KR19990030555A - Manufacturing Method of Lithium Polymer Secondary Battery Cell - Google Patents

Manufacturing Method of Lithium Polymer Secondary Battery Cell Download PDF

Info

Publication number
KR19990030555A
KR19990030555A KR1019970050799A KR19970050799A KR19990030555A KR 19990030555 A KR19990030555 A KR 19990030555A KR 1019970050799 A KR1019970050799 A KR 1019970050799A KR 19970050799 A KR19970050799 A KR 19970050799A KR 19990030555 A KR19990030555 A KR 19990030555A
Authority
KR
South Korea
Prior art keywords
active material
battery cell
negative electrode
laminated
secondary battery
Prior art date
Application number
KR1019970050799A
Other languages
Korean (ko)
Inventor
김종진
Original Assignee
왕중일
대우전자부품 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 왕중일, 대우전자부품 주식회사 filed Critical 왕중일
Priority to KR1019970050799A priority Critical patent/KR19990030555A/en
Publication of KR19990030555A publication Critical patent/KR19990030555A/en

Links

Abstract

본 발명은 리튬폴리머 2차전지셀의 제조방법에 관한 것으로, 구리포일(11)과, 이 구리포일(11)의 상부에 음극활물질막(13)이 적층되고, 상기 음극활물질막(13)위에 전해질격리막(15)을 적층한 후, 양극활물질막(17)이 적층되며, 이 양극활물질막(17)위에 알루미늄포일(19)이 적층되어지되, 상기 금속포일(11, 19)에 대응되는 활물질막(13, 17)이 각각 상기 금속포일(11, 19)의 표면에 소정의 코팅방법에 의해 연속적으로 코팅시킨 후, 일정한 간격으로 상기 코팅층을 제거하는 스트라이프부를 형성하므로써 니켈리드선을 용접할 부분을 형성하게 된 것으로, 전지셀의 대량제조를 용이하게 하는 효과가 있다.The present invention relates to a method for manufacturing a lithium polymer secondary battery cell, the copper foil 11 and the negative electrode active material film 13 is laminated on the copper foil 11, and on the negative electrode active material film 13 After stacking the electrolyte isolation layer 15, the cathode active material layer 17 is stacked, and the aluminum foil 19 is laminated on the cathode active material layer 17, and the active material corresponding to the metal foils 11 and 19 is formed. After the films 13 and 17 are continuously coated on the surfaces of the metal foils 11 and 19 by a predetermined coating method, the portions to be welded to the nickel lead wire are formed by forming stripe portions for removing the coating layers at regular intervals. By forming, there is an effect that facilitates mass production of the battery cell.

Description

리튬폴리머2차전지셀의 제조방법(Method of making a laminated lithum-polymer rechargeable battery cell)Method of making a laminated lithum-polymer rechargeable battery cell

본 발명은 리튬폴리머 2차전지셀의 제조방법에 관한 것으로 특히, 금속집전체에 활물질을 코팅하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a lithium polymer secondary battery cell, and more particularly, to a method for coating an active material on a metal current collector.

일반적으로 리튬폴리머 2차전지는 양극과 음극 사이에 폴리머 전해질을 끼워넣고 그 외부를 집전체, 외장재 순으로 씌운 구조로 되어 있다.In general, a lithium polymer secondary battery has a structure in which a polymer electrolyte is sandwiched between a positive electrode and a negative electrode and the outside thereof is covered with a current collector and an exterior material.

이때 상기 폴리머전해질은 통상 모노마, 유기용제, 전해질염 등 3종류의 물질을 혼합해 사용하고, 양극에는 LiCoO2를 사용하고, 음극에는 탄소재료를 주로 사용하게 된다.In this case, the polymer electrolyte is usually used by mixing three kinds of materials such as monoma, an organic solvent, and an electrolyte salt, using LiCoO 2 for the positive electrode and mainly using a carbon material for the negative electrode.

리튬폴리머 2차전지의 장점은 우선 고체나 겔상태의 폴리머를 사용하기 때문에 두께를 1mm이하로 줄일 수 있는 등 제작할 수 있는 두께에서 리튬이온2차전지보다 크게 앞서고, 또한 안정성면에서도 전해질을 점성이 높은 겔상태의 고체폴리머를 사용하기 때문에 전지에 구멍이 나도 용액이 흘러나오지 않아 리튬이온 2차전지와 같은 발화위험이 거의 없는 것이다.The advantage of the lithium polymer secondary battery is that it uses a solid or gel polymer to reduce the thickness to 1 mm or less, so that the lithium polymer secondary battery is significantly ahead of the lithium ion secondary battery in terms of thickness, and the electrolyte has a viscosity. Because of the use of high gel solid polymer, even if the battery has a hole, the solution does not flow out, so there is almost no risk of ignition like a lithium ion secondary battery.

이러한 리튬폴리머 전지셀의 구조는 도 1에 도시된 바와 같이 구리포일(11)과, 이 구리포일(11)의 상부에 음극활물질막(13)이 적층된다.As shown in FIG. 1, the lithium polymer battery cell has a copper foil 11 and a negative electrode active material layer 13 stacked on the copper foil 11.

또한, 상기 음극활물질막(13)위에 전해질격리막(15)을 적층한 후, 양극활물질막(17)이 적층되며, 이 양극활물질막(17)위에 알루미늄포일(19)이 적층되어져 있다.In addition, after the electrolyte isolation film 15 is laminated on the negative electrode active material film 13, the positive electrode active material film 17 is laminated, and the aluminum foil 19 is laminated on the positive electrode active material film 17.

이러한 리튬폴리머전지셀의 종래의 제조방법은 도 2에 도시된 바와 같이, 전지셀을 구성하는 구리포일(11), 음극활물질(13), 전해질격리막(15), 양극활물질막(17) 및 알루미늄포일(19)을 소정온도로 가열되는 오븐(20)내에서 두 개의 압축롤(21, 22) 사이로 동시에 주입하여 통과시키면서 압축하여 제조하고 있었다.As shown in FIG. 2, a conventional method of manufacturing a lithium polymer battery cell includes a copper foil 11, a negative electrode active material 13, an electrolyte isolation film 15, a positive electrode active material film 17, and aluminum constituting the battery cell. The foil 19 was manufactured by compressing the foil 19 while simultaneously injecting and passing between two compression rolls 21 and 22 in the oven 20 heated to a predetermined temperature.

또 다른 종래의 제조방법은 도 3에 도시된 바와 같이, 먼저 1단계로 구리포일(11)과 음극활물질(13)을 2개의 롤(23, 24)로 압축 합판하여 음극판을 제조하고, 알루미늄포일(19)과 양극활물질(17)을 2개의 롤(25, 26)으로 압축합판하여 양극판을 제조한다.In another conventional manufacturing method, as shown in FIG. 3, first, the copper foil 11 and the negative electrode active material 13 are compressed and laminated with two rolls 23 and 24 in one step to prepare a negative electrode plate, and an aluminum foil. (19) and the positive electrode active material 17 are compressed and laminated with two rolls 25 and 26 to produce a positive electrode plate.

그리고 이어서 상기 음극판과 양극판을 전해질격리막(15)을 사이에 두고 120℃의 온도로 가열하면서 다시 2개의 롤(27, 28)로 압축합판하여 제조하고 있었다.Subsequently, the negative electrode plate and the positive electrode plate were compressed and laminated with two rolls 27 and 28 while being heated at a temperature of 120 ° C. with an electrolyte isolation film 15 therebetween.

그러나 이러한 종래의 제조방법에 의하면 집전체과 각 활물질질간의 적층을 별도의 공정으로 하기 때문에 제조하기 어려운 문제점이 있다.However, this conventional manufacturing method has a problem that it is difficult to manufacture because the lamination between the current collector and each active material is a separate process.

이에 본 발명은 집전체에 각 활질질막을 별도로 생성하여 접합시킴이 없이 연속된 집전체에 활물질막을 연속적으로 코팅하게 된 리튬폴리머2차전지셀의 제조방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method of manufacturing a lithium polymer secondary battery cell in which an active material film is continuously coated on a continuous current collector without separately forming each active membrane on the current collector and bonding them.

상기한 목적을 달성하기 위한 본 발명의 리튬폴리머2차전지셀의 제조방법은, 구리포일과, 이 구리포일의 상부에 음극활물질막이 적층되고, 상기 음극활물질막위에 전해질격리막을 적층한 후, 양극활물질막이 적층되며, 이 양극활물질막위에 알루미늄포일이 적층되어지되, 상기 금속포일에 대응되는 활물질막이 각각 상기 금속포일의 표면에 일정한 간격으로 스트라이프부를 형성하여 연속적으로 코팅되게 된 것을 특징으로 한다.In the method for producing a lithium polymer secondary battery cell of the present invention for achieving the above object, a copper foil and a negative electrode active material film is laminated on the copper foil, an electrolyte isolation film is laminated on the negative electrode active material film, the positive electrode The active material film is laminated, and the aluminum foil is laminated on the cathode active material film, and the active material films corresponding to the metal foils are formed on the surface of the metal foil by forming strips at regular intervals, respectively.

상기한 방법에서는 양극물질과 음극물질을 각각 금속 집전체위해 소정의 스트라이프부를 형성하며 등간격으로 형성되어져, 이 스트라이프부를 기준으로 절단하여 상기 스트라이프부를 니켈전극의 리드를 바로 용접하도록 하게 되어 대량생산이 용이하게 된 것이다.In the above method, the positive electrode material and the negative electrode material are formed at equal intervals by forming predetermined stripe portions for the metal current collector, respectively, and the stripe portion is directly welded to the lead of the nickel electrode by cutting the stripe portion as a reference. It became easy.

도 1 은 일반적인 리튬폴리머 2차전지셀의 층상구조를 도시한 사시도,1 is a perspective view showing a layered structure of a typical lithium polymer secondary battery cell,

도 2 는 종래의 2차전지셀의 적층방법을 도시한 도면,2 is a view showing a stacking method of a conventional secondary battery cell,

도 3은 또다른 종래의 2차전지셀의 적층방법을 도시한 단면도,3 is a cross-sectional view showing another conventional secondary battery cell stacking method;

도 4는 본 발명에 따른 집전체에 활물질을 코팅하는 방법을 도시한 개략도이다.4 is a schematic diagram illustrating a method of coating an active material on a current collector according to the present invention.

이하, 본 발명의 실시예를 첨부한 예시도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, described in detail with reference to the accompanying drawings, an embodiment of the present invention.

도 4은 본 발명의 제조공정을 도시한 개략적인 공정도를 도시한 것이다.Figure 4 shows a schematic process diagram showing the manufacturing process of the present invention.

먼저, 롤(30)에 감격진 집전체(32)를 연속적으로 컨베이어상으로 이송시키면서, 위쪽에 위치된 호퍼(34)에 담겨진 액상의 활물질을 상기 집전체(32)의 표면에 코팅하여 활물질코팅층(36)을 형성한다.First, the active material coating layer is coated on the surface of the current collector 32 by coating a liquid active material contained in the hopper 34 located above while continuously transferring the current collector 32 impressed on the roll 30 onto a conveyor. Form 36.

이때 일정한 길이만큼 연속적으로 코팅되는 활물질코팅층(36)과, 니켈리드선이 용접될 패드부분만큼 만큼 집전체(32)를 노출시키는 스트라이프부(38)가 교번적으로 코팅되도록 한다.In this case, the active material coating layer 36 continuously coated by a predetermined length and the stripe portion 38 exposing the current collector 32 as much as the pad portion to which the nickel lead wire is welded are alternately coated.

이때 상기 활물질코팅층(36)을 코팅하는 방법은 닥터블레이드(docter blade) 또는 코터(coater) 에 의해 실시될 수 있다.In this case, the method of coating the active material coating layer 36 may be performed by a doctor blade or a coater.

이렇게 하여 형성된 집전체(32)를 상기 스트라이프부(38)를 기준으로 절단하여 하나의 리드 연결부가 형성된 집전체를 얻을 수 있다.The current collector 32 formed in this way may be cut based on the stripe portion 38 to obtain a current collector having one lead connection portion.

이렇게 하여 양극판과 음극판을 제조한 후, 이 들 사이에 전해질격리막을 두고 합판시키게 되면, 상기 양극판과 음극판에는 상기 스트라이프부(38)가 니켈리드를 용접할 수 있는 리드연결부를 이루게 되어 별도의 리드용접부를 형성하는 작업이 불필요하게 된다.In this way, after manufacturing the positive electrode plate and the negative electrode plate, if the plywood with an electrolyte isolation membrane between them, the positive electrode plate and the negative electrode plate is a strip lead portion 38 to form a lead connecting portion for welding nickel lead separate lead welding portion The work of forming the mold becomes unnecessary.

이와같이 본 발명에서는 상기한 방법에서는 양극물질과 음극물질을 각각 금속 집전체위해 소정의 스트라이프부를 형성하며 등간격으로 형성되어져, 이 스트라이프부를 기준으로 절단하여 상기 스트라이프부를 니켈전극의 리드를 바로 용접하도록 하게 되어 대량생산이 가능하게 해주는 효과가 있다.As described above, according to the present invention, the positive electrode material and the negative electrode material are each formed with a predetermined stripe portion for the metal current collector, and are formed at equal intervals, so that the stripe portion is directly welded to the lead of the nickel electrode by cutting the stripe portion. It has the effect of enabling mass production.

Claims (1)

구리포일(11)과, 이 구리포일(11)의 상부에 음극활물질막(13)이 적층되고, 상기 음극활물질막(13)위에 전해질격리막(15)을 적층한 후, 양극활물질막(17)이 적층되며, 이 양극활물질막(17)위에 알루미늄포일(19)이 적층되어지되, 상기 금속포일(11, 19)에 대응되는 활물질막(13, 17)이 각각 상기 금속포일(11, 19)의 표면에 소정길이의 활물질코팅층(36)과 스트라이프부(38)를 교번적으로 형성하도록 연속적으로 코팅하게 된 것을 특징으로 하는 리튬폴리머 2차전지셀의 제조방법.After the copper foil 11 and the negative electrode active material film 13 are laminated on the copper foil 11 and the electrolyte isolation film 15 is laminated on the negative electrode active material film 13, the positive electrode active material film 17 is formed. The aluminum foil 19 is stacked on the cathode active material film 17, and the active material films 13 and 17 corresponding to the metal foils 11 and 19 are respectively formed of the metal foils 11 and 19. A method of manufacturing a lithium polymer secondary battery cell, characterized in that the coating is continuously formed to alternately form the active material coating layer 36 and the stripe portion 38 on the surface of the predetermined length.
KR1019970050799A 1997-10-01 1997-10-01 Manufacturing Method of Lithium Polymer Secondary Battery Cell KR19990030555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970050799A KR19990030555A (en) 1997-10-01 1997-10-01 Manufacturing Method of Lithium Polymer Secondary Battery Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970050799A KR19990030555A (en) 1997-10-01 1997-10-01 Manufacturing Method of Lithium Polymer Secondary Battery Cell

Publications (1)

Publication Number Publication Date
KR19990030555A true KR19990030555A (en) 1999-05-06

Family

ID=66045841

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970050799A KR19990030555A (en) 1997-10-01 1997-10-01 Manufacturing Method of Lithium Polymer Secondary Battery Cell

Country Status (1)

Country Link
KR (1) KR19990030555A (en)

Similar Documents

Publication Publication Date Title
JP7270178B2 (en) BATTERY AND BATTERY MANUFACTURING METHOD
US6589300B2 (en) Method for producing lithium secondary battery
CA2585440C (en) Thin film electrochemical cell for lithium polymer batteries and manufacturing method therefor
JP4402134B2 (en) Multilayer secondary battery and manufacturing method thereof
JP7046185B2 (en) Positive electrode for solid-state battery, method for manufacturing positive electrode for solid-state battery, and solid-state battery
KR20070110563A (en) Electrolyte assembly for secondary battery of novel laminated structure
CN208173722U (en) Secondary cell
CN108140903B (en) Secondary battery and method for manufacturing same
WO1993016497A1 (en) Method of producing thin cell
JP2004071301A (en) Manufacturing method of case for storage element
JP6539080B2 (en) Method of manufacturing secondary battery
US3708349A (en) Method of constructing multicell batteries
JP4737817B2 (en) Method for manufacturing a foldable lithium battery
JP2002015773A (en) Cell and its manufacturing method
US20200280104A1 (en) Anode Subassemblies for Lithium-Metal Batteries, Lithium-Metal Batteries Made Therewith, and Related Methods
JP7160753B2 (en) Solid-state battery manufacturing method and solid-state battery
US20200203776A1 (en) Wound battery and manufacturing method of wound battery
JPH087882A (en) Electrode device for battery, battery, and manufacture thereof
TWI645598B (en) Lithium ion secondary battery and method for producing lithium ion secondary battery
US20220246989A1 (en) Stacked electrode body, resin-fixed stacked electrode body, and all-solid-state battery
JP6742155B2 (en) Electrochemical cell
KR19990030555A (en) Manufacturing Method of Lithium Polymer Secondary Battery Cell
CN115548460A (en) Laminated cell structure manufacturing method and laminated cell structure
JP2001155717A (en) Method of fabricating electric battery electrode plate
KR100251768B1 (en) Method of making a laminated lithium-polymer rechargeable battery cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application