KR19990024598A - Non-aqueous electrolyte solution for lithium ion batteries and lithium ion battery comprising same - Google Patents

Non-aqueous electrolyte solution for lithium ion batteries and lithium ion battery comprising same Download PDF

Info

Publication number
KR19990024598A
KR19990024598A KR1019970045813A KR19970045813A KR19990024598A KR 19990024598 A KR19990024598 A KR 19990024598A KR 1019970045813 A KR1019970045813 A KR 1019970045813A KR 19970045813 A KR19970045813 A KR 19970045813A KR 19990024598 A KR19990024598 A KR 19990024598A
Authority
KR
South Korea
Prior art keywords
lithium ion
electrolyte solution
solvent
ion battery
lithium
Prior art date
Application number
KR1019970045813A
Other languages
Korean (ko)
Inventor
이두연
정복환
두석광
손영수
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1019970045813A priority Critical patent/KR19990024598A/en
Priority to KR1019980035848A priority patent/KR100408515B1/en
Priority to JP25134198A priority patent/JP4519956B2/en
Priority to US09/148,507 priority patent/US6117596A/en
Publication of KR19990024598A publication Critical patent/KR19990024598A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬염과 혼합 유기 용매를 포함하는 리튬 이온 전지용 유기 전해액에 있어서, 상기 혼합 유기 용매가 고유전율 용매, 저점도 용매 및 하기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 리튬 이온 전지용 유기 전해액 및 이를 채용하는 리튬 이온 전지에 관한 것으로서, 본 발명에 따른 리튬 이온 전지용 비수계 전해액은 이온전도도 및 저온저장 특성이 우수하고 전위창 영역이 넓다는 잇점이 있다. 따라서, 본 발명의 전해액을 채용하는 리튬 이온 전지는 전지의 용량이 크고 싸이클이 진행되어도 안정적인 충방전 특성을 나타낼 뿐 아니라 전지의 수명 특성 또한 우수하다.The present invention provides an organic electrolyte solution for a lithium ion battery including a lithium salt and a mixed organic solvent, wherein the mixed organic solvent includes a high dielectric constant solvent, a low viscosity solvent, and a compound represented by the following Formula 1 The present invention relates to an organic electrolyte and a lithium ion battery employing the same, and the non-aqueous electrolyte solution for a lithium ion battery according to the present invention has advantages of excellent ion conductivity and low temperature storage characteristics and a wide potential window region. Therefore, the lithium ion battery employing the electrolyte solution of the present invention not only shows stable charge and discharge characteristics even when the battery has a large capacity and cycles, but also has excellent life characteristics of the battery.

상기식중, R1및 R2는 서로 독립적이며, 탄소수 1 내지 5의 선형 또는 고리형의 알킬기이고, x는 0 내지 3이다.Wherein R 1 and R 2 are each independently of each other, a linear or cyclic alkyl group having 1 to 5 carbon atoms, and x is 0 to 3;

Description

리튬 이온 전지용 비수계 전해액 및 이를 포함하는 리튬 이온 전지Non-aqueous electrolyte solution for lithium ion batteries and lithium ion battery comprising same

본 발명은 리튬 이온 전지에 관한 것으로서, 보다 상세하게는 전지 용량, 내저온성 및 충방전 싸이클을 개선할 수 있는 리튬 이온 전지용 유기 전해액 및 이를 포함하는 리튬 이온 전지에 관한 것이다.The present invention relates to a lithium ion battery, and more particularly, to an organic electrolyte solution for a lithium ion battery capable of improving battery capacity, low temperature resistance, and a charge / discharge cycle, and a lithium ion battery including the same.

최근, 전자기기의 소형화, 박형화 및 경량화가 급속도로 이루어지고 있으며, 특히 사무자동화 분야에 있어서는 데스크탑형 컴퓨터에서 랩탑형, 노트북형 컴퓨터로 소형 경량화되고 있다. 또한, 전자 수첩, 전자스틸 카메라 등이 출현하면서 종래의 하드디스크, 플로피디스크의 소형화와 더불어 새로운 소형 메모리미디어인 메모리카드의 연구도 진행되고 있다.In recent years, the miniaturization, thinning, and weight reduction of electronic devices have been made rapidly, and in the field of office automation, in particular, small size and light weight have been reduced from desktop computers to laptop and notebook computers. In addition, with the emergence of electronic notebooks, electronic still cameras, and the like, the miniaturization of conventional hard disks and floppy disks, and the development of memory cards, which are new small memory media, are also in progress.

이와 같은 전지기기의 경박단소화 경향에 맞추어 이들에게 전력을 공급하는 2차 전지에 대해서도 고성능화가 요구되고 있다.In accordance with the trend of light and short reduction of such battery devices, high performance is also required for secondary batteries that supply power to them.

이런 요망에 부응하여, 납 전지나 니켈-카드뮴 전지를 대신할 고에너지 밀도 전지로서 리튬 2차 전지의 개발이 급속하게 진행되고 있다.In response to this demand, the development of lithium secondary batteries as a high energy density battery to replace lead batteries or nickel-cadmium batteries is rapidly progressing.

리튬 2차 전지에 있어서, 양극으로는 TiO2, MoS2, CoO2, V2O5, FeS, NbS2, MnO2등의 전이금속 화합물 또는 이들과 리튬과의 산화물 등이 활물질로서 사용되고 있으며, 음극으로는 리튬 금속, 그의 합금 또는 탄소 재료 등이 활물질로서 사용되고 있다.In the lithium secondary battery, transition metal compounds such as TiO 2 , MoS 2 , CoO 2 , V 2 O 5 , FeS, NbS 2 , MnO 2 , or oxides of these and lithium are used as active materials, As the negative electrode, lithium metal, an alloy thereof, or a carbon material is used as the active material.

또한, 세퍼레이터로서는 전해질의 이온 이동에 대하여 저저항이면서 용액 보유 특성이 우수한 것이 주로 사용되는데, 유리 섬유, 폴리에스테르, 테프론, 폴리프로필렌, 폴리테트라플루오로에틸렌 (PTFE) 등으로부터 선택된 적어도 1종 이상의 부직포 또는 직포를 예로 들 수 있다.In addition, as the separator, a low resistance and excellent solution retention property with respect to the ion migration of the electrolyte is mainly used. At least one nonwoven fabric selected from glass fiber, polyester, Teflon, polypropylene, polytetrafluoroethylene (PTFE), and the like is used. Or a woven fabric.

한편, 리튬 2차 전지는 사용되는 전해질의 종류에 따라서 액체 전해질 전지와 고분자 전해질 전지로 분류되는데, 일반적으로는 액체 전해질을 사용하는 전지를 리튬 이온 전지, 고분자 전해질을 사용하는 전지를 리튬 폴리머 전지라 한다.Meanwhile, lithium secondary batteries are classified into liquid electrolyte batteries and polymer electrolyte batteries according to the type of electrolyte used. Generally, batteries using liquid electrolytes are lithium ion batteries and batteries using polymer electrolytes are lithium polymer batteries. do.

이중, 액체 전해질로서는 리튬이 물과 접촉시에 극렬하게 반응한다는 이유 때문에 수용액이 아닌 리튬염을 유기 용매에 용해시킨 유기 전해액이 사용된다. 이때, 유기 용매로서는 이온전도도와 유전율이 높으면서 점도는 낮은 유기 용매를 사용하는 것이 바람직한데, 이러한 조건을 모두 만족하는 단일의 유기 용매는 존재하지 않기 때문에 고유전율의 유기 용매와 저점도의 유기 용매의 혼합 용매계가 통상 사용되고 있다.Of these, as the liquid electrolyte, an organic electrolyte solution in which lithium salt is dissolved in an organic solvent rather than an aqueous solution is used because lithium reacts violently upon contact with water. In this case, it is preferable to use an organic solvent having high ionic conductivity and low dielectric constant and low viscosity. Since there is no single organic solvent that satisfies all of these conditions, the organic solvent having a high dielectric constant and a low viscosity organic solvent are used. Mixed solvent systems are commonly used.

이와 같은 혼합 유기 용매로서는 프로필렌카보네이트와 디에틸카보네이트의 탄산 에스테르계 혼합 용매, 에틸렌카보네이트, 디메틸카보네이트 및 디에틸카보네이트의 3성분계 혼합 용매 등을 예로 들 수 있다.Examples of such a mixed organic solvent include a carbonate ester mixed solvent of propylene carbonate and diethyl carbonate, a three component mixed solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate.

그런데, 이들 혼합 용매는 저온저장 특성 및 충방전 싸이클 특성이 만족스럽지 않다는 문제점이 있었다.However, these mixed solvents have a problem that the low temperature storage characteristics and the charge and discharge cycle characteristics are not satisfactory.

본 발명이 이루고자 하는 기술적 과제는 저온저장 특성 및 충방전 싸이클 특성이 개선된 리튬 이온 전지용 유기 전해액을 제공하는 것이다.It is an object of the present invention to provide an organic electrolyte solution for a lithium ion battery having improved low-temperature storage characteristics and charge / discharge cycle characteristics.

본 발명이 이루고자 하는 다른 기술적 과제는 상기 유기 전해액을 채용함으로써 저온저장 특성 및 충방전 싸이클 특성이 개선된 리튬 이온 전지를 제공하는 것이다.Another object of the present invention is to provide a lithium ion battery having improved low-temperature storage characteristics and charge / discharge cycle characteristics by employing the organic electrolyte.

도 1은 이온전도도 측정용 셀의 단면도이다.1 is a cross-sectional view of a cell for measuring ion conductivity.

도 2는 전위창 측정용 셀의 단면도이다.2 is a cross-sectional view of the cell for measuring the potential window.

도 3은 종래의 비수계 전해액 및 본 발명에 따른 비수계 전해액에 대한 싸이클릭 볼타메트리를 나타낸 그래프이다.3 is a graph showing a cyclic voltametry for the conventional non-aqueous electrolyte and the non-aqueous electrolyte according to the present invention.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

11, 25 : 전해액 12 : 백금 전극11, 25 electrolyte 12 platinum electrode

13 : 백금 리드선 21 : 니켈 리드선13: platinum lead wire 21: nickel lead wire

22 : 테프론 실링 (sealing) 23 : 작용전극22: Teflon sealing 23: working electrode

24 : 니켈 호일 26 : 러긴 캐필러리 (Luggin capillary)24: Nickel Foil 26: Luggin capillary

27 : 니켈 칩27: nickel chip

본 발명의 기술적 과제는 리튬염과 혼합 유기 용매를 포함하는 리튬 이온 전지용 유기 전해액에 있어서, 상기 혼합 유기 용매가 고유전율 용매, 저점도 용매 및 하기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 리튬 이온 전지용 유기 전해액에 의하여 이루어질 수 있다:Technical problem of the present invention is that in the organic electrolyte solution for a lithium ion battery comprising a lithium salt and a mixed organic solvent, the mixed organic solvent comprises a high dielectric constant solvent, a low viscosity solvent and a compound represented by the formula (1) It can be made by organic electrolyte for lithium ion batteries:

[화학식 1][Formula 1]

상기식중, R1및 R2는 서로 독립적이며, 탄소수 1 내지 5의 선형 또는 고리형의 알킬기이고, x는 0 내지 3이다.Wherein R 1 and R 2 are each independently of each other, a linear or cyclic alkyl group having 1 to 5 carbon atoms, and x is 0 to 3;

또한, 본 발명의 다른 기술적 과제는 리튬-함유 금속의 산화물을 포함하는 양극; 금속 리튬, 리튬 합금 또는 탄소재로 이루어진 군으로부터 선택된 물질을 포함하는 음극; 및 리튬염이 고유전율 용매, 저비점 용매 및 상기 화학식 1로 표시되는 화합물로 이루어진 혼합 유기 용매에 용해된 비수계 전해액을 포함하는 리튬 이온 전지에 의하여 이루어질 수 있다.In addition, another technical problem of the present invention is an anode comprising an oxide of a lithium-containing metal; A negative electrode including a material selected from the group consisting of metal lithium, lithium alloy or carbon material; And a lithium salt may be made by a lithium ion battery comprising a non-aqueous electrolyte solution dissolved in a mixed organic solvent consisting of a high dielectric constant solvent, a low boiling point solvent and the compound represented by the formula (1).

여기서, 상기 고유전율 용매, 저점도 용매 및 상기 화학식 1로 표시되는 화합물의 혼합 부피%는 바람직하게는 30-50:30-40:20-30이다.Here, the mixing volume% of the high dielectric constant solvent, the low viscosity solvent, and the compound represented by Chemical Formula 1 is preferably 30-50: 30-40: 20-30.

또한, 상기 고유전율 용매는 에틸렌카보네이트, 프로필렌카보네이트 또는 감마 부티로락톤일 수 있고, 저비점 용매는 디메틸카보네이트, 디에틸카보네이트, 디메톡시에탄 또는 지방산 에스테르 유도체일 수 있으며, 상기 화학식 1의 화합물은 디메틸말로네이트, 디에틸말로네이트 또는 디에틸옥살레이트일 수 있다.In addition, the high dielectric constant solvent may be ethylene carbonate, propylene carbonate or gamma butyrolactone, the low boiling point solvent may be dimethyl carbonate, diethyl carbonate, dimethoxyethane or fatty acid ester derivative, the compound of Formula 1 is dimethyl mal Nate, diethylmalonate or diethyloxalate.

상기 화학식 1로 표시되는 화합물은 융점과 점도가 낮고 높은 전압에서 분해가 일어나지 않으므로 저온 저장성, 이온 전도도, 싸이클 특성, 내산화분해성을 높이는데 기여할 수 있다.Since the compound represented by Chemical Formula 1 has a low melting point and a low viscosity and no decomposition occurs at a high voltage, the compound may contribute to low temperature storage resistance, ion conductivity, cycle characteristics, and oxidation resistance.

이하, 실시예 및 비교예를 들어 본 발명을 보다 상세하게 설명할 것이나, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to this.

실시예 1Example 1

활물질로서 LiMn2O4, 도전제로서 Super-P 카본, 결착제로서 N-메틸피롤리돈에 용해시킨 폴리테트라플루오로에틸렌을 혼합하여 활물질 페이스트를 제조한 다음, 이를 두께 200㎛의 알루미늄 호일에 캐스팅한후, 건조 및 압착하고, 절단하여 2016 타입의 코인형 전지용으로 절단하여 양극을 제조하였다.An active material paste was prepared by mixing polytetrafluoroethylene dissolved in LiMn 2 O 4 as an active material, Super-P carbon as a conductive agent, and N-methylpyrrolidone as a binder, and then, onto an aluminum foil having a thickness of 200 μm. After casting, drying, pressing, and cutting to cut for a 2016 type coin-type battery to prepare a positive electrode.

또한, 활물질로서 그라파이트 분말 (Osaka Gas Co. 제품, MCMB 2528 그라파이트 분말), 도전제로서 Super-P 카본, 결착제로서 N-메틸피롤리돈에 용해시킨 폴리테트라플루오로에틸렌을 혼합하여 활물질 페이스트를 제조한 다음, 이를 두께 200㎛의 알루미늄 호일에 캐스팅한후, 건조 및 압착하고, 절단하여 2016 타입의 코인형 전지용으로 절단하여 음극을 제조하였다.Further, an active material paste was prepared by mixing graphite powder (manufactured by Osaka Gas Co., MCMB 2528 graphite powder) as the active material, Super-P carbon as the conductive agent, and polytetrafluoroethylene dissolved in N-methylpyrrolidone as the binder. After manufacturing, it was cast in an aluminum foil having a thickness of 200 μm, dried, pressed, and cut to cut for a 2016 type coin-type battery, thereby preparing a negative electrode.

이어서, 전해액을 다음과 같은 방법으로 제조하였다.Subsequently, electrolyte solution was prepared by the following method.

먼저, 전기식 맨틀 속에 고체 상태인 에틸렌카보네이트 (Mitsubishi Chem. 제품)가 담긴 시약통을 넣은 다음, 70-80℃로 서서히 가열하여 액화시켰다. 이어서, 전해액을 보관할 플라스틱통에 LiPF6를 넣은 다음, 디메틸카보네이트 용매 (Mitsubishi Chem. 제품)를 넣고 격렬하게 흔들어주어 상기 리튬염을 용해시켰다. 여기에 액화된 에틸렌카보네이트 용액을 피펫을 이용하여 첨가하면서 흔들어 골고루 섞이도록 하고, 여기에 디메틸말로네이트 (Aldrich Chem. Co. 제품, 순도:99% 이상)를 첨가한 다음, 세게 흔들어서 용액이 골고루 혼합되도록 하여 유기 전해액을 제조하였다.First, a reagent bottle containing ethylene carbonate (manufactured by Mitsubishi Chem.) In a solid state was placed in an electric mantle, and then slowly heated to 70-80 ° C. to liquefy. Subsequently, LiPF 6 was placed in a plastic container to store the electrolyte, and then dimethyl carbonate solvent (manufactured by Mitsubishi Chem.) Was added and shaken vigorously to dissolve the lithium salt. The liquefied ethylene carbonate solution is added to the mixture using a pipette to shake the mixture, and dimethylmalonate (from Aldrich Chem. Co., purity: 99% or more) is added thereto, followed by vigorous shaking to mix the solution evenly. It was prepared to an organic electrolyte solution.

이때, 상기 디메틸말로네이트에 함유된 수분의 영향을 완전히 제거하기 위해 상기 디메틸말로네이트를 단순증류한 다음, 99.9999% 이상의 아르곤 가스 분위기 하에서 상기 디메틸말로네이트가 담겨있는 시약통에 모레큘라 시이브 4A (molecular sieve 4A)를 넣은 다음, 진공 오븐 속에 넣고 120℃에서 24시간 건조시켜서 사용하였으며, 상기 에틸렌카보네이트, 디메틸카보네이트 및 디메틸말로네이트의 혼합 부피비는 40:40:30이 되도록 하였다.At this time, in order to completely remove the effect of the moisture contained in the dimethylmalonate, the dimethylmalonate is simply distilled, and then, in a reagent container containing the dimethylmalonate under an argon gas atmosphere of 99.9999% or more, the Molecular Sieve 4A ( molecular sieve 4A) was placed in a vacuum oven and dried at 120 ° C. for 24 hours. The mixed volume ratio of ethylene carbonate, dimethyl carbonate and dimethyl malonate was 40:40:30.

전술한 바와 같은 방법으로 전해액을 제조한 다음, 플라스틱통의 뚜껑을 덮고 파라핀쉬트로 다시 뚜껑 주위를 감은 다음, 드라이박스 내에서 10일 동안 보관한 후, 카알 피셔 적정법 (Karl Fisher Titration)에 따라 3회에 걸쳐 전해액에 함유된 수분량을 측정한 결과 평균값이 60ppm으로 극소량의 수분이 함유되어 있는 것으로 나타났다.After preparing the electrolyte in the same manner as described above, cover the lid of the plastic barrel, wrap around the lid again with a paraffin sheet, store in a dry box for 10 days, and then according to Karl Fisher Titration As a result of measuring the amount of water contained in the electrolyte solution over time, the average value was 60 ppm and found to contain a very small amount of water.

이어서, 제조된 전해액의 이온전도도, 전위창 및 저온저장 특성 등을 하기와 같은 방법으로 측정하였다:Subsequently, the ion conductivity, potential window, and low temperature storage characteristics of the prepared electrolyte were measured by the following method:

먼저, 도 1에 도시된 바와 같은 이온전도도 측정용 셀을 이용하여 전해액의 이온전도도를 측정하였으며, 그 결과를 하기 표 1에 나타내었다.First, the ion conductivity of the electrolyte was measured using the cell for measuring ion conductivity as shown in FIG. 1, and the results are shown in Table 1 below.

다음으로, 저온저장 특성을 알아보기 위해 30㎖들이 플라스틱 용기를 2개 준비하고 각각의 용기에 15㎖의 전해액을 넣은 다음, 뚜껑을 닫고 뚜껑 주위를 파라핀 필름으로 감아서 공기의접촉이 완전히 차단되도록한 다음, 이 용기를 TABAI 항온항습기에 넣고 각각 -30℃ 및 -40℃의 온도에서 24시간 동안 방치하였다. 이어서, 용매와 리튬염의 상분리 여부, 전해액의 동결 여부를 육안으로 관찰하였다. 실험 결과를 하기 표 1에 나타내었다.Next, prepare two 30 ml plastic containers for each cold storage property, put 15 ml of electrolyte into each container, close the lid, and wind the paraffin film around the lid to completely block air contact. The vessel was then placed in a TABAI thermo-hygrostat and left for 24 hours at temperatures of -30 ° C and -40 ° C, respectively. Then, it was visually observed whether the solvent and the lithium salt were phase separated and whether the electrolyte was frozen. The experimental results are shown in Table 1 below.

마지막으로, 제조된 전해액이 사용작동 전압 범위에서 안정한 것인가를 알아보기 위하여 도 2에 도시된 바와 같은 3극 측정셀을 이용하여 1㎒의 주파수에서 1㎷/s의 속도로 전위주사하였다. 결과를 하기 도 3에 나타내었다.Finally, in order to determine whether the prepared electrolyte solution is stable in the operating voltage range, potential injection was performed at a rate of 1 kHz / s at a frequency of 1 MHz using a three-pole measuring cell as shown in FIG. 2. The results are shown in FIG. 3.

이어서, 전술한 바와 같이 제조된 양극, 음극 및 전해액을 이용하여 완전 2016 타잎의 코인형 전지 5개를 각각 제조한 다음, 이들 전지의 용량, 및 100싸이클 및 200싸이클 후의 초기 용량값에 대한 용량 변화율을 측정하여 그 평균값을 구한다. 그 결과를 표 1에 나타내었다.Subsequently, five coin-type cells of the complete 2016 type were prepared using the positive electrode, the negative electrode, and the electrolyte prepared as described above, and then the capacity change rate with respect to the capacity of these cells and the initial capacity values after 100 and 200 cycles. Calculate the average value. The results are shown in Table 1.

이때, 전지 용량 및 충방전 특성은 1A 용량의 충방전기 (Maccor 제품)를 이용하였으며, 충전 및 방전은 각각 25℃에서 0.2C로 실시하였으며, 충전 전압은 3.0-4.3V였다.In this case, the battery capacity and the charge and discharge characteristics were used as a charge-discharger (manufactured by Maccor) with a capacity of 1A, charging and discharging were carried out at 0.2C at 25 ℃, respectively, and the charging voltage was 3.0-4.3V.

또한, 초기 용량, 및 100싸이클 및 200싸이클 후의 용량 변화를 초기 용량값에 대한 비율로서 각각 표시하여 결과를 표 2에 나타내었다.In addition, the initial dose and the dose change after 100 cycles and 200 cycles are expressed as a ratio with respect to the initial dose value, respectively, and the results are shown in Table 2.

실시예 2Example 2

디메틸말로네이트 대신에 디에틸말로네이트를 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 전해액을 제조하고, 전지를 구성한 다음, 이온전도도, 전위창, 저온저장 특성, 전지 용량, 및 100싸이클 및 200싸이클 후의 초기 용량값에 대한 용량 변화율을 측정하였다. 그 결과를 하기 표 1 및 도 3에 나타내었다.An electrolyte was prepared in the same manner as in Example 1 except that diethylmalonate was used instead of dimethylmalonate, the cell was constructed, and then ion conductivity, potential window, low temperature storage characteristics, battery capacity, and 100 cycles. And the rate of change of dose relative to the initial dose after 200 cycles. The results are shown in Table 1 and FIG. 3.

실시예 3Example 3

디메틸말로네이트 대신에 디에틸옥살레이트를 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 전해액을 제조하고, 전지를 구성한 다음, 이온전도도, 전위창, 저온저장 특성, 전지 용량, 및 100싸이클 및 200싸이클 후의 초기 용량값에 대한 용량 변화율을 측정하였다. 그 결과를 하기 표 1 및 도 3에 나타내었다.An electrolyte was prepared in the same manner as in Example 1 except that diethyloxalate was used instead of dimethylmalonate, and the battery was constructed, followed by ion conductivity, potential window, low temperature storage characteristics, battery capacity, and 100 cycles. And the rate of change of dose relative to the initial dose after 200 cycles. The results are shown in Table 1 and FIG. 3.

실시예 4-6Example 4-6

에틸렌카보네이트, 디메틸카보네이트 및 디메틸말로네이트의 혼합 부피비를 각각 40:40:20 (실시예 4), 30:40:30 (실시예 5) 및 50:30:20 (실시예 6)으로 하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 전해액을 제조하고, 전지를 구성한 다음, 이온전도도, 저온저장 특성, 전지 용량, 및 100싸이클 및 200싸이클 후의 초기 용량값에 대한 용량 변화율을 측정하였다. 그 결과를 하기 표 1에 나타내었다.The mixing volume ratios of ethylene carbonate, dimethyl carbonate and dimethyl malonate are 40:40:20 (Example 4), 30:40:30 (Example 5) and 50:30:20 (Example 6), respectively. Then, the electrolyte was prepared in the same manner as in Example 1, the battery was constructed, and then the ion conductivity, low temperature storage characteristics, battery capacity, and capacity change rate with respect to the initial capacity values after 100 and 200 cycles were measured. The results are shown in Table 1 below.

비교예 1Comparative Example 1

혼합 유기 용매에 디메틸말로네이트를 첨가하지 않는 것을 제외하고는 실시예 1에서와 동일한 방법으로 전해액을 제조하고, 전지를 구성한 다음, 이온전도도, 전위창, 저온저장 특성, 전지의 용량, 및 100싸이클 및 200싸이클 후의 초기 용량값에 대한 용량 변화율을 측정하였다. 그 결과를 하기 표 1 및 도 3에 나타내었다.An electrolyte was prepared in the same manner as in Example 1 except that dimethylmalonate was not added to the mixed organic solvent, the cell was constructed, and then the ion conductivity, potential window, low temperature storage characteristics, capacity of the cell, and 100 cycles were obtained. And the rate of change of dose relative to the initial dose after 200 cycles. The results are shown in Table 1 and FIG. 3.

비교예 2Comparative Example 2

에틸렌카보네이트, 디메틸카보네이트 및 디메틸말로네이트의 혼합 부피비를 60:20:20으로 하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 전해액을 제조하고, 전지를 구성한 다음, 이온전도도, 저온저장 특성, 전지의 용량, 및 100싸이클 및 200싸이클 후의 초기 용량값에 대한 용량 변화율을 측정하였다. 그 결과를 하기 표 1에 나타내었다.An electrolyte solution was prepared in the same manner as in Example 1 except that the mixed volume ratio of ethylene carbonate, dimethyl carbonate, and dimethyl malonate was 60:20:20, and the battery was formed, followed by ion conductivity, low temperature storage characteristics, and battery. The dose change rate with respect to the capacity of and the initial dose value after 100 and 200 cycles was measured. The results are shown in Table 1 below.

이온전도도(25℃, s/㎝)Ion Conductivity (25 ℃, s / cm) -30℃에서의동결여부Freezing at -30 ℃ -40℃에서의 동결여부Freeze at -40 ℃ 초기용량(mAh)Initial capacity (mAh) 100싸이클후의 용량변화율Capacity change rate after 100 cycles 200싸이클후의 용량변화율Capacity change rate after 200 cycles 실시예 1Example 1 1.124×10-2 1.124 × 10 -2 비동결Non-freezing 비동결Non-freezing 2.892.89 92%92% 87%87% 실시예 2Example 2 1.226×10-2 1.226 × 10 -2 2.912.91 90%90% 85%85% 실시예 3Example 3 1.137×10-2 1.137 × 10 -2 2.882.88 90%90% 85%85% 실시예 4Example 4 1.311×10-2 1.311 × 10 -2 2.862.86 90%90% 85%85% 실시예 5Example 5 1.116×10-2 1.116 × 10 -2 2.772.77 86%86% 81%81% 실시예 6Example 6 1.133×10-2 1.133 × 10 -2 2.872.87 91%91% 85%85% 비교예 1Comparative Example 1 동결freezing 동결freezing 2.882.88 90%90% 82%82% 비교예 2Comparative Example 2 1.475×10-2 1.475 × 10 -2 2.912.91 81%81% 70%70%

또한, 도 3을 참조하여 보면, 본 발명에 따른 전해액은 종래의 에틸렌카보네이트와 디메틸카보네이트로 구성된 2성분계 전해액에 비하여 전위창 영역이 더 넓은 것을 알 수 있다.In addition, referring to Figure 3, it can be seen that the electrolytic solution according to the present invention has a wider potential window area than the two-component electrolytic solution composed of conventional ethylene carbonate and dimethyl carbonate.

상기 표 1 및 도 3의 결과로부터, 본 발명에 따른 전해액 및 이를 채용한 리튬 이온 전지는 이온전도도값이 높고 저온저장 특성이 모두 우수한 것을 알 수 있다. 또한, 전지의 용량이 크고 싸이클 진행에 따른 용량 변화율이 적은 것으로 볼 때 싸이클 특성이 매우 우수한 것을 알 수 있으며, 전위창 영역이 넓어서 광범위한 전압 범위에서도 안정적인 전지 특성을 유지할 수 있다.From the results of Table 1 and FIG. 3, it can be seen that the electrolyte according to the present invention and the lithium ion battery employing the same have high ion conductivity and excellent low temperature storage characteristics. In addition, it can be seen that the cycle characteristics are very excellent in view of the large capacity of the battery and the small capacity change rate according to the progress of the cycle, and the wide potential window region can maintain stable battery characteristics even in a wide voltage range.

본 발명에 따른 리튬 이온 전지용 비수계 전해액은 이온전도도 및 저온저장 특성이 우수하고 전위창 영역이 넓다는 잇점이 있다. 따라서, 본 발명의 전해핵을 채용하는 리튬 이온 전지는 전지의 용량이 크고 싸이클이 진행되어도 안정적인 충방전 특성을 나타낼 뿐 아니라 전지의 수명 특성 또한 양호하다.The non-aqueous electrolyte solution for lithium ion batteries according to the present invention has the advantage of excellent ion conductivity and low temperature storage characteristics and wide potential window area. Therefore, the lithium ion battery employing the electrolytic nucleus of the present invention not only shows stable charge / discharge characteristics even when the battery has a large capacity and cycles, but also has good life characteristics of the battery.

Claims (10)

리튬염과 혼합 유기 용매를 포함하는 리튬 이온 전지용 유기 전해액에 있어서,In the organic electrolyte solution for lithium ion batteries containing a lithium salt and a mixed organic solvent, 상기 혼합 유기 용매가 고유전율 용매, 저점도 용매 및 하기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 리튬 이온 전지용 유기 전해액.The mixed organic solvent comprises a high dielectric constant solvent, a low viscosity solvent and a compound represented by the following formula (1). [화학식 1][Formula 1] 상기식중,In the above formula, R1및 R2는 서로 독립적이며, 탄소수 1 내지 5의 선형 또는 고리형의 알킬기이고,R 1 and R 2 are independent of each other, a linear or cyclic alkyl group having 1 to 5 carbon atoms, x는 0 내지 3이다.x is 0-3. 제1항에 있어서, 상기 고유전율 용매, 저비점 용매 및 상기 화학식 1의 화합물의 혼합 부피%가 30-50:30-40:20-30인 것을 특징으로 하는 리튬 이온 전지용 유기 전해액.The organic electrolyte solution for a lithium ion battery according to claim 1, wherein the mixed volume% of the high dielectric constant solvent, the low boiling point solvent, and the compound of Formula 1 is 30-50: 30-40: 20-30. 제1항 또는 2항에 있어서, 상기 고유전율 용매가 에틸렌카보네이트, 프로필렌카보네이트 및 감마 부티로락톤으로 구성된 군으로부터 선택된 것임을 특징으로 하는 리튬 이온 전지용 유기 전해액.The organic electrolyte solution for a lithium ion battery according to claim 1 or 2, wherein the high dielectric constant solvent is selected from the group consisting of ethylene carbonate, propylene carbonate, and gamma butyrolactone. 제1항 또는 2항에 있어서, 상기 저비점 용매가 디메틸카보네이트, 디에틸카보네이트, 디메톡시에탄 및 지방산 에스테르 유도체로 구성된 군으로부터 선택된 것임을 특징으로 하는 리튬 이온 전지용 유기 전해액.The organic electrolyte solution for a lithium ion battery according to claim 1 or 2, wherein the low boiling point solvent is selected from the group consisting of dimethyl carbonate, diethyl carbonate, dimethoxyethane and fatty acid ester derivatives. 제1항 또는 2항에 있어서, 상기 화학식 1의 화합물이 다메틸말로네이트, 디에틸말로네이트 및 디에틸옥살레이트로 이루어진 군으로부터 선택된 것임을 특징으로 하는 리튬 이온 전지용 유기 전해액.The organic electrolyte solution for a lithium ion battery according to claim 1 or 2, wherein the compound of Formula 1 is selected from the group consisting of multimethylmalonate, diethylmalonate and diethyloxalate. 리튬-함유 금속의 산화물을 포함하는 양극;An anode comprising an oxide of a lithium-containing metal; 금속 리튬, 리튬 합금 또는 탄소재로 이루어진 군으로부터 선택된 물질을 포함하는 음극; 및A negative electrode including a material selected from the group consisting of metal lithium, lithium alloy or carbon material; And 리튬염이 고유전율 용매, 저비점 용매 및 하기 화학식 1로 표시되는 화합물로 이루어진 혼합 유기 용매에 용해된 비수계 전해액을 포함하는 리튬 이온 전지.A lithium ion battery comprising a non-aqueous electrolyte solution in which a lithium salt is dissolved in a mixed organic solvent consisting of a high dielectric constant solvent, a low boiling point solvent, and a compound represented by the following Formula 1. [화학식 1][Formula 1] 상기식중,In the above formula, R1및 R2는 서로 독립적이며, 탄소수 1 내지 5의 선형 또는 고리형의 알킬기이고,R 1 and R 2 are independent of each other, a linear or cyclic alkyl group having 1 to 5 carbon atoms, x는 0 내지 3이다.x is 0-3. 제6항에 있어서, 상기 고유전율 용매, 저비점 용매 및 상기 화학식 1의 화합물의 혼합 부피%가 30-50:30-40:20-30 인 것을 특징으로 하는 리튬 이온 전지용 유기 전해액.The organic electrolyte solution for a lithium ion battery according to claim 6, wherein the mixing volume% of the high dielectric constant solvent, the low boiling point solvent, and the compound of Formula 1 is 30-50: 30-40: 20-30. 제6항 또는 7항에 있어서, 상기 고유전율 용매가 에틸렌카보네이트, 프로필렌카보네이트 및 감마 부티로락톤으로 구성된 군으로부터 선택된 것임을 특징으로 하는 리튬 이온 전지용 유기 전해액.The organic electrolyte solution for lithium ion batteries according to claim 6 or 7, wherein the high dielectric constant solvent is selected from the group consisting of ethylene carbonate, propylene carbonate, and gamma butyrolactone. 제6항 또는 7항에 있어서, 상기 저비점 용매가 디메틸카보네이트, 디에틸카보네이트, 디메톡시에탄 및 지방산 에스테르 유도체로 구성된 군으로부터 선택된 것임을 특징으로 하는 리튬 이온 전지용 유기 전해액.8. The organic electrolyte solution for lithium ion batteries according to claim 6 or 7, wherein the low boiling point solvent is selected from the group consisting of dimethyl carbonate, diethyl carbonate, dimethoxyethane and fatty acid ester derivatives. 제6항 또는 7항에 있어서, 상기 화학식 1의 화합물이 다메틸말로네이트, 디에틸말로네이트 및 디에틸옥살레이트로 이루어진 군으로부터 선택된 것임을 특징으로 하는 리튬 이온 전지용 유기 전해액.The organic electrolytic solution for lithium ion battery according to claim 6 or 7, wherein the compound of Formula 1 is selected from the group consisting of multimethylmalonate, diethylmalonate and diethyloxalate.
KR1019970045813A 1997-09-04 1997-09-04 Non-aqueous electrolyte solution for lithium ion batteries and lithium ion battery comprising same KR19990024598A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019970045813A KR19990024598A (en) 1997-09-04 1997-09-04 Non-aqueous electrolyte solution for lithium ion batteries and lithium ion battery comprising same
KR1019980035848A KR100408515B1 (en) 1997-09-04 1998-09-01 Organic electrolyte and lithium secondary battery using the same
JP25134198A JP4519956B2 (en) 1997-09-04 1998-09-04 Organic electrolyte and lithium secondary battery using the same
US09/148,507 US6117596A (en) 1997-09-04 1998-09-04 Organic electrolyte and lithium secondary cell employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970045813A KR19990024598A (en) 1997-09-04 1997-09-04 Non-aqueous electrolyte solution for lithium ion batteries and lithium ion battery comprising same

Publications (1)

Publication Number Publication Date
KR19990024598A true KR19990024598A (en) 1999-04-06

Family

ID=37422820

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019970045813A KR19990024598A (en) 1997-09-04 1997-09-04 Non-aqueous electrolyte solution for lithium ion batteries and lithium ion battery comprising same
KR1019980035848A KR100408515B1 (en) 1997-09-04 1998-09-01 Organic electrolyte and lithium secondary battery using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1019980035848A KR100408515B1 (en) 1997-09-04 1998-09-01 Organic electrolyte and lithium secondary battery using the same

Country Status (1)

Country Link
KR (2) KR19990024598A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873632B1 (en) * 2005-08-24 2008-12-12 삼성에스디아이 주식회사 Organic electrolytic solution and lithium battery employing the same
KR100875112B1 (en) * 2002-11-16 2008-12-22 삼성에스디아이 주식회사 Non-aqueous electrolyte and lithium battery employing the same
CN111224161A (en) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 Method for improving low-temperature service performance of lithium ion battery by electrolyte containing additive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833042B1 (en) * 2005-02-15 2008-05-27 주식회사 엘지화학 Electrolyte with enhanced safety and perfomance and lithium secondary battery comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875112B1 (en) * 2002-11-16 2008-12-22 삼성에스디아이 주식회사 Non-aqueous electrolyte and lithium battery employing the same
KR100873632B1 (en) * 2005-08-24 2008-12-12 삼성에스디아이 주식회사 Organic electrolytic solution and lithium battery employing the same
CN111224161A (en) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 Method for improving low-temperature service performance of lithium ion battery by electrolyte containing additive

Also Published As

Publication number Publication date
KR100408515B1 (en) 2004-01-24
KR19990029412A (en) 1999-04-26

Similar Documents

Publication Publication Date Title
KR100837450B1 (en) Non-aqueous electrolyte battery
RU2143768C1 (en) Rechargeable positive plate
KR100405298B1 (en) Rechargeable positive electrode
CA2686890C (en) Plastic crystal electrolyte with a broad potential window
KR100467453B1 (en) Electrolyte for lithium secondary batteries and lithium secondary batteries comprising the same
US6117596A (en) Organic electrolyte and lithium secondary cell employing the same
KR100325868B1 (en) Organic electrolytic solution and lithium secondary battery adopting the same
EP1209754B1 (en) Non-aqueous electrolyte cell
KR20020002200A (en) Charging method for charging nonaqueous electrolyte secondary battery
CN101682079A (en) Non-aqueous electrolyte and lithium secondary battery having the same
JP4138208B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
US5744262A (en) Stable high-voltage electrolyte for lithium secondary battery
JP2005071807A (en) Water-based lithium secondary battery
EP1289044B1 (en) Nonaqueous electrolyte secondary battery
CN109309255A (en) Electrolyte and electrochemical energy storage device
US6656638B1 (en) Non-aqueous electrolyte battery having a lithium manganese oxide electrode
KR19990024598A (en) Non-aqueous electrolyte solution for lithium ion batteries and lithium ion battery comprising same
KR100459882B1 (en) Non-aqueous electrolytes for lithium rechargeable battery and lithium rechargeable battery using the same
JPH09245831A (en) Non-aqueous electrolytic liquid for secondary battery
KR100408513B1 (en) Organic electrolyte for lithium secondary battery and lithium secondary battery using same
KR100467430B1 (en) Electrolyte for lithium sulfur batteries and lithium sulfur batteries comprising the same
JP3053672B2 (en) Manufacturing method of organic solvent secondary battery
EP1406336A1 (en) Electrolyte composition having improved aluminium anticorrosive properties
JP3128230B2 (en) Non-aqueous electrolyte secondary battery
KR100440932B1 (en) Electrolytes for lithium rechargeable battery