KR19990039402A - Modification of Linear Low Density Polyethylene Resin by Electron Beam Irradiation - Google Patents

Modification of Linear Low Density Polyethylene Resin by Electron Beam Irradiation Download PDF

Info

Publication number
KR19990039402A
KR19990039402A KR1019970059494A KR19970059494A KR19990039402A KR 19990039402 A KR19990039402 A KR 19990039402A KR 1019970059494 A KR1019970059494 A KR 1019970059494A KR 19970059494 A KR19970059494 A KR 19970059494A KR 19990039402 A KR19990039402 A KR 19990039402A
Authority
KR
South Korea
Prior art keywords
electron beam
low density
linear low
density polyethylene
beam irradiation
Prior art date
Application number
KR1019970059494A
Other languages
Korean (ko)
Inventor
천성득
이병형
황규면
Original Assignee
남창우
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 남창우, 에스케이 주식회사 filed Critical 남창우
Priority to KR1019970059494A priority Critical patent/KR19990039402A/en
Publication of KR19990039402A publication Critical patent/KR19990039402A/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 전자선조사에 의한 선형저밀도 폴리에틸렌(LLDPE) 수지의 개질방법에 관한 것으로, 좀 더 상세하게는 400∼2500ppm의 산화방지제 및 50∼1000ppm의 자외선 안정제가 첨가된 선형저밀도 폴리에틸렌을 0.1∼6Mrad의 전자선을 조사시켜 분자구조를 변성시키는 선형저밀도 폴리에틸렌 수지의 개질방법에 관한 것이다.The present invention relates to a method for modifying a linear low density polyethylene (LLDPE) resin by electron beam irradiation. The present invention relates to a method for modifying a linear low density polyethylene resin in which a molecular structure is modified by irradiating an electron beam.

Description

전자선조사에 의한 선형저밀도 폴리에틸렌 수지의 개질방법Modification of Linear Low Density Polyethylene Resin by Electron Beam Irradiation

본 발명은 전자선조사에 의한 선형저밀도 폴리에틸렌(linear low density polyethylene, 이하 "LLDPE"라 함) 수지의 개질방법에 관한 것으로, 좀 더 상세하게는 전자선(electron beam)을 조사하여 분자구조을 변성시키므로써 LLDPE 필름의 광학적 특성과 가공특성을 향상시킨 새로운 형태의 LLDPE 수지의 개질방법에 관한 것이다.The present invention relates to a method for modifying a linear low density polyethylene (hereinafter referred to as "LLDPE") resin by electron beam irradiation, and more particularly, to modify the molecular structure by irradiating an electron beam (electron beam) LLDPE The present invention relates to a method of modifying a new type of LLDPE resin that improves optical and processing properties of a film.

LLDPE는 통상 금속촉매를 사용하여 중,저압공정에 의해 생산되며 분자구조가 주사슬(backbone chain)에 장쇄분지(long chain branch)가 없는 선형구조(linear structute)를 갖는다. 이에 반해, 저밀도 폴리에틸렌(low density polyethylene, 이하 "LDPE"라 함)은 라디칼 중합에 의한 고압공정에 의해 생산되며, 주사슬에 장쇄분지를 많이 갖는 분자구조를 이루고 있다. 이와 같은 분자구조의 차이로 인해 LLDPE로 제조된 필름은 LDPE 보다 기계적 강도는 우수하나 광학적 특성인 투명성이 떨어지며, 또한 블로운 필림(blown film) 성형시 높은 가공부하와 버블 안정성(bubble stability)이 떨어지는 단점을 갖고 있다.LLDPE is usually produced by a medium and low pressure process using a metal catalyst, and has a linear structure without molecular chains having long chain branches in the backbone chain. In contrast, low density polyethylene (hereinafter referred to as "LDPE") is produced by a high pressure process by radical polymerization and has a molecular structure having many long chain branches in the main chain. Due to the difference in molecular structure, the film made of LLDPE has better mechanical strength than LDPE, but optical transparency is inferior, and high processing load and bubble stability are poor when blown film is formed. It has a disadvantage.

이와같은 LLDPE의 단점을 개선시켜 투명성이 우수하고 가공이 용이한 LLDPE 필름을 제조할 수 있다면, 상기 필름은 포장용, 산업용, 농업용, 필름 등 광범위한 용도로 사용할 수 있을 것이다.If the LLDPE film can be improved by improving the shortcomings of the LLDPE, the film can be used in a wide range of applications, such as packaging, industrial, agricultural, and film.

한편, 현재까지 LLDPE 필름의 투명성과 가공성을 향상시켜 주기 위해서는 LLDPE 50∼90중량%에 고압법으로 제조된 LDPE을 10∼50중량%를 블랜딩(blending)시켜 사용하였다. 이와 같이 LLDPE에 LDPE을 블랜딩시키면 투명성과 가공성은 향상되나, LLDPE 고유의 기계적 물성은 저하된다. 따라서 LLDPE 단독으로 필름성형시 항상 투명성의 저하와 가공성의 열세로 인해 그 사용이 제한적이다.On the other hand, in order to improve the transparency and processability of the LLDPE film to date, 10 to 50% by weight of the LDPE produced by the high pressure method to the LLDPE 50 to 90% by blending (blending) was used. Thus, blending LDPE to LLDPE improves transparency and processability, but lowers the inherent mechanical properties of LLDPE. Therefore, the use of LLDPE alone is limited due to deterioration of transparency and inferior processability.

이와같은 문제점을 해결하기 위해 본 발명에서는 LLDPE 수지에 전자선을 조사하여 분자구조을 선형구조에서 분지구조로 변형시키므로써 투명성과 가공성을 크게 향상시킨 LLDPE 필름을 얻을 수 있었다.In order to solve this problem, in the present invention, the LLDPE resin was irradiated with an electron beam to transform the molecular structure from the linear structure to the branched structure, thereby obtaining an LLDPE film having greatly improved transparency and processability.

따라서, 본 발명의 목적은 LLDPE 필름의 광학적 특성과 가공특성을 향상시킨 새로운 형태의 LLDPE 수지의 개질방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a method of modifying a new type of LLDPE resin which improves the optical and processing characteristics of the LLDPE film.

상기 목적을 달성하기 위한 본 발명의 방법은 400∼2500ppm의 산화방지제 및 50∼1000ppm의 자외선 안정제가 첨가된 선형저밀도 폴리에틸렌(LLDPE)을 0.1∼6Mrad의 전자선을 조사시켜 분자구조를 변성시키는 것으로 이루어진다.The method of the present invention for achieving the above object consists of modifying the molecular structure by irradiating 0.1-6 Mrad of electron beam to linear low density polyethylene (LLDPE) to which 400 to 2500 ppm of antioxidant and 50 to 1000 ppm of UV stabilizer are added.

이하 본 발명의 방법을 좀 더 구체적으로 설명하면 다음과 같다.Hereinafter, the method of the present invention will be described in more detail.

전자선 조사에 의한 고분자 물질의 개질은 여러분야에 응용되고 있다. 일반적으로 전자선은 전자가속기(electron accelerator)에 의해 방출된 전자선이 고분자제품을 투과함으로써 형성된 라디칼에 의해 고분자 분자구조상에 변화을 가져온다. 전자선 에너지 조사단위는 "rad"라는 단위을 사용하며, 1rad는 1g의 시료가 100erg의 에너지를 흡수할 때의 단위이다. 폴리에틸렌에 전자선을 일정 세기 이상 조사하면 가교반응(crosslinking)이 일어나며, 이와 같은 특성을 이용하여 파이프, 전선등 열경화성 폴리에틸렌 제품에 이용되고 있다.Modification of polymer material by electron beam irradiation is applied to all of you. In general, an electron beam causes a change in the molecular structure of a polymer by radicals formed by the electron beam emitted by an electron accelerator penetrating the polymer product. The electron beam energy irradiation unit uses a unit called "rad", and 1rad is a unit when 1g of sample absorbs 100erg of energy. When electron beams are irradiated to polyethylene for a certain intensity, crosslinking occurs, and these characteristics are used in thermosetting polyethylene products such as pipes and wires.

본 발명에서는 이와 같은 가교방식과 달리 안정제가 첨가된 LLDPE 수지에 일정량 수준의 전자선을 조사하여 미용융 겔(gel)이 발생되지 않고 분자구조을 선형구조에서 분지된 구조로 변성시키는 것이다. 산화방지제 및 자외선 안정제가 첨가되지 않은 LLDPE 수지에 전자선을 조사하면 가교반응이 일어나 필름성형시 미용융 겔이 발생되어 본 발명에서 얻고자 하는 결과를 얻을 수 없다. 즉, 산화방지제 및 자외선 안정제가 첨가된 LLDPE에 일정 수준의 전자선을 조사하여 줌으로써 형성된 라디칼이 분자간의 가교반응에는 참가하지 않고 단지 분자구조를 선형구조에 분지된 구조로 변형시키는 반응에만 참가하여 새로운 형태의 LLDPE 수지를 제조하는 것이다.In the present invention, unlike the crosslinking method, the LLDPE resin to which the stabilizer is added is irradiated with a certain amount of electron beam to denature the molecular structure from the linear structure to the branched structure without generating a gel. Irradiation of electron beams to LLDPE resins without addition of antioxidants and UV stabilizers resulted in crosslinking reactions, resulting in unmelted gels during film formation, resulting in unacceptable results. That is, the radical formed by irradiating a certain level of electron beam to LLDPE to which antioxidant and UV stabilizer were added does not participate in the crosslinking reaction between molecules, but only in the reaction of transforming the molecular structure into a branched structure in the linear structure. It is to prepare the LLDPE resin.

본 발명에서 LLDPE 필름에 투명성과 가공성을 향상시키기 위해 사용된 LLDPE은 용융흐름지수가 0.5g/10min∼7.0g/10min, 바람직하게는 1g/10min∼3g/10min이다. 상기 용융흐름지수가 0.5g/10min 미만이면 필름 가공시 가공부하가 많이 걸리며, 7.0g/10min을 초과하면 필름가공시 버블의 안정성이 떨어지는 단점이 있다. 또한, 상기 LLDPE의 밀도는 0.917g/cm3∼0.930g/10cm3, 바람직하게는 0.919g/cm3∼0.925g/10cm3이다. 상기 밀도가 0.917g/cm3미만이면 필름의 굴곡탄성율이 떨어지고, 0.930g/10cm3를 초과하면 필름의 충격강도가 떨어지는 단점이 있다.In the present invention, the LLDPE used to improve transparency and processability in the LLDPE film has a melt flow index of 0.5 g / 10 min to 7.0 g / 10 min, preferably 1 g / 10 min to 3 g / 10 min. If the melt flow index is less than 0.5g / 10min, the processing load takes a lot when processing the film, if it exceeds 7.0g / 10min there is a disadvantage in that the stability of the bubble when the film processing falls. In addition, the density of the LLDPE is 0.917g / cm 3 ~0.930g / 10cm 3 , preferably 0.919g / cm 3 ~0.925g / 10cm 3 . If the density is 0.917g / cm 3 under poor in flexural modulus of the film, when it is more than 0.930g / 10cm 3 has a disadvantage that the impact strength of the film deteriorated.

본 발명에 따르면, 안정제는 산화방지제 및 자외선 안정제가 사용될 수 있으며, 상기 산화방지제는 페놀 또는 포스파이트계 화합물을 단독 또는 혼합 사용할 수 있고, 상기 자외선 안정제는 자외선 흡수제인 벤조페논계, 및 라디칼종결제인 입체장애가 큰 아민계 화합물을 단독 또는 혼합 사용할 수 있다.According to the present invention, the stabilizer may be an antioxidant and an ultraviolet stabilizer, the antioxidant may be used alone or mixed with a phenol or phosphite compound, the ultraviolet stabilizer is a benzophenone-based ultraviolet absorber, and a radical terminator An amine compound with large steric hindrance can be used alone or in combination.

한편, 상기 산화방지제는 400∼2500ppm, 바람직하게는 700∼1200ppm이 사용되며, 자외선 안정제는 50∼1000ppm, 바람직하게는 100∼500ppm이 사용된다. 상기 산화방지제가 400ppm 미만이면 수지의 내열성이 취약하고, 2500ppm을 초과하면 첨가제의 비용상승 및 황변현상이 나타나는 단점이 있다. 또한, 상기 자외선 안정제가 50ppm 미만이면 원하지 않는 가교반응이 일어나며, 1000ppm을 초과하면 첨가제의 비용상승 및 황변현상이 나타난다.On the other hand, the antioxidant is 400 to 2500ppm, preferably 700 to 1200ppm, UV stabilizer 50 to 1000ppm, preferably 100 to 500ppm is used. If the antioxidant is less than 400ppm, the heat resistance of the resin is weak, if the antioxidant exceeds 2500ppm there is a disadvantage that the cost increase and yellowing of the additive appears. In addition, when the UV stabilizer is less than 50 ppm, an undesired crosslinking reaction occurs. When the UV stabilizer exceeds 1000 ppm, an increase in the cost and yellowing of the additives occur.

한편, 전자 가속기를 사용한 전자선 조사량은 LLDPE 수지 두께가 4mm 투과가 가능하도록 설정하여, 공기중에서 적정 조사량의 범위는 0.1Mrad∼6Mrad, 바람직하게는 0.3Mrad∼5Mrad이다. 상기 전자선 조사량이 0.1Mrad 미만이면 LLDPE의 분자구조의 분지도가 낮게되어 필름의 가공성 및 투명성의 향상을 기할 수 있고, 6Mrad을 초과하면 가교반응이 일어나 필름성형시 미용융 겔이 발생한다.On the other hand, the electron beam irradiation amount using an electron accelerator is set so that the LLDPE resin thickness can permeate 4 mm, and the range of appropriate irradiation amount in air is 0.1 Mrad-6 Mrad, Preferably it is 0.3 Mrad-5 Mrad. When the electron beam irradiation amount is less than 0.1 Mrad, the degree of branching of the molecular structure of the LLDPE is low, which can improve the processability and transparency of the film.

이하 실시예 및 비교예을 통하여 본 발명을 좀 더 상세히 설명하지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the scope of the present invention is not limited to the following Examples.

최종 필름의 물성측정은 다음과 같은 방법으로 측정하였다.Physical properties of the final film was measured by the following method.

- 용융흐름지수(MI, ASTM D-1238)-Melt Flow Index (MI, ASTM D-1238)

- 인장강도(Tensile Strength, ASTM D-882)Tensile Strength (ASTM D-882)

- 인열강도(Elmendorf Tear Strength, ASTM D-1922)Tear Strength (ASTM D-1922)

- 충격강도(Impact Strength, ASTM D-1709)Impact Strength (ASTM D-1709)

- 분자량측정(Gel permeation Chromatograph)-Gel Permeation Chromatograph

- 미용융 겔측정-Unmelted gel measurement

2g의 시료를 금속메쉬에 봉해서 250ml 끊는 자일렌에 7시간 녹인후 80℃ 감압진공 건조기에서 건조후 잔류물의 무게를 측정하여 미용융된 겔을 측정하여 최초무게에 대한 백분율로 나타냄.2 g of sample was sealed in a metal mesh and dissolved in 250 ml of xylene for 7 hours, and then dried in an 80 ° C. vacuum vacuum dryer. Then, the weight of the residue was measured and the unmelted gel was measured as a percentage of the initial weight.

실시예 1 내지 3 및 비교예 1Examples 1 to 3 and Comparative Example 1

LLDPE의 용융흐름지수가 2.8g/10min, 밀도가 0.919g/cm3인 수지에 폐놀계 산화방지제(시바-가이기 Irganox 1010) 400ppm 및 포스파이트계 산화방지제(시바-가이기 Irgafos 168) 800ppm, 및 아민계 자외선 안정제(Cynamid UV 3346) 250ppm 및 벤조페논계 자외선 안정제(Cynamid UV 531) 250ppm을 첨가하여 금속평판 위에 일렬로 펼쳐 공기중에서 전자선을 조사하였다. 전자선 조사량을 증가시키면서 LLDPE 수지의 용융흐름지수와 분자량을 측정하였다(하기 표 1 참조).LLDPE has a melt flow index of 2.8g / 10min and a density of 0.919g / cm 3 , 400ppm waste antioxidant (Shiba-Geigi Irganox 1010) and phosphite antioxidant (Shiba-Geigi Irgafos 168) 800ppm, And 250 ppm of an amine UV stabilizer (Cynamid UV 3346) and 250 ppm of a benzophenone UV stabilizer (Cynamid UV 531) were added in a row on a metal plate to irradiate the electron beam in the air. Melt flow index and molecular weight of the LLDPE resin were measured while increasing the amount of electron beam irradiation (see Table 1 below).

전자선 조사에 따른 LLDPE 용융지수흐름 및 분자량변화LLDPE Melt Index Flow and Molecular Weight Changes by Electron Beam Irradiation 실시예Example 비교예Comparative example 1One 22 33 1One 전자선조사량(Mrad)Electron beam dose (Mrad) 0.360.36 0.720.72 2.12.1 -- 용융흐름지수(g/10min)Melt Flow Index (g / 10min) 2.32.3 1.61.6 0.30.3 2.82.8 Mw×10-3(GPC)Mw × 10 -3 (GPC) 215215 227227 250250 205205 미용융 겔(wt%)Undissolved Gel (wt%) 00 00 00 00

실시예 4 내지 5 및 비교예 2 내지 3Examples 4-5 and Comparative Examples 2-3

용융흐름지수가 2.1g/10min이고, 밀도가 0.918g/cm3인 LLDPE에 폐놀계 산화방지제(시바-가이기 Irganox 1010) 400ppm 및 포스파이트계 산화방지제(시바-가이기 Irgafos 168) 800ppm, 및 아민계 자외선 안정제(Cynamid UV 3346) 250ppm 및 벤조페논계 자외선 안정제(Cynamid UV 531) 250ppm을 첨가하고, 0.5 Mrad 및 1 Mrad의 전자선을 조사하여 각각 용융흐름지수를 1.0g/10min 및 0.6g/10min으로 만들어 이를 전자선을 조사하지 않은 비교예 2 및 비교예 3과 필름가공시 가공부하(torque)를 비교 측정하였다(하기 표 2 참조). 가공부하는 실험용 압출기(brabender)를 사용하여 블로운 방식으로 두께 50㎛ 필름가공시의 부하를 측정하였다.LLDPE having a melt flow index of 2.1 g / 10 min and a density of 0.918 g / cm 3 , 400 ppm of waste antioxidant (Ciba-Gaigi Irganox 1010) and 800 ppm of phosphite antioxidant (Shiba-Gaigi Irgafos 168), and 250 ppm of amine UV stabilizer (Cynamid UV 3346) and 250 ppm of benzophenone UV stabilizer (Cynamid UV 531) were added, and 0.5 Mrad and 1 Mrad of electron beams were irradiated to obtain a melt flow index of 1.0 g / 10 min and 0.6 g / 10 min, respectively. The processing load (torque) during film processing was compared with Comparative Example 2 and Comparative Example 3, which were not irradiated with electron beams (see Table 2 below). The processing load was measured using a laboratory extruder (brabender) in a blown manner to measure the load in 50㎛ thick film processing.

전자선 조사에 따른 가공부하변화Machining Load Change by Electron Beam Irradiation 실시예Example 비교예Comparative example 44 55 22 33 전자선조사량(Mrad)Electron beam dose (Mrad) 0.50.5 1.01.0 -- -- 용융흐름지수(g/10min)Melt Flow Index (g / 10min) 1One 0.60.6 1One 0.60.6 가공부하(NM)Machining Load (NM) 5151 5353 6161 6666

실시예 6 및 비교예 4Example 6 and Comparative Example 4

실시예 6은 LLDPE의 용융흐름지수가 2.1g/10min, 밀도가 0.919g/cm3인 수지에 폐놀계 산화방지제(시바-가이기 Irganox 1010) 400ppm 및 포스파이트계 산화방지제(시바-가이기 Irgafos 168) 800ppm, 및 아민계 자외선 안정제(Cynamid UV 3346) 250ppm 및 벤조페논계 자외선 안정제(Cynamid UV 531) 250ppm을 첨가하였으며, 비교예 4는 실시예 6과 동일한 LLDPE에 단지 자외선 안정제를 처방하지 않고 전자선을 조사하여 50mm 압출기에서 50㎛ 필름을 성형하여 필름의 물성을 측정하였다(표 3 참조).In Example 6, LLDPE had a melt flow index of 2.1 g / 10 min, a density of 0.919 g / cm 3 , 400 ppm of waste phenolic antioxidant (Shiba-Geigi Irganox 1010) and a phosphite antioxidant (Shiba-Geigi Irgafos). 168) 800 ppm, and 250 ppm of the amine UV stabilizer (Cynamid UV 3346) and 250 ppm of the benzophenone UV stabilizer (Cynamid UV 531) were added, and Comparative Example 4 was prepared by applying the electron beam only to the same LLDPE as Example 6. Was investigated to form a 50 μm film in a 50 mm extruder to measure the physical properties of the film (see Table 3).

전자선 조사된 LLDPE 필름의 물성변화Properties of Electron Beam Irradiated LLDPE Films 실시예 6Example 6 비교예 4Comparative Example 4 전자선 조사량(Mrad)Electron Beam Dose (Mrad) 0.50.5 0.50.5 자외선 안정제(ppm)UV stabilizer (ppm) 500500 -- 용융지수(g/10min)Melt Index (g / 10min) 1.01.0 1.01.0 인장강도(Kg/cm2)Tensile Strength (Kg / cm 2 ) 425425 410410 신장율(%)Elongation (%) 520520 630630 인열강도(Kg/㎛)Tear strength (Kg / ㎛) 14.114.1 1414 충격강도(g/㎛)Impact strength (g / ㎛) 4.14.1 4.24.2 투명도(Haze%)Transparency (Haze%) 1313 3333 두께(㎛)Thickness (㎛) 5050 5050

상기 표 1, 2 및 3으로부터 알 수 있는 바와 같이, 전자선 조사량을 증가시킴에 따라 용융흐름지수는 감소하며, 분자량은 증가하였고, 0.36Mrad∼2Mrad 전자선 조사범위내에서는 미용융 겔은 발생되지 않았다. 또한, 실시예 4와 비교예 2의 비교시 용융흐름지수는 1g/10min으로 동일하나, 가공부하는 전자선을 조사한 실시예 4가 비교예 2보다 가공부하가 20%정도 감소하는 장점이 있다. 마찬가지로 실시예 5와 비교예 3에서도 전자선이 조사된 실시예 5가 비교예 3보다 낮은 가공부하 특성을 나타내고 있다. 아울러, 필름물성중 광학적 특성인 투명성에서 자외선 안정제를 처방한 실시예 6이 처방하지 않은 비교예 4보다 투명성이 매우 우수한 특성을 나타내고 있다.As can be seen from Tables 1, 2 and 3, as the electron beam irradiation amount increased, the melt flow index decreased, the molecular weight increased, and no unmelted gel was generated within the range of 0.36 Mrad to 2 Mrad electron beam irradiation. In addition, the melt flow index is the same as 1g / 10min when compared to Example 4 and Comparative Example 2, but the processing load is reduced by about 20% compared to Comparative Example 2 Example 4 irradiated with an electron beam. Similarly, in Example 5 and Comparative Example 3, Example 5 irradiated with an electron beam showed lower processing load characteristics than Comparative Example 3. In addition, Example 6, in which the UV stabilizer was prescribed in transparency, which is an optical property, of the film properties, showed a very excellent transparency than Comparative Example 4, which was not prescribed.

Claims (5)

400∼2500ppm의 산화방지제 및 50∼1000ppm의 자외선 안정제가 첨가된 선형저밀도 폴리에틸렌(LLDPE)을 0.1∼6Mrad의 전자선을 조사시켜 분자구조를 변성시키는 것을 특징으로 하는 전자선조사에 의한 선형저밀도 폴리에틸렌 수지의 개질방법.Modification of the linear low density polyethylene resin by electron beam irradiation characterized in that the linear low density polyethylene (LLDPE) to which 400 to 2500 ppm antioxidant and 50 to 1000 ppm ultraviolet stabilizer are added is irradiated with an electron beam of 0.1 to 6 Mrad to modify the molecular structure. Way. 제 1항에 있어서, 상기 선형저밀도 폴리에틸렌의 용융흐름지수가 0.5g/10min∼7.0g/10min이고, 밀도는 0.917g/cm3∼0.930g/cm3인 것을 특징으로 하는 전자선조사에 의한 선형저밀도 폴리에틸렌 수지의 개질방법.The linear low density of electron beam irradiation according to claim 1, wherein the melt flow index of the linear low density polyethylene is 0.5g / 10min to 7.0g / 10min, and the density is 0.917g / cm 3 to 0.930g / cm 3 . Modification method of polyethylene resin. 제 1항에 있어서, 상기 산화방지제가 페놀 또는 포스파이트계 화합물을 단독 또는 혼합 사용함을 특징으로 하는 전자선조사에 의한 선형저밀도 폴리에틸렌 수지의 개질방법.The method of modifying a linear low density polyethylene resin according to claim 1, wherein the antioxidant is used alone or in combination with a phenol or a phosphite compound. 제 1항에 있어서, 상기 자외선 안정제가 자외선 흡수제인 벤조페논계, 및 라디칼종결제인 입체장애가 큰 아민계 화합물을 단독 또는 혼합 사용함을 특징으로 하는 전자선조사에 의한 선형저밀도 폴리에틸렌 수지의 개질방법.The method of modifying a linear low density polyethylene resin by electron beam irradiation according to claim 1, wherein the ultraviolet light stabilizer is used alone or in combination of a benzophenone series, which is an ultraviolet absorber, and a sterically hindered amine compound, which is a radical terminator. 제 1항에 있어서, 상기 전자선 조사량이 0.3∼5Mrad임을 특징으로 하는 전자선조사에 의한 선형저밀도 폴리에틸렌 수지의 개질방법.The method of modifying a linear low density polyethylene resin according to claim 1, wherein the electron beam irradiation amount is 0.3 to 5 Mrad.
KR1019970059494A 1997-11-12 1997-11-12 Modification of Linear Low Density Polyethylene Resin by Electron Beam Irradiation KR19990039402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970059494A KR19990039402A (en) 1997-11-12 1997-11-12 Modification of Linear Low Density Polyethylene Resin by Electron Beam Irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970059494A KR19990039402A (en) 1997-11-12 1997-11-12 Modification of Linear Low Density Polyethylene Resin by Electron Beam Irradiation

Publications (1)

Publication Number Publication Date
KR19990039402A true KR19990039402A (en) 1999-06-05

Family

ID=66086465

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970059494A KR19990039402A (en) 1997-11-12 1997-11-12 Modification of Linear Low Density Polyethylene Resin by Electron Beam Irradiation

Country Status (1)

Country Link
KR (1) KR19990039402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161952B2 (en) 2014-03-10 2021-11-02 Hickory Springs Manufacturing Company Methods of insulating piping and other materials using high temperature non-crosslinked polyethylene-based foam

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176533A (en) * 1984-09-21 1986-04-19 Toa Nenryo Kogyo Kk Polyethylene film
US4586995A (en) * 1982-09-17 1986-05-06 Phillips Petroleum Company Polymer and irradiation treatment method
US4598128A (en) * 1983-03-14 1986-07-01 Phillips Petroleum Company Polymer composition and preparation method
JPS6361038A (en) * 1986-09-02 1988-03-17 Mitsubishi Petrochem Co Ltd Radiation-resistant polyolefin composition
KR910008047A (en) * 1989-10-31 1991-05-30 마델린 알. 락스니스 Sulfide Antioxidants for Stabilized Crosslinked Polyolefins
US5508319A (en) * 1991-06-21 1996-04-16 Montell North America Inc. High melt strength, ethylene polymer, process for making it, and use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586995A (en) * 1982-09-17 1986-05-06 Phillips Petroleum Company Polymer and irradiation treatment method
US4598128A (en) * 1983-03-14 1986-07-01 Phillips Petroleum Company Polymer composition and preparation method
JPS6176533A (en) * 1984-09-21 1986-04-19 Toa Nenryo Kogyo Kk Polyethylene film
JPS6361038A (en) * 1986-09-02 1988-03-17 Mitsubishi Petrochem Co Ltd Radiation-resistant polyolefin composition
KR910008047A (en) * 1989-10-31 1991-05-30 마델린 알. 락스니스 Sulfide Antioxidants for Stabilized Crosslinked Polyolefins
US5508319A (en) * 1991-06-21 1996-04-16 Montell North America Inc. High melt strength, ethylene polymer, process for making it, and use thereof
US5552104A (en) * 1991-06-21 1996-09-03 Montell North America Inc. High melt strength, ethylene polymer, process for making it, and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161952B2 (en) 2014-03-10 2021-11-02 Hickory Springs Manufacturing Company Methods of insulating piping and other materials using high temperature non-crosslinked polyethylene-based foam

Similar Documents

Publication Publication Date Title
KR100311289B1 (en) Compositions of gloss reduced, irradiated olefin polymer material and unirradiated olefin polymer material
CN107722448B (en) Composite composition for automotive interior material using natural fiber
ATE551369T1 (en) MULTI-STEP PROCESS FOR PRODUCING POLYETHYLENE WITH REDUCED GEL FORMATION
CN111286116A (en) UVC irradiation-resistant polypropylene/polyethylene weather-resistant composite material and preparation method thereof
KR19990039402A (en) Modification of Linear Low Density Polyethylene Resin by Electron Beam Irradiation
JP7366037B2 (en) Photoinitiator for polyolefins
KR20140045528A (en) Ethylene-based polymers compositions
US6248840B1 (en) Process to produce a composition
US20070232716A1 (en) Cross-linking resins
KR20230112661A (en) UV-resistant SMMA copolymer with low haze and high transparency
JPH10502391A (en) Modification of (co) polymers with unsaturated peracids
KR102123465B1 (en) Polyketone compound with improved flame resistance
JPS6345692B2 (en)
JP4949545B2 (en) Film for decorative sheet
JP2822477B2 (en) Resin composition with excellent heat stability and weather resistance
CN107698842A (en) The new application of alkoxy benzophenone
KR20190062899A (en) Resin compositions of polyethylene used agricultural film and film manufactured by using the same
KR20190097940A (en) Polyketone compound with improved flame resistance
JPS5989341A (en) Polyethylene composition for blow molding
JP2012107106A (en) Method for producing thermoplastic elastomer composition
EP0821709B1 (en) Polyketone polymer composition
JPH093298A (en) Polypropylene composition
JPS58198501A (en) Production of crosslinked modified polyolefin
KR100187313B1 (en) Highly antioxidant olefinic resin composition
JP2023057885A (en) Polypropylene film and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application