납을 함유하지 않는 전착도료 조성물은 예를 들어 다음과 같은 것을 예시할 수 있다.The electrodeposition coating composition which does not contain the lead made into this invention can illustrate the following, for example.

대표적인 저납의 전착도료 조성물로서, 성분 (A) 아미노기 및 히드록실기의 양자를 가지는, 산중화에 의하여 물로 희석할 수 있는 평균분자량 500 ~ 20,000 의 필름형성성 수지 40 ~ 95 중량 %, 및 (B) 블록화 폴리이소시아네이트 가교제 5 ~ 60 중량 % 를 함유하는 음극 전착도료 조성물을 예시할 수 있다.As a typical low lead electrodeposition coating composition, 40 to 95% by weight of a film-forming resin having an average molecular weight of 500 to 20,000 which can be diluted with water by acid neutralization, having both component (A) amino and hydroxyl groups, and (B A negative electrodeposition coating composition containing 5 to 60% by weight of a blocked polyisocyanate crosslinking agent can be exemplified.

성분 (A) 의 필름 형성수지는, 예를 들어 아미노기 (예를 들어, 1 급 아미노기, 2 급 아미노기 및 3 급 아미노기) 및 히드록실기 (1 급 또는 2 급) 를 가지는 산에 의하여 물로 희석할 수 있는 평균분자량 500 ~ 20,000 의 수지이다. 이 경우, 아미노기의 양은 통상적으로 아민가로 표시되고, 30 ~ 150, 바람직하게는 45 ~ 80 의 범위내이다. 아민가가 부족하면 물 희석성이 부족하다. 히드록실기의 양은 1 급 히드록실가로 표시되고, 20 ~ 200, 바람직하게는 50 ~ 120 이다. 히드록실기는 가교점으로서 작용한다. 1 급 히드록실기 이외에도 2 급 히드록실기, 1 급 아미노기, 2 급 아미노기도 가교성 반응기로서 사용된다. 이러한 필름형성성 수지는, 에폭시수지, 에폭시함유 아크릴 공중합체수지 또는 폴리우레탄수지 등에 아미노기를 도입함으로써 형성되는 것이 일반적이다.The film-forming resin of component (A) may be diluted with water, for example, by an acid having an amino group (e.g., primary amino group, secondary amino group and tertiary amino group) and hydroxyl group (primary or secondary). The average molecular weight is 500 to 20,000 resins. In this case, the amount of the amino group is usually represented by an amine number, and is in the range of 30 to 150, preferably 45 to 80. Lack of amine titer lacks water dilution. The amount of hydroxyl group is represented by the primary hydroxyl value, and is 20 to 200, preferably 50 to 120. The hydroxyl group acts as a crosslinking point. In addition to the primary hydroxyl group, a secondary hydroxyl group, a primary amino group, and a secondary amino group are used as the crosslinkable reactor. Such a film-forming resin is generally formed by introducing an amino group into an epoxy resin, an epoxy-containing acrylic copolymer resin or a polyurethane resin.

블록이소시아네이트 가교제 (B) 는 일반적으로 다관능성 이소시아네이트의 이소시아네이트기를 블록화하여 사용된다.Block isocyanate crosslinking agent (B) is generally used by blocking the isocyanate group of the polyfunctional isocyanate.

다관능성 이소시아네이트로는, 지방족, 지환식 및/또는 방향족의, 1 분자 당 2 이상의 이소시아네이트기를 가지는 폴리이소시아네이트가 사용된다. 그 구체예로는 톨릴렌디이소시아네이트, 톨릴렌트리이소시아네이트, 4,4'-디페닐메탄디이소시아네이트, 이소포론디이소시아네이트 (IPDI), 크실릴렌디이소시아네이트 (XDI), 노르보르넨디이소시아네이트 (NBDI), 헥사메틸렌디이소시아네이트 (HMDI), 비페닐테트라이소시아네이트 및/또는 나프틸테트라이소시아네이트의 이성체 또는 이성체 혼합물 및 그 수소첨가물, 예를 들어 디시클로헥실메탄디이소시아네이트 등을 들 수 있다.As the polyfunctional isocyanate, polyisocyanates having two or more isocyanate groups per molecule of aliphatic, alicyclic and / or aromatic are used. Specific examples thereof include tolylene diisocyanate, tolylene triisocyanate, 4,4'-diphenylmethane diisocyanate, isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI), norbornene diisocyanate (NBDI), hexa Isomer or isomer mixture of methylene diisocyanate (HMDI), biphenyl tetra isocyanate, and / or naphthyl tetra isocyanate, and its hydrogenated substance, for example, dicyclohexyl methane diisocyanate, etc. are mentioned.

사용 가능한 블록제는 이 분야에서 잘 알려져 있고, n-부탄올, 2-에틸헥산올, 에틸렌글리콜모노부틸에테르, 시클로헥산올 등의 지방족 알코올; 페놀, 니트로페놀, 크레졸 및 노닐페놀 등의 페놀류; 디메틸케토옥심, 메틸에틸케토옥심, 메틸이소부틸케토옥심 등의 옥심류; 카프롤락탐 등의 락탐류가 있다.Blocking agents that can be used are well known in the art, and include aliphatic alcohols such as n-butanol, 2-ethylhexanol, ethylene glycol monobutyl ether and cyclohexanol; Phenols such as phenol, nitrophenol, cresol and nonylphenol; Oximes such as dimethyl keto oxime, methyl ethyl keto oxime and methyl isobutyl keto oxime; Lactams such as caprolactam.

상기와 같은 양이온 전착도료 조성물의 조제는, 양이온형 전착수지의 중화전 또는 중화후에, 금속화합물, 및 필요에 따라서 가교제를 배합한 후, 중화시키지 않은 것은 중화 후, 수분산화 즉 에멀젼화하거나, 또는 양이온형 전착수지를 에멀젼화한 것에 금속화합물 및 필요에 따라 가교제의 배합 등을 함으로써 이루어진다. 중화는 포름산, 아세트산, 젖산, 프로피온산, 구연산, 사과산, 타르타르산, 아크릴산, 술파민산 등의 수용성 유기산 및 염산, 인산 등의 무기산으로 행할 수 있다.Preparation of the cationic electrodeposition coating composition as described above, before or after the neutralization of the cationic electrodeposition resin, a metal compound and a crosslinking agent, if necessary, after neutralization, after neutralization, water oxidation or emulsification or cation The emulsification of the type electrodeposition resin is carried out by mixing a metal compound and, if necessary, a crosslinking agent. Neutralization can be performed with water-soluble organic acids, such as formic acid, acetic acid, lactic acid, propionic acid, citric acid, malic acid, tartaric acid, acrylic acid, and sulfamic acid, and inorganic acids, such as hydrochloric acid and phosphoric acid.

본 발명의 양이온 전착도료 조성물에는, 더욱 필요에 따라서 통상적으로 도료첨가물, 예를 들어 착색안료, 예를 들어 티탄화이트, 카본블랙, 벤칼라 등; 체질안료 예를 들어 탈크, 탄산칼슘, 마이카, 클레이, 실리카 등; 녹방지 안료, 예를 들어 인산아연, 인몰리브덴산 알루미늄 등의 무공해 녹방지 안료, 필요에 따라서 염기성 규산납 등을 안료분산수지에 분산시켜 페이스트로써 사용한다. 또한, 튐 방지제, 용제 및 경화성 촉매 등을 함유시킬 수도 있다.To the cationic electrodeposition coating composition of the present invention, a paint additive, for example, a coloring pigment, such as titanium white, carbon black, bencal, and the like, may be used as needed. Extender pigments such as talc, calcium carbonate, mica, clay, silica and the like; Anti-rust pigment, for example, a pollution-free rust preventive pigment, such as zinc phosphate and aluminum phosphate, basic lead silicate etc. are disperse | distributed to a pigment dispersion resin as needed, and it is used as a paste. Moreover, it can also contain a splash inhibitor, a solvent, a curable catalyst, etc.

양이온 전착도장은 공지의 방법에 따르는데, 일반적으로 고형분 농도가 약 5 ~ 40 중량 %, 바람직하게는 15 ~ 25 중량 % 가 되도록 상기 전착도료 조성물을 탈이온수 등으로 희석하고, 다시 pH 를 5.5 ~ 8.0 의 범위내로 조정하여 이루어지는 전착욕을 통상적으로 욕온 15 ~ 35 ℃ 로 조정하고, 부하전압 100 ~ 450 V 의 조건에서 피도장물을 음극으로 하여 행할 수 있다.Cationic electrodeposition coating is a well-known method. Generally, the electrodeposition coating composition is diluted with deionized water or the like so that the solid content concentration is about 5 to 40% by weight, preferably 15 to 25% by weight, and then the pH is 5.5 to 5.5. The electrodeposition bath formed by adjusting in the range of 8.0 can be normally adjusted to 15-35 degreeC of bath temperature, and can be performed using a to-be-coated object as a cathode on the conditions of 100-450V of load voltages.

전착도장에 의하여 형성되는 안료의 막두께는 특별히 제한되지 않으나, 일반적으로는 경화도막을 기초로 하여 5 ~ 60 ㎛, 바람직하게는 10 ~ 40 ㎛ 의 범위내가 적당하다. 또한 도막의 프린트 경화 온도는 일반적으로 100 ~ 200 ℃, 바람직하게는 160 ~ 180 ℃ 에서 약 10 ~ 30 분 동안의 시간 범위에서 프린트하는 것이 적절하다.Although the film thickness of the pigment formed by electrodeposition coating is not specifically limited, Generally, within the range of 5-60 micrometers, Preferably it is 10-40 micrometers based on a cured coating film. In addition, the print curing temperature of the coating film is generally appropriate to print at a time range of about 10 to 30 minutes at 100 to 200 ° C, preferably 160 to 180 ° C.

본 발명의 화성처리 방법으로 처리된 바탕 금속표면에는, 모두 금속표면의 교류 임피던스법에 의한 부식저항치가 2,500 Ω㎠ 이상이 되는 인산 아연 피막이 형성된다. 본 발명자들은, 금속표면에 이 범위의 교류 임피던스를 가지는 인산 아연 피막을 형성함으로써, 양이온 전착도장욕에 납이온을 함유하지 않는 경우에도, 전착도장에 의하여 내구성이 우수한 도막이 형성되는 것을 알아내었다.On the underlying metal surface treated by the chemical conversion treatment method of the present invention, a zinc phosphate film having a corrosion resistance of 2,500 Ωcm 2 or more by the alternating current impedance method of the metal surface is formed. The present inventors found that by forming a zinc phosphate film having an alternating current impedance in this range on a metal surface, even when no lead ions are contained in the cationic electrodeposition coating bath, a coating film having excellent durability is formed by electrodeposition coating.

본 발명의 화성처리방법은, 구리이온을 함유하는 산성 인산 아연 수용액을 화성처리제로 사용하는 점에서 특징을 갖는다.The chemical conversion treatment method of the present invention is characterized in that an acidic zinc phosphate aqueous solution containing copper ions is used as the chemical conversion treatment agent.

본 발명의 산성 인산 아연 수용액은 아연이온 0.5 ~ 1.5 g/ℓ, 인산이온 5 ~ 30 g/ℓ, 니켈이온 0.1 ~ 4 g/ℓ, 망간이온 0.6 ~ 3 g/ℓ, 불소이온 0.05 g/ℓ 이상, 구리이온 5 ~ 20 ppm 및 피막 화성촉진제를 주성분으로 한다.Acidic zinc phosphate aqueous solution of the present invention is zinc ion 0.5 ~ 1.5 g / L, phosphate ion 5 ~ 30 g / L, nickel ion 0.1 ~ 4 g / L, manganese ion 0.6 ~ 3 g / L, fluorine ion 0.05 g / L As mentioned above, it contains a copper ion 5-20 ppm and a film formation accelerator as a main component.

본 발명의 화성처리액에는 필수성분으로서 아연이온이 0.5 ~ 1.5 g/ℓ, 바람직하게는 0.7 ~ 1.2 g/ℓ 함유된다. 아연이온이 0.5 g/ℓ 미만일 때는 철계 표면에 균일한 인산염 피막이 생성되지 않고, 일부 블루 칼라 형상의 피막이 생성된다. 또한, 1.5 g/ℓ 를 초과하면 균일한 인산 피막은 형성되나, 철계 표면의 상기 피막은 스프레이 처리로 생성된 것과 같은 잎사귀 형상의 결정이 되기 쉬워 양이온형 전착도장 바탕으로는 적당하지 않다 (상기에서, 농도 단위 g/ℓ 는 화성처리액 1 ℓ 중에 그 성분이 g 단위로 함유되는 것을 의미한다. 이하, 본 명세서를 통하여 농도 단위 g/ℓ 는 동일한 의미로 사용한다).The chemical conversion treatment liquid of the present invention contains 0.5 to 1.5 g / l of zinc ions, preferably 0.7 to 1.2 g / l, as an essential component. When the zinc ion is less than 0.5 g / l, a uniform phosphate film is not formed on the iron surface, and some blue color film is formed. In addition, if the content exceeds 1.5 g / L, a uniform phosphate film is formed, but the film on the iron-based surface is liable to form a leaf-shaped crystal such as that produced by spray treatment, and is not suitable as a base for cationic electrodeposition coating. , The concentration unit g / L means that the component is contained in g units in 1 L of the chemical conversion treatment liquid, hereinafter, the concentration unit g / L is used in the same sense).

인산이온은 5 ~ 30 g/ℓ, 바람직하게는 10 ~ 20 g/ℓ 함유된다. 5 g/ℓ 미만일 때는 불균일한 피막을 형성하기 쉽고, 또한 30 g/ℓ 을 초과해도 본 발명 이상의 효과는 기대할 수 없고, 약품의 사용량이 많아져 경제적으로 불리하다.Phosphate ions are contained in an amount of 5 to 30 g / l, preferably 10 to 20 g / l. When it is less than 5 g / l, it is easy to form a nonuniform film, and even if it exceeds 30 g / l, the effect more than this invention cannot be expected, and the amount of chemicals used increases and it is economically disadvantageous.

니켈이온은 0.1 ~ 4 g/ℓ, 바람직하게는 0.3 ~ 2 g/ℓ 함유된다. 니켈이온은 망간이온의 공존하에서 화성 피막성능이 더욱 향상되고, 양이온형 전착도장후의 밀착성 및 내부식성이 더욱 향상된다. 니켈이온이 0.1 g/ℓ 미만일 때는 니켈이온의 첨가 효과가 나타나지 않고, 4 g/ℓ 보다 많은 경우에는 인산아연 피막량이 저하되어 내부식성에 나쁜 영향을 보이므로 바람직하지 못하다.Nickel ions are contained 0.1 to 4 g / l, preferably 0.3 to 2 g / l. In the presence of manganese ions, nickel ions further improve chemical conversion film performance, and further improve adhesion and corrosion resistance after cationic electrodeposition coating. When the nickel ion is less than 0.1 g / l, the addition effect of the nickel ion does not appear, and when the nickel ion is more than 4 g / l, the zinc phosphate coating amount is lowered, which is not preferable because it shows a bad effect on the corrosion resistance.

망간이온은 0.6 ~ 3 g/ℓ, 바람직하게는 0.8 ~ 2 g/ℓ 함유된다. 0.6 g/ℓ 미만일 때는 아연계 표면에 생성되는 피막 중의 망간 함유량이 적고, 양이온형 전착도장후의 바탕과 도막 밀착성이 불충분해진다. 3 g/ℓ 를 초과해도 본 발명 이상의 효과는 기대할 수 없어 경제적으로 불리해진다.Manganese ions contain 0.6 to 3 g / l, preferably 0.8 to 2 g / l. When it is less than 0.6 g / L, the manganese content in the film | membrane produced on a zinc type surface is small, and the base and coating film adhesiveness after cationic electrodeposition coating become inadequate. Even if it exceeds 3 g / L, the effect more than this invention cannot be expected, and it becomes economically disadvantageous.

불소이온은 0.05 g/ℓ 이상, 바람직하게는 0.1 ~ 2 g/ℓ 함유된다. 0.05 g/ℓ 미만일 때는 인산염 피막 결정의 미세화, 도장후의 내부식성 향상 및 저온 화성처리를 달성할 수 없다. 또한, 과잉량을 함유시켜도 본 발명 이상의 효과는 기대할 수 없어 경제적으로 불리하다. 불소이온은 바람직하게는 착불소이온으로 사용된다.The fluorine ion is 0.05 g / l or more, preferably 0.1 to 2 g / l. When it is less than 0.05 g / L, refinement of the phosphate film crystal, improvement of corrosion resistance after coating, and low temperature chemical conversion treatment cannot be achieved. Moreover, even if it contains an excess amount, the effect beyond this invention cannot be expected, and it is economically disadvantageous. Fluorine ions are preferably used as complex fluorine ions.

구리이온은 5 ~ 20 ppm, 바람직하게는 10 ~ 15 ppm 함유된다. 5 ppm 미만일 때는 도막밀착성 및 도막의 부착 내구성이 불충분하다. 한편, 20 ppm 을 초과하면 외관에 변화를 가져오므로 바람직하지 못하다.Copper ions are contained in 5 to 20 ppm, preferably 10 to 15 ppm. When it is less than 5 ppm, the coating film adhesion and the coating durability of the coating film are insufficient. On the other hand, when it exceeds 20 ppm, since the appearance changes, it is not preferable.

피막 화성촉진제로서, 아질산이온의 0.01 ~ 0.2 g/ℓ, 바람직하게는 0.04 ~ 0.15 g/ℓ, m-니트로벤젠술폰산이온의 0.05 ~ 2 g/ℓ, 바람직하게는 0.1 ~ 1.5 g/ℓ, 과산화수소 (H2O2100 % 환산) 의 0.5 ~ 5 g/ℓ, 바람직하게는 1 ~ 4 g/ℓ 및 히드록실아민 0.1 ~ 5 g/ℓ, 바람직하게는 0.5 ~ 2 g/ℓ 에서 선택되는 1 종 이상이 사용된다. 이들 촉진제가 규정량에 달하지 못하면, 철계 표면에서 충분한 피막 화성이 불가능하여 황색 녹 등이 일어나고, 또한 규정량을 초과하면 철계 표면에서 블루 칼라 형상의 불균일한 피막을 형성하기 쉽다.As film formation accelerator, 0.01 to 0.2 g / l of nitrite ion, preferably 0.04 to 0.15 g / l, 0.05 to 2 g / l of m-nitrobenzenesulfonic acid ion, preferably 0.1 to 1.5 g / l, hydrogen peroxide 1 selected from 0.5 to 5 g / l, preferably 1 to 4 g / l and hydroxylamine 0.1 to 5 g / l, preferably 0.5 to 2 g / l (in terms of 100% H 2 O 2 ) More than one species are used. If these accelerators do not reach the prescribed amount, sufficient film formation is impossible on the iron-based surface, yellow rust and the like occur, and when the amount exceeds the prescribed amount, it is easy to form a non-uniform film of blue color on the iron-based surface.

이들 주성분의 공급원으로는, 예를 들어 아연이온은 산화아연, 탄산아연, 질산아연 등, 인산이온은 인산, 인산아연, 인산망간 등, 니켈이온은 탄산니켈, 질산니켈, 염화니켈, 인산니켈 등, 망간이온은 탄산망간, 질산망간, 염화망간, 인산망간 등, 불소이온은 불소산, 붕소불화 수소산, 규소불화 수소산, 이들의 금속염 (예를 들어, 아연염, 니켈염. 단, 나트륨염은 소기의 효과를 달성하지 못하므로 제외한다) 을 이용할 수 있고, 또한 착불소이온원으로서 붕소불화물 및/또는 규소불화물인 착불화물 등을 사용할 수 있다. 피막 화성촉진제로는 아질산소다, 아질산암몬, m-니트로벤젠술폰산소다, 과산화수소, 히드록실아민 등을 이용할 수 있다.As a source of these main components, for example, zinc ions are zinc oxide, zinc carbonate, zinc nitrate, phosphate ions are phosphoric acid, zinc phosphate, manganese phosphate, etc., nickel ions are nickel carbonate, nickel nitrate, nickel chloride, nickel phosphate, etc. Manganese ions are manganese carbonate, manganese nitrate, manganese chloride, manganese phosphate, etc., fluorine ions are hydrofluoric acid, hydrofluoric acid, hydrofluoric acid silicon, metal salts thereof (e.g. zinc salt, nickel salt. The desired effect can not be achieved), and boron fluoride and / or silicon fluoride can be used as the complex fluorine ion source. Sodium nitrite, ammonium nitrite, sodium m-nitrobenzenesulfonate, hydrogen peroxide, hydroxylamine, etc. can be used as a film formation promoter.

본 발명의 처리액에는 질산이온 및/또는 염소산이온을 더욱 함유할 수도 있다. 질산이온은 1 ~ 10 g/ℓ, 바람직하게는 2 ~ 8 g/ℓ, 염소산이온은 0.05 ~ 2 g/ℓ, 바람직하게는 0.2 ~ 1.5 g/ℓ 의 농도로 사용된다. 질산이온의 공급원으로는 질산소다, 질산암몬, 질산아연, 질산망간, 질산니켈 등, 염소산이온의 공급원으로는 염소산소다, 염소산암몬 등일 수 있다.The treatment liquid of the present invention may further contain nitrate ions and / or chlorate ions. Nitrate ions are used at a concentration of 1 to 10 g / l, preferably 2 to 8 g / l, and chlorate to 0.05 to 2 g / l, preferably 0.2 to 1.5 g / l. The source of nitrate may be sodium nitrate, ammonium nitrate, zinc nitrate, manganese nitrate, nickel nitrate, and the like. The source of chlorate ions may be sodium chlorate, ammonium chlorate, or the like.

본 발명의 화성처리액에 의한 처리온도는 30 ~ 70 ℃, 바람직하게는 35 ~ 50 ℃ 일 수 있다. 지나치게 저온이면 피막 화성성이 나빠서 장시간의 처리를 요하게 된다. 지나치게 고온이면 피막 화성촉진제의 분해 및 처리액의 침전발생 등으로 처리액의 균형이 깨지기 쉬워 양호한 피막을 얻기 힘들다.The treatment temperature by the chemical conversion treatment liquid of the present invention may be 30 ~ 70 ℃, preferably 35 ~ 50 ℃. If the temperature is too low, the film formability is poor, requiring a long time treatment. If the temperature is too high, the balance of the treatment liquid is easily broken due to the decomposition of the film chemical accelerator and the occurrence of precipitation of the treatment liquid.

침지처리 시간은 15 초 동안 이상, 바람직하게는 30 ~ 120 초 동안이 좋다. 지나치게 단시간이면 소망하는 결정을 갖는 피막이 충분히 형성되지 않는다. 또한, 자동차 보디와 같이 복잡한 형상을 가지는 물건을 처리하는 경우에는, 실용적으로는 먼저 15 초 동안 이상, 바람직하게는 30 ~ 90 초 동안 침지처리하고, 이어서 2 초 동안 이상, 바람직하게는 5 ~ 45 초 동안 스프레이 처리할 수 있다. 또한, 침지처리시에 부착된 슬러지를 닦아내기 위해서, 스프레이 처리는 가능한 한 장시간하는 것이 바람직하다. 따라서, 본 발명에 의한 침지처리에는 이러한 침지처리-스프레이 처리의 처리 양태도 포함되는 것이다.Immersion treatment time is 15 seconds or more, Preferably it is 30 to 120 second. If it is too short, the film which has a desired crystal | crystallization will not fully be formed. In addition, in the case of processing an object having a complicated shape, such as an automobile body, it is practically first immersed for at least 15 seconds, preferably 30 to 90 seconds, and then at least 2 seconds, preferably 5 to 45 seconds. Spray for seconds. In addition, in order to wipe off the sludge adhering at the time of immersion treatment, it is preferable to carry out a spray process for as long as possible. Therefore, the immersion process by this invention also includes the process aspect of this immersion process-spray process.

본 발명은 또한, 전술한 구성으로 이루어지는 처리액을 제공하는 농후 처리제에 관한 것이다. 이 농후 처리제에는 아연이온 공급원, 인산이온 공급원, 니켈이온 공급원, 망간이온 공급원, 불소이온 공급원 및 구리이온 공급원을, 처리액을 1 ~ 4 중량/체적 % 로 희석함으로써 상기 구성의 처리액을 구성하기에 충분한 양으로 함유하고 있을 수도 있다. 그러나, 그 때 나트륨계 화합물은 함유해서는 안된다. 이것은 망간이온 및/또는 불소이온과 나트륨이온이 공존하면, 침전을 형성하여 당해 처리액의 조제상 문제를 일으키기 때문이다. 따라서, 나트륨 화합물을 사용하는 경우에는, 별도의 액체에서 처리욕에 첨가할 필요가 있다.The present invention also relates to a thickening agent which provides a treatment liquid having the above-described configuration. This thickening agent comprises a zinc ion source, a phosphate ion source, a nickel ion source, a manganese ion source, a fluorine ion source, and a copper ion source by diluting the treatment liquid to 1 to 4% by weight / volume% to form a treatment liquid of the above constitution. It may contain in sufficient quantity. However, the sodium compound should not be contained at that time. This is because when manganese ions and / or fluorine ions and sodium ions coexist, precipitation forms and causes problems in preparation of the treatment liquid. Therefore, when using a sodium compound, it is necessary to add to a process bath in a separate liquid.

이상의 구성으로 이루어지는 본 발명에 의하면, 철계 표면뿐만 아니라, 아연계 표면, 또는 양자로 동시에 구성되는 금속표면에 대하여, 양이온형 전착도장의 바탕으로서 밀착성 및 내부식성 모두가 충분한 효과를 보이는 피막을 저온처리로 형성할 수 있다.According to the present invention having the above-described configuration, a low temperature treatment of a coating film having both sufficient adhesion and corrosion resistance as a basis for the cationic electrodeposition coating is performed not only on the iron-based surface, but also on the zinc-based surface or a metal surface composed of both. It can be formed as.

화성처리된 금속표면의 교류 임피던스는 소토지마 시노부 (外島 忍) 저, 「기초전기화학」[제 373 페이지 ; 아사쿠라쇼뗑 (1967 년 7 월 10 일) 발행] 및 후지시마 아키라, 아이자와 마스오 저, 「전기화학측정법」[제 219 ~ 222 페이지 ; 기호오또오 출판 (1984 년 11 월 15 일) 발행] 에 기재된 원리를 바탕으로 하여 다음과 같이 측정할 수 있다.The alternating current impedance of the chemically treated metal surface is described in Shintobu Sotojima, "Basic Electrochemistry" [Page 373; Published by Asakura Shoen (July 10, 1967)] and Akira Fujishima, Masuo Aizawa, “Electrochemical Measurements” [pages 219-222; Based on the principles described in Kiyoto Publishing (November 15, 1984), the following measurements can be made.

부식액을 채운 셀에 측정해야 할 금속판을 놓고, 주파수를 소인 (掃引) 하여 임피던스를 측정하고, 도 2 에 의한 등가회로 해석에 의하여 부식저항치를 산출하였다.A metal plate to be measured was placed in a cell filled with a corrosion solution, the impedance was measured by sweeping the frequency, and the corrosion resistance value was calculated by an equivalent circuit analysis according to FIG. 2.

[임피던스 측정조건][Impedance measurement condition]

주파수 범위 : 100 KHz ~ 50 MHzFrequency range: 100 KHz to 50 MHz

인가전압 : 침지 전위에 대하여 10 ㎷Applied voltage: 10 Ω against immersion potential

부식액 : 5 중량 % 식염수용액Corrosion solution: 5 wt% saline solution

측정면적 : 1 ㎠Measuring area: 1 ㎠

측정개시 : 침지 30 분후Start of measurement: 30 minutes after immersion

등가회로 : 도 2 에 나타낸 것을 사용함Equivalent circuit: use the one shown in FIG.

측정기 : 측정장치에 사용된 측정기는 하기와 같음Measuring instruments: Measuring instruments used in measuring devices are as follows.

1) 포텐셔스타트: HA-501 G (홋토오덴코 (주) 제조)1) Potential Starter: HA-501G (manufactured by Hoto Denko Co., Ltd.)

2) 주파수 특성 에널라이저: S-5720 C ((주) 에느에프 카이로세쯔브로크)2) Frequency characteristic analyzer: S-5720 C (Neef Cairo Setbro)

3) 교류 임피던스측정 소프트: HZ-1 AC (홋토오덴코 (주) 제조)3) AC impedance measurement software: HZ-1 AC (manufactured by Hoto Denko Co., Ltd.)

[실시예]EXAMPLE

이하에서, 본 발명을 실시예에 의하여 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in detail by way of examples.

실시예 1 ~ 3Examples 1 to 3

(I) 바탕 금속의 화성처리(I) chemical conversion of base metal

도 1 에서와 같은 탈지, 물 세정 및 표면 조정한 7 ㎝ × 15 ㎝ 의 금속판 SPCC-SD (G 3141) 를, 그 조성을 표 1 에 나타낸 42 ℃ 의 화성처리액 중에 침지시켜 화성처리하였다. 침지시간도 액중에 기재하였다.The 7 cm x 15 cm metal plate SPCC-SD (G 3141) degreased, water-washed, and surface-adjusted as in FIG. 1 was immersed in the chemical treatment solution of 42 degreeC shown in Table 1, and chemically processed. Immersion time was also described in liquid.

표중에서, 표준 인산염 화성처리액이란 처리액 1 ℓ 중에 다음의 각 성분을 함유하는 것을 말한다.In the table, the standard phosphate chemical treatment liquid means that the following components are contained in 1 liter of the treatment liquid.

[표준 인산 화성처리액][Standard Phosphate Chemical Treatment]

아연이온 1.0 g/ℓZinc ion 1.0 g / ℓ

인산이온 15.0 g/ℓPhosphate ions 15.0 g / ℓ

니켈이온 1.0 g/ℓNickel ion 1.0 g / ℓ

망간이온 0.6 g/ℓManganese ion 0.6 g / ℓ

질산이온 6.0 g/ℓNitrate ions 6.0 g / ℓ

아질산이온 0.14 g/ℓNitrite ion 0.14 g / ℓ

불화규소이온 1.0 g/ℓSilicon fluoride 1.0 g / ℓ

전체 산 21.0 포인트21.0 points total mountain

유리 (遊離) 산 0.7 포인트Yuri mountain 0.7 points

화성처리된 금속판은, 도 1 에서와 같이 다시 물 세정, 정수 세정, 건조를 거쳐 화성처리 금속판을 얻었다.The chemically treated metal plate was again washed with water, purified water and dried to obtain a chemically treated metal plate as in FIG. 1.

도 1 에서와 같은 화성처리 전후의 각 공정에 대하여 아래에서 설명하기로 한다.Each process before and after the chemical conversion treatment as shown in FIG. 1 will be described below.

(a) 탈지(a) degreasing

알칼리성 탈지제 「사프크리나 SD 250」(닛뽕페인트사 제조) A 와 B 의 혼합물 (수중 농도 A 가 1.5 중량 %, B 가 0.7 중량 % 로 조정) 중에 42 ℃ 에서 2 분 동안 침지시켰다.It was immersed for 2 minutes at 42 degreeC in the mixture of alkaline degreasing agent "Sapcleaner SD 250" (made by Nippon Paint, Inc.) A and B (concentration A in water 1.5 weight%, B adjusted to 0.7 weight%).

(b) 물 세정(b) water cleaning

수돗물을 사용하여 실온에서 15 초 동안 물 세정한다.Rinse for 15 seconds at room temperature using tap water.

(c) 표면조정(c) surface adjustment

표면조정제「사프화인 5N-10」(닛뽕페인트사 제조, 농도 0.1 중량 %) 중에서 실온에서 15 초 동안 침지처리한다.It is immersed for 15 seconds at room temperature in the surface adjuster "Sapphire 5N-10" (made by Nippon Paint, concentration 0.1 weight%).

(d) 물 세정(d) water cleaning

수돗물을 사용하여 실온에서 15 초 동안 물 세정한다.Rinse for 15 seconds at room temperature using tap water.

(e) 정수 세정(e) water purification

이온 교환수를 사용하여 실온에서 15 초 동안 침지처리한다.Immerse at room temperature for 15 seconds with ion-exchanged water.

(f) 건조(f) drying

100 ℃ 의 열풍으로 10 분 동안 건조시킨다.It is dried for 10 minutes by hot air at 100 ° C.

(Ⅱ)화성처리 금속판의 교류 임피던스 측정 (Ⅱ) AC Impedance Measurement of Chemically Treated Metal Plate

화성처리 금속판은, 앞서 기재된 방법에 의하여 교류 임피던스를 측정하였다.The chemical conversion treatment metal plate measured the AC impedance by the method described above.

(Ⅲ)화성처리 금속판에 대한 양이온 전착도장 (III) Cationic electrodeposition coating on chemically treated metal sheet

합성예 1 : 기체수지의 합성Synthesis Example 1 Synthesis of Gas Resin

교반기, 냉각기, 질소도입관, 온도계 및 적하 로트를 부착한 플라스크를 준비하였다. 이 플라스크에 2,4-/2,6-톨릴렌디이소시아네이트 (중량비=8/2) 92 g, 메틸이소부틸케톤 95 g 및 디부틸주석디라우레이트 0.5 g 을 첨가하고, 이것을 교반하면서 메탄올 21 g 을 더욱 적하하였다. 반응은 실온에서 시작하여 발열에 의하여 60 ℃ 까지 승온시켰다. 그 후, 30 분 동안 반응을 계속한 후, 에틸렌글리콜모노-2-에틸헥실에테르 57 g 을 적하 로트에서 적하하고, 다시 비스페놀 A-프로필렌옥시드 5 몰 부가체 42 g 을 첨가하였다. 반응은 주로 60 ℃ ~ 65 ℃ 의 범위에서 행하고, IR 스펙트럼을 측정하면서 이소시아네이트기가 소실될 때까지 계속하였다. 이어서, 비스페놀 A 와 에피클로로히드린으로 합성한 에폭시 당량 188 의 에폭시수지 365 g 을 첨가하여 125 ℃ 까지 승온시켰다. 그 후, 벤질디메틸아민 1.0 g 을 첨가하고, 에폭시 당량 410 이 될 때까지 130 ℃ 에서 반응시켰다. 계속해서, 비스페놀 A 87 g 을 반응용기에 넣어 120 ℃ 에서 반응시켰을 때 에폭시 당량이 1190 이 되었다. 그 후, 이것을 냉각시켜 디에탄올아민 11 g, N-메틸에탄올아민 24 g, 및 아미노에틸에탄올아민의 케티민화물 (79 중량 % 메틸이소부틸케톤 용액) 25 g 을 첨가하고, 110 ℃ 에서 2 시간 동안 반응시켰다. 그 후, 메틸이소부틸케톤으로 비휘발분 80 % 가 될 때까지 희석시키고, 옥사졸리돈 고리 함유 기체수지를 얻었다.A flask equipped with a stirrer, a cooler, a nitrogen introduction tube, a thermometer, and a dropping lot was prepared. 92 g of 2,4- / 2,6-tolylene diisocyanate (weight ratio = 8/2), 95 g of methyl isobutyl ketone, and 0.5 g of dibutyltin dilaurate were added to this flask, and 21 g of methanol was stirred with stirring. Was dropped further. Reaction started at room temperature and heated up to 60 degreeC by exotherm. Then, after continuing reaction for 30 minutes, 57 g of ethylene glycol mono-2-ethylhexyl ethers were dripped at the dropping lot, and 42 g of bisphenol A-propylene oxide 5 mol adducts were added again. The reaction was carried out mainly in the range of 60 ° C to 65 ° C, and continued until the isocyanate group disappeared while measuring the IR spectrum. Next, 365 g of epoxy resins of epoxy equivalent 188 synthesized with bisphenol A and epichlorohydrin were added, and the temperature was raised to 125 ° C. Thereafter, 1.0 g of benzyldimethylamine was added and reacted at 130 ° C until the epoxy equivalent was 410. Subsequently, when 87 g of bisphenol A was added to the reaction vessel and reacted at 120 ° C., the epoxy equivalent was 1190. After cooling, 11 g of diethanolamine, 24 g of N-methylethanolamine, and 25 g of ketimide (79 wt% methyl isobutyl ketone solution) of aminoethylethanolamine were added thereto, and the mixture was stirred at 110 ° C for 2 hours. Reacted for a while. Thereafter, the mixture was diluted with methyl isobutyl ketone until the nonvolatile content became 80%, and an oxazolidone ring-containing gas resin was obtained.

합성예 2 : 블록화 이소시아네이트의 합성Synthesis Example 2 Synthesis of Blocked Isocyanate

교반기, 냉각기, 질소도입관, 온도계 및 적하 로트를 부착한 플라스크를 준비하였다. 이 플라스크에 헥사메틸렌디이소시아네이트의 3 량체 (콜로네이트 HX : 니혼폴리우레탄 가부시끼가이샤 제조) 199 g 과 ε-카프롤락탐 11.3 g 을 첨가하였다. 그리고, 플라스크 내의 내용물을 80 ℃ 까지 승온시키고, 균일하게 용해시켰다. 이 때, 메틸이소부틸케톤 32 g 및 디부틸주석디라우릴레이트 0.05 g 및 1,8-디아자비시클로 (5,4,0)-7-운데센 0.05 g 을 첨가하였다. 이것을 질소를 거품내면서 교반하고 있는 지점에서, 메틸에틸케토옥심 78.3 g 을 발열에 주의하면서 적하 로트에서 1 시간 동안 적하하였다. IR 스펙트럼으로 이소시아네이트기가 소실될 때까지 반응시켜 블록화 이소시아네이트 가교제를 얻었다.A flask equipped with a stirrer, a cooler, a nitrogen introduction tube, a thermometer, and a dropping lot was prepared. To this flask was added 199 g of a trimer of hexamethylene diisocyanate (Colonate HX: manufactured by Nippon Polyurethane Co., Ltd.) and 11.3 g of ε-caprolactam. And the content in the flask was heated up to 80 degreeC, and it melt | dissolved uniformly. At this time, 32 g of methyl isobutyl ketone, 0.05 g of dibutyltin dilauryllate and 0.05 g of 1,8-diazabicyclo (5,4,0) -7-undecene were added. 78.3 g of methyl ethyl keto oxime was dripped at the dripping lot for 1 hour, paying attention to exotherm at the point which this was stirred, blowing nitrogen. The reaction was carried out until the isocyanate group disappeared in the IR spectrum to obtain a blocked isocyanate crosslinking agent.

합성예 3 : 안료분산수지의 조제Synthesis Example 3 Preparation of Pigment Dispersion Resin

교반기, 냉각기, 질소도입관, 온도계 및 적하 로트를 부착한 플라스크를 준비하였다. 이 플라스크에 이소포론디이소시아네이트 222.0 g 을 첨가하고, 메틸이소부틸케톤 39.1 g 으로 희석시킨 후에 디부틸주석디라우릴레이트 0.2 g 을 첨가하였다. 50 ℃ 로 승온시킨 후, 2-에틸헥산올 131.5 g 을 질소를 거품내면서 교반하고 있는 지점에서 적하 로트에서 2 시간 동안 적하하였다. 적당히 냉각시킴으로써, 이 동안의 반응 온도를 50 ℃ 로 유지하였다. 그 결과, 2-에틸헥산올 하프블록화 이소포론디이소시아네이트를 얻었다 (고형분 90 %).A flask equipped with a stirrer, a cooler, a nitrogen introduction tube, a thermometer, and a dropping lot was prepared. 222.0 g of isophorone diisocyanate were added to this flask, and after diluting with 39.1 g of methyl isobutyl ketone, 0.2 g of dibutyltin dilaurylate was added. After heating up at 50 degreeC, 131.5 g of 2-ethylhexanols were dripped at the dropping lot for 2 hours at the point where nitrogen is bubbled and stirred. By moderately cooling, the reaction temperature during this time was kept at 50 degreeC. As a result, 2-ethylhexanol half-blocked isophorone diisocyanate was obtained (solid content 90%).

교반기, 냉각기, 질소도입관, 온도계 및 적하 로트를 부착한 플라스크를 준비하였다. 이 플라스크에 에폰 828 (쉐르가가꾸사 제조 에폭시수지) 376.0 g, 비스페놀 A 114.0 g 을 첨가하여 질소 분위기하에서 130 ℃ 로 가열하고, 디메틸벤질아민 0.75 g 을 첨가하여 발열반응 170 ℃ 에서 1 시간 동안 반응시킴으로써, 490 g 의 에폭시 당량을 갖는 비스페놀 A 형 에폭시수지를 얻었다. 이어서, 140 ℃ 로 냉각한 후, 상기 2-에틸헥산올 하프블록화 이소포론디이소시아네이트 198.4 g 을 첨가하고, 140 ℃ 로 1 시간 동안 유지하여 반응시킨 후에, 에틸렌글리콜모노부틸에테르 161.8 g 을 첨가하여 반응혼합물을 100 ℃ 로 냉각시켰다. 여기에, 티오디에탄올 366.0 g, 디메틸롤프로피온산 134.0 g 및 탈이온수 144.0 g 을 첨가하여 70 ℃ 내지 75 ℃ 에서 0.241 의 산가가 얻어질 때까지 반응시키고, 이어서 에틸렌글리콜모노부틸에테르 353.3 g 으로 희석시켜 술포늄화율 82 % 의 안료분산수지를 얻었다 (고형분 50 %).A flask equipped with a stirrer, a cooler, a nitrogen introduction tube, a thermometer, and a dropping lot was prepared. 376.0 g of EPON 828 (epoxy resin manufactured by SHERGAGAKU Co., Ltd.) and 114.0 g of bisphenol A were added to the flask, and the mixture was heated to 130 ° C. under a nitrogen atmosphere, and 0.75 g of dimethylbenzylamine was added to react the exotherm at 170 ° C. for 1 hour. The bisphenol-A epoxy resin which has an epoxy equivalent of 490g was obtained by doing this. Subsequently, after cooling to 140 degreeC, 198.4 g of said 2-ethylhexanol half-blocking isophorone diisocyanate were added, it was made to react at 140 degreeC for 1 hour, and 161.8 g of ethylene glycol monobutyl ether was added, and it reacted. The mixture was cooled to 100 ° C. To this, 366.0 g of thiodiethanol, 134.0 g of dimethylolpropionic acid, and 144.0 g of deionized water were added thereto, followed by reaction at 70 ° C to 75 ° C until an acid value of 0.241 was obtained, followed by dilution with 353.3 g of ethylene glycol monobutyl ether. A pigment dispersion resin having a sulfonation ratio of 82% was obtained (solid content 50%).

합성예 4 : 안료분산 페이스트의 조제Synthesis Example 4 Preparation of Pigment Dispersion Paste

합성예 3 에서 얻은 안료분산수지에 카본블랙, 카올린, 이산화티탄을 하기의 배합으로 분산시키고, 샌드밀로 분쇄하고 조제하여 안료분산 페이스트를 얻었다.Carbon black, kaolin and titanium dioxide were dispersed in the pigment dispersion resin obtained in the synthesis example 3 by the following formulation, and it grind | pulverized with the sand mill, and obtained the pigment dispersion paste.

성분ingredient 중량부Parts by weight 안료분산수지(고형분 50 %)Pigment Dispersion Resin (50% Solid) 6060 카아본블랙Carbon black 22 카올린kaoline 1515 이산화티탄Titanium dioxide 5353 탈이온수Deionized water 4040

합성예 1 에서 얻은 기체수지 350 g (고형분) 과, 합성예 2 에서 얻은 가교제 150 g (고형분) 을 혼합하고, 에틸렌글리콜모노-2-에틸헥실에테르를 고형분에 대하여 3 % (15 g) 가 되도록 첨가하였다. 이어서, 빙초산을 중화도 40.5 % 가 되도록 첨가하여 중화시키고, 이온교환수를 첨가하여 천천히 희석시키고, 계속하여 고형분이 36.0 % 가 되도록 감압하에서 메틸이소부틸케톤을 제거하였다.350 g (solid content) of the gas resin obtained in Synthesis Example 1 and 150 g (solid content) of the crosslinking agent obtained in Synthesis Example 2 were mixed, so that ethylene glycol mono-2-ethylhexyl ether was 3% (15 g) based on the solid content. Added. Then, glacial acetic acid was added to neutralize to a degree of neutralization of 40.5%, neutralized by addition of ion-exchanged water, and then methyl isobutyl ketone was removed under reduced pressure so that the solid content was 36.0%.

이렇게 하여 얻어진 에멀젼 2000 g 에, 합성예 4 에서 얻어진 안료분산 페이스트 460.0 g, 이온교환수 2252.0 g, 수지고형분에 대하여 1.0 중량 % 의 디부틸주석옥사이드를 첨가하여 혼합하고, 고형분이 20.0 중량 % 인 전착도료를 조제하였다.Into the emulsion thus obtained, 460.0 g of the pigment dispersion paste obtained in Synthesis Example 4, 2252.0 g of ion-exchanged water, and 1.0% by weight of dibutyltin oxide were added to the resin solid, and the electrodeposited solid was 20.0% by weight. The paint was prepared.

납 함유 전착도료는 상기 납 프리 전착도료욕에 납 아세테이트를 사용하여, 납이온으로서 1000 ppm 을 첨가하여 조제하였다,.The lead-containing electrodeposition paint was prepared by using lead acetate in the lead-free electrodeposition paint bath and adding 1000 ppm as lead ions.

이들 전착도료욕에, 음극으로서 상기 표면처리 냉연강판을 침지하고, 건조막 두께가 20 μ 가 되도록 전착도장한 후에 160 ℃ × 10 분 동안 경화시켜 도막을 평가하였다.In the electrodeposition paint bath, the surface-treated cold rolled steel sheet was immersed as a cathode, electrodeposited to have a dry film thickness of 20 µ, and then cured for 160 ° C x 10 minutes to evaluate the coating film.

(Ⅳ) 전착도막의 내구성 평가(Ⅳ) Evaluation of Durability of Electrodeposited Film

얻어진 전착도장판의 내구성을 다음의 2 가지 방법으로 실험하였다.The durability of the obtained electrodeposition coating plate was tested by the following two methods.

(1) CCT 시험 (사이클 부식시험)(1) CCT test (cycle corrosion test)

크로스커트 (십자 문자에 절단선을 새김) 를 새긴 후, 사이클 부식시험 (CCT) 을 100 사이클 행하고, 100 사이클 후에 꺼내어 외관을 육안으로 평가하였다.After carving the crosscut (cutting cross hairs), 100 cycles of the cycle corrosion test (CCT) were performed, and after 100 cycles, the appearance was visually evaluated.

또한, CCT 의 1 사이클에는, 다음과 같은 환경조건이 부여되었다 :In addition, one cycle of the CCT was given the following environmental conditions:

염수분무 시험 (SST : 5 % NaCl × 35 ℃) 2 시간Brine spray test (SST: 5% NaCl × 35 ℃) 2 hours

→ 고온고습조건 (98 % RH × 40 ℃) 2 시간→ 2 hours under high temperature and humidity conditions (98% RH × 40 ℃)

→ 건조조건 (60 ℃) 4 시간→ 4 hours of drying condition (60 ℃)

(2) SDT 시험 (내염수침지 시험)(2) SDT Test (Saline Immersion Test)

시험편에 세로 방향의 커트를 넣고, 5 % 의 식염수 중에 40 ℃ 에서 240 시간 동안 침지시킨 후, 커트부를 테이프 박리시켜 박리도를 평가하였다.The cut in the vertical direction was put in the test piece, and it was immersed in 5% saline at 40 degreeC for 240 hours, and the cut part was peeled off to evaluate peelability.

화성처리액 조성, 처리시간, 부식저항치 및 내부식성 측정결과를 표 1 에 기재하였다.Table 1 shows the chemical composition treatment time, treatment time, corrosion resistance and corrosion resistance measurement results.

표 1 중에 있어서의 CCT 시험 및 SDT 시험의 평가 결과의 판정 기준은 다음과 같이 하였다.The criterion of the evaluation result of the CCT test and the SDT test in Table 1 was as follows.

CCT : ○ 양측 최대 녹 또는 팽창폭이 0 ~ 3 ㎜CCT: ○ Maximum rust or expansion width on both sides 0 ~ 3 mm

× 양측 최대 녹 또는 팽창폭이 3 ㎜ 이상× Maximum rust or inflation width on both sides 3 mm or more

SDT : ○ 박리 없음SDT: ○ No Peel

△ 박리폭이 0 ~ 1 ㎜△ peeling width 0 ~ 1 mm

× 박리폭이 1 ㎜ 이상× 1 mm or more peeling width

비교예 1Comparative Example 1

화성처리액으로서 표준 인산염 화성처리액을 그대로 사용한 것 이외에는 실시예 1 과 동일하게 하여, 화성처리 및 양이온 전착도장을 실시하여 화성처리 금속판의 교류 임피던스와 전착도장도막의 내부식성을 평가하였다. 결과를 표 1 에 기재하였다.A chemical conversion treatment and a cationic electrodeposition coating were carried out in the same manner as in Example 1 except that the standard phosphate chemical treatment solution was used as the chemical conversion treatment liquid, and the alternating current impedance of the chemical conversion metal plate and the corrosion resistance of the electrodeposition coating film were evaluated. The results are shown in Table 1.

비교예 2Comparative Example 2

화성처리액으로서 표준 인산염 화성처리액에서 니켈이온을 제거하고, 그 대신에 구리이온을 10 ppm 첨가한 것을 사용한 것 이외에는 실시예 1 과 동일하게 하여, 화성처리 및 양이온 전착도장을 실시하여 화성처리 금속판의 교류 임피던스와 전착도장도막의 내부식성을 평가하였다. 결과를 표 1 에 기재하였다.The chemical conversion treatment was carried out in the same manner as in Example 1 except that nickel ions were removed from the standard phosphate chemical treatment solution and 10 ppm copper ions were added instead. AC impedance and corrosion resistance of electrodeposition coating were evaluated. The results are shown in Table 1.

실시예Example 처리액 조성Treatment liquid composition 처리시간(초)Processing time (seconds) 산성인산염처리후의 금속판의 교류인피던스(Ω㎠)AC impedance (Ω㎠) of metal plate after acid phosphate treatment 전착도장후의 도막의 내구성Durability of coating after electrodeposition coating CCTCCT SDTSDT Pb있음With Pb 없음none Pb있음With Pb 없음1) None 1) 1One 표준화성처리액 + Cu 5 ppmStandardization Treatment Solution + Cu 5 ppm 120120 28002800 22 표준화성처리액 + Cu 10 ppmStandardized Treatment Solution + Cu 10 ppm 120120 29002900 33 표준화성처리액 + Cu 20 ppmStandardized Treatment Solution + Cu 20 ppm 120120 30003000 비교예1Comparative Example 1 표준화성처리액만Only standardized treatment liquid 120120 12501250 ×× ×× 비교예2Comparative Example 2 표준화성처리액에서 Ni 를 제거, Cu를 10 ppm 첨가Remove Ni from standardized treatment solution and add 10 ppm of Cu 120120 23502350 ×× ×× 1) 양이온 전착도장욕 중의 납의 유무1) presence of lead in cationic electrodeposition coating bath

본 발명의 방법에 의하여 화성처리된 금속은 그 표면에 높은 부식저항치의 피막을 형성할 수 있다. 이 부식저항치의 도막을 가지는 금속판은 납을 함유하지 않는, 또는 납을 조금밖에 함유하지 않는 전착욕 중에서 양이온 전착도장을 행하는 경우에도, 우수한 내부식성을 가지는 도막을 형성할 수 있다. 또한, 본 발명의 화성처리방법에 의하면, 일반적으로 화성처리공정의 최후에 이루어지는 크롬 세정도 필요로 하지 않아, 중금속의 사용을 더욱 줄일 수 있다.The metal converted by the method of the present invention can form a coating of high corrosion resistance on its surface. The metal plate having a coating film having a corrosion resistance value can form a coating film having excellent corrosion resistance even when the cationic electrodeposition coating is performed in an electrodeposition bath containing no lead or only a little lead. In addition, according to the chemical conversion treatment method of the present invention, chromium cleaning which is generally performed at the end of the chemical conversion treatment step is not required, and the use of heavy metals can be further reduced.

Claims (12)

금속표면에 교류 임피던스법에 의한 부식저항치가 2,500 Ω㎠ 이상이 되도록 인산아연 피막을 형성하는 것을 특징으로 하는, 전착욕 중의 납 농도가 300 ppm 이하인 양이온형 전착도장에 유용한 바탕 금속의 화성처리 방법.A zinc phosphate coating is formed on a metal surface such that the corrosion resistance value of the alternating current method is 2,500 Ωcm 2 or more. The method for chemically treating a base metal useful for a cationic electrodeposition coating having a lead concentration of 300 ppm or less in an electrodeposition bath. 제 1 항에 있어서, 전착욕 중의 납 농도가 100 ppm 이하인 양이온형 전착도장에 유용한 방법.The method according to claim 1, wherein the lead concentration in the electrodeposition bath is 100 ppm or less. 제 1 항에 있어서, 전착욕 중의 납 농도가 실질적으로 0 인 양이온형 전착도장에 유용한 방법.The method according to claim 1, which is useful for cationic electrodeposition coating in which the lead concentration in the electrodeposition bath is substantially zero. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 화성처리액 1 ℓ 중에 아연이온을 0.5 ~ 1.5 g, 인산이온을 5 ~ 30 g, 니켈이온을 0.1 ~ 4 g, 망간이온을 0.6 ~ 3 g, 불소이온을 0.05 g 이상, 구리이온을 5 ~ 20 ppm 및 피막 화성촉진제를 주성분으로 함유하는 화성처리액으로 금속표면을 침지처리하는 방법.The gallium ion is 0.5 to 1.5 g, the phosphate ion is 5 to 30 g, the nickel ion is 0.1 to 4 g, and the manganese ion is 0.6 to 3 in any one liter of the chemical conversion treatment liquid. g, a method of immersing a metal surface with a chemical conversion treatment solution containing 0.05 g or more of fluorine ions, 5 to 20 ppm of copper ions, and a coating chemical accelerator as a main component. 제 4 항에 있어서, 불소이온이 착불소이온인 방법.The method of claim 4 wherein the fluorine ion is a complex fluorine ion. 제 5 항에 있어서, 착불소이온원으로서 붕소불화물 및/또는 규소불화물인 착불화물이 사용되는 방법.6. A method according to claim 5, wherein complex fluorides are boron fluoride and / or silicon fluoride as the complex fluoride ion source. 제 4 항에 있어서, 피막 화성촉진제로서, 아질산이온 0.01 ~ 0.2 g/ℓ, m-니트로벤젠술폰산이온 0.05 ~ 2 g/ℓ, 과산화수소 0.5 ~ 5 g/ℓ 및 히드록실아민 0.1 ~ 5 g/ℓ (모두가 화성처리액 중에서의 농도를 나타냄) 에서 선택되는 1 종 이상인 방법.5. The film forming accelerator according to claim 4, wherein the nitrite ion is 0.01 to 0.2 g / l, m-nitrobenzenesulfonate ion is 0.05 to 2 g / l, hydrogen peroxide 0.5 to 5 g / l and hydroxylamine 0.1 to 5 g / l. (All represent the concentration in the chemical conversion solution). 제 4 항에 있어서, 화성처리액이 그 1 ℓ 중에 질산이온 1 ~ 10 g 및/또는 염소산이온 0.05 ~ 2 g 을 추가로 함유하는 방법.The method according to claim 4, wherein the chemical conversion solution further contains 1 to 10 g of nitrate ions and 0.05 to 2 g of chlorate ions in 1 L. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서, 처리온도가 30 ~ 70 ℃ 인 방법.The method according to any one of claims 1 to 8, wherein the treatment temperature is 30 to 70 ° C. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서, 침지처리가 먼저 15 초 동안 이상의 침지처리, 이어서 2 초 동안 이상의 스프레이 처리를 조합하여 이루어지는 방법.10. The method according to any one of claims 1 to 9, wherein the dipping treatment is performed by first combining at least 15 dipping treatment followed by at least 2 spraying treatment. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서, 바탕 금속의 표면이 철계와 아연계를 동시에 가지는 것인 방법.The method according to any one of claims 1 to 10, wherein the surface of the base metal has iron-based and zinc-based at the same time. 제 4 항 또는 제 8 항에 기재된 화성처리액을 물에 의한 희석으로 조제하기 위한 농후 처리제.The thickening agent for preparing the chemical conversion treatment liquid of Claim 4 or 8 by dilution with water.
KR1019980059393A 1998-01-14 1998-12-28 Background chemical treatment method for low lead ED KR19990066876A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP557698 1998-01-14
JP98-005576 1998-01-14
JP98-345388 1998-12-04
JP10345388A JPH11264076A (en) 1998-01-14 1998-12-04 Chemical conversion treatment for low lead ed

Publications (1)

Publication Number Publication Date
KR19990066876A true KR19990066876A (en) 1999-08-16

Family

ID=26339541

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980059393A KR19990066876A (en) 1998-01-14 1998-12-28 Background chemical treatment method for low lead ED

Country Status (3)

Country Link
EP (1) EP0930379A1 (en)
JP (1) JPH11264076A (en)
KR (1) KR19990066876A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293050B2 (en) * 2008-09-26 2013-09-18 新日鐵住金株式会社 Automotive parts
US8282801B2 (en) 2008-12-18 2012-10-09 Ppg Industries Ohio, Inc. Methods for passivating a metal substrate and related coated metal substrates
JP6837332B2 (en) 2016-12-28 2021-03-03 日本パーカライジング株式会社 Chemical conversion agent, manufacturing method of chemical conversion film, metal material with chemical conversion film, and coated metal material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT975560B (en) * 1972-10-20 1974-08-10 Sec Accomandita Semplice Fosfa PROCEDURE FOR PHOSPHATING ON METALLIC SURFACES INTENDED FOR PAINTING ESPECIALLY FOR ELETROPHORESIS AND SOLUTION RELATING TO THIS PROCEDURE
JPS5811515B2 (en) * 1979-05-11 1983-03-03 日本ペイント株式会社 Composition for forming a zinc phosphate film on metal surfaces
DE3712339A1 (en) * 1987-04-11 1988-10-20 Metallgesellschaft Ag METHOD FOR PHOSPHATIZING BEFORE ELECTROPLATING
DE3918136A1 (en) * 1989-06-03 1990-12-06 Henkel Kgaa METHOD FOR PRODUCING MANAGE-CONTAINING PHOSPHATE COATINGS ON METAL SURFACES
JPH07100870B2 (en) * 1990-04-24 1995-11-01 日本ペイント株式会社 Method for treating zinc phosphate coating on metal surface
DE4013483A1 (en) * 1990-04-27 1991-10-31 Metallgesellschaft Ag METHOD FOR PHOSPHATING METAL SURFACES
DE4210513A1 (en) * 1992-03-31 1993-10-07 Henkel Kgaa Nickel-free phosphating process
DE4330002C1 (en) * 1993-09-04 1995-03-23 Herberts Gmbh Process for the coating of metallic substrates and application of the process
DE4434593A1 (en) * 1994-09-28 1996-04-04 Herberts Gmbh Process for the production of a corrosion-protecting, well-adhering paint and the workpieces thereby obtained
JP3088623B2 (en) * 1994-11-08 2000-09-18 日本ペイント株式会社 Method for forming zinc phosphate film on metal surface
DE19735314C2 (en) * 1996-09-13 2001-05-23 Bayerische Motoren Werke Ag Process for the pretreatment of components

Also Published As

Publication number Publication date
JPH11264076A (en) 1999-09-28
EP0930379A1 (en) 1999-07-21

Similar Documents

Publication Publication Date Title
DE69510951T2 (en) CATIONIC RESIN AND CAPPED POLYISOCYANATE AS A CROSS-LINKING AGENT SUITABLE FOR USE IN ELECTRIC DIP COATING
US5587059A (en) Anticorrosive cathodic electrodeposition paint
EP2206802A1 (en) Method for producing surface-treated metal material and method for producing metal coated article
BRPI0718345B1 (en) METHOD FOR COATING A METAL SUBSTRATE
JP2010095678A (en) Cationic electrodeposition coating composition and process for forming multilayer coating
JP2009179859A (en) Method for forming multilayer coating film
JP2008184620A (en) Method for forming bilayer paint film
CN101486027A (en) Method for preparing metal substrate with multi-layer film, metal substrate with multi-layer film obtained thereby and coated product
US5770642A (en) Cathodic electrodeposition paint
KR20060129973A (en) Method for making amine-modified epoxy resin and cationic electrodeposition coating composition
US4596844A (en) Self-hardenable resin composition
KR20060046453A (en) Cationic electrodeposition coating composition
KR19990066876A (en) Background chemical treatment method for low lead ED
JP2010095668A (en) Cationic electrodeposition coating composition
KR20080078792A (en) Lead-free cationic electrodeposition coating composition, and electrodeposition coating process
JP2004107654A (en) Cationic electrodeposition coating composition for galvanized steel sheet
JP2007039617A (en) Cationic electrodeposition coating composition and coated material produced therewith
JP2517001B2 (en) Resin composition for cationic electrodeposition coating
JP2008231452A (en) Method for depositing multilayer coating film
JPH0853637A (en) Cathodic electrodeposition coating composition containing cerium
JP2002356645A (en) Lead-less cationic electrodeposition coating composition
JP2020100732A (en) Cationic electrodeposition coating composition and method for producing cationic electrodeposition coating film
JP4462684B2 (en) Electrodeposition coating composition containing organic acid salt compound of bismuth as corrosion resistance imparting agent
JP2002285391A (en) Electrodeposition coating method
JP2009161825A (en) Electrodeposition coating method and method for shortening water-washing process or reducing use amount of washing water

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid