KR19990024622A - Biodegradable nanoparticles and preparation method thereof - Google Patents

Biodegradable nanoparticles and preparation method thereof Download PDF

Info

Publication number
KR19990024622A
KR19990024622A KR1019970045841A KR19970045841A KR19990024622A KR 19990024622 A KR19990024622 A KR 19990024622A KR 1019970045841 A KR1019970045841 A KR 1019970045841A KR 19970045841 A KR19970045841 A KR 19970045841A KR 19990024622 A KR19990024622 A KR 19990024622A
Authority
KR
South Korea
Prior art keywords
drug
nanoparticles
diblock copolymer
hydrophobic
copolymer
Prior art date
Application number
KR1019970045841A
Other languages
Korean (ko)
Other versions
KR100261466B1 (en
Inventor
이영무
신일균
김소연
Original Assignee
이영무
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이영무 filed Critical 이영무
Priority to KR1019970045841A priority Critical patent/KR100261466B1/en
Publication of KR19990024622A publication Critical patent/KR19990024622A/en
Application granted granted Critical
Publication of KR100261466B1 publication Critical patent/KR100261466B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)

Abstract

본 발명은 생분해성 나노파티클(nanoparticle) 및 이의 제조방법에 관한 것으로, 좀 더 상세하게는 a) 무촉매하에서 락톤류의 헤테로고리형 에스테르 화합물과 폴리에틸렌글리콜의 디블록공중합체를 제조하는 단계; b) 상기 디블록공중합체를 유기용매에 용해시키는 단계; c) 소수성 물질 또는 약물을 유기용매에 녹인 용액을 상기 b)단계의 디블록공중합체에 첨가시키는 단계; 및 d) 상기 첨가물을 물속에서 투석시켜 상기 디블록공중합체에 소수성 물질 또는 약물이 도입된 파티클을 형성시키는 단계로 제조된 생분해성 나노파티클에 관한 것이다. 제조된 나노파티클내에 소수성 약물의 포함효율은 약 40wt%정도까지 얻을 수 있었으며, 방출실험 결과 2주일이상 지속적으로 방출되었으며, 약물의 도입량이 많고 나노파티클의 크기가 클수록 천천히 방출되었다.The present invention relates to a biodegradable nanoparticles (nanoparticle) and a method for producing the same, and more particularly, a) preparing a diblock copolymer of a heterocyclic ester compound of the lactones and polyethylene glycol in the absence of a catalyst; b) dissolving the diblock copolymer in an organic solvent; c) adding a solution of a hydrophobic substance or drug in an organic solvent to the diblock copolymer of step b); And d) dialysis of the additive in water to form particles having hydrophobic substances or drugs introduced into the diblock copolymer. The inclusion efficiency of the hydrophobic drug in the prepared nanoparticles was obtained up to about 40wt%, and the release test resulted in continuous release for more than two weeks, and the release rate was increased as the amount of drug introduced and the size of the nanoparticles were large.

Description

생분해성 나노파티클 및 이의 제조방법Biodegradable nanoparticles and preparation method thereof

본 발명은 생분해성 나노파티클(nanoparticle) 및 이의 제조방법에 관한 것으로, 좀 더 상세하게는 생분해성을 갖는 락톤류의 헤테로고리형 에스테르 화합물과 폴리에틸렌글리콜(PEG) 디블록공중합체를 제조하고, 여기에 소수성 물질 또는 약물을 도입하되 그 크기가 0.2㎛(200㎚)이하의 작은 입경크기를 갖는 생분해성 나노파티클 및 이의 제조방법에 관한 것이다.The present invention relates to a biodegradable nanoparticles (nanoparticle) and a method for producing the same, and more particularly to a biodegradable lactone heterocyclic ester compound and polyethylene glycol (PEG) diblock copolymer, The present invention relates to a biodegradable nanoparticle having a small particle size of 0.2 μm (200 nm) or less and a method for preparing the same, by introducing a hydrophobic substance or drug into the same.

ε-카프로락톤과 같은 락톤류의 헤테로고리형 에스테르 화합물과 PEG를 공중합시키면 생분해성을 갖는 지방족 폴리에스테르가 생성된다. 이 지방족 폴리에스테르는 통상 가수분해에 의해 생분해가 이루어진다. ε-카프로락톤은 소수성이며 PEG는 친수성으로서 이들 두 단량체로 제조된 공중합체는 친수성-소수성이 연결되어 있는 특이한 구조로서 물 속에서 자기 조직화하면서 회합체를 형성할 수 있다. 즉, 소수성 물질 또는 약물과 함께 물에서 투석하면 소수성부분과 약물은 안쪽으로, 친수성부분이 바깥쪽으로 재배열되면서 구상의 나노파티클이 형성된다.Copolymerization of a PEG with a heterocyclic ester compound of lactones such as ε-caprolactone yields a biodegradable aliphatic polyester. This aliphatic polyester is usually biodegraded by hydrolysis. ε-caprolactone is hydrophobic and PEG is hydrophilic, and copolymers made of these two monomers are unique structures with hydrophilic-hydrophobic linkages that can form associations while self-organizing in water. That is, when dialysis in water together with a hydrophobic substance or drug, spherical nanoparticles are formed by rearranging the hydrophobic portion and the drug inward and the hydrophilic portion outward.

종래에는 나노파티클보다 크기가 수십배 큰 마이크로파티클(microparticle)에 대한 연구들이 진행되었으나, 큰 크기의 파티클보다 작은 크기의 파티클이 함유된 약물 등을 좀 더 지속적으로 방출할 수 있는 장점이 있고, 인체내로의 투여시 0.2㎛(200㎚)보다 큰 파티클의 경우 장기에서의 축적이나 세피내망계세포에 의한 탐식 등의 문제점이 있다(Biomaterial, 13, 1093(1992), 및 J. Pharm. Sci., 68, 1443(1979)).In the past, studies on microparticles (microparticles) that are several orders of magnitude larger than nanoparticles have been conducted, but there is an advantage in that they can continuously release drugs containing particles of smaller size than those of large particles, and more continuously. Particles larger than 0.2 μm (200 nm) at the time of administration have problems such as accumulation in organs and phagocytosis by epithelial reticulum cells (Biomaterial, 13, 1093 (1992), and J. Pharm. Sci., 68). , 1443 (1979).

종래의 파티클 시스템에서 폴리글리콜라이드, 폴리락타이드, 또는 락타이드와 글리콜라이드의 공중합체, 및 천연고분자 등의 여러 가지 생분해성 고분자 등이 사용되어 왔으나, 에멀젼화시킨후 가교하여 제조하거나, 고분자를 포함한 유기상을 계면활성제가 포함된 수용액상에서 에멀젼화시킨후 용매를 제거하는 방법(Pharm. Rel. 10, 750(1993)) 등으로 파티클이 제조되어 그 크기가 보통 마이크론 크기이므로 주사제로서 사용할 경우 장기에서의 축적이나 세피내망계 세포에 의한 탐식, 혈액내에서의 빠른 제거 등의 단점이 있다. 또한, 리포단백질이나 리포좀 등의 생체유래물질은 생체적합성이 매우 높고 나노크기의 운반체를 제조할 수 있으나 저장시 안정하게 오랜기간동안 원래의 성질을 유지하지 못하여 시간이 지남에 따라 크기가 변하는 등 안정성 면에서 문제가 있었다(Advanced Drug Delivery Reviews, 20, 113(1996)).In the conventional particle system, various biodegradable polymers such as polyglycolide, polylactide, or copolymers of lactide and glycolide, and natural polymers have been used, but are prepared by emulsifying and crosslinking or polymerizing Particles are prepared by emulsifying the containing organic phase in an aqueous solution containing a surfactant (Pharm. Rel. 10, 750 (1993)) and the like. Accumulation, phagocytosis by epithelial reticulum cells, and rapid removal in blood. In addition, bio-derived materials such as lipoproteins and liposomes have high biocompatibility and can produce nano-sized carriers, but they do not maintain their original properties for a long period of time stably in storage and thus change in size over time. There was a problem (Advanced Drug Delivery Reviews, 20, 113 (1996)).

한편, 종래에는 지방족 폴리에스테르는 그것의 생체적합성, 무독성, 생분해성 등의 특성으로 인해 의료용 재료로서 널리 알려져 왔고, 합성시 개환 중합을 개시하기 위한 촉매로서 주석산화물(stannous octoate), 염화주석(stannous cloride), 테트라페닐틴(tetraphenyltin), 징크옥사이드(zinc oxide) 또는 메탈알콕사이드(metal alkoxide)등의 촉매을 사용하여 중합시켰으나, 본 발명과 같이 인체에 필요한 고분자 미셀을 제조할 경우, 합성 후 촉매가 잔류하면 인체내에서의 독성이 문제가 될 수 있다.On the other hand, aliphatic polyester has been widely known as a medical material due to its biocompatibility, non-toxicity, biodegradability, and the like, and as a catalyst for initiating ring-opening polymerization during synthesis, tin oxide (stannous octoate) and tin chloride (stannous) Polymerization was carried out using a catalyst such as cloride, tetraphenyltin, zinc oxide or metal alkoxide.However, in the case of preparing a polymer micelle required for human body as in the present invention, the catalyst remains after synthesis. Toxicity in the human body can be a problem.

따라서, 본 발명의 목적은 인체에 무해하고, 우수한 생체 운반능을 갖는 생분해성 나노파티클의 제조방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a method for producing biodegradable nanoparticles which are harmless to human body and have excellent biotransporting ability.

본 발명의 다른 목적은 상기 방법으로 제조된 생분해성 나노파티클을 제공하는데 있다.Another object of the present invention to provide a biodegradable nanoparticles prepared by the above method.

상기 목적을 달성하기 위한 본 발명의 제조방법은 무촉매하에서 락톤류의 헤테로고리형 에스테르 화합물과 폴리에틸렌글리콜(PEG)의 디블록공중합체를 제조하는 단계; 상기 디블록공중합체에 유기용매에 소수성 물질 또는 약물을 녹인 용액을 첨가시키는 단계; 및 상기 첨가물을 물속에서 투석시켜 상기 디블록공중합체에 소수성 물질 또는 약물이 도입된 파티클을 형성시키는 단계로 이루어진다.The production method of the present invention for achieving the above object comprises the steps of preparing a diblock copolymer of a lactone heterocyclic ester compound and polyethylene glycol (PEG) under a catalyst; Adding a solution of a hydrophobic substance or drug in an organic solvent to the diblock copolymer; And dialysis of the additive in water to form particles into which the hydrophobic material or drug is introduced into the diblock copolymer.

이하 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.

본 발명에서는 ε-카프로락톤, D,L-락타이드 또는 글리콜라이드 등과 같은 락톤류의 헤테로고리형 에스테르 화합물과 폴리에틸렌글리콜의 디블록공중합체를 합성시 잔류되어 인체에 유해할 수 있는 촉매를 사용하지 않고, 무촉매 조건하에서 한쪽 끝이 메톡시로 치환된 PEG 호모폴리머의 존재하에서 한쪽 말단의 히드록시기에 의해 ε-카프로락톤 단량체의 개환반응을 일으켜 공중합체를 제조하고, 이를 이용하여 약물이나 소수성 물질을 도입하되 그 크기가 0.2㎛(200㎚)이하의 작은 입경크기를 갖는 나노파티클를 제조하였다.The present invention does not use a catalyst which remains in the synthesis of a dicyclic copolymer of a lactone heterocyclic ester compound such as ε-caprolactone, D, L-lactide or glycolide and a polyethylene glycol, which may be harmful to the human body. In the presence of a PEG homopolymer in which one end is substituted with methoxy under a non-catalytic condition, a ring-opening reaction of the ε-caprolactone monomer is caused by a hydroxyl group at one end to prepare a copolymer, and a drug or a hydrophobic substance is prepared by using the same. Introduced, but a nanoparticle having a small particle size of less than 0.2㎛ (200nm) was prepared.

본 발명에 사용된 개시제(I)에 대한 단량체(M)의 몰비([M]/[I], [M]= ε-카프로락톤, [I]=PEG 호모폴리머)는 35 내지 150까지 변화시키면서 벌크상태에서 공중합체를 제조하였다. 이때, [M]/[I]가 증가할수록, 즉 소수성블록인 ε-카프로락톤의 길이가 증가함에 따라 약물의 도입량을 증가시킬 수 있고, 약물의 방출속도를 감소시킬 수 있으나 파티클의 크기가 커지며, 특히 150을 초과하면 소수성이 너무커져 파티클이 형성되지 않는다. 이와 같이 제조된 디블록공중합체를 물 속에서 투석하여 소수성 약물이 도입된 크기 200nm이하의 균일한 나노파티클을 제조하였다.The molar ratio of monomer (M) to initiator (I) used in the present invention ([M] / [I], [M] = ε-caprolactone, [I] = PEG homopolymer) was varied from 35 to 150 Copolymers were prepared in bulk. At this time, as [M] / [I] increases, that is, as the length of the hydrophobic block ε-caprolactone increases, the amount of drug introduced can be increased, and the rate of drug release can be decreased, but the particle size is increased. In particular, in excess of 150, the hydrophobicity becomes so large that no particles are formed. The diblock copolymer thus prepared was dialyzed in water to prepare uniform nanoparticles having a size of 200 nm or less, into which a hydrophobic drug was introduced.

예를 들어, 블록공중합체 2∼10mg을 디메틸포름아미드, 디메틸아세트아미드, 테트라히드로푸란, 또는 디클로로메탄등과 같은 유기용매 10∼20ml에 녹인 후, 인도메타신, 케토프로펜, 독소루비신, 씨클로스포린(cyclosporine), 리도카인(lidocaine), 메티프라놀올(metipranolol), 베타소롤(betaxolol) 또는 테트라씨클린(tetracycline) 등과 같은 소수성 물질 또는 약물 2∼50mg을 상기 유기용매 10∼20ml에 따로 용해시켜 교반하여 혼합한다. 상기 용액을 예를 들어, 셀룰로오스 투석용 맴브레인을 이용해 초순수에서 6∼72시간동안 투석시키면 일정농도(CMC: Critical micelle concentration) 이상에서 소수성부분이 코아를 이루고 친수성부분이 외형을 이루면서 조직화되어 소수성 약물이 도입된 코아-쉘 구조의 미세한 고분자 미셀이 형성된다. 이 미셀용액을 초음파 처리한 후, 원심분리하고, 냉동건조하여 건조된 나노파티클을 얻었다.For example, 2-10 mg of the block copolymer is dissolved in 10-20 ml of an organic solvent such as dimethylformamide, dimethylacetamide, tetrahydrofuran, or dichloromethane, and then indomethacin, ketoprofen, doxorubicin, and cyclosporin. 2-50 mg of hydrophobic substances or drugs such as cyclosporine, lidocaine, lidocaine, metipranolol, betaxolol, or tetracycline are dissolved separately in 10-20 ml of the organic solvent and stirred Mix. If the solution is dialyzed for 6 to 72 hours in ultrapure water using, for example, a cellulose dialysis membrane, the hydrophobic part forms a core and the hydrophilic part forms a tissue at a certain concentration (CMC) or more to form a hydrophobic drug. Introduced fine polymer micelles of the core-shell structure are formed. The micelle solution was sonicated, centrifuged and lyophilized to obtain dried nanoparticles.

본 발명에서 친수성과 소수성으로 구성된 블록공중합체를 물 속에서 투석함으로써 형성된 고분자 미셀은 저분자 미셀에 비하여 미셀을 구성하는 고분자쇄의 미셀로부터 해리 속도가 작아 구조 안정성이 뛰어나다. 또한 외각은 친수성으로서 고분자 미셀의 뛰어난 안정성과 용해성을 유지하는데 중요한 역할을 할 뿐 만 아니라 말단의 운동성과 생체적합성이 극히 뛰어난 PEG을 사용하여 생체내에서 문제가 되는 세피내망계세포로 부터의 인식을 피할 수 있다.In the present invention, the polymer micelle formed by dialysis of a block copolymer composed of hydrophilicity and hydrophobicity in water has a low structural dissociation rate from the micelles of the polymer chain constituting the micelles compared to the low molecular micelles. In addition, the outer shell is hydrophilic and plays an important role in maintaining the excellent stability and solubility of the polymer micelles, and PEG, which has extremely high terminal motility and biocompatibility, is used to recognize the epidermal reticulum cells in vivo. Can be avoided.

본 발명에 따르면, 소수성 약물의 포함효율은 약 40wt%정도까지 얻을 수 있었으며, 방출실험 결과 2주일이상 지속적으로 방출되었고, 약물의 도입량이 많고 나노파티클의 크기가 클수록 천천히 방출되었다.According to the present invention, the inclusion efficiency of the hydrophobic drug was obtained up to about 40wt%, and was released continuously for more than two weeks as a result of the release experiment, the more the drug introduced amount and the larger the size of the nanoparticles was released slowly.

본 발명에 따른 파티클의 크기는 200nm이하이므로 간장의 쿠퍼세포를 비롯한 세피내망계조직에 축척되는 것을 막을 수 있어 간장이나 암병소, 염증부위의 모세혈관 벽을 통과해 조직세포에 도달할 수 있는 약물 운반체로서 생체내에서의 분포를 증가시킬 수 있을 것이다. 또한, 일반적으로 약효가 위력적인 항암제나 AIDS치료약은 약의 유효농도의 적정치가 조금만 초과되어도 다른 세포에 독성이 심하기 때문에 그 동안 사용에 많은 제약을 받아 왔는데 이러한 생분해성 고분자 나노파티클을 이용한 새로운 약물 운반체의 개발로 위의 문제점을 해결하게 되리라 기대된다.Since the particle size of the present invention is 200 nm or less, it is possible to prevent the accumulation in the epithelial reticulum tissues including the Cooper cells of the liver, so that the drug can reach tissue cells through the capillary walls of the liver, cancer lesions, and inflammatory sites. It may be possible to increase the distribution in vivo as a carrier. In addition, anticancer drugs or AIDS therapeutic drugs, which are potent drugs in general, have been severely restricted in use because they are toxic to other cells even when the appropriate concentrations of the drug's effective concentrations are exceeded. New drugs using these biodegradable polymer nanoparticles The development of the vehicle is expected to solve the above problems.

이하 실시예 및 비교예를 통하여 본 발명의 방법 및 효과를 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the method and effect of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the scope of the present invention is not limited to the following Examples.

제조예 1 내지 4Preparation Examples 1 to 4

ε-카프로락톤과 메톡시폴리에틸렌글리콜(MePEG)의 공급 몰비를 하기 표 1과 같이 변화시키면서 플라스크 내에서 교반하여 섞은 후 0℃로 냉각하고 진공펌프를 사용해 진공상태로 만든 후 교반하면서 160℃의 진공오븐에서 12시간동안 반응을 진행시켰다. 그 생성물을 실온까지 온도를 내리고, 디메틸포름아마이드 5㎖에 녹인 후, 프로판올에 가해 미반응된 단량체와 MePEG 호모폴리머등을 추출시켜 여과한 후 제거한다. 그 다음 과량의 디에틸에테르를 사용해 생성물을 추출하고 여과하여 그 생성물을 모은다. 얻어진 생성물을 40℃의 진공오븐에서 3일간 건조하였다. 합성된 공중합체의 분자량을 겔 투과 크로마토그래피(GPC)와 핵자기 공명(NMR) 분광법으로 확인하였다.While changing the supply molar ratio of ε-caprolactone and methoxy polyethylene glycol (MePEG) as shown in Table 1 below, the mixture was stirred and mixed in a flask, cooled to 0 ° C., made into a vacuum state using a vacuum pump, and then stirred at 160 ° C. under vacuum. The reaction was allowed to proceed for 12 hours in an oven. The product was cooled to room temperature, dissolved in 5 ml of dimethylformamide, and added to propanol to remove unreacted monomer, MePEG homopolymer, and the like, followed by filtration. The product is then extracted with excess diethyl ether and filtered to collect the product. The product obtained was dried in a vacuum oven at 40 ° C. for 3 days. The molecular weight of the synthesized copolymer was confirmed by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy.

제조예 5Preparation Example 5

상기 제조예 1 내지 4에서 사용한 ε-카프로락톤 대신 D,L-락타이드를 상기 제조예와 같은 방법으로 반응시켜 D,L-락타이드와 메톡시폴리에틸렌글리콜(MePEG)의 공중합체를 제조하였다. 합성된 공중합체의 분자량을 겔 투과 크로마토그래피(GPC)와 핵자기 공명(NMR) 분광법으로 확인하였다.Instead of ε-caprolactone used in Preparation Examples 1 to 4, D, L-lactide was reacted in the same manner as in Preparation Example to prepare a copolymer of D, L-lactide and methoxy polyethylene glycol (MePEG). The molecular weight of the synthesized copolymer was confirmed by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy.

제조예 6Preparation Example 6

상기 제조예 1 내지 4에서 사용한 ε-카프로락톤 대신 글리콜라이드를 상기 제조예와 같은 방법으로 반응시켜 글리콜라이드와 메톡시폴리에틸렌글리콜(MePEG)의 공중합체를 제조하였다. 합성된 공중합체의 분자량을 겔 투과 크로마토그래피(GPC)와 핵자기 공명(NMR) 분광법으로 확인하였다.Instead of ε-caprolactone used in Preparation Examples 1 to 4, a glycolide was reacted in the same manner as in Preparation Example to prepare a copolymer of glycolide and methoxy polyethylene glycol (MePEG). The molecular weight of the synthesized copolymer was confirmed by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy.

실시예 1 내지 7Examples 1-7

상기 제조예 1∼4에서 제조된 ε-카프로락톤과 메톡시폴리에틸렌글리콜(MePEG) 블록공중합체, 제조예 5의 D,L-락타이드와 MePEG 블록공중합체, 및 제조예 6의 글리콜라이드와 MePEG 블록공중합체 10mg을 20ml의 디메틸포름아마이드에 녹인 후, 20ml의 디메틸포름아마이드에 10∼30mg의 인도메타신을 녹인 용액을 가하고 교반하여 섞는다. 이때 약물과 공중합체의 중량비를 변화시켜 제조하고 그 영향을 하기 표 2에 기재하였다. 미셀을 형성시키고, 미셀내에 도입되지 않은 인도메타신과 유기용매를 제거하기 위해 그 용액을 셀룰로오즈 투석용 맴브레인을 사용해 1리터의 초순수에서 48시간동안 투석시킨다. 그 고분자 미셀용액을 초음파 처리한 후, 원심 분리하여 도입되지 않은 약물과 집적된 입자들을 제거한다. 이 과정을 통해 얻어진 미셀용액을 2일간 -50℃에서 냉동건조하여 건조된 나노파티클 생성물을 얻는다.Ε-caprolactone and methoxy polyethylene glycol (MePEG) block copolymers prepared in Preparation Examples 1 to 4, D, L-lactide and MePEG block copolymers of Preparation Example 5, glycolide and MePEG of Preparation Example 6 After dissolving 10 mg of block copolymer in 20 ml of dimethylformamide, a solution of 10 to 30 mg of indomethacin is added to 20 ml of dimethylformamide, followed by stirring. At this time, the drug is produced by changing the weight ratio of the copolymer and its effect is shown in Table 2 below. The micelles are formed and the solution is dialyzed for 48 hours in one liter of ultrapure water using a cellulose dialysis membrane to remove indomethacin and organic solvents not introduced into the micelles. The polymer micelle solution is sonicated and then centrifuged to remove particles not incorporated with the drug. The micelle solution obtained through this process was lyophilized at -50 ° C. for 2 days to obtain a dried nanoparticle product.

실시예 8Example 8

상기 제조예 3에서 제조된 ε-카프로락톤과 메톡시폴리에틸렌글리콜(MePEG) 블록공중합체 10mg을 20ml의 디메틸포름아마이드에 녹인 후 20ml의 디메틸포름아마이드에 독소루비신 30mg을 녹인 용액을 가하고 교반하여 섞는다. 미셀을 형성시키고, 미셀내에 도입되지 않은 독소루비신과 유기용매를 제거하기 위해 그 용액을 셀룰로오즈 투석용 맴브레인을 사용해 1리터의 초순수에서 48시간동안 투석시킨다. 그 고분자 미셀용액을 초음파 처리한 후, 원심 분리하여 도입되지 않은 약물과 집적된 입자들을 제거한다. 이 과정을 통해 얻어진 미셀용액을 2일간 -50℃에서 냉동건조하여 건조된 나노파티클 생성물을 얻는다. 생성된 파티클의 입경을 동적 광 산란(dynamic light scattering)법으로 측정하였다.10 mg of the ε-caprolactone and methoxy polyethylene glycol (MePEG) block copolymer prepared in Preparation Example 3 were dissolved in 20 ml of dimethylformamide, and a solution of 30 mg of doxorubicin dissolved in 20 ml of dimethylformamide was added and stirred. The micelles are formed and the solution is dialyzed for 48 hours in 1 liter of ultrapure water using a cellulose dialysis membrane to remove doxorubicin and organic solvents not introduced into the micelles. The polymer micelle solution is sonicated and then centrifuged to remove particles not incorporated with the drug. The micelle solution obtained through this process was lyophilized at -50 ° C. for 2 days to obtain a dried nanoparticle product. The particle diameter of the produced particles was measured by dynamic light scattering.

비교예 1Comparative Example 1

상기 제조예 3과 같은 공급몰비의 ε-카프로락톤과 메톡시폴리에틸렌글리콜(MePEG)을 플라스크 내에서 교반하여 섞은 후, [M]/[주석산화물]=5000의 몰비로 촉매 주석산화물을 가하고 교반하여 섞는다. 이 혼합물을 냉각하고 진공펌프를 사용해 진공상태로 만든 후 교반하면서 160℃의 진공오븐에서 12시간동안 반응을 진행시켰다. 그 생성물을 실온까지 온도를 내리고, 디메틸포름아마이드에 녹인 후, 프로판올에 가해 미반응된 단량체와 MePEG 호모폴리머등을 추출시켜 여과 제거한다. 그 다음 과량의 디에틸에테르를 사용해 생성물을 추출하고 여과하여 그 생성물을 모은다. 얻어진 생성물을 40℃의 진공오븐에서 3일간 건조하였다. 합성된 공중합체의 분자량을 겔 투과 크로마토그래피(GPC)와 핵자기 분광법(NMR)으로 확인하였다.After stirring and mixing ε-caprolactone and methoxy polyethylene glycol (MePEG) in the feed molar ratio as in Preparation Example 3 above, the catalyst tin oxide was added and stirred at a molar ratio of [M] / [tin oxide] = 5000. Mix The mixture was cooled, vacuumed using a vacuum pump, and stirred for 12 hours in a vacuum oven at 160 ° C. while stirring. The product is cooled to room temperature, dissolved in dimethylformamide, and then added to propanol to extract unreacted monomer, MePEG homopolymer, and the like. The product is then extracted with excess diethyl ether and filtered to collect the product. The product obtained was dried in a vacuum oven at 40 ° C. for 3 days. The molecular weight of the synthesized copolymer was confirmed by gel permeation chromatography (GPC) and nuclear magnetic spectroscopy (NMR).

비교예 2Comparative Example 2

상기 제조예 1에서 ε-카프로락톤과 메톡시폴리에틸렌글리콜(MePEG)의 반응몰비를 160으로하여 제조한 블록공중합체 10mg을 20ml의 디메틸포름아마이드에 녹인 후 20ml의 디메틸포름아마이드에 30mg의 인도메타신을 녹인 용액을 가하고 교반하여 섞는다. 미셀을 형성시키고, 미셀내에 도입되지 않은 인도메타신과 유기용매를 제거하기 위해 그 용액을 셀룰로오즈 투석용 맴브레인을 사용해 1리터의 초순수에서 48시간동안 투석시킨다. 그 고분자 미셀용액을 초음파 처리한 후, 원심 분리하여 도입되지 않은 약물과 집적된 입자들을 제거한다. 이 과정을 통해 얻어진 미셀용액을 2일간 -50℃에서 냉동건조하여 건조된 나노파티클 생성물을 얻는다. 생성된 파티클의 입경을 동적 광 산란(dynamic light scattering)법으로 측정하였다.10 mg of a block copolymer prepared by preparing a reaction molar ratio of ε-caprolactone and methoxy polyethylene glycol (MePEG) in 160 was dissolved in 20 ml of dimethylformamide, and 30 mg of indomethacin in 20 ml of dimethylformamide. Add the dissolved solution and mix by stirring. The micelles are formed and the solution is dialyzed for 48 hours in one liter of ultrapure water using a cellulose dialysis membrane to remove indomethacin and organic solvents not introduced into the micelles. The polymer micelle solution is sonicated and then centrifuged to remove particles not incorporated with the drug. The micelle solution obtained through this process was lyophilized at -50 ° C. for 2 days to obtain a dried nanoparticle product. The particle diameter of the produced particles was measured by dynamic light scattering.

비교예 3Comparative Example 3

상기 제조예 3에서 제조된 ε-카프로락톤과 메톡시폴리에틸렌글리콜(MePEG) 블록공중합체 10mg을 20ml의 디메틸포름아마이드에 녹인 후 20ml의 초순수에 30mg의 시아노코발아민(친수성)을 녹인 용액을 가하고 교반하여 섞는다. 미셀을 형성시키고, 미셀내에 도입되지 않은 시아노코발아민과 유기용매를 제거하기 위해 그 용액을 셀룰로오즈 투석용 맴브레인을 사용해 1리터의 초순수에서 48시간동안 투석시킨다. 그 고분자 미셀용액을 초음파 처리한 후, 원심분리하여 도입되지 않은 약물과 집적된 입자들을 제거한다. 이 과정을 통해 얻어진 미셀용액을 2일간 -50℃에서 냉동건조 하여 건조된 나노파티클 생성물을 얻는다.10 mg of ε-caprolactone and methoxy polyethylene glycol (MePEG) block copolymer prepared in Preparation Example 3 were dissolved in 20 ml of dimethylformamide, and a solution of 30 mg of cyanocobalamine (hydrophilic) in 20 ml of ultrapure water was added thereto. Stir and mix. The micelles are formed and the solution is dialyzed for 48 hours in 1 liter of ultrapure water using a cellulose dialysis membrane to remove cyanocobalamin and organic solvents not introduced into the micelles. The polymer micelle solution is sonicated and then centrifuged to remove particles that have not been incorporated with the drug. The micelle solution obtained through this process was lyophilized at -50 ° C. for 2 days to obtain a dried nanoparticle product.

실험예 1Experimental Example 1

나노파티클내에 도입하지 않은 인도메타신 자체의 방출거동을 살펴보았다. 인도메타신의 무게를 정확하게 잰 후, 인산 버퍼용액(PBS, 0.1M, pH 7.4)에 분산시킨다. 이 인도메타신 용액을 투석용 백에 넣어 방출매질인 인산버퍼용액에 넣고 37℃를 유지하면서 교반시킨다. 일정시간마다 방출매질로부터 0.5∼5ml씩 취하고 자외선 분광기를 사용해 물질의 흡광도를 측정하여 방출거동을 검토하였다.The release behavior of indomethacin itself, which was not introduced into nanoparticles, was examined. Accurately weigh indomethacin and disperse in phosphate buffer (PBS, 0.1M, pH 7.4). The indomethacin solution is placed in a dialysis bag and placed in a phosphate buffer solution, which is a release medium, and stirred at 37 ° C. 0.5 to 5 ml of the medium was taken at regular intervals and the absorbance of the material was measured using an ultraviolet spectrometer to examine the emission behavior.

상기 실시예 1∼8과 비교예 3에서 제조된 나노파티클내에 도입된 물질의 양을 자외선분광기를 사용해 조사하였다. 즉, 나노파티클내에 도입되지 않은 약물과 집적된 입자들을 제거하기 위해 초음파처리와 원심분리를 행한 후, -50℃에서 냉동건조한다. 건조된 생성물의 일정량을 에탄올/테트라히드로푸란 (1:1 v/v)용액을 가해 파괴시킨 후, 자외선분광기를 사용해 도입된 물질의 흡광도를 측정해 나노파티클내의 도입량을 측정한다. 약물의 도입 효율은 다음 수학식 1에 의해 계산하였다.The amount of material introduced into the nanoparticles prepared in Examples 1 to 8 and Comparative Example 3 was investigated using an ultraviolet spectrometer. That is, after sonication and centrifugation in order to remove particles accumulated with drugs not introduced into the nanoparticles, they are lyophilized at -50 ° C. After a certain amount of the dried product is destroyed by addition of ethanol / tetrahydrofuran (1: 1 v / v) solution, the absorbance of the introduced material is measured by using an ultraviolet spectrometer to measure the amount of introduction into the nanoparticles. The introduction efficiency of the drug was calculated by the following equation.

상기 실시예 1∼8에서 제조되고 상기 수학식 1에 의해 물질의 도입량이 계산된 나노파티클로부터 도입된 소수성물질의 방출거동을 살펴보았다. 소수성물질이 도입된 건조된 나노파티클을 정확하게 무게를 잰 후, 인산 버퍼용액(PBS, 0.1M, pH 7.4)에 분산시킨다. 이 나노파티클용액을 투석용 백에 넣어 방출매질인 인산버퍼용액에 넣고 37℃를 유지하면서 교반시킨다. 일정시간마다 방출매질로부터 3ml씩 취하고 자외선 분광기를 사용해 물질의 흡광도를 측정하여 방출거동을 검토하였다.The release behavior of the hydrophobic material introduced in the nanoparticles prepared in Examples 1 to 8 and the amount of introduction of the material was calculated by Equation 1 was examined. Accurately weigh the dried nanoparticles into which the hydrophobic material is introduced and disperse in phosphate buffer solution (PBS, 0.1M, pH 7.4). The nanoparticle solution is placed in a dialysis bag and placed in a phosphate buffer solution, which is a release medium, and stirred at 37 ° C. 3 ml of the release medium was taken at regular intervals and the absorbance of the material was measured using an ultraviolet spectrometer to examine the emission behavior.

상기 실시예와 비교예에서 제조된 공중합체의 분자량과 파티클의 입경을 하기 표 1에 나타내었다. 하기 표1에서 공중합체의 분자량은 겔 투과 크로마토그래피(gel permeation chromatography)와 핵자기 공명(nuclear magnetic resonance)분광법, 파티클의 입경은 동적 광산란법(dynamic light scattering method)으로 각각 측정하였다.The molecular weight and particle size of the copolymers prepared in Examples and Comparative Examples are shown in Table 1 below. In Table 1, the molecular weight of the copolymer was measured by gel permeation chromatography, nuclear magnetic resonance spectroscopy, and particle size of the particles by dynamic light scattering method, respectively.

하기 표 1에서 알 수 있는 바와 같이, GPC와 NMR을 이용하여 분자량을 측정한 결과, 이론 값과 유사한 분자량의 ε-카프로락톤과 메톡시폴리에틸렌글리콜(MePEG) 블록공중합체를 합성할 수 있었고, 촉매로 stannous octoate를 사용한 비교예 1과 비교했을 때 촉매를 사용하지 않고도 촉매를 사용했을 때와 유사한 분자량의 공중합체를 합성할 수 있었다.As can be seen in Table 1, by measuring the molecular weight using GPC and NMR, ε-caprolactone and methoxy polyethylene glycol (MePEG) block copolymer having a molecular weight similar to the theoretical value was synthesized, the catalyst Compared with Comparative Example 1 using stannous octoate, it was possible to synthesize a copolymer having a molecular weight similar to that of using a catalyst without using a catalyst.

또한 제조예 5와 6에서 합성한 D,L-락타이드/메톡시폴리에틸렌글리콜(MePEG) 블록공중합체와 글리콜라이드/메톡시폴리에틸렌글리콜(MePEG) 블록공중합체에서도 역시 이론값과 유사한 분자량의 공중합체가 합성됨을 확인하였다. 그리고 표 1에 나타낸 바와 같이 공중합체의 분자량이 증가함에 따라 생성되는 입자의 크기가 증가하였고, PEG에 비해 ε-카프로락톤의 사슬길이가 상대적으로 가장 긴 비교예 2의 경우에는 투석에 의해 나노파티클이 생성되지 않았다.In addition, copolymers of D, L-lactide / methoxy polyethylene glycol (MePEG) block copolymers and glycolide / methoxy polyethylene glycol (MePEG) block copolymers synthesized in Preparation Examples 5 and 6 also had molecular weights similar to theoretical values. It was confirmed that is synthesized. As shown in Table 1, as the molecular weight of the copolymer increased, the size of the particles produced increased, and in Comparative Example 2, where the chain length of ε-caprolactone was relatively longer than that of PEG, nanoparticles were formed by dialysis. This was not generated.

공중합체의 분자량과 파티클의 크기Molecular Weight of Polymer and Size of Particle Yes 공급 몰비〔M〕/〔I〕Supply molar ratio [M] / [I] 수평균 분자량Number average molecular weight 분산도Dispersion 입자 크기(nm)Particle size (nm) 이론값 측정값a측정값b Theoretical value a measured value b Mw/MnMw / Mn Avg. S.D.Avg. S.D. 제조예 1Preparation Example 1 3535 8995 8037 79718995 8037 7971 1.2561.256 54 0.08254 0.082 제조예 2Preparation Example 2 5050 10707 10116 1031710707 10116 10317 1.2501.250 77 0.01077 0.010 제조예 3Preparation Example 3 7070 12990 11734 1336712990 11734 13367 1.1021.102 114 0.089114 0.089 제조예 4Preparation Example 4 100100 16414 14839 1440116414 14839 14401 1.1021.102 130 0.105130 0.105 제조예 5Preparation Example 5 3535 9324 8588 83189324 8588 8318 1.1271.127 101 0.107101 0.107 5050 11207 10783 1020011207 10783 10200 1.1521.152 124 0.113124 0.113 7070 15089 12103 1303515089 12103 13035 1.1791.179 139 0.156139 0.156 100100 19413 15257 1534019413 15257 15340 1.1121.112 165 0.201165 0.201 제조예 6Preparation Example 6 3535 9070 8250 82659070 8250 8265 1.2131.213 89 0.11889 0.118 5050 10800 10051 1019010800 10051 10190 1.1171.117 103 0.231103 0.231 7070 13100 12135 1129513100 12135 11295 1.2151.215 118 0.189118 0.189 100100 16600 14056 1372016600 14056 13720 1.2561.256 147 0.120147 0.120 비교예 1Comparative Example 1 7070 12990 12305 1389012990 12305 13890 1.1311.131 129 0.114129 0.114 비교예 2Comparative Example 2 150150 22121 18085 1820522121 18085 18205 1.1781.178 N.D.N.D.

a는 겔 투과 크로마토그래피(GPC)로 측정한 분자량a is the molecular weight measured by gel permeation chromatography (GPC)

b는1H 핵자기 공명(NMR) 분광법에 의해 측정한 분자량b is the molecular weight measured by 1 H nuclear magnetic resonance (NMR) spectroscopy

또한, 상기 실시예 1∼4의 과정을 거쳐 나노파티클내에 도입된 약물의 양을 측정한 결과를 하기 표 2에 나타내었다. 표 2의 실시예 1∼4에서 확인할 수 있듯이 사용된 공중합체의 분자량과 소수성블록의 길이가 증가함에 따라 약물의 도입효율이 증가하였고, 실시예 5∼7과 실시예 4에 나타낸 바와 같이 공중합체의 분자량을 일정하게 하고 공중합체에 대한 약물의 공급 중량비를 증가시킴에 따라 약물의 도입효율은 증가하였다. 또한, 표 2에는 나타내지 않았지만 약물의 도입효율이 증가함에 따라 나노파티클의 크기도 증가하는 경향을 나타내었다.In addition, the results of measuring the amount of the drug introduced into the nanoparticles through the procedure of Examples 1 to 4 are shown in Table 2 below. As can be seen in Examples 1 to 4 of Table 2, the introduction efficiency of the drug increased as the molecular weight and the length of the hydrophobic block of the copolymer used increased, and as shown in Examples 5 to 7 and 4, As the molecular weight of was constant and the feed weight ratio of the drug to the copolymer was increased, the introduction efficiency of the drug increased. In addition, although not shown in Table 2, the size of the nanoparticles also increased as the introduction efficiency of the drug increased.

또한, 도입시키려는 약물의 특성면에서 살펴보면, 소수성 물질인 인도메타신과 독소루비신 모두 도입효율이 40wt% 이상인 나노파티클을 제조할 수 있었다. 그러나 비교예 3에서 친수성물질인 시아노코발아민의 경우 나노파티클 내로 거의 도입되지 않음을 확인할 수 있었다.In addition, looking at the characteristics of the drug to be introduced, both the hydrophobic materials indomethacin and doxorubicin were able to produce a nanoparticle having an introduction efficiency of more than 40wt%. However, in Comparative Example 3, the hydrophilic material cyanocobalamine was confirmed to be hardly introduced into the nanoparticles.

나노파티클내에 도입된 약물의 양The amount of drug introduced into the nanoparticles Yes 공 급 중 량 비Supply weight ratio 도입효율(%)a Introduction efficiency (%) a 공중합체의 종류와 양 : 약물량Type and amount of copolymer: drug amount 실시예 1Example 1 제조예 1, 1.00 : 3.00Preparation Example 1, 1.00: 3.00 25.8325.83 실시예 2Example 2 제조예 2, 1.00 : 3.00Preparation Example 2, 1.00: 3.00 34.0834.08 실시예 3Example 3 제조예 3, 1.00 : 3.00Preparation Example 3, 1.00: 3.00 41.9841.98 실시예 4Example 4 제조예 4, 1.00 : 3.00Preparation Example 4, 1.00: 3.00 42.0342.03 실시예 5Example 5 제조예 3, 1.00 : 1.00Preparation Example 3, 1.00: 1.00 16.3316.33 실시예 6Example 6 제조예 3, 1.00 : 1.50Preparation Example 3, 1.00: 1.50 20.9920.99 실시예 7Example 7 제조예 3, 1.00 : 2.00Preparation Example 3, 1.00: 2.00 31.9631.96 실시예 8Example 8 제조예 3, 1.00 : 3.00Preparation Example 3, 1.00: 3.00 40.5740.57 비교예 3Comparative Example 3 제조예 3, 1.00 : 3.00Preparation Example 3, 1.00: 3.00 N.D.N.D.

a는 상기 수학식 1에 의해 계산된 값a is a value calculated by Equation 1

한편, 상기 표 2에 기재하지는 않았지만 제조예 5 및 6에 의해 제조된 공중합체를 이용한 경우도 상기 표 2에 기재된 도입효율과 유사한 결과를 나타내었다.On the other hand, although not shown in Table 2, the copolymer prepared according to Preparation Examples 5 and 6 also showed similar results to the introduction efficiency described in Table 2.

그리고 상기 수학식 1에 의해 물질의 도입량이 계산된 나노파티클로부터 도입된 소수성물질의 시간에 따른 방출량을 측정한 결과를 하기 표 3에 나타내었다.And the results of measuring the amount of release of the hydrophobic material introduced from the nanoparticles calculated by the introduction amount of the material by the formula 1 shown in Table 3 below.

나노파티클로부터 도입된 소수성물질의 시간에 따른 방출거동Release Behavior over Time of Hydrophobic Materials Introduced from Nanoparticles Yes 시간(일)에 따른 약물의 누적 방출량a The cumulative discharge amount of the drug over time (in days) a 00 0.130.13 0.250.25 0.50.5 1One 22 44 66 88 1010 1212 1414 실시예 1Example 1 00 6.886.88 8.388.38 8.968.96 9.729.72 14.0214.02 21.5121.51 26.7426.74 28.6528.65 29.6529.65 33.7633.76 34.8934.89 실시예 2Example 2 00 5.645.64 7.777.77 9.019.01 12.2612.26 14.3614.36 18.1618.16 24.4224.42 24.8324.83 25.5925.59 27.0527.05 27.9727.97 실시예 3Example 3 00 6.406.40 8.978.97 9.489.48 10.3510.35 11.3211.32 16.5416.54 19.4619.46 21.4021.40 23.4123.41 26.4226.42 26.8626.86 실시예 4Example 4 00 8.478.47 10.2110.21 11.1911.19 11.9611.96 12.6712.67 15.9315.93 18.5018.50 18.8218.82 19.5319.53 20.7320.73 22.0422.04 실시예 5Example 5 00 0.860.86 2.122.12 3.563.56 3.633.63 4.014.01 10.3810.38 22.9822.98 37.16237.162 38.0438.04 39.6239.62 39.9439.94 실시예 6Example 6 00 4.504.50 7.757.75 12.4112.41 16.9716.97 22.5522.55 25.3125.31 33.8033.80 34.0934.09 35.5035.50 38.5638.56 39.6239.62 실시예 7Example 7 00 7.967.96 9.019.01 10.0610.06 11.4611.46 13.7613.76 18.1818.18 19.0119.01 23.3823.38 26.9826.98 28.0328.03 28.0628.06 실시예 8Example 8 00 6.546.54 7.437.43 8.978.97 9.629.62 12.7912.79 15.8315.83 22.5922.59 23.4723.47 24.9624.96 25.6125.61 25.9225.92 비교예 4Comparative Example 4 00 10.8110.81 42.2442.24 71.2971.29 93.0593.05 97.0097.00 97.0097.00 97.0097.00 97.0097.00 97.0097.00 97.0097.00 97.0097.00

a는 약물의 누적 방출량〓(방출된 약물의 누적량/나노파티클내에 도입된 약물의 양)×100a is the cumulative amount of drug released 〓 (accumulated amount of released drug / amount of drug introduced into nanoparticles) × 100

상기 표 3에서 약물을 나노파티클내에 도입하지 않은 비교예 4의 경우 24시간 이내에 거의 100% 방출되는 거동을 나타낸 반면에, 실시예 1∼4에서 알 수 있는 바와 같이 약물의 도입효율이 25.85에서 42.03wt%(표 2에 명기)로 증가함에 따라 더욱 천천히 지속적으로 방출되는 거동을 나타내었다. 사용된 공중합체의 분자량 면에서 살펴보면, 실시예 3과 실시예 4의 경우, 약물의 도입효율은 41.98과 42.03 wt%로 유사하지만 분자량 12990의 공중합체로 제조된 실시예 3에서 분자량 166414의 공중합체를 사용한 실시예 4보다 더 빠른 방출거동을 나타냄을 확인할 수 있다. 더우기, 실시예 2와 7의 경우, 실시예 2(34.08 %)의 도입효율이 실시예 7(31.96%)보다 더 크지만, 분자량 10707의 공중합체를 사용한 실시예 2가 분자량 12990의 공중합체를 사용한 실시예 7보다도 빠르게 방출되었다. 또한 제조된 나노파티클로부터 약물의 방출은 2주일 이상의 지속적인 방출거동을 보였다.In Comparative Example 4 in which the drug was not introduced into the nanoparticles in Table 3, almost 100% of the drug was released within 24 hours, while the introduction efficiency of the drug was 25.85 to 42.03 as can be seen in Examples 1 to 4. As the wt% (in Table 2) was increased, the sustained release behavior was shown more slowly. In terms of the molecular weight of the copolymer used, in the case of Examples 3 and 4, the drug introduction efficiency is similar to 41.98 and 42.03 wt%, but the copolymer having a molecular weight of 166414 in Example 3 prepared from a copolymer having a molecular weight of 12990 It can be seen that the release behavior faster than Example 4 using. Furthermore, in Examples 2 and 7, although the introduction efficiency of Example 2 (34.08%) was greater than that of Example 7 (31.96%), Example 2 using a copolymer having a molecular weight of 10707 gave a copolymer having a molecular weight of 12990. It was released faster than Example 7 used. In addition, the release of drug from the prepared nanoparticles showed a sustained release behavior of more than two weeks.

Claims (7)

a) 무촉매하에서 락톤류의 헤테로고리형 에스테르 화합물과 폴리에틸렌글리콜의 디블록공중합체를 제조하는 단계;a) preparing a diblock copolymer of a heterocyclic ester compound of lactones and polyethylene glycol under a catalyst; b) 상기 디블록공중합체를 유기용매에 용해시키는 단계;b) dissolving the diblock copolymer in an organic solvent; c) 소수성 물질 또는 약물을 유기용매에 녹인 용액을 상기 b)단계의 디블록공중합체에 첨가시키는 단계; 및c) adding a solution of a hydrophobic substance or drug in an organic solvent to the diblock copolymer of step b); And d) 상기 첨가물을 물속에서 투석시켜 상기 디블록공중합체에 소수성 물질 또는 약물이 도입된 파티클을 형성시키는 단계를 포함하는 것을 특징으로 하는 생분해성 나노파티클의 제조방법.d) dialysis of the additive in water to form particles having hydrophobic substances or drugs introduced into the diblock copolymer. 제 1항에 있어서, 상기 락톤류의 헤테로고리형 에스테르 화합물이 ε-카프로락톤, D,L-락타이드 또는 글리콜라이드임을 특징으로 하는 생분해성 나노파티클의 제조방법.The method for producing biodegradable nanoparticles according to claim 1, wherein the heterocyclic ester compound of lactones is ε-caprolactone, D, L-lactide or glycolide. 제 1항에 있어서, 상기 락톤류의 헤테로고리형 에스테르 화합물/폴리에틸렌글리콜의 반응 몰비가 35 내지 150임을 특징으로 하는 생분해성 나노파티클의 제조방법.The method for producing biodegradable nanoparticles according to claim 1, wherein the reaction molar ratio of the heterocyclic heterocyclic ester compound / polyethylene glycol of the lactones is 35 to 150. 제 1항에 있어서, 상기 유기용매가 디메틸포름아미드, 디메틸아세트아미드, 테트라히드로푸란 또는 디클로로메탄임을 특징으로 하는 생분해성 나노파티클의 제조방법.The method of claim 1, wherein the organic solvent is dimethylformamide, dimethylacetamide, tetrahydrofuran or dichloromethane. 제 1항에 있어서, 상기 소수성 약물 또는 물질이 인도메타신, 케토프로펜, 독소루비신, 씨클로스포린(cyclosporine), 리도카인(lidocaine), 메티프라놀올(metipranolol), 베타소롤(betaxolol) 또는 테트라씨클린(tetracycline)임을 특징으로 하는 생분해성 나노파티클의 제조방법.The method according to claim 1, wherein the hydrophobic drug or substance is indomethacin, ketopropene, doxorubicin, cyclosporine, lidocaine, metipranolol, betasolol or betaxolol, or tetracycline ( method of producing biodegradable nanoparticles, characterized in that tetracycline). 제 1항에 있어서, 상기 파티클의 크기가 0.2㎛(200㎚)이하임을 특징으로 하는 생분해성 나노파티클의 제조방법.The method of claim 1, wherein the particle size is 0.2㎛ (200nm) or less. 제 1항 내지 제 6항중 어느 한 항의 방법으로 제조된 생분해성 나노파티클.Biodegradable nanoparticles prepared by the method of any one of claims 1 to 6.
KR1019970045841A 1997-09-04 1997-09-04 Biodegradable nanoparticle and method for preparing the same KR100261466B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970045841A KR100261466B1 (en) 1997-09-04 1997-09-04 Biodegradable nanoparticle and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970045841A KR100261466B1 (en) 1997-09-04 1997-09-04 Biodegradable nanoparticle and method for preparing the same

Publications (2)

Publication Number Publication Date
KR19990024622A true KR19990024622A (en) 1999-04-06
KR100261466B1 KR100261466B1 (en) 2000-07-01

Family

ID=19520878

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970045841A KR100261466B1 (en) 1997-09-04 1997-09-04 Biodegradable nanoparticle and method for preparing the same

Country Status (1)

Country Link
KR (1) KR100261466B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560069B1 (en) * 2002-11-29 2006-03-13 주식회사 태평양 Biodegradable amphiphilic block copolymers and a method for preparing thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488002B1 (en) * 2001-06-20 2005-05-09 주식회사 삼양사 Amphiphilic block copolymer consisting of hydrophilic polyalkylene glycol block and hydrophobic block, copolymer of aromatic side chain - containing α-hydroxyl acid derivatives and lactides

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543158A (en) * 1993-07-23 1996-08-06 Massachusetts Institute Of Technology Biodegradable injectable nanoparticles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560069B1 (en) * 2002-11-29 2006-03-13 주식회사 태평양 Biodegradable amphiphilic block copolymers and a method for preparing thereof

Also Published As

Publication number Publication date
KR100261466B1 (en) 2000-07-01

Similar Documents

Publication Publication Date Title
US6569528B2 (en) Amphiphilic biodegradable block copolymers and self-assembled polymer aggregates formed from the same in aqueous milieu
Ge et al. Preparation, characterization, and drug release behaviors of drug nimodipine‐loaded poly (ε‐caprolactone)‐poly (ethylene oxide)‐poly (ε‐caprolactone) amphiphilic triblock copolymer micelles
US6322805B1 (en) Biodegradable polymeric micelle-type drug composition and method for the preparation thereof
Jeong et al. Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly (γ-benzyl l-glutamate) as the hydrophobic part and poly (ethylene oxide) as the hydrophilic part
US8394914B2 (en) Functional polyglycolide nanoparticles derived from unimolecular micelles
Alibolandi et al. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs
Xu et al. Amphiphilic biodegradable poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone) triblock copolymers: synthesis, characterization and their use as drug carriers for folic acid
Yang et al. In vitro degradation behavior of poly (lactide)–poly (ethylene glycol) block copolymer micelles in aqueous solution
KR101286854B1 (en) BAB tri-block copolymer containing poly(L-lactide) (A) and poly(ethylene glycol) (B), preparation method thereof and drug delivery system using the same
Cheng et al. Biodegradable poly (ε-caprolactone)-g-poly (2-hydroxyethyl methacrylate) graft copolymer micelles as superior nano-carriers for “smart” doxorubicin release
Tao et al. Synthesis of cholic acid-core poly (ε-caprolactone-ran-lactide)-b-poly (ethylene glycol) 1000 random copolymer as a chemotherapeutic nanocarrier for liver cancer treatment
Kailasan et al. Synthesis and characterization of thermoresponsive polyamidoamine–polyethylene glycol–poly (d, l-lactide) core–shell nanoparticles
Hu et al. Synthesis and characterization of amphiphilic block copolymers with allyl side‐groups
KR100502840B1 (en) A block copolymer micelle composition having an improved drug loading capacity
AU2004295264B2 (en) Biodegradable Branched Polylactide Derivatives Capable of Forming Polymeric Micelles, and the Preparation Method and Use
US8518444B2 (en) Graft copolymers as drug delivery systems
Stefani et al. In vitro ageing and degradation of PEG–PLA diblock copolymer-based nanoparticles
Liu et al. Expansile crosslinked polymersomes for pH sensitive delivery of doxorubicin
Qiu et al. Constructing doxorubicin-loaded polymeric micelles through amphiphilic graft polyphosphazenes containing ethyl tryptophan and PEG segments
Su et al. Novel self-assembled micelles of amphiphilic poly (2-ethyl-2-oxazoline)-poly (L-lactide) diblock copolymers for sustained drug delivery
Cammas‐Marion et al. New macromolecular micelles based on degradable amphiphilic block copolymers of malic acid and malic acid ester
Bhattarai et al. Aqueous solution properties of amphiphilic triblock copolymer poly (p-dioxanone-co-l-lactide)-block-poly (ethylene glycol)
Yu et al. pH‐and β‐cyclodextrin‐responsive micelles based on polyaspartamide derivatives as drug carrier
Zhang et al. Tri-component diblock copolymers of poly (ethylene glycol)–poly (ε-caprolactone-co-lactide): synthesis, characterization and loading camptothecin
Su et al. Effects of chemical composition on the in vitro degradation of micelles prepared from poly (D, L-lactide-co-glycolide)-poly (ethylene glycol) block copolymers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee