KR19990057615A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
KR19990057615A
KR19990057615A KR1019970077678A KR19970077678A KR19990057615A KR 19990057615 A KR19990057615 A KR 19990057615A KR 1019970077678 A KR1019970077678 A KR 1019970077678A KR 19970077678 A KR19970077678 A KR 19970077678A KR 19990057615 A KR19990057615 A KR 19990057615A
Authority
KR
South Korea
Prior art keywords
lithium ion
weight
lithium
parts
secondary battery
Prior art date
Application number
KR1019970077678A
Other languages
Korean (ko)
Inventor
이은숙
Original Assignee
조정래
주식회사 효성생활산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조정래, 주식회사 효성생활산업 filed Critical 조정래
Priority to KR1019970077678A priority Critical patent/KR19990057615A/en
Publication of KR19990057615A publication Critical patent/KR19990057615A/en

Links

Abstract

본 발명은 리튬이온 흡장 방출이 가능한 탄소재료 음극표면에 리튬이온 선택성 운반체 1 내지 10중량부, 고분자지지체 20 내지 50중량부, 막용매 45 내지 75중량부, 및 첨가제 0.5 내지 5중량부를 첨가하여 혼합한 후 노말메틸피롤리덴(NMP)을 넣어서 완전히 녹여 제조된 리튬이온 선택성 투과막을 코팅한 음극과, 리튬복합산화물로 이루어진 양극과, 리튬이온 전도성 전해액으로 이루어진 것을 특징으로 하는 리튬 2차전지에 관한 것으로, 용량열화속도 및 용량유지율이 우수하고 용매의 분해로 인한 전지내부의 압력증가를 억제하여 전지의 안정성을 높일 수 있다.The present invention is mixed by adding 1 to 10 parts by weight of the lithium ion selective carrier, 20 to 50 parts by weight of the polymer support, 45 to 75 parts by weight of the membrane solvent, and 0.5 to 5 parts by weight of the additive to the carbon material negative electrode surface capable of storing and releasing lithium ions. After the normal methyl pyrrolidene (NMP) is added to completely melt the lithium ion selective permeable membrane prepared by melting, a cathode comprising a lithium composite oxide, and a lithium ion conductive electrolyte comprising a lithium ion conductive electrolyte As a result, the capacity deterioration rate and capacity retention rate are excellent, and the pressure increase inside the battery due to decomposition of the solvent can be suppressed, thereby increasing the stability of the battery.

Description

리튬 2차전지Lithium secondary battery

본 발명은 리튬이온 2차전지에 관한 것으로, 보다 상세하게는 전지의 자가방전 특성과 싸이클 특성을 개선시키고 고온에서 안전성을 향상시킬 수 있는 리튬이온 선택성 투과막을 이용한 음극으로 이루어진 것을 특징으로 하는 리튬이온 2차전지에 관한 것이다.The present invention relates to a lithium ion secondary battery, and more particularly, to a lithium ion comprising a negative electrode using a lithium ion selective permeable membrane capable of improving self-discharge characteristics and cycle characteristics of a battery and improving safety at high temperatures. It relates to a secondary battery.

일반적으로 리튬이온 2차전지에서 4V 이상의 충전전위에서 충방전 싸이클을 반복할 때와 충전상태로 전지를 장기간 저장하는 경우에 전지특성은 급격히 떨어지게 된다. 이것은 고전위에서 전해질 특히 용매가 전극표면에서 분해반응을 일으켜 기체를 생성하여 전지내압을 증가시키고, 극판을 열화시켜 전지의 성능을 열화시키기 때문이다.In general, when a charge-discharge cycle is repeated at a charge potential of 4 V or higher in a lithium ion secondary battery and when the battery is stored for a long time in a charged state, the battery characteristics rapidly decrease. This is because electrolytes, especially solvents, decompose at the surface of the electrode at high potentials to generate gas, thereby increasing the internal pressure of the battery, and deteriorating the performance of the battery by deteriorating the electrode plate.

층간 흡장 방출형의 전극에 있어서 표면의 전기화학적 반응은 가변적이므로 4V이상의 전위를 낼 수 있는 고용량 리튬이차전지의 성능, 싸이클특성 및 저장성을 향상시키기 위해서는 비수전해액과 전극의 반응을 제어하는 기술이 불가피한 실정이다.In the interlayer occlusion-type electrode, the surface electrochemical reaction is variable. Therefore, in order to improve the performance, cycle characteristics, and storage of a high capacity lithium secondary battery capable of producing a potential of 4 V or higher, a technique of controlling the reaction between the nonaqueous electrolyte and the electrode is inevitable. It is true.

전극에서 현재까지 전극반응을 제어하는 일차적인 방법은 전해질중의 용매의 종류와 조성을 변화시키면서 최대한 용매의 분해를 억제하는 것으로, 전해질중의 용매는 주로 염을 충분히 녹일 수 있을 정도의 높은 유전상수를 갖는 환상형 화합물(cyclic compound)과 유전상수는 적으나 전도성이 우수한 비환상형화합물(non-cyclic compound)를 혼합하여 사용하고 있다.The primary method of controlling the electrode reaction up to the present is to suppress the decomposition of the solvent as much as possible by changing the type and composition of the solvent in the electrolyte, and the solvent in the electrolyte mainly has a high dielectric constant sufficient to dissolve the salt sufficiently. It is used by mixing a cyclic compound (cyclic compound) having a low dielectric constant but excellent in non-cyclic compound (non-cyclic compound).

전지를 충전할 때 전해질중의 리튬이온은 음극내부로 확산되는데, 용매중의 비환상형 용매는 리튬이온을 용매화하여 음극내부로 쉽게 들어가지만, 환상형구조를 갖는 용매와 분자크기가 큰 용매는 음극의 층간으로 확산되어 들어갈 때 음극의 층간입구에서 용매의 분해반응이 일어나고, 이것은 전지의 초기 충방전 효과를 저하시키는 주요 원인이 된다.When the battery is charged, lithium ions in the electrolyte diffuse into the negative electrode. The non-cyclic solvent in the solvent solvates lithium ions and easily enters the negative electrode. However, a solvent having a cyclic structure and a solvent having a large molecular size When the diffusion into the interlayer of the negative electrode, the decomposition reaction of the solvent occurs at the interlayer inlet of the negative electrode, which is a major cause of lowering the initial charge and discharge effect of the battery.

또한, 극판내부로의 용매의 계속적인 확산은 충방전이 반복되는 동안에 탄소의 구조를 파괴하고 극판과 전류집전체인 구리(Cu)와의 결착력을 감소시켜 전지성능을 열화시키게되고, 특히 전지를 충전상태로 장시간 저장할 경우 전기적으로 활성을 갖는 음극표면과 접하는 용매가 지속적으로 분해함으로써 전지의 성능열화를 초래하게 된다.In addition, the continuous diffusion of the solvent into the pole plate destroys the structure of carbon during repeated charge and discharge cycles, and decreases the binding force between the pole plate and the current collector, copper (Cu), thereby degrading battery performance, in particular charging the battery. When stored for a long time in a state, the solvent in contact with the electrically active negative electrode surface is continuously decomposed, resulting in deterioration of battery performance.

전극반응을 제어하는 다른방법으로 전극을 고분자막 등으로 보호하는 방법이 사용되고 있는데, 이 방법은 음극보호막으로서 계면활성제를 음극표면에 코팅하여 용매의 분해전압보다 음극의 전위를 낮추어서 용매의 분해를 억제하는 것이다. 그러나, 이 방법은 계면활성제로 사용한 염이 전해질중의 염과는 다른 성분인 이유로 부가적인 반응이 전극에서 일어날 수 있으며, 두 개의 보호막의 막저항 때문에 리튬이온의 확산이 더 어렵게된다.As another method of controlling the electrode reaction, a method of protecting the electrode with a polymer film or the like is used. This method is a cathodic protection film, in which a surfactant is coated on the surface of a cathode to lower the potential of the cathode than the decomposition voltage of the solvent to suppress decomposition of the solvent. will be. However, in this method, an additional reaction may occur at the electrode because the salt used as the surfactant is a different component from the salt in the electrolyte, and the diffusion of lithium ions becomes more difficult due to the film resistance of the two protective films.

본 발명의 목적은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로, 막저항이 적고 용매와 극판과의 접촉을 차단하면서 용매의 분해를 억제하고 리튬이온만을 선택적으로 음극안으로 확산시킬 수 있는 투과막을 이용한 음극으로 이루어진 리튬 2차전지를 제공하는 것이다.An object of the present invention is to solve the conventional problems as described above, the membrane resistance is low and the permeation that can inhibit the decomposition of the solvent and selectively diffuse only lithium ions into the cathode while blocking the contact between the solvent and the electrode plate It is to provide a lithium secondary battery consisting of a negative electrode using a film.

도 1은 본 발명에 따라 음극표면에 리튬이온 선택성 투과막을 코팅한 음극의 구조도,1 is a structural diagram of a negative electrode coated with a lithium ion selective permeable membrane on the negative electrode surface according to the present invention,

도 2는 전지의 충방전 싸이클 진행에 따른 방전용량 변화를 보여주는 그래프,2 is a graph showing the change in discharge capacity according to the charge and discharge cycle of the battery,

도 3은 전지의 충방전 싸이클 진행에 따른 용량유지율을 나타내는 그래프이다.3 is a graph showing capacity retention rate according to the charge / discharge cycle of the battery.

*도면중 주요부분 부호의 설명** Description of the major part symbols in the drawings

1 : 구리호일 2 : 음극 3 : 리튬이온선택성 투과막DESCRIPTION OF SYMBOLS 1 Copper foil 2 Negative electrode 3 Lithium ion selective permeable membrane

즉, 본 발명은 리튬 2차전지에 있어서, 리튬이온 흡장 방출이 가능한 탄소재료 음극표면에 리튬이온 선택성 투과막을 코팅한 음극과, 리튬복합산화물로 이루어진 양극과, 리튬이온 전도성 전해액으로 이루어진 것을 특징으로 하는 리튬 2차전지에 관한 것이다.That is, the present invention is characterized in that the lithium secondary battery comprises a negative electrode coated with a lithium ion selective permeable membrane on a carbon material negative electrode surface capable of storing and releasing lithium ions, a positive electrode made of a lithium composite oxide, and a lithium ion conductive electrolyte solution. It relates to a lithium secondary battery.

본 발명의 리튬 2차전지에서의 음극은 음극내부로 전해질중의 용매의 침투로 인한 탄소의 구조파괴 억제 및 전지의 자가방전 용량을 감소시키기 위하여 리튬이온을 흡장 방출할 수 있는 탄소를 재료로 하는 음극표면에 리튬이온만을 선택적으로 투과시키는 막을 코팅하여 이루어진다.The negative electrode of the lithium secondary battery of the present invention is a carbon-based material capable of absorbing and releasing lithium ions in order to suppress structural destruction of carbon due to the penetration of a solvent in the electrolyte into the negative electrode and to reduce the self-discharge capacity of the battery. The cathode surface is coated with a membrane that selectively permeates only lithium ions.

이때, 전해질은 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), γ-부틸로락톤(GBL)으로 이루어진 군으로 부터 1종이상 선택되는 환상형 카보네이트(cyclic carbonate)와 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC)중에서 1종 이상 선택되는 비환상형 카보네이트(chain carbonate)의 혼합용매에 리튬염을 녹인 것이다.At this time, the electrolyte is cyclic carbonate (cyclic carbonate), diethyl carbonate (DEC), dimethyl selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), γ- butyrolactone (GBL) Lithium salt is dissolved in a mixed solvent of at least one selected from carbonate (DMC) and ethyl methyl carbonate (EMC).

전해질중의 용매는 부피비 20 내지 40%의 환상형카보네이트와 40 내지 80%의 비환상형카보네이트로 이루어진 것이 바람직하고, 더욱 바람직하게는 에틸렌카보네이트 30%, 디에틸카보네이트 30% 및 디메틸카보네이트 40%이다.The solvent in the electrolyte is preferably composed of 20 to 40% of a cyclic carbonate and 40 to 80% of an acyclic carbonate by volume, more preferably 30% of ethylene carbonate, 30% of diethyl carbonate and 40% of dimethyl carbonate.

본 발명에서 사용되는 리튬이온 선택성 투과막을 제조하기 위한 막용액은 리튬이온 선택성 운반체 1 내지 10중량부, 고분자지지체 20 내지 50중량부, 막용매 45 내지 75중량부, 및 첨가제 0.5 내지 5중량부를 첨가하여 혼합한 후 노말메틸피롤리덴(NMP)을 넣어서 완전히 녹여 제조된다.The membrane solution for preparing a lithium ion selective permeable membrane used in the present invention is added 1 to 10 parts by weight of a lithium ion selective carrier, 20 to 50 parts by weight of a polymer support, 45 to 75 parts by weight of a membrane solvent, and 0.5 to 5 parts by weight of an additive. After mixing by adding normal methylpyrrolidin (NMP) is prepared completely dissolved.

리튬이온 선택성 투과막을 제조하기 위한 막용액에서 리튬이온 선택성 운반체로는 N,N'-디헵틸-N,N'5,5-테트라메틸-3,7-디옥사노난다이아미드(N,N'-diheptyl-N,N'5,5-tetramethyl-3,7-dioxanonane diamide :ETH 149), N,N'-디옥틸헥실-N,N'-디이소부틸-시스-사이클로헥산-1,2-디카르복실아마이드(N,N'-dioctylhexyl-N,N'-diisobutyl-cis-cyclohexane-1,2-dicarboxylicamide:ETH1810), 1,4,7,10-테트라옥사-사이클로도데칸(1,4,7,10-tetraoxa-cyclododecane:12-crown-4),6,6-디벤질-1,4,8-11-테트라옥사사이클로테트라데칸(6,6-dibenzyl-1,4,8-11-tetraoxacyclotetradecane :6,6-dibenzyl-1,4-crown-4)중에서 적어도 1종이상 선택되는 것이다.In the membrane solution for preparing a lithium ion selective permeable membrane, a lithium ion selective carrier is N, N'-diheptyl-N, N'5,5-tetramethyl-3,7-dioxanonandiamide (N, N '). -diheptyl-N, N'5,5-tetramethyl-3,7-dioxanonane diamide (ETH 149), N, N'-dioctylhexyl-N, N'-diisobutyl-cis-cyclohexane-1,2 Dicarboxylic amide (N, N'-dioctylhexyl-N, N'-diisobutyl-cis-cyclohexane-1,2-dicarboxylicamide: ETH1810), 1,4,7,10-tetraoxa-cyclododecane (1, 4,7,10-tetraoxa-cyclododecane: 12-crown-4), 6,6-dibenzyl-1,4,8-11-tetraoxacyclotetradecane (6,6-dibenzyl-1,4,8- 11-tetraoxacyclotetradecane: 6,6-dibenzyl-1,4-crown-4) At least one selected from.

리튬이온 선택성 투과막을 제조하기 위한 막용액의 고분자지지체로는 폴리비닐리덴플루오라이드(PVDF), 스티렌부타디엔고무(SBR), 폴리비닐클로라이드(PVC)중에서 선택되는 것이다.The polymer support of the membrane solution for producing a lithium ion selective permeable membrane is one selected from polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), and polyvinyl chloride (PVC).

리튬이온 선택성 투과막(3)을 제조하기 위한 막용액의 막용매로는 o-니트로페닐-n-옥틸 에테르(o-nitrophenyl-n-octyl-ether),트리스(2-에틸헥실포스페이트)(tris(2-ethylhexyl)phosphate), 디부틸세바케이트(dibutyl sebacate), 디옥틸프탈레이트(dioctyl phthalate)중에서 선택되는 것이다.As the membrane solvent of the membrane solution for preparing the lithium ion selective permeable membrane (3), o-nitrophenyl-n-octyl ether, tris (2-ethylhexyl phosphate) (tris (2-ethylhexyl) phosphate), dibutyl sebacate, and dioctyl phthalate.

본 발명의 리튬 2차전지 음극(2)은 2000℃이상의 온도에서 열처리한 메조카본 마이크로비드(mesocarbon microbead)나 인조 흑연분말과 바인더로 폴리비닐리덴플루오라이드분말의 혼합물에 노말메틸피롤리덴을 첨가하여 슬러리상으로 만들어 구리호일(1)에 코팅한 후 일정시간 동안 건조하여 노말메틸피롤리덴을 휘발시킨 후 상기에서 제조한 리튬이온 선택성 막용액을 음극 표면위에 10 내지 20mm의 두께로 스프레이 코팅하여 막을 입히고, 100℃에서 10분간 건조하여 노말메틸피롤리덴을 휘발시킨 후 극판을 프레싱함으로써 제조된다.In the lithium secondary battery anode 2 of the present invention, normal methylpyrrolidene is added to a mixture of polyvinylidene fluoride powder with mesocarbon microbead or artificial graphite powder and a binder heat-treated at a temperature of 2000 ° C. or higher. After the slurry was made into a copper foil (1) and coated on a copper foil and dried for a predetermined time to volatilize normal methylpyrrolidin, the lithium ion selective membrane solution prepared above was spray coated to a thickness of 10 to 20 mm on the surface of the negative electrode. It is prepared by coating a membrane and drying at 100 ° C. for 10 minutes to volatilize normal methylpyrrolidin and then press the electrode plate.

양극은 리튬코발트산화물(LiCoO2)분말, 카본블랙분말, 폴리비닐리덴플루오라이드분말을 노말메틸피롤리덴에 녹여서 슬러리를 제조하고, 알루미늄 호일의 양면에 코팅한 후 음극과 같은 방법으로 건조, 롤프레싱하여 제조되는 것으로 본 발명을 위하여 특별히 한정되는 것은 아니다.The positive electrode was prepared by dissolving lithium cobalt oxide (LiCoO 2 ) powder, carbon black powder, and polyvinylidene fluoride powder in normal methylpyrrolidene to prepare a slurry, coating both sides of aluminum foil, and drying and rolling in the same manner as the negative electrode. It is prepared by the Lessing is not particularly limited for the present invention.

전지의 격리판은 폴리에틸렌으로 이루어진 다공성막을 사용하고, 전해질은 에틸렌카보네이트, 디에틸카보네이트 및 디메틸카보네이트를 섞은 혼합용매에 리튬헥사플루오르포스포러스(LiPF6)를 전해질염으로서 용해하여 사용할 수 있다.The separator of the battery uses a porous membrane made of polyethylene, and the electrolyte may be used by dissolving lithium hexafluorophosphorus (LiPF 6 ) as an electrolyte salt in a mixed solvent of ethylene carbonate, diethyl carbonate, and dimethyl carbonate.

이하 본 발명을 실시예를 들어 더욱 상세히 설명하고자 하나 본 발명이 하기 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.

실시예Example

리튬이온 선택성 운반체 1 내지 10중량부, 고분자지지체 20 내지 50중량부, 막용매 45 내지 75중량부, 및 첨가제 0.5 내지 5중량부를 첨가하여 혼합한 후 노말메틸피롤리덴(NMP)을 넣어서 완전히 녹인다. 리튬이온 선택성 운반체로 N,N'-디헵틸-N,N'5,5-테트라메틸-3,7-디옥사노난다이아미드(N,N'-diheptyl-N,N'5,5-tetramethyl-3,7-dioxanonane diamide :ETH 149) 1중량부, 고분자지지체인 폴리비닐리덴플루오라이드(PVDF) 35중량부, 첨가제로 칼륨테트라키스(파라-염화-페닐)붕소염 1중량부로 섞은 후, 막용매로 트리스(2-에틸헥실포스페이트)(tris(2-ethylhexyl)phosphate) 63중량부를 첨가하여 혼합물을 녹인다. 여기에 노말메틸피롤리덴(NMP)을 충분히 가하고 자석젓게를 이용하여 혼합물을 완전히 녹인다.1 to 10 parts by weight of the lithium ion selective carrier, 20 to 50 parts by weight of the polymer support, 45 to 75 parts by weight of the membrane solvent, and 0.5 to 5 parts by weight of the additive are added, mixed, and then dissolved by adding normal methylpyrrolidin (NMP). . N, N'-diheptyl-N, N'5,5-tetramethyl-3,7-dioxanonaneamide (N, N'-diheptyl-N, N'5,5-tetramethyl as a lithium ion selective carrier -3,7-dioxanonane diamide: ETH 149) 1 part by weight, 35 parts by weight of polyvinylidene fluoride (PVDF) as a polymer support, and mixed with 1 part by weight of potassium tetrakis (para-chloride-phenyl) boron salt as an additive, 63 parts by weight of tris (2-ethylhexyl) phosphate is added to the membrane solvent to dissolve the mixture. Add enough normal methylpyrrolidin (NMP) to this and dissolve the mixture completely using a magnetic pole.

음극활물질로서 2000℃이상의 온도에서 열처리한 메조카본 마이크로비드(mesocarbon microbead)나 인조 흑연분말과 바인더로 9중량부의 폴리비닐리덴플루오라이드 분말 혼합물에 노말메틸피롤리덴을 첨가하여 슬러리상으로 만들어 구리호일에 코팅한 후 건조하여 노말메틸피롤리덴을 휘발시킨 후 상기에서 제조한 리튬이온 선택성 막용액을 음극 표면위에 10 내지 20mm의 두께로 스프레이 코팅하여 막을 입히고, 100℃에서 10분간 건조하여 노말메틸피롤리덴을 휘발시킨 후 0.5t/cm의 압력으로 극판을 롤프레싱하여 제조하였다.As a negative electrode active material, normal methylpyrrolidin is added to 9 parts by weight of polyvinylidene fluoride powder mixture with mesocarbon microbead or artificial graphite powder and binder heat-treated at a temperature of 2000 ° C. or above to make a slurry into copper foil. After coating to dry to volatilize normal methylpyrrolidin, the lithium ion selective membrane solution prepared above is spray-coated to a thickness of 10 to 20mm on the surface of the negative electrode to apply a membrane, and dried at 100 ℃ for 10 minutes to normal methyl blood It was prepared by volatilizing rolledden and then rolling the electrode plate at a pressure of 0.5 t / cm.

양극은 리튬코발트산화물(LiCoO2)분말 87중량부, 카본블랙분말 8중량부, 폴리비닐리덴플루오라이드분말 5중량부를 노말메틸피롤리덴에 녹여서 슬러리를 제조한 후 알루미늄 호일의 양면에 코팅하고 음극과 같은 방법으로 건조하여 이극판을 1t/㎠의 압력으로 롤프레싱한 후 원하는 크기로 잘라서 제조하였다.The positive electrode was prepared by dissolving 87 parts by weight of lithium cobalt oxide (LiCoO 2 ) powder, 8 parts by weight of carbon black powder and 5 parts by weight of polyvinylidene fluoride powder in normal methylpyrrolidene to prepare a slurry, and then coating it on both sides of aluminum foil. Drying in the same manner as described above was prepared by roll pressing the bipolar plate at a pressure of 1t / ㎠ and cut to a desired size.

전지의 격리판은 폴리에틸렌으로 이루어진 다공성막을 사용하고, 전해질은 에틸렌카보네이트, 디에틸카보네이트 및 디메틸카보네이트를 각각 30,30,40부피비로 섞은 혼합용매에 리튬헥사플루오르포스포러스(LiPF6)를 1몰농도가 되게 녹여서 제조하였다.The separator of the battery uses a porous membrane made of polyethylene, and the electrolyte has a concentration of 1 mole of lithium hexafluorophosphorus (LiPF 6 ) in a mixed solvent of ethylene carbonate, diethyl carbonate, and dimethyl carbonate, each mixed at a volume ratio of 30 , 30, 40 . It was prepared by dissolving to.

비교예Comparative example

음극에 리튬이온 선택성막을 사용하지 않은 것을 제외하고는 실시예와 동일하게 제조하였다.Except that the lithium ion selective film was not used for the negative electrode was prepared in the same manner as in Example.

상기 전지의 각 구성성분을 이용하여 18650형의 전지를 제작하여 도 2 및 도 3에서와 같은 충방전 특성을 조사하였다.The 18650 type battery was fabricated using the components of the battery, and the charge and discharge characteristics as shown in FIGS. 2 and 3 were investigated.

전지의 용량은 양극의 활물질로 쓴 리튬 코발트 산화물의 방전용량에 의존하고 각 전지의 방전용량은 리튬 코발트 산화물의 반응전자수를 0.5로 가정하여 1350mAh로 결정하였다.The capacity of the battery was dependent on the discharge capacity of the lithium cobalt oxide used as the active material of the positive electrode, and the discharge capacity of each battery was determined to be 1350 mAh assuming that the number of reactive electrons of the lithium cobalt oxide was 0.5.

전지특성은 20℃에서 충방전 사이클 특성을 조사하였다. 시험조건은 충방전 전류를 1350mA로 하여 4.2V까지 충전하고, 280mA의 방전전류로 3.0V까지 방전을 되풀이하였고, 초기 방전용량의 80%로 용량이 열화되었을 때 시험을 중지하였다.The battery characteristics were examined for charge and discharge cycle characteristics at 20 ° C. In the test conditions, charge and discharge current was charged to 4.2V with 1350mA, discharge was repeated up to 3.0V with a discharge current of 280mA, and the test was stopped when the capacity was deteriorated to 80% of the initial discharge capacity.

도 2에서 알 수 있는 바와 같이 두 전지는 초기의 방전용량 차이는 거의 없으나, 싸이클이 진행될수록 음극 표면에 리튬이온 선택성 막을 코팅한 전지는 용량열화 속도가 훨씬 적다. 이것은 충방전이 진행되는 동안에 음극 표면에서 용매의 분해로 인한 전류 손실 및 용매의 침투로 인한 탄소층간 구조의 파괴로 인한 극판의 열화로 해석할 수 있다. 초기 용량의 80%를 유지하는 사이클 수는 비교예의 전지가 275사이클인데 비하여 본 발명의 전지는 369사이클 이었다.As can be seen in FIG. 2, the two batteries show little difference in initial discharge capacity. However, as the cycle progresses, the battery having a lithium ion selective film coated on the surface of the negative electrode has a much lower capacity degradation rate. This can be interpreted as deterioration of the electrode plate due to current loss due to decomposition of the solvent on the surface of the cathode during charge and discharge and destruction of the carbon interlayer structure due to penetration of the solvent. The number of cycles maintaining 80% of the initial capacity was 269 cycles of the battery of the comparative example, while the battery of the present invention was 369 cycles.

도 3에서 알 수 있는 바와 같이 용량 유지율은 음극에 리튬이온 선택성막을 코팅하지 않은 비교예에 비하여 음극에 리튬이온을 코팅하여 전해질중의 용매의 분해를 억제한 실시예의 경우가 매우 높다.As can be seen in FIG. 3, the capacity retention rate is very high in the case of the embodiment in which lithium ions are coated on the negative electrode to suppress decomposition of the solvent in the electrolyte, as compared with the comparative example in which the lithium ion selective film is not coated on the negative electrode.

이것은 음극에 리튬이온 선택성막을 코팅하지 않은 경우는 음극의 표면에서 용매의 분해로 인한 극판의 열화 및 전지내부에 기체 및 불순물 생성으로 전지용량 열화를 초해하는 것임에 비해, 본 발명의 리튬 이온 선택성막을 음극 표면에 코팅하면 충방전이 진행되면서 극판표면에서 일어나는 용매의 분해 염과 수분의 반응 등의 부반응을 억제하고 극판을 보호할 수 있기 때문이다.When the lithium ion selective film is not coated on the negative electrode, the lithium ion selection of the present invention is compared with the deterioration of the battery capacity due to the deterioration of the electrode plate due to the decomposition of the solvent on the surface of the negative electrode and the generation of gas and impurities in the battery. When the film is coated on the surface of the cathode, it is possible to prevent side reactions such as the decomposition salts of the solvent and the reaction of the moisture occurring on the surface of the electrode plate and to protect the electrode plate as charging and discharging proceeds.

또한, 부가적인 효과로서 용매의 분해로 인한 전지내부의 압력증가 용인을 억제하므로 전지의 안정성을 높일 수 있는 효과를 기대할 수 있다.In addition, as an additional effect, it is possible to expect an effect of increasing the stability of the battery since suppression of the increase in pressure inside the battery due to decomposition of the solvent is suppressed.

이상에서 살펴본 바와 같이 본 발명의 리튬이온 선택성막을 음극판에 사용한 리튬 2차전지는 용량열화속도 및 용량유지율이 우수하고, 용매의 분해로 인한 전지내부의 압력증가를 억제하여 전지의 안정성을 높일 수 있다.As described above, the lithium secondary battery using the lithium ion selective film of the present invention in the negative electrode plate has excellent capacity degradation rate and capacity retention rate, and can increase the stability of the battery by suppressing pressure increase in the battery due to decomposition of the solvent. .

Claims (5)

리튬이온 흡장 방출이 가능한 탄소재료 음극표면에 리튬이온 선택성 투과막을 코팅한 음극과, 리튬복합산화물로 이루어진 양극과, 리튬이온 전도성 전해액으로 이루어진 것을 특징으로 하는 리튬 2차전지.A lithium secondary battery comprising a negative electrode coated with a lithium ion selective permeable membrane on a negative electrode surface of a carbon material capable of storing and releasing lithium ions, a positive electrode made of a lithium composite oxide, and a lithium ion conductive electrolyte. 제 1항에 있어서, 상기 리튬이온 선택성 투과막은 리튬이온 선택성 운반체 1 내지 10중량부, 고분자지지체 20 내지 50중량부, 막용매 45 내지 75중량부, 및 첨가제 0.5 내지 5중량부를 첨가하여 혼합한 후 노말메틸피롤리덴(NMP)을 넣어서 완전히 녹여 제조되는 것을 특징으로 하는 리튬 2차전지.The method of claim 1, wherein the lithium ion selective permeable membrane is mixed by adding 1 to 10 parts by weight of the lithium ion selective carrier, 20 to 50 parts by weight of the polymer support, 45 to 75 parts by weight of the membrane solvent, and 0.5 to 5 parts by weight of the additive. Lithium secondary battery, characterized in that prepared by completely dissolving normal methylpyrrolidin (NMP). 제 2항에 있어서, 상기 리튬이온 선택성 운반체는 N,N'-디헵틸-N,N'5,5-테트라메틸-3,7-디옥사노난다이아미드(N,N'-diheptyl-N,N'5,5-tetramethyl-3,7-dioxanonane diamide :ETH 149), N,N'-디옥틸헥실-N,N'-디이소부틸-시스-사이클로헥산-1,2-디카르복실아마이드(N,N'-dioctylhexyl-N,N'-diisobutyl-cis-cyclohexane-1,2-dicarboxylicamide:ETH1810), 1,4,7,10-테트라옥사-사이클로도데칸(1,4,7,10-tetraoxa-cyclododecane:12-crown-4),6,6-디벤질-1,4,8-11-테트라옥사사이클로테트라데칸(6,6-dibenzyl-1,4,8-11-tetraoxacyclotetradecane:6,6-dibenzyl-1,4-crown-4)로 이루어진 군중에서 1종이상 선택되는 것을 특징으로 하는 리튬 2차전지.The method of claim 2, wherein the lithium ion selective carrier is N, N'-diheptyl-N, N'5,5-tetramethyl-3,7-dioxanonandiamide (N, N'-diheptyl-N, N'5,5-tetramethyl-3,7-dioxanonane diamide (ETH 149), N, N'-dioctylhexyl-N, N'-diisobutyl-cis-cyclohexane-1,2-dicarboxyamide (N, N'-dioctylhexyl-N, N'-diisobutyl-cis-cyclohexane-1,2-dicarboxylicamide: ETH1810), 1,4,7,10-tetraoxa-cyclododecane (1,4,7,10 -tetraoxa-cyclododecane: 12-crown-4), 6,6-dibenzyl-1,4,8-11-tetraoxacyclotetradecane (6,6-dibenzyl-1,4,8-11-tetraoxacyclotetradecane: 6 , 6-dibenzyl-1,4-crown-4) Lithium secondary battery, characterized in that at least one selected from the group consisting of. 제 2항에 있어서, 상기 고분자지지체는 폴리비닐리덴플루오라이드(PVDF), 스티렌부타디엔고무(SBR), 폴리비닐클로라이드(PVC)중에서 선택되는 것을 특징으로 하는 리튬 2차전지.The lithium secondary battery of claim 2, wherein the polymer support is selected from polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), and polyvinyl chloride (PVC). 제 2항에 있어서, 상기 막용매로는 o-니트로페닐-n-옥틸 에테르(o-nitrophenyl-n-octyl-ether),트리스(2-에틸헥실포스페이트)(tris(2-ethylhexyl)phosphate), 디부틸세바케이트(dibutyl sebacate), 디옥틸프탈레이트(dioctyl phthalate)중에서 선택되는 것을 특징으로 하는 리튬 2차전지.According to claim 2, wherein the membrane solvent is o-nitrophenyl-n-octyl ether (o-nitrophenyl-n-octyl-ether), tris (2-ethylhexyl phosphate) (tris (2-ethylhexyl) phosphate), Lithium secondary battery, characterized in that selected from dibutyl sebacate, dioctyl phthalate (dioctyl phthalate).
KR1019970077678A 1997-12-30 1997-12-30 Lithium secondary battery KR19990057615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970077678A KR19990057615A (en) 1997-12-30 1997-12-30 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970077678A KR19990057615A (en) 1997-12-30 1997-12-30 Lithium secondary battery

Publications (1)

Publication Number Publication Date
KR19990057615A true KR19990057615A (en) 1999-07-15

Family

ID=66172155

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970077678A KR19990057615A (en) 1997-12-30 1997-12-30 Lithium secondary battery

Country Status (1)

Country Link
KR (1) KR19990057615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603265B1 (en) * 1999-10-20 2006-07-20 삼성에스디아이 주식회사 Lithium ion batteries and preparing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603265B1 (en) * 1999-10-20 2006-07-20 삼성에스디아이 주식회사 Lithium ion batteries and preparing method thereof

Similar Documents

Publication Publication Date Title
KR102270869B1 (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
KR100509604B1 (en) Organic electrolytic solution and lithium battery employing the same
US20190305280A1 (en) Oxidation resistant separator for a battery
EP3429014A1 (en) Lithium secondary battery having lithium metal formed on cathode and manufacturing method therefor
KR102118550B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
EP3793005A1 (en) Anode for lithium secondary battery and method for manufacturing lithium secondary battery
KR20090063441A (en) Lithium secondary battery
KR102398690B1 (en) Lithium secondary battery
KR20100053971A (en) Organic electrolytic solution and lithium battery employing the same
KR20010089233A (en) Solid electrolyte cell
KR20200046944A (en) Methods for preparing negative electrode for lithium secondary battery
KR20170052493A (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte comprising the same, and lithium secondary battery comprising the same
KR102069212B1 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte comprising the same, and lithium secondary battery comprising the same
KR101800930B1 (en) Additive for non-aqueous lithium secondary battery and non-aqueous electrolyte, electrode and non-aqueous lithium secondary battery comprising the same
KR101565533B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20150075495A (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR100683666B1 (en) Organic electrolytic solution and lithium battery employing the same
KR20090063615A (en) Organic electrolytic solution and lithium battery employing the same
KR102275862B1 (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
CN114026729B (en) Lithium battery and use of urea-based additive as electrolyte additive therein
WO2018224167A1 (en) Lithium battery and use of triphenylphosphine oxide as an electrolyte additive therein
KR19990057615A (en) Lithium secondary battery
JP2020061367A (en) Lithium-ion battery electrolyte and lithium-ion battery
CN114464959B (en) Lithium ion battery
KR19990057617A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination