KR19990055019A - High toughness explosion spray alloy method - Google Patents
High toughness explosion spray alloy method Download PDFInfo
- Publication number
- KR19990055019A KR19990055019A KR1019970074922A KR19970074922A KR19990055019A KR 19990055019 A KR19990055019 A KR 19990055019A KR 1019970074922 A KR1019970074922 A KR 1019970074922A KR 19970074922 A KR19970074922 A KR 19970074922A KR 19990055019 A KR19990055019 A KR 19990055019A
- Authority
- KR
- South Korea
- Prior art keywords
- spray coating
- alloy
- toughness
- high toughness
- coating layer
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 20
- 239000000956 alloy Substances 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000004880 explosion Methods 0.000 title claims abstract description 8
- 239000007921 spray Substances 0.000 title claims description 9
- 238000005507 spraying Methods 0.000 claims abstract description 24
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011247 coating layer Substances 0.000 abstract description 13
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910001004 magnetic alloy Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910009043 WC-Co Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/067—Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
- C22C1/053—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
- C22C1/055—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/08—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/126—Detonation spraying
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
본 발명은 고 인성 고 강도 폭발 용사코팅층을 형성하기 위한 용사코팅용 합금방법에 관한 것으로, 본 발명의 특징은 크래드 텅스텐 카바이드와 자용성 합금을 5:5내지 8:2의 혼합비율로 혼합하여 인성과 기계적 성질이 우수한 용사코팅용 합금을 제조 한다는데 있다.The present invention relates to a spray coating alloy method for forming a high toughness high strength explosion spray coating layer, characterized in that the mixture of the clad tungsten carbide and self-soluble alloy in a mixing ratio of 5: 5 to 8: 2 It is to manufacture alloy for spray coating with excellent toughness and mechanical properties.
Description
본 발명은 고 인성 고 강도 폭발 용사코팅층을 형성하기 위한 용사합금 방법에 관한 것이다.The present invention relates to a spray alloy method for forming a high toughness high strength explosion spray coating layer.
용사코팅 기술은 아세틸렌, 산소, 프로판, 프로필렌, 석유, 수소, 플라즈마, 아아크 등을 이용하여 금속, 세라믹, 초경합금 등을 반용융시켜 금속피막에 다양한 용도의 피막을 형성시키는 기술이다.Thermal spray coating is a technique for forming various coatings on metal coatings by semi-melting metals, ceramics, cemented carbides using acetylene, oxygen, propane, propylene, petroleum, hydrogen, plasma, and arc.
1990년대 들어 기존의 폭발용사 코팅과 유사한 성능을 가진 고속용사(High Velocity Oxy-Fuel)코팅 기술이 잇달아 나오면서 그 용도는 점차 넓어지고 있다.In the 1990s, the application of High Velocity Oxy-Fuel coating technology with performance similar to that of conventional explosion spray coatings has been gradually expanding.
현재 첨단산업이 발전함에 따라 가혹한 조건인 마모, 부식부위기 등에서 사용되는 설비, 기계부품, 공구류등은 그의 성능 및 수명 향상을 위해 고품질의 재료로 제작될 것이 요구되고 있으며, 이에 대한 대책으로 소재 금속표면에 보호코팅을 실시하는 방법이 사용되고 있다.With the development of high-tech industry, facilities, machine parts, tools, etc. used in harsh conditions such as wear and corrosion are required to be made of high quality materials to improve their performance and lifespan. A method of applying a protective coating on the surface is used.
그중에서 고속 용사 코팅기술은 이러한 보호코팅에 유력한 기술이며 그 사용분야는 항공기, 원자력, 전자부품, 석유화학 등의 산업에서 광범위하게 사용될 수 있다.Among them, high-speed spray coating is a promising technology for such protective coatings, and its field of application can be widely used in industries such as aircraft, nuclear power, electronic components, petrochemicals, and the like.
그러나 일반 용사코팅은 기계부품이나 공구류에 사용되기 위해서는 공구강이나 소결재료에 비해서 인성 등의 기계적 성질이 떨어지는 단점을 가지고 있으므로 고 인성 용사코팅의 필요성이 현재 절실히 요구되고 있다.However, general spray coating has a disadvantage in that the mechanical properties such as toughness compared to tool steel or sintered material in order to be used in mechanical parts or tools, the need for high toughness thermal spray coating is urgently required.
여기에서 인성이란 일반적으로 파단이 일어날 때 까지의 스트레스-스트레인 곡선 하의 면적으로 나타나게 된다.Toughness is generally represented by the area under the stress-strain curve until failure occurs.
본 발명의 목적은 고 인성 고 강도 폭발 용사코팅층을 형성하기 위한 용사합금 방법을 제공하는데 있다.An object of the present invention is to provide a thermal spraying method for forming a high toughness high strength explosion spray coating layer.
본 발명의 특징은 크래드 텅스텐 카바이드와 자용성 합금을 5:5내지 8:2의 혼합비율로 혼합하여 인성과 기계적 성질이 우수한 용사코팅용 합금을 제조한다는데 있다.A feature of the present invention is to prepare a thermal spray coating alloy having excellent toughness and mechanical properties by mixing the tungsten carbide and the self-soluble alloy in a mixing ratio of 5: 5 to 8: 2.
도 1은 용사코팅 장치의 개략적인 구성도이다.1 is a schematic configuration diagram of a spray coating apparatus.
도 2는 코팅층의 기계적 특성 측정을 위한 시험방법 설명도이다.2 is an explanatory view of a test method for measuring mechanical properties of a coating layer.
도 3은 본 발명에 의해 제조되는 용사합금의 인성특성 곡선도이다.3 is a toughness curve of the thermal spray alloy prepared according to the present invention.
도 4는 본 발명에 의해 제조되는 고 인성 용사코팅층의 조직도이다.4 is a structure diagram of the high toughness thermal spray coating layer prepared by the present invention.
도 5는 본 발명에 의해 제조된 고 인성 용사코팅층 조직의 성분 분석도이다.Figure 5 is a component analysis of the high toughness spray coating layer prepared by the present invention.
* 도면의 주요부분에 대한 부호의 설명** Explanation of symbols for the main parts of the drawings *
1 : 산소탱크 2 : 질소탱크1: oxygen tank 2: nitrogen tank
3 : 아세틸렌탱크 4 : 점화장치3: acetylene tank 4: ignition device
5 : 관통 6 : 가스공급장치5: penetration 6: gas supply device
7 : 제어장치 8 : 컴퓨터7: control device 8: computer
9 : 파우더공급장치 10 : 로오드 바9: powder supply device 10: rod bar
11 : 서포팅바 12 : 굽힘시편11: Supporting Bar 12: Bending Specimen
13 : 탄소봉 14 : LVDT13: carbon rod 14: LVDT
15 : 압축부분 16 : 인장부분15: compression part 16: tension part
첨부한 도면을 참고로하여 본 발명을 설명하면 다음과 같다.Hereinafter, the present invention will be described with reference to the accompanying drawings.
도 1은 용사코팅장치의 개략적인 구성도로써, 이는 각각의 산소탱크(1),질소탱크(2), 아세틸렌탱크(3)내에 충진된 산소, 질소, 아세틸렌가스가 제어장치(7)에 의해 제어되는 가스공급장치(6)를 통하여 관통(5)에 투입되게 하고, 상기 관통내 에서는 점화장치(4)에 의해 화염이 발생되게 하고, 컴퓨터(8)를 가지는 제어장치에 의해서는 파우더 공급장치(9)로 부터의 파우더가 관통에 투입되게 하여특정의 시료 또는 제품에 용사 코팅이 이루어지게 한다.1 is a schematic configuration diagram of a spray coating apparatus, in which oxygen, nitrogen, and acetylene gas filled in each of the oxygen tank 1, the nitrogen tank 2, and the acetylene tank 3 are controlled by the control device 7; It is put into the penetrating 5 through the gas supply device 6 to be controlled, the flame is generated by the ignition device 4 in the penetrating, and the powder supply device is controlled by the control device having the computer 8. The powder from (9) is introduced into the penetration so that a thermal spray coating is applied to a specific sample or product.
시편의 기계적 특성의 측정 방법은 취성을 갖는 재료이므로 굽힘시험을 사용하게 되며, 폭발용사 코팅 방법으로 용사 시편을 만들어 부식에 약한 Al,Zn과 같은 물질을 0.3-0.4㎜두께로 언더코팅한 후 용사코팅층을 시편에 형성시킨다.The mechanical property of the specimen is measured by brittle material. Therefore, the bending test is used. The thermal spraying method is used to make thermal spray specimens and undercoat materials such as Al and Zn that are susceptible to corrosion to a thickness of 0.3-0.4 mm. A coating layer is formed on the specimen.
이 시편을 연마 및 가공하여 염산에 넣어 제거하여 모재로 부터 박리시키고, 가공및 연마로 직사각형 형태로 만들며 및 일부 부식된 용사코팅층을 제거함으로서 프리 스탠딩(free standing : 모재가 제거된 코팅층)용사코팅 층이 형성된 시편을 얻을 수 있다.The specimen is polished and processed to remove it from the base material by removing it in hydrochloric acid, peeled off from the base material, and formed into a rectangular shape by processing and polishing, and the free standing spray coating layer is removed by removing some of the corroded spray coating layer. This formed specimen can be obtained.
도 2는 용사코팅된 시편의 기계적 특성을 시험하는 과정의 설명도로써, 위에서 얻은 굽힘시편(12)을 로오드바(10)와 서포팅바(11)사이에 넣는다. 이때 바 사이의 길이는 ASTM방식 중20㎜와 40㎜로 고정시킨다.2 is an explanatory view of a process of testing the mechanical properties of the thermally coated specimen, the bending specimen 12 obtained above is inserted between the rod bar 10 and the supporting bar 11. At this time, the length between the bars is fixed to 20mm and 40mm in the ASTM method.
일정한 속도로 시편을 누르면 시편에 가해지는 힘이 증가하면서 시편은 점점 휘어지며 힘은 로오드 셀로, 휘어진 시편의 정도를 나타내는 △는 LVDT(14)로 측정한다. 이 때에 △는 일정한 거리S(7.91㎝)에 탄소봉(13)과 LVDT(14)의 위치를 정해준다.When the specimen is pressed at a constant speed, the force applied to the specimen increases and the specimen is gradually bent, the force is measured in the rod cell, and Δ, which represents the degree of the bent specimen, is measured by the LVDT (14). At this time, Δ determines the position of the carbon rod 13 and LVDT 14 at a constant distance S (7.91 cm).
하기 표2는 각종 시편에 대한 용사코팅층의 기계적 특성에 대한 실험치 이다.Table 2 below is an experimental value for the mechanical properties of the thermal spray coating layer for various specimens.
여기에서 참고되는 바와 같이, WC-Co 폭발용사코팅은 탄성 영율이 우수하며 그 중에서도 크래드(clad) 형태의 용사합금이 파단강도가 제일 우수한 것으로 나타났다.As referred to herein, the WC-Co explosion spray coating has an excellent Young's modulus of elasticity, and among them, the clad spray alloy has the highest breaking strength.
또한 자용성합금은 파단 스트레인이 우수하나 파단강도가 현저히 약한 특성을 보여 주고 있다.In addition, the soluble alloy has excellent fracture strain, but shows a weak strength.
그중에서도 Co계 자용성 합금의 경우 최대의 파단 스트레인을 보여 주고 있음을 알 수 있다.Among them, it can be seen that the Co-based magnetic alloy shows the maximum breaking strain.
그 이유는 폭발용사의 특성으로부터 알 수 있는데, 먼저 WC-Co계 합금의 경우 텅스텐 카바이드의 비중이 커서 용사분말의 가속도가 크고 융점이 약 2600℃이므로 연료량을 높여 폭발력을 증가시킬 수 있으나, 자용성 합금의 경우는 융점이 1000℃부근으로 폭발력을 증가시키면 코팅층내에 잔류용력이 커져 코팅층의 밀착강도가 저하하고 심하면 박리현상이 일어나게 된다.The reason for this can be seen from the characteristics of the explosion spray. First, in the case of the WC-Co alloy, the specific gravity of the tungsten carbide is large, so the acceleration of the thermal spray powder is high and the melting point is about 2600 ° C. In the case of alloys, if the melting point increases to around 1000 ° C., the explosive force increases, so that the residual strength in the coating layer increases, and the adhesion strength of the coating layer decreases.
그러므로 자용성합금의 경우 폭발력이 약해 치밀한 코팅조직을 얻을 수 없으며 파단강도가 낮은 특성을 보이게 된다.Therefore, in the case of a magnetic alloy, the explosive force is weak, and a dense coating structure is not obtained, and the fracture strength is low.
이와같은 일반적인 현상을 이용하여 크래드 형태의 WC-20Co와 Co계 자용성 합금을 혼합한 폭발용사 코팅의 특성을 도 4와 도 5를 참고로 하여 살펴보면 다음과 같다.Using the general phenomenon as described above with reference to Figures 4 and 5 the characteristics of the sprayed spray coating mixed with the WC-20Co and Co-based alloy of the clad form.
도 4 및 도 5는 상기의 코팅 조직과 혼합된 상의 성분분석 결과로써, W성분분석 결과 흰 부분이 W성분이 있는 상인 것으로 보아 코발트 자용성 합금과 크래드 텅스텐 카바이드 성분이 양호하게 혼합되어 코팅되어 있으며 치밀한 조직임을 알 수 있다.4 and 5 are the component analysis results of the phase mixed with the coating tissue, the W component analysis shows that the white portion is the phase with the W component, the cobalt soluble alloy and the clad tungsten carbide components are mixed and coated well It can be seen that it is a dense tissue.
도 3은 텅스텐 카바이드와 코발트계 자용성 합금의 혼합 무게비에 따른 각종 기계적 특성을 나타낸 것이다.Figure 3 shows various mechanical properties according to the mixed weight ratio of tungsten carbide and cobalt-based alloy.
이로부터 경향을 살펴보면 상기와 같이 혼합한 합금 코팅은 파단강도와 인성은 증가하며 영율은 전반적으로 감소하고 있음을 알 수 있다.Looking at the trend from this, it can be seen that the alloy coating mixed as described above has increased the breaking strength and toughness and the Young's modulus is generally reduced.
상기 표1에서 나타낸 각종 용사합금의 기계적 특성에서 퓨징(fusing)처리한 용사코팅이 가장 우수한 인성으로 4.63×16exp6을 제외하면 WC-20Co+(25-50)WT%Co 자용성합금 코팅이 3.3-3.9×16exp6으로 기존의 일반 용사 합금의 특성에 비해 2배이상 향상된 우수한 인성을 보이고 있다In the mechanical properties of the various thermal spray alloys shown in Table 1, fusing-treated spray coatings had the highest toughness, except for 4.63 × 16exp6, WC-20Co + (25-50) WT% Co magnetic alloy coatings were 3.3-3.9. × 16exp6 shows excellent toughness more than twice that of conventional sprayed alloys
이상에서 설명한 바와 같은 본 발명은 가혹한 조건에서 사용되는 설비, 기계부품, 공구류 등의 표면에 보호용 용사코팅을 실시함으로써 고 인성 고강도의 코팅층을 형성시켜 소재의 기계적 특성을 향상시키는 효과를 가져온다.The present invention as described above, by applying a protective spray coating on the surface of the equipment, machine parts, tools, etc. to be used in the harsh conditions to form a high toughness high strength coating layer to bring the effect of improving the mechanical properties of the material.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970074922A KR100315090B1 (en) | 1997-12-27 | 1997-12-27 | Method of forming coated layer with high toughness and mechanical properties by detonation thermal spraying |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970074922A KR100315090B1 (en) | 1997-12-27 | 1997-12-27 | Method of forming coated layer with high toughness and mechanical properties by detonation thermal spraying |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990055019A true KR19990055019A (en) | 1999-07-15 |
KR100315090B1 KR100315090B1 (en) | 2002-02-28 |
Family
ID=37531536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970074922A KR100315090B1 (en) | 1997-12-27 | 1997-12-27 | Method of forming coated layer with high toughness and mechanical properties by detonation thermal spraying |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100315090B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100347605B1 (en) * | 1998-12-14 | 2002-09-18 | 주식회사 포스코 | Spray coating method of performance mold using high temperature wear resistant spray alloy |
-
1997
- 1997-12-27 KR KR1019970074922A patent/KR100315090B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100347605B1 (en) * | 1998-12-14 | 2002-09-18 | 주식회사 포스코 | Spray coating method of performance mold using high temperature wear resistant spray alloy |
Also Published As
Publication number | Publication date |
---|---|
KR100315090B1 (en) | 2002-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vasudev et al. | Mechanical and microstructural characterization of microwave post processed Alloy-718 coating | |
Zafar et al. | Abrasive and erosive wear behaviour of nanometric WC–12Co microwave clads | |
US5213848A (en) | Method of producing titanium nitride coatings by electric arc thermal spray | |
Tucker Jr | Structure property relationships in deposits produced by plasma spray and detonation gun techniques | |
KR900004652B1 (en) | High strength,wear and corrosion resistant coatings and its coating method | |
Tucker Jr | Thermal spray technology | |
Ping et al. | Effect of Cr3C2 addition on the microstructure and properties of laser cladding NiCrBSi coatings | |
Zafar et al. | Microstructure and mechanical properties of microwave post-processed Ni coating | |
Surzhenkov et al. | Sliding wear of TiC-NiMo and Cr^ sub 3^ C^ sub 2^-Ni cermet particles reinforced FeCrSiB matrix HVOF sprayed coatings | |
Chen et al. | Microstructure and properties of TiB2–Ni coatings with different binder phase contents deposited by HVOF spray process | |
Senapati et al. | Surface erosion behaviour over NiCrBSi-Al2O3 composite coatings | |
CN102925789A (en) | Iron-based cored wire including amorphous phase abrasion-resistant and corrosion-resistant coating prepared by utilizing electric arc spraying and preparation method of coating | |
Kumar et al. | Analysis of the corrosion and wear of WC-10Co-4Cr+ GNPs coating applied to HSLA DH-36 steel using HVOF | |
KR100315090B1 (en) | Method of forming coated layer with high toughness and mechanical properties by detonation thermal spraying | |
Durge et al. | Effect of heat treatment on the hardness and wear characteristics of NiCrBSi laser clad deposited on AISI410 stainless steel | |
Azizpour et al. | Evaluation of residual stress in HVOF stellite-6 coatings using non-contact drilling | |
Sharma et al. | A comparative study of sand-blasted and electro-discharge-machined surfaces of steel substrates | |
Wei et al. | Effects of loads on high-temperature wear properties of HVOF sprayed CoCrAlYTa-10% Al2O3 and Cr3C2-NiCr coatings | |
Ružbarský et al. | Plasma and thermal spraying | |
Jeng et al. | Wear behaviour of cobalt-based alloys in laser surface cladding | |
Satya et al. | Bond Strength, Hardness, and Microstructure Analysis of Stellite Coating Applied on 410 Steel Surface Using Flame Spray, Plasma Spray, and High-Velocity Oxyfuel Spray Process | |
Dhillon et al. | Analysis of solid particle erosion in plasma sprayed alumina based coatings on SAE-347H steel | |
Mahmud et al. | Mechanical property changes in HVOF sprayed nano-structured WC-17wt.% Ni (80/20) Cr coating with varying substrate roughness | |
Maharajan et al. | Evaluation of solid particle erosion and electrochemical corrosion of plasma-sprayed WC/8YSZ coating on SS316 | |
Berndt et al. | The Adhesion of Flame and Plasma Sprayed Coatings--a Literature Review--AWRA Report P 11-1-78 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |