KR19990030510A - Mass production method of antibiotics using redox-cycling reagent - Google Patents

Mass production method of antibiotics using redox-cycling reagent Download PDF

Info

Publication number
KR19990030510A
KR19990030510A KR1019970050725A KR19970050725A KR19990030510A KR 19990030510 A KR19990030510 A KR 19990030510A KR 1019970050725 A KR1019970050725 A KR 1019970050725A KR 19970050725 A KR19970050725 A KR 19970050725A KR 19990030510 A KR19990030510 A KR 19990030510A
Authority
KR
South Korea
Prior art keywords
pms
redox
acid
addition
cycling
Prior art date
Application number
KR1019970050725A
Other languages
Korean (ko)
Other versions
KR100247123B1 (en
Inventor
권형진
김수언
Original Assignee
김수언
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김수언 filed Critical 김수언
Priority to KR1019970050725A priority Critical patent/KR100247123B1/en
Publication of KR19990030510A publication Critical patent/KR19990030510A/en
Application granted granted Critical
Publication of KR100247123B1 publication Critical patent/KR100247123B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P35/00Preparation of compounds having a 5-thia-1-azabicyclo [4.2.0] octane ring system, e.g. cephalosporin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 미생물 배양시 redox-cycling 시약을 첨가하여 활성 산소를 발생 시키므로써 클라발라닉산(Clavulanic acid)의 생합성에 수반되는 유전자들의 전사를 활성화 시켜 배양물에서 클라발라닉산을 대량생산하는 방법에 관한 것이다.The present invention relates to a method of mass-producing clavalonic acid in culture by activating the transcription of genes involved in the biosynthesis of clavalulanic acid by adding redox-cycling reagents to generate microorganisms during microbial culture. will be.

Streptomyces clavuligerus는 임상학적으로 중요한 β-락탐아제 저해제인 클라발라닉산(CA)을 생산한다. 몇가지 선택된 redox-cycling 시약을 처리했을 때 이 산의 생성이 증가된다. 자극효과는 메나디온(MD), 플럼바긴(PLM) 그리고 페나진 메토설페이트(PMS)를 첨가하였을 때 나타나지만 메틸 바이오로전(MV)를 첨가하였을때는 negative 효과가 나타난다. PMS는 이 산의 축적을 약 150% 정도 증가시키고 PMS 첨가에 대한 superoxide dismutase(SOD)의 유발은 증가과정에서 활성산소가 관여함을 시사한다. PMS의 자극효과는 부티레이티드 하이드록시아니솔(BHA)의 첨가로 상쇄되고 이는 활성 산소가 관여한다는 것을 뒷받침한다. 활성 산소에 의한 이 산의 생산량 증가는 CA 생합성에서 key enzyme을 암호화하는 유전자 cas2의 전사 활성화에서 기인한다.Streptomyces clavuligerus produces clavalonic acid (CA), a clinically important β-lactamase inhibitor. The production of this acid is increased by treatment with several selected redox-cycling reagents. Stimulating effects are seen with the addition of menadione (MD), plumbagin (PLM), and phenazine methosulfate (PMS), but negative effects with the addition of methyl biorogen (MV). PMS increases the accumulation of this acid by about 150% and the induction of superoxide dismutase (SOD) on PMS addition suggests that free radicals are involved in the process. The stimulatory effect of PMS is offset by the addition of butyrated hydroxyanisole (BHA), which supports the involvement of free radicals. The increased production of this acid by free radicals is due to the transcriptional activation of the gene cas2, which encodes the key enzyme, in CA biosynthesis.

본 발명에서 활성 산소는 생합성 유전자의 전사 활성화을 통해 2차 대사산물로서 CA외에도 몇가지 항생제의 생합성을 증가시키는 것을 확인하였다.In the present invention, the active oxygen was confirmed to increase the biosynthesis of several antibiotics in addition to CA as a secondary metabolite through transcriptional activation of the biosynthetic gene.

Description

리독스-싸이클링 시약을 이용한 항생제의 대량 생산방법Mass production method of antibiotics using redox-cycling reagent

본 발명은 클라발라닉산(Clavulanic acid; 이하 "CA"라 칭한다)을 포함한 몇가지 항생제의 대량 생산 방법에 관한 것이다. 더욱 상세하게는 본 발명은 제2차 대사산물인 CA등 항생제를 redox-cycling 시약을 사용하여 활성산소를 공급함으로서 미생물로 부터 대량 생합성하는 방법을 제공한다.The present invention relates to a method for mass production of several antibiotics, including clavalulanic acid (hereinafter referred to as "CA"). More specifically, the present invention provides a method for mass biosynthesis from microorganisms by supplying active oxygen to a secondary metabolite, such as CA, using a redox-cycling reagent.

Streptomyces clavuligerus(ATCC27064)는 CA를 포함하는 클라밤(clavam)과 세파마이신(cephmycin)을 생산하는 균주이다. CA는 그 구조가 β-lactam과 관계가 있는 carbocyclic 고리계를 가진 임상학적으로 중요한 β-lactamase 억제제이다.Streptomyces clavuligerus (ATCC27064) is a strain that produces clavam and cephamycin, including CA. CA is a clinically important β-lactamase inhibitor with a carbocyclic ring system whose structure is related to β-lactam.

CA의 생합성 경로는 생합성적으로 잘 알려진 세파마이신과는 명백히 차이가있다(Weil et al, 1995). 조효소(Cofactor)가 Fe(ll)인 α-ketoglutarate-linked dioxygenase인 클라바민산 합성효소(clavaminic acid synthase;이하 "CAS"라 칭한다)의 반응은 CA의 생합성에서 잘 규명된 효소이다(Salowe et al.1990; Salowe et al.1991). CA의 합성을 암호화하는 유전자 cas는 분리되어 있으며 cas족에 속해있는 두 개의 유전자 즉, cas1과 cas2가 각기 달리 발현된다는 것이 규명되었다. cas2는 starch-asparagin(SA)와 soy media에서 monocistronic과 polycistronic 전사체로 전사되고 cas1은 SA 매질 내에서는 전사가 일어나지 않는 반면에 soy 매질에는 monocistronic 전사체로서만 전사된다(paradkar and jensen 1995).The biosynthetic pathway of CA is clearly different from sephamycin, which is well known biosynthetically (Weil et al, 1995). The reaction of the clavaminic acid synthase (hereinafter referred to as "CAS"), an α-ketoglutarate-linked dioxygenase whose cofactor is Fe (ll), is a well-defined enzyme in the biosynthesis of CA (Salowe et al. 1990; Salowe et al. 1991). The gene cas, which encodes the synthesis of CA, is isolated and two genes belonging to the cas family, cas1 and cas2, have been identified. cas2 is transcribed into monocistronic and polycistronic transcripts in starch-asparagin (SA) and soy media and cas1 is transcribed only as monocistronic transcript in soy media (paradkar and jensen 1995).

CA 생합성에 관한 다른 효소활성들이 보고된 바 있으며 이들 중에 proclavaminate amidino hydrolase를 암호화하는 유전자가 분리되어 그 특성이 구명되었다.(Aidoo et al. 1994; WU et al.1995). 최근 S. clavuligerus로부터 세파마이신과 CA 생산에 필요한 조절유전자, ccaR이 분리되었다.(Perez-Liarena et al. 1997). 한편, 지금까지의 산화적 자극 반응(oxidative stress respones)에 대한 연구는 주로 작은 산화방지제 분자와 산화방지효소계로 구성된 방어계(defense system)에 대하여 주로 초점을 맞추어 왔다. 산화적 stress에 대한 유기체의 반응은 이와같은 1차 방어계의 반응을 넘어서 제2차 물질대사에까지 확대된다.Other enzymatic activities on CA biosynthesis have been reported, among which the gene encoding proclavaminate amidino hydrolase has been isolated and characterized (Aidoo et al. 1994; WU et al. 1995). Recently, the regulatory gene ccaR, which is required for the production of cephamycin and CA, was isolated from S. clavuligerus (Perez-Liarena et al. 1997). Meanwhile, research on oxidative stress respones so far has focused mainly on defense systems composed of small antioxidant molecules and antioxidant enzyme systems. The organism's response to oxidative stress extends beyond this primary defense system to secondary metabolism.

몇몇 redox-cycling 시약에 의해 유도되는 산화적 자극에 대한 미생물의 반응이 1차적으로 E. Coli와 Salmonella typhimurium(Farr and Kogoma 1991)에서 그리고 그들의 유전적 염기, Oxy R과 Sox RS 레귤론에서 연구보고 되었다(Demple and Amabile-Cuevas, 1991). 그러나 미생물계에서 산화적 stress에 대한 반응에서 2차 물질대사의 결과는 연구된 바 없다.Microbial responses to oxidative stimuli induced by several redox-cycling reagents are primarily reported in E. Coli and Salmonella typhimurium (Farr and Kogoma 1991) and in their genetic bases, Oxy R and Sox RS regulators. (Demple and Amabile-Cuevas, 1991). However, the results of secondary metabolism in response to oxidative stress in the microbial system have not been studied.

한편, 환경적인 stresses인 무생물 또는 생물적 stress가 세포내에서 활성화 산소종들의 폭발을 일으킬 수 있다는 자료적 증거는 많으나(Apostol et al. 1989; Epperlein et al. 1986; Keppler et al. 1989; Low and Dwyer 1994), 이들은 주로 식물체내에서 산화적 폭발이 2차 대사물질인 파이토알렉신(Phytoalexin)의 생합성에 수반된다고 보고되고 있다. 2차 물질대사에 대한 활성산소종(active oxygen species)의 영향이 미생물에 대해서 훨씬더 일반적인 현상으로 확대될수 있다는 것은 매력적인 제안이다. 본 발명자들은 이에따라 Superoxide dismutase(SOD)에 의해 재빨리 과산화수소(H2O2)로 분해되는 슈퍼옥사이드(Superoxide)을 생산한다고 알려진 redox-cycling 시약들을 첨가함으로써 산화적 폭발을 조사하고 S.clavuligerus 균주에서 CA 생합성에서 대한 실험을 수행하였다. 그결과 SOD 활성도의 증가를 수반하여, redox-cycling 시약이 S.clavuligerus의 배양중에서 활성산소의 생산을 통하여 배지에서 CA축적을 증가시키는 것을 확인하였다On the other hand, there is much evidence that environmental stresses, inanimate or biological stresses, can cause the explosive release of activated oxygen species in cells (Apostol et al. 1989; Epperlein et al. 1986; Keppler et al. 1989; Low and Dwyer 1994), they report that the oxidative explosion in plants is mainly accompanied by the biosynthesis of the second metabolite, Phytoalexin. It is an attractive proposal that the effects of active oxygen species on secondary metabolism can be extended to a much more common phenomenon for microorganisms. The inventors thus investigated the oxidative explosion by adding redox-cycling reagents known to produce superoxide, which is rapidly degraded to hydrogen peroxide (H 2 O 2 ) by Superoxide dismutase (SOD) and CA in S.clavuligerus strains. Experiments on biosynthesis were performed. As a result, it was confirmed that redox-cycling reagent increased the CA accumulation in the medium through the production of free radicals in the culture of S.clavuligerus, accompanied by an increase in SOD activity.

한편, 직접적인 과산화수소(H2O2) 첨가효과는 redox-cycling 시약만큼 명백하지 않다. 그 까닭은 낮은 막투과성과 카탈라제(catalase)에 의한 과산화수소의 빠른 소멸효과의 결합에 기인한 것으로 생각되고 있다. redox-cycling 시약에 의한 활성 산소종(active oxygen species)의 지속적 생산은 지속적인 효과를 발휘하기 위함이며, 이점에서 과산화수소보다는 redox-cycling 시약의 효과가 월등함을 설명할 수 있다. 그렇지만 어떤 활성화 산소종 또는 PMS의 비효소적 활동을 통하여 형성된 NAD+가 이같은 효과를 증대시키는 원인이 되는지는 확실하지 않다.On the other hand, the direct hydrogen peroxide (H 2 O 2 ) addition effect is not as obvious as the redox-cycling reagent. The reason is thought to be due to the combination of low permeability and the fast disappearing effect of hydrogen peroxide by catalase. The continuous production of active oxygen species by the redox-cycling reagent is intended to have a lasting effect, which may explain the superiority of the redox-cycling reagent rather than hydrogen peroxide. However, it is not clear which activated oxygen species or NAD + formed through the non-enzymatic activity of PMS contributes to this effect.

따라서, 본 발명은 미생물계에 있어서 2차 물질대사 특히 CA의 생합성에 관하여 Redox-Cycling 시약에 의한 산화적 stress에 대한 S.clavuligerus 반응을 제공함을 그 목적으로한다. 본 발명의 다른 목적은 SOD에 의해 재빨리 과산화수소로 분해되는 슈퍼옥사이드을 생산한다고 알려진 redox-cycling 시약들을 첨가함으로써 산화성 폭발을 자극하는 방법으로 2차 물질대사, 특히 CA의 생합성에 관여하는 유전자의 전사를 활성화 시켜 배지에서 CA의 생산의 극대화를 위한 최적조건을 찾아내는 것을 목적으로 한다.It is therefore an object of the present invention to provide a S. clavuligerus response to oxidative stress by Redox-Cycling reagents in relation to the biosynthesis of secondary metabolism, especially CA in the microbial system. Another object of the present invention is to activate the transcription of genes involved in secondary metabolism, in particular the biosynthesis of CA, by stimulating oxidative explosion by adding redox-cycling reagents known to produce superoxides that are rapidly degraded to hydrogen peroxide by SOD. The aim is to find the optimal conditions for maximizing the production of CA in the medium.

본 발명의 또 다른 목적은 CA 이외의 항생제의 생산에 대한 상기 시약이 미치는 효과를 제공함에 있다.Another object of the present invention is to provide an effect of the reagent on the production of antibiotics other than CA.

이하, 본발명의 구체적인 구성과 작용을 상세히 설명한다.Hereinafter, the specific configuration and operation of the present invention will be described in detail.

도 1a와 1b는 본 발명의 CA생산과 S.claruligerus 균주 성장에 대한 리독스싸이클링(redox-cycling) 시약과 과산화수소의 영향을 나타낸 그림.Figures 1a and 1b is a diagram showing the effect of redox-cycling reagent and hydrogen peroxide on the CA production and S.claruligerus strain growth of the present invention.

도 2a와 2b는 본 발명의 CA 생산과 동균주 성장에 대한 redox-cycling 시약과 과산화수소의 영향을 나타낸 그림.Figure 2a and 2b is a diagram showing the effect of redox-cycling reagent and hydrogen peroxide on CA production and growth of copper strains of the present invention.

도 3은 SOD 활성도에 미치는 PMS의 영향을 보인 그림.Figure 3 shows the effect of PMS on SOD activity.

도 4a와 4b는 PMS-Promoted CA 생산과 균체 성장에 미치는 BHA의 효과를 보인 그림.Figures 4a and 4b shows the effect of BHA on PMS-Promoted CA production and cell growth.

도 5는 CAS 활성도에 영향을 미치는 redox-cycling 시약의 효과를 보인 그림.Figure 5 shows the effect of the redox-cycling reagent affecting CAS activity.

도 6a-c는 시간에 따른 cas2 전사의 변화와 전형적인 RNA 분리에 대한 electropherogram을 나타낸 사진도.6A-C are photographs showing electropherograms of cas2 transcription and typical RNA isolation over time.

도 7은 본 발명의 세팔로스피린 생산에 대한 리독스싸이클링 시약의 영향을 나타낸 그림.Figure 7 shows the effect of redox cycling reagent on cephalosphyrin production of the present invention.

도 8은 본 발명의 항생제 ACT, PRD 생산 및 균체성장에 대한 리독스싸이클링 시약의 영향을 나타낸 그림.Figure 8 shows the effect of the redox cycling reagent on the antibiotic ACT, PRD production and cell growth of the present invention.

본 발명은 S.clavuligerus 균주를 사용하여 CA 생산을 극대화하기 위한 산화적 stress에 관한것으로서 redox-cycling 시약과 HP 공급효과를 조사하는 공정; SA 배지에서 균체와 CA 기타 항생제로서 세팔로스포린(cephalosporin), 액티노로딘(Actinorhodin) 및 프로디지오닌(prodigionin)의 생산을 극대화하는 공정으로 구성된다. 이하, 본 발명의 구체적인 구성과 작용을 설명한다.The present invention relates to an oxidative stress for maximizing CA production using S.clavuligerus strains and to investigate the effect of supplying redox-cycling reagents and HP; It consists of maximizing the production of cephalosporin, actinordin and prodigionin as cells and other antibiotics in CA medium. Hereinafter, the specific configuration and operation of the present invention.

S.clavuligerus(ATCC 27064)균주의 배양Culture of S.clavuligerus (ATCC 27064) Strains

포자 현탁액 5㎖를 종배지(Salowe et al., 1990)로부터 취하여 20㎖ 테스트 튜브에 접종하고 5일간 배양한 다음, SA 배지(Jensen et al., 1982) 100㎖ 그리고 250rpm에서 보토한후 20㎖씩 취하여 50㎖ 배양 튜브에 넣었다. 그후 디메틸 설폭사이드(DMSO)에 상기 시약이 첨가된 용액을 DMSO가 1%가 될 때까지 튜브에 첨가하였다. Menadione(MD), Plumbagin(PLM), Phenazine methosulfate(PMS), methyl viologen(MV) 및 H2O2(HP)는 Sigma의 제품를 사용하였다. 균사현탁액은 Brana(1985)등의 방법으로 균질화하고 homogenate의 흡광도(OD)는 UV-Vis 스펙트로포토메타(Hewlette Packard 8452A)상에서 600㎚에서 측정하였다. 필요에 따라 균사세포페이스트는 70℃에서 건조하여 건조중량(Dried Cell weight; DCW)을 측정하였다.5 ml of spore suspension was taken from the seed medium (Salowe et al., 1990) and inoculated in a 20 ml test tube and incubated for 5 days, followed by vomiting at 100 ml of SA medium (Jensen et al., 1982) and 250 rpm. Each was taken and placed in a 50 ml culture tube. The solution with the reagent added to dimethyl sulfoxide (DMSO) was then added to the tube until DMSO was 1%. Menadione (MD), Plumbagin (PLM), Phenazine methosulfate (PMS), methyl viologen (MV), and H 2 O 2 (HP) used Sigma's products. Mycelial suspension was homogenized by the method of Brana (1985) and the absorbance (OD) of homogenate was measured at 600nm on UV-Vis Spectrophotometa (Hewlette Packard 8452A). As needed, mycelial cell paste was dried at 70 ° C. to measure dry cell weight (DW).

CA정량CA quantity

배양물은 microfuge에 넣고 10,000rpm으로 원심분리하여 상징액 중에서 HPLC를 통하여 CA를 정량하였다(Salowe et al., 1990). 일반적 분석을 위해서는 imidazole유도체 용액을 1㎖로 희석하여 spectrophotometer에서 312㎚에서 흡광도를 측정하였다(Hewlette packard 8452A).Cultures were placed in microfuge and centrifuged at 10,000 rpm to quantify CA through HPLC in supernatant (Salowe et al., 1990). For general analysis, the imidazole derivatives were diluted with 1 ml and the absorbance was measured at 312 nm on a spectrophotometer (Hewlette packard 8452A).

효소분석Enzyme Analysis

상징액중의 CA 활성도는 Salowe등(1991)이 개발한 방법으로 합성된 기질인 ras-proclavaminate를 사용하여 측정하였다. Superoxide dismutase(SOD)는 Archibald가 개발한 agar-diffusion 방법(1990)에 의하여 분석하고 단백질 농도는 소혈청알부민을 표준시약으로하여 Bio-Rad Protein Assay 기법을 사용하여 결정하였다. 한편, 세팔로스포린(cephalosporin)의 활성도는 Fang and Demain(1995) 방법에 의하여 표준균주로 E.coli Ess를 사용하여 agar diffusion 방법으로 측정하였다.CA activity in the supernatant was measured using ras-proclavaminate, a substrate synthesized by the method developed by Salowe et al. (1991). Superoxide dismutase (SOD) was analyzed by the agar-diffusion method developed by Archibald (1990), and protein concentration was determined using Bio-Rad Protein Assay using bovine serum albumin as the standard reagent. On the other hand, cephalosporin activity was measured by the agar diffusion method using E. coli Ess as a standard strain by the Fang and Demain (1995) method.

RNA분리와 Nothern blot분석RNA isolation and Nothern blot analysis

Total RNA분리와 핵산의 glyoxal-modification은 Hopwood등(1985)의 방법으로 수행하였다. Nothern blot 분석은 [a-32P]αATP로 표지된 DNA 올리고머 프로브와 데옥시뉴클레오타이드 전이효소(Promega)로써 수행하였다. mRNA 검색용 Probe는 pC2, cas2 유전자의 +957∼+978영역에 상보적인 합성 올리고머(TCAGCGGCGCGGCGAGAACGAG) 22MERS 이었다.(Marsh et al., 1992)Total RNA isolation and glyoxal-modification of nucleic acids were performed by Hopwood et al. (1985). Nothern blot analysis was performed with DNA oligomer probes labeled with [a- 32 P] αATP and deoxynucleotide transferase (Promega). Probe for mRNA detection was a synthetic oligomer (TCAGCGGCGCGGCGAGAACGAG) 22MERS complementary to the +957 to +978 regions of the pC2 and cas2 genes (Marsh et al., 1992).

실시예 1. redox-cycling 시약과 HP첨가에 대한 효과 조사Example 1. Investigation of the effects of redox-cycling reagent and HP addition

산화적 stress가 S. clavuligerus에서 CA 생산을 조절하는데 영향을 미치는 지를 결정하기 위해 본 발명자들은 redox-cycling 시약과 HP에 대한 효과를 조사하였다. CA생산은 균체 성장과 관련되어 SA 배지에서 초기 영양단계에서 시작되었다. 그 결과는 도 1a-1b와 같다. 도 1a는 CA생산을, 도 1b는 균체성장곡선을 나타낸다.To determine if oxidative stress influences the regulation of CA production in S. clavuligerus, we investigated the effects on redox-cycling reagents and HP. CA production began in the early stages of nutrition in SA medium in relation to cell growth. The results are shown in Figures 1a-1b. Figure 1a shows the CA production, Figure 1b shows the cell growth curve.

시약등의 물질들은 성장 안정기 배양온도 27℃에서 배양개시 38시간후 대수성장 말기에 첨가하였다. 1% DMSO는 친수성물질이 미생물의 세포막을 통과할 수 있도록 배양액에 가했다. HP는 DMSO가 첨가되었을때만 효과가 나타났다. 테스트된 redox-cycling 시약중 하나만 제외하고 나머지는 10μM농도로 첨가할 때 CA축적에 대하여 유효한 효과를 나타냈다. MV는 CA축적에 유해한 효과가 있었다. PMS는 DMSO-대조군과 비교할때 CA축적이 50% 정도 증가하였다. HP 또한 PLM과 MD와 비슷한 정도로 CA의 생산을 증가시켰다.Reagents and the like were added at the end of logarithmic growth 38 hours after the start of incubation at 27 ° C. 1% DMSO was added to the culture to allow the hydrophilic material to cross the microbial cell membrane. HP only worked when DMSO was added. Except for one of the tested redox-cycling reagents, the other showed an effective effect on CA accumulation when added at a concentration of 10 μM. MV had a deleterious effect on CA accumulation. PMS increased CA accumulation by 50% compared to DMSO-control. HP also increased CA production to a similar extent as PLM and MD.

실시예 2. CA 생산에 배양온도가 미치는 영향Example 2 Effect of Culture Temperature on CA Production

균체의 저온배양이 CA 생산에 미치는 영향을 조사한바 저온배양에서는 redox-cycling 시약과 활성산소를 더 지속시켜 CA 축적을 증대시켰다. 도 2a, 2b에서 확인할 수 있듯이 실시예 1에서 보다 낮은 20℃의 배양온도에서는 균체의 Lag time이 10시간 증가하나 균체성장은 감소하지 않은 반면(도 2b) redox-cycling 시약에 의한 CA축적은 현저히 증대되었다(도 2a). PMS는 150% CA 증산효과를 보였다. 실시예1∼실시예2를 통하여 PMS의 농도를 0.1μM, 10μM, 100μM로 다양하게 변화시켜 CA축적과 균체 성장을 조사한바 CA축적의 극대화와 동시에 균체성장에 영향을 미치지않는 농도는 10μM이 적합하였다. PMS의 농도가 100μM이 초과되면 균체성장이 억제되었다.The effects of low temperature culture on the production of CA were investigated. In low temperature culture, CA accumulation was increased by further sustaining redox-cycling reagent and active oxygen. As can be seen in FIGS. 2a and 2b, the Lag time of the cells increased by 10 hours but the growth of the cells was not decreased at the incubation temperature of 20 ° C. lower than that of Example 1 (FIG. 2b). Increased (FIG. 2A). PMS showed a 150% CA transpiration effect. By varying the concentration of PMS to 0.1 μM, 10 μM, and 100 μM through Examples 1 to 2, the CA accumulation and cell growth were investigated. The concentration that does not affect cell growth at the same time as maximizing CA accumulation is appropriate. It was. Cell growth was inhibited when the concentration of PMS exceeded 100 μM.

실시예 3. PMS첨가가 SOD 활성도에 미치는 영향Example 3 Effect of PMS Addition on SOD Activity

S. clavuligerus 세포를 20℃에서 배양하고 48시간후에 10μM PMS를 첨가하였다. 200㎍의 soluble protein을 취하여 1% agar gel에 걸고 achromatic zone의 직경을 측정하고 SOD활성도를 계산하였다. 도 3에서 보는 바와같이 specific activity가 1% DMSO 첨가후 5시간 배양시에 약 40%(180에서 250μ/㎎)증가하였다. 그러나 PMS의 첨가는 1시간 배양시에 SOD activity를 370μ/㎎도 증대시켰다. 실험결과 SOD활성유도에 PMS가 유효한 것으로 나타났다.S. clavuligerus cells were incubated at 20 ° C. and after 48 hours 10 μM PMS was added. 200 μg of soluble protein was taken, 1% agar gel was used to measure the diameter of the achromatic zone, and SOD activity was calculated. As shown in Figure 3 specific activity increased about 40% (180 to 250μ / mg) at 5 hours of incubation after addition of 1% DMSO. However, the addition of PMS increased the SOD activity by 370 μg / mg for 1 hour of incubation. Experimental results showed that PMS was effective for SOD activity induction.

실시예 4. PMS-promoted CA생산과 균체 성장에 미치는 BHA 효과 실험Example 4 Effect of BHA on PMS-promoted CA Production and Cell Growth

PMS로 증대된 CA축적과 균체성장에 미치는 BHA의 효과를 실험하기위하여 S. clavuligerus를 20℃에서 배양하고 48시간후에 10μM BHA와 PMS를 첨가하였다.To investigate the effect of BHA on PMS enhanced CA accumulation and cell growth, S. clavuligerus was incubated at 20 ° C and 10 μM BHA and PMS were added after 48 hours.

BHA는 식품의 보존제로 널리 사용되고 있고 그 작용도 세포내 퍼록시기와같은 유리기의 효율적인 제거로 산화방지제 역할을 수행한다. 실험결과 BHA만으로는 CA의 축적에 많은 효과를 나타내지 못하며 PMS의 CA축적 증강효과는 BHA를 첨가함으로써 상쇄되었다(도 4a-4b). 도 4a는 BHA가 PMS로 증강된 CA축적에 미치는 효과를, 도 4b는 균체성장을 보인 그림이다.BHA is widely used as a food preservative and its function is to act as an antioxidant by efficient removal of free radicals such as intracellular peroxy groups. Experimental results showed that BHA alone did not show much effect on the accumulation of CA, and CA accumulation enhancement effect of PMS was canceled by adding BHA (FIGS. 4A-4B). 4a shows the effect of BHA on CA accumulation enhanced with PMS, and FIG. 4b shows cell growth.

실시예 5. CAS 활성도에 미치는 redox-cycling 시약의 영향 조사Example 5 Investigation of the Effect of Redox-cycling Reagents on CAS Activity

cas 활성에 대한 redox-cycling 시약의 영향을 조사기 위하여 S. clavuligerus를 20℃에서 배양하고 48시간 후에 10μM의 PMS를 첨가한다음 세포를 수득하여 lysis buffer에서 sonicate하였다. 원심분리하여 불용성 부분을 제거하고 100nmole의 ras-proclavaminate가 포함된 200㎕로 분석을 수행 하였다.In order to investigate the effect of redox-cycling reagent on cas activity, S. clavuligerus was incubated at 20 ° C., and 48 hours later, 10 μM of PMS was added, and the cells were obtained and sonicated in lysis buffer. The insoluble portion was removed by centrifugation, and the assay was performed with 200 µl containing 100 nmole of ras-proclavaminate.

PMS를 처리하지 않은 세포에서 specific cas activity는 배양개시 96시간 까지는 아무런 변화가 일어나지 않는 반면 redox-cycling 시약의 첨가에 대하여 cas activity는 증가하였다. 그 결과는 도 5와 같다. cas 활성도는 PMS에 대해서 50%정도 증가하였고, MD와 PLM에 대해서는 30% 증가하였다. Specific cas 활성도는 MV의 첨가에 의하여 감소되었다. 몇몇 redox-cycling 시약 특히 PMS의 첨가에 대한 증가된 CA축적은 명백히 specitic cas 활성도의 증가에서 기인한 것으로 나타났다.The specific cas activity of PMS-treated cells did not change until 96 hours after incubation, whereas the cas activity increased with addition of redox-cycling reagent. The result is shown in FIG. cas activity increased by 50% for PMS and 30% for MD and PLM. Specific cas activity was decreased by the addition of MV. Increased CA accumulation for some redox-cycling reagents, especially for the addition of PMS, was apparently due to increased specitic cas activity.

실시예 6. cas2 전사의 경시적 변화와 RNA의 전기영동 실험Example 6. Time-varying changes in cas2 transcription and electrophoretic experiments of RNA

S. clavuligerus 균주의 cas2 유전자전사의 경시적 변화와 RNA 전기영동을 수행하기 위하여 세포를 20℃의 배지에서 배양하고 48시간후에 10μM이 PMS를 첨가하였다. 58시간 배양한 세포들로부터 추출된 total RNA 20㎍을 전기영동하여 실험에 제공하였다. 도 6a는 pC2를 사용하여 도 6b는 pC2에 상보적인 합성올리고머로 blot을 수행 하였다.Cells were cultured in a medium at 20 ° C. and 10 μM PMS was added 48 hours later to carry out changes over time and RNA electrophoresis of cas2 gene transcription of S. clavuligerus strains. 20 μg of total RNA extracted from the cells incubated for 58 hours was subjected to electrophoresis to the experiment. Figure 6a was used for pC 2 Figure 6b was performed blot with a synthetic oligomer complementary to pC 2 .

Northern blot분석은 CA축적이 최대로 증가효과를 보인 10μM PMS로 처리되고 20℃에서 배양된 상기 세포를 사용하여 수행되었다. 총RNA에서 cas2 message level은 slot blot 분석에 의하여 분석하였다. cas2의 발현은 CA생합성의 개시 직전인 발효시작후 48시간에 피크를 나타내었다. 그리고 대조군에서는 58시간에 나타났다. 한편, 일시적인 cas2 발현은 발효 개시후 20시간 정도 되었을 때에도 피크를 나타냈다.(도 6a)Northern blot analysis was performed using the cells treated with 10 μM PMS showing the greatest increase in CA accumulation and incubated at 20 ° C. Cas2 message level in total RNA was analyzed by slot blot analysis. Cas2 expression peaked 48 hours after fermentation, just before the onset of CA biosynthesis. And in the control group it appeared at 58 hours. On the other hand, transient cas2 expression showed a peak even when about 20 hours after the start of fermentation (FIG. 6A).

실험결과, cas2의 전사는 48시간 지난다음 PMS의 첨가에 대하여 유도되어 10시간 후에 피크가 나타났다.(도 6a) 피크 모멘트에서 blot의 세기는 같은 시기의 대조군(도 6a, A)에서 보다 100%정도 더 높고 48시간 후는 대조군(도 6b)의 피크보다는 30%정도 높았다. 총RNA의 전기영동분리(electrophoretic seperation)는 1.2~5.3kb의 cas2의 mono-와 ploycistronic 성질 모두를 나타냈다(도 6c). PMS를 가하고 40시간후, message level은 background level로 감소했다. 즉, PMS를 처리한 세포의 최대 message level은 DMSO를 처리한 대조군 보다 높고 message는 더 오래 지속하였다.As a result, the transcription of cas2 was induced 48 hours after the addition of PMS, and peaked after 10 hours (Fig. 6a). The intensity of the blot at the peak moment was 100% higher than that of the control group (Fig. After 48 hours, it was about 30% higher than the peak of the control group (Fig. 6b). Electrophoretic seperation of total RNA showed both mono- and ploycistronic properties of cas2 between 1.2 and 5.3 kb (FIG. 6C). After 40 hours of PMS, the message level decreased to the background level. That is, the maximum message level of PMS-treated cells was higher than that of DMSO-treated control and the messages lasted longer.

실시예 7. 항생제 세팔로스포린(Cephalosporin)의 생산Example 7. Production of the antibiotic Cephalosporin

S. clavuligerus에서 산화적 스트레스가 세팔로스포린 생합성에 미치는 영향을 조사하기 위하여 실시예 1과 같이 실험한 결과 CA 생합성 효과와 거의 동일하게 나타나 PMS가 가장 유효한 시약으로 확인되었다(도7).In order to investigate the effect of oxidative stress on cephalosporin biosynthesis in S. clavuligerus, the experiments as in Example 1 showed almost the same as the CA biosynthesis effect, confirming that PMS is the most effective reagent (FIG. 7).

실시예 8. 항생제 액티노로딘(Actinorhodin)과 프로디지오닌(Prodigionin)의 생산Example 8 Production of Antibiotic Actinordin and Prodigionin

미생물 균주를 S. coelicolor A3(2)로 변경하고 배양온도를 28℃로 한 것 외에는 실시예5와 유사하게 실험하였다. R5 배지 (Hopwood et al. 1987)에 유지되고 있는 S. coelicolor A3(2) 세포를 SA 배지에 접종하고 250㎖의 배플프라스크에서 28℃로 300rpm으로 진탕배양하였다. 세포를 원심분리하여 수득한 다음 액티로로딘을 Liao등(1995)의 방법으로, 그리고 프로디지오닌은 Narva와 Feitelson(1990)의 방법으로 정량하였다. 도8의 실험결과에서 확인할 수 있는 바와같이 ACT와 PRD 생산은 균체 성장과 함께 증가되었으며 PMS1-10μM처리군 특히, 3μM PMS 처리군이 가장 효과적 이었다.The microorganism strain was changed to S. coelicolor A3 (2), and the experiment was similar to that of Example 5 except that the incubation temperature was 28 ° C. S. coelicolor A3 (2) cells maintained in R5 medium (Hopwood et al. 1987) were inoculated in SA medium and shaken at 300 rpm at 28 ° C. in 250 ml of baffle flask. Cells were obtained by centrifugation, followed by actirorodin by Liao et al. (1995) and prodigioin by Narva and Feitelson (1990). As can be seen from the experimental results of Figure 8 ACT and PRD production increased with the growth of the cells, PMS1-10μM treatment group, especially 3μM PMS treatment group was the most effective.

실시예 5,7,8에서 알수 있는 바와같이 Streptomyces spp.에 있어서 2차대산 산물인 항생제는 PMS가 매개되며 균체 성장과 긴밀히 관계된다고 결론지을 수 있다.As can be seen in Examples 5, 7 and 8, it can be concluded that the antibiotic, the secondary product of Streptomyces spp., Is mediated by PMS and closely related to cell growth.

이상 실시예를 들어 설명한 바와 같이 본 발명은, 미생물의 배양액내에서 redox-cycling 시약들이 SOD에 의해 재빨리 과산화수소(H2O2)로 분해되는 슈퍼옥사이드를 생산함으로써 산화적 challenge를 유발하여 관련 유전자들의 전사를 활성화시켜 배지상에 클라발라닉산(CA)등 2차 대사산물인 항생제의 생산을 획기적으로 증대시킬수 있으므로 의약 산업상 매우 유용한 발명인 것이다.As described above, the present invention provides a superoxide in which redox-cycling reagents are rapidly decomposed into hydrogen peroxide (H 2 O 2 ) by SOD in a microbial culture, causing an oxidative challenge, It is a very useful invention for the pharmaceutical industry because it can dramatically increase the production of antibiotics, secondary metabolites such as clavalonic acid (CA) on the medium by activating transcription.

Claims (5)

미생물을 배양함에 있어서, 슈퍼옥사이드를 생산하는 redox-cycling 시약을 첨가하여 산화적 폭발을 유도함으로써 2차 대사산물의 생합성에 수반되는 유전자의 전사를 활성화시켜 그 축적을 증대시킴을 특징으로 하는 항생제의 대량 생산방법.In culturing microorganisms, superoxide-producing redox-cycling reagents are added to induce an oxidative explosion, thereby activating the transcription of genes involved in the biosynthesis of secondary metabolites and increasing their accumulation. Mass production method. 제1항에 있어서, 상기 미생물이 S.clavuligerus 또는 S. coelicolor A3(2)에서 선택함을 특징으로 하는 방법.The method of claim 1, wherein the microorganism is selected from S. clavuligerus or S. coelicolor A3 (2). 제1항에 있어서, 상기 redox-cycling 시약이 PMS, HP PLM, MD 중에서 선택됨을 특징으로하는 방법.The method of claim 1, wherein the redox-cycling reagent is selected from PMS, HP PLM, and MD. 제1항 또는 제3항에 있어서, 상기 redox-cycling 시약이 PMS 0.1∼100μM 바람직하게는 10μM임을 특징으로 하는 항생제 CA 또는 세팔로스포린의 대량 생산 방법.The method for mass production of antibiotic CA or cephalosporin according to claim 1 or 3, wherein the redox-cycling reagent is 0.1-100 μM, preferably 10 μM, of PMS. 제1항 또는 제3항에 있어서, 상기 redox-cycling 시약이 PMS 1∼30μM 바람직하게는 3μM임을 특징으로하는 항생제 액티노로딘 또는 프로디지오닌의 대량 생산 방법.The method for mass production of antibiotic actinorodin or prodigioinin according to claim 1 or 3, wherein the redox-cycling reagent is 1-30 μM, preferably 3 μM, of PMS.
KR1019970050725A 1997-10-01 1997-10-01 Mass production of Antibiotics using Redox-cycling reagent KR100247123B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970050725A KR100247123B1 (en) 1997-10-01 1997-10-01 Mass production of Antibiotics using Redox-cycling reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970050725A KR100247123B1 (en) 1997-10-01 1997-10-01 Mass production of Antibiotics using Redox-cycling reagent

Publications (2)

Publication Number Publication Date
KR19990030510A true KR19990030510A (en) 1999-05-06
KR100247123B1 KR100247123B1 (en) 2000-03-15

Family

ID=19522123

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970050725A KR100247123B1 (en) 1997-10-01 1997-10-01 Mass production of Antibiotics using Redox-cycling reagent

Country Status (1)

Country Link
KR (1) KR100247123B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646829B1 (en) * 2005-10-31 2006-11-23 건국대학교 산학협력단 Novel adenosine derivative and its salt, process for preparation, pharmaceutical composition comprising the same and use thereof
WO2015023049A1 (en) * 2013-08-13 2015-02-19 (주)케이엠티알 Method for rapidly culturing microorganisms, using reactive oxygen species

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646829B1 (en) * 2005-10-31 2006-11-23 건국대학교 산학협력단 Novel adenosine derivative and its salt, process for preparation, pharmaceutical composition comprising the same and use thereof
WO2015023049A1 (en) * 2013-08-13 2015-02-19 (주)케이엠티알 Method for rapidly culturing microorganisms, using reactive oxygen species

Also Published As

Publication number Publication date
KR100247123B1 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
Gellert et al. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase.
Thanh Doan et al. Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix
Drolet et al. Hypernegative supercoiling of the DNA template during transcription elongation in vitro.
Kreiner et al. Oxidative stress response of a recombinant Aspergillus niger to exogenous menadione and H2O2 addition
Zhu et al. Characterization of heronamide biosynthesis reveals a tailoring hydroxylase and indicates migrated double bonds
Loprasert et al. Regulation of the oxidative stress protective enzymes, catalase and superoxide dismutase in Xanthomonas—a review
Ohno et al. Identification and characterization of the streptazone E biosynthetic gene cluster in Streptomyces sp. MSC090213JE08
Raisig et al. Purification in an active state and properties of the 3-step phytoene desaturase from rhodobacter capsulatus overexpressed in escherichia coil
Kelly et al. Pleiotropic effects of a relC mutation in Streptomyces antibioticus
KR100247123B1 (en) Mass production of Antibiotics using Redox-cycling reagent
Rafii et al. Reduction and mutagenic activation of nitroaromatic compounds by a Mycobacterium sp
Garay-Arroyo et al. Cu, Zn-superoxide dismutase of Saccharomyces cerevisiae is required for resistance to hyperosmosis
Spurgeon et al. Biosynthesis of phytoene from isopentenyl pyrophosphate by a Neurospora enzyme system
Xu et al. Isolation and characterization of 27-O-demethylrifamycin SV methyltransferase provides new insights into the post-PKS modification steps during the biosynthesis of the antitubercular drug rifamycin B by Amycolatopsis mediterranei S699
Kwon et al. Enhanced biosynthesis of clavulanic acid in Streptomyces clavuligerus due to oxidative challenge by redox-cycling agents
Tkachenko et al. Adaptive functions of Escherichia coli polyamines in response to sublethal concentrations of antibiotics
Cabrera et al. Steroid-inducible transcription of the 3β/17β-hydroxysteroid dehydrogenase gene (3β/17β-hsd) in Comamonas testosteroni
Kunow et al. Si‐face stereospecificity at C5 of coenzyme F420 for F420‐dependent N5, N10‐methylenetetrahydromethanopterin dehydrogenase, F420‐dependent N5, N10‐methylenetetrahydromethanopterin reductase and F420H2: dimethylnaphthoquinone oxidoreductase
CN115851558A (en) Novel prokaryotic cell-free protein synthesis system and application thereof
Giordano et al. Lovastatin inhibits the production of gibberellins but not sterol or carotenoid biosynthesis in Gibberella fujikuroi
Klug et al. The expression of genes encoding proteins of B800–850 antenna pigment complex and ribosomal RNA of Rhodopseudomonas capsulata
US20050164335A1 (en) Methods and organisms for production of b6 vitamers
Ross et al. Regulation of tryptophan biosynthesis in Caulobacter crescentus
Jung et al. Polyamines reduce paraquat-induced soxS and its regulon expression in Escherichia coli
Watanabe et al. Inhibition of bioluminescence in Photobacterium phosphoreum by sulfamethizole and its stimulation by thymine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20021209

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee