KR19990022152A - How to recover iron from iron rich materials - Google Patents

How to recover iron from iron rich materials Download PDF

Info

Publication number
KR19990022152A
KR19990022152A KR1019970708631A KR19970708631A KR19990022152A KR 19990022152 A KR19990022152 A KR 19990022152A KR 1019970708631 A KR1019970708631 A KR 1019970708631A KR 19970708631 A KR19970708631 A KR 19970708631A KR 19990022152 A KR19990022152 A KR 19990022152A
Authority
KR
South Korea
Prior art keywords
iron
rich
mixture
carbon
polymer
Prior art date
Application number
KR1019970708631A
Other languages
Korean (ko)
Inventor
죠지 더블유. 쥬니어 포드
Original Assignee
죠지 더블유. 쥬니어 포드
코볼 테크놀로지스 인코퍼레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/468,104 external-priority patent/US5589118A/en
Application filed by 죠지 더블유. 쥬니어 포드, 코볼 테크놀로지스 인코퍼레이티드 filed Critical 죠지 더블유. 쥬니어 포드
Publication of KR19990022152A publication Critical patent/KR19990022152A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/08Making granules by agglomerating smaller particles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0066Preliminary conditioning of the solid carbonaceous reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/527Charging of the electric furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

전기 아아크로 먼지와 같은 철농후 물질 폐기물이 유기 바인더에 의해 연탄 또는 다른 고체 형태로 형성된다. 이러한 형태는 이후에 제강공정에 사용될 수 있으며 폐기물에 있는 중금속이 회수될 수 있다.Iron-rich material waste, such as electric arc dust, is formed into briquettes or other solid forms by organic binders. This form can then be used in the steelmaking process and heavy metals in the waste can be recovered.

Description

철농후 물질로 부터 철을 회수하는 방법How to recover iron from iron rich materials

본 발명은 야금 폐기물, 특히 강철 제조공정에서 형성된 폐기물로 부터 금속을 회수하는 방법에 관계한다.The present invention relates to a method for recovering metals from metallurgical waste, in particular from waste formed in the steel manufacturing process.

공지기술Known Technology

강철제조공정에서 산화된 철과 기타 산화된 금속을 함유하는 폐기물이 형성된다. 이들은 가스 폐기물 스트림에서 먼지형태의 물질이다. 이 폐기물은 먼지가 미세한 입자크기를 가지므로 처리하기가 곤란하며 철회수를 위해 폐기물을 환원로에 재도입하면 또다시 폐기물 가스 스트림의 일부를 형성하게 된다. 따라서, 이들 미세한 입자크기의 물질이 상당한 금속함량을 가질지라도 본질적으로 쓸모 없다.In the steelmaking process, wastes containing oxidized iron and other oxidized metals are formed. These are dusty substances in the gaseous waste stream. These wastes are difficult to treat because of the fine particle size of the dust, and when the waste is reintroduced into the reduction furnace for withdrawal, it again forms part of the waste gas stream. Thus, these fine particle size materials are essentially useless even though they have a significant metal content.

강제조 공장 근처에 먼지를 더미로 저장 및 안정화시키는 방법이 있지만 환경규제가 더 엄격해지며 지대상승으로 인한 이용가능한 공간의 제한 때문에 이러한 방법은 허용할 수 없게 되었다. 먼지는 세라믹 또는 빌딜재료로 재순환 및 안정화될 수 있지만 비용에 있어서 효과적이지 못하다. 그러나 이들 방법들은 폐기물 속의 잔류 철과 기타 금속의 가치를 개발하지 못한다.There is a method of storing and stabilizing dust in piles near the forced tank plant, but this is unacceptable due to stricter environmental regulations and the limited space available due to the ground. Dust can be recycled and stabilized with ceramic or bildyl materials but is not cost effective. However, these methods do not develop the value of residual iron and other metals in the waste.

공통 관심사의 먼지는 전기아아크로에서 나오는 먼지, EAF먼지이다. 전기 아아크로는 고전압 전류의 사용을 통해 스크랩 금속을 용융한다. 스크랩 금속은 다음을 포함한 다양한 원천에서 나온다: 폐기된 철로, 절단된 쉬이트강, 폐기된 구조강 및 자동차 스크랩. 스크랩 금속은 납, 아연 및 카드뮴과 같은 비철금속을 분리하지 않고 전기 아아크로에 첨가된다. 전기아아크로 작동동안 이들 비철금속은 스크랩으로 부터 증발되고 폐기물 가스 스트림으로 부터 먼지로 응축되고 백(bag) 하우스에 퇴적된다. 이들 금속에 추가적으로 폐기물 가스스트림은 상당량의 회수가능한 철을 백하우스에 퇴적한다. 따라서, 보통 산화된 형태인 철 및 중금속이 20마이크론 미만의 입자크기를 갖는 비정질 EAF먼지에 조합된다. 이러한 EAF먼지는 납 및 카드뮴 함량 때문에 EPA에 의해 유해 폐기물로서 분류되고 있다. 이와 같이 중금속 오염으로 부터 환경을 보호하고 EPA 규제를 충족시키기 위해서 상당한 절차가 수행되어야 한다. EAF먼지속의 모든 금속은 가치를 가지며 먼지 성분의 효과적은 분리 및 환원방법이 달성될 수 있다면 재생 이용될 수 있다. 추가로, 먼지로 부터 잔류 중금속이 제거될 수 있다면 EAF먼지는 비독성이 될 수 있다.Dust of common interest is dust from electric arcs, EAF dust. Electrical arc furnaces melt scrap metal through the use of high voltage currents. Scrap metals come from a variety of sources, including: scrapped steel, cut sheet steel, scrap structural steel and automotive scrap. Scrap metals are added to the electric arc without separating nonferrous metals such as lead, zinc and cadmium. During operation of the electric arc these non-ferrous metals are evaporated from the scrap, condensed into dust from the waste gas stream and deposited in bag houses. In addition to these metals, waste gas streams deposit a significant amount of recoverable iron in the baghouse. Thus, iron and heavy metals, usually in oxidized form, are combined with amorphous EAF dust having a particle size of less than 20 microns. These EAF dusts are classified as hazardous wastes by EPA because of their lead and cadmium content. As such, considerable steps must be taken to protect the environment from heavy metal contamination and to meet EPA regulations. All metals in EAF dust are valuable and can be recycled if an effective separation and reduction method of dust components can be achieved. In addition, EAF dust can be non-toxic if residual heavy metals can be removed from the dust.

몇가지 공정이 이러한 문제를 다루기 위해 적용되었지만 성공정도는 다르다. 이들 공정이 중금속 제거에는 성공적이었을지라도 철회수에는 부적절하며 가치없는 철산화물 미립자 함유먼지를 남긴다.Several processes have been applied to address this problem, but vary in their success. Although these processes have been successful in removing heavy metals, they are inadequate for withdrawal and leave valuable iron oxide particulate content.

가장 상식적인 방법은 퓨밍(fuming)이다. 이 방법은 분리를 위해 중금속의 끓는점 차이를 이용한다. 먼지가 분리될 금속의 끓는점 이상의 온도로 가열되어서 금속이 증발하게 한다. 증발된 금속은 먼지로서 가스로 부터 제거되고 또다른 처리를 위해 수집장치에서 응축된다. 이들 잔류금속의 끓는점은 먼지의 가장 큰 단일성분인 철의 끓는점보다 상당히 낮다. 납, 아연 및 카드뮴이 분리된 이후에 남아있는 먼지는 주로 철산화물 형태의 철로 구성된다. 먼지 형태로 있을 때 이러한 물질은 철로 성공적으로 처리될 수 없으므로 폐기물로서 남겨진다. 퓨밍의 또다른 문제점은 에너지 집약적이며 상당량의 자체 폐기물먼지를 생성한다는 점이다.The most common method is fuming. This method uses the boiling point difference of heavy metals for separation. The dust is heated to a temperature above the boiling point of the metal to be separated, causing the metal to evaporate. The evaporated metal is removed from the gas as dust and condensed in the collector for further treatment. The boiling point of these residual metals is significantly lower than the boiling point of iron, the largest single component of dust. The dust remaining after the lead, zinc and cadmium segregation consists mainly of iron in the form of iron oxides. When in dust form, these materials are left as waste because they cannot be successfully processed with iron. Another problem with fuming is that it is energy intensive and generates a significant amount of waste.

EAF처리에 사용되는 또다른 공정은 전해채취(electrowinning)이다. 이 공정은 삼출 및 침전 공정을 전기분해 침적과 조합한다. EAF먼지는 먼저 전해질에 용해되어서 납, 아연 및 카드뮴을 안정화시킨다. 용액을 여과하고 납 및 카드뮴을 포획하기 위해서 아연 분말로 침전시킨다. 결과의 아연 용액을 전기화학적 회수 전지를 통과시켜 아연을 회수한다. 이 공정은 아연을 잘 회수하지만 삼출공정이 철산화물과 아연 페라이트를 용해하지 못하므로 건조되어야 하는 폐기물로서 남는다. 이러한 건조된 물질은 가치가 없거나 적은 미세한 먼지 형태이다.Another process used for EAF treatment is electrowinning. This process combines the exudation and precipitation processes with electrolytic deposition. EAF dust first dissolves in the electrolyte to stabilize lead, zinc and cadmium. The solution is filtered and precipitated with zinc powder to capture lead and cadmium. The resulting zinc solution is passed through an electrochemical recovery cell to recover zinc. This process recovers zinc well but the exudation process does not dissolve iron oxide and zinc ferrite, leaving it as a waste that must be dried. This dried material is in the form of fine or low value dust.

또한, EAF먼지는 실리카 모래, 점토 또는 파유리(cullet)와 같은 실리케이트 물질과 혼합함으로써 처리되고 로에서 가열되어서 유리질 세라믹생성물을 형성한다. 이러한 세라믹은 연마재로서 유용하며 EAF먼지는 무해하게 되지만 먼지에 포함된 가치있는 금속이 회수되지 못한다. 이들 금속은 값비싼 제련기술을 통해 가공되어서 비교적 가치가 낮은 물질로 전환되어서 무해하게 된다.In addition, EAF dust is treated by mixing with silicate materials such as silica sand, clay or cullets and heated in a furnace to form a glassy ceramic product. These ceramics are useful as abrasives and EAF dust is harmless, but valuable metals contained in the dust are not recovered. These metals are processed through expensive smelting techniques and converted into relatively inexpensive materials, making them harmless.

도 1 은 본 발명의 실시예를 보여주는 순서도이다.1 is a flowchart showing an embodiment of the present invention.

그러므로 철과 중금속을 유용한 생성물로서 회수하는 철 및 중금속 함유 먼지의 처리방법을 제공하는 것이 본 발명의 목적이다.It is therefore an object of the present invention to provide a method for treating iron and heavy metal-containing dust which recovers iron and heavy metals as useful products.

본 발명은 공지기술의 문제점을 극복 또는 크게 격감시킨다. 연탄, 펠렛 또는 기타 고형물체 형태로 고체 생성물을 형성하는 방법이 제공된다. 결과의 생성물은 철농후물질(EAF 먼지), 탄소원(코우크스재, 석탄 미립자) 또는 연탄과 같은 고체형태로 함께 결합되는 재료로 구성되어서 먼지 또는 더 적은 조각으로 분해되는 것을 방지한다. 이러한 연탄은 강철제조 공정에서 철의 공급원과 철환원을 위한 탄소를 제공한다. 게다가, 철농후 물질에 있는 중금속 역시 연탄속에 포함되어서 철환원공정동안 증발 또는 퓨밍됨으로써 분리되어 이들이 회수될 수 있다. 이러한 퓨밍 공정은 공급재료가 편리한 모양으로 압출하는 기술을 사용하며 안정적인 고체로 형성되고 입자 탄소와 유기 바인더의 반응 생성물을 활용한다는 점에서 고유하다. 바인더 반응 생성물은 아연, 납 및 카드뮴이 증발되고 철산화물이 원소 철로 환원될 때까지 형성된 먼지물질을 유지시킨다. 이러한 방법은 EAF먼지에 포함된 모든 물질이 하나의 공정으로 재생이용될 수 있게 한다. 이 공정을 위한 연료는 비용에 따라 폐기 코우크스재, 폐기 석탄 미립자, 전기아아크 또는 천연가스이다.The present invention overcomes or greatly reduces the problems of the known art. Methods of forming solid products in the form of briquettes, pellets or other solids are provided. The resulting product consists of materials that are bound together in solid form, such as iron enrichment (EAF dust), carbon sources (coke ash, coal particulates) or briquettes, to prevent decomposition into dust or smaller pieces. Such briquettes provide a source of iron and carbon for iron reduction in the steel manufacturing process. In addition, heavy metals in the iron-rich material are also included in the briquettes and can be separated and recovered by evaporation or purging during the iron reduction process. This fusing process is unique in that the feedstock uses a technique for extruding into a convenient shape and is formed into a stable solid and utilizes the reaction product of particulate carbon and an organic binder. The binder reaction product retains the dust formed until zinc, lead and cadmium evaporate and iron oxide is reduced to elemental iron. This method allows all materials contained in EAF dust to be recycled in one process. Fuel for this process is waste coke ash, waste coal particulates, electric arc or natural gas, depending on cost.

따라서, 본 발명의 방법은 철농후물질 분말로 부터 철 및 중금속을 회수한다. 예전에는 가치있는 철을 회수할 수 없었던 분말이 지금은 강철 제조에 활용될 수 있는 형태로 제조될 수 있다. 철이 회수될 뿐만 아니라 중금속 역시 회수된다. 코우크스재, 석탄 미립자 또는 역전재료와 같은 탄소함유물질을 연탄과 같은 고체형태로 할려는 공지의 시도는 생성물이 적절하게 결합하지 않고 불안정적이고 사용에 앞서 저장 및 취급하는 동안 작은 미립자로 해체 또는 분해되기 때문에 성공적이지 못했다. 그러나, 본 발명은 탄소 및 철함유 물질이 취급 및 저장하기에 충분히 강하며 내구성이 있는 고체형태로 형성될 수 있게 할뿐만 아니라 철환원 공정에서 형태의 조기 해체를 방지하도록 형태를 충분히 결합시켜 이들이 먼지로서 폐기물 가스에 운반되게 한다.Thus, the method of the present invention recovers iron and heavy metals from the iron rich material powder. Powders that previously could not recover valuable iron can now be produced in forms that can be used to make steel. Not only iron is recovered but also heavy metals. Known attempts to make carbonaceous materials, such as coke, coal particulates, or reversible materials, into solid forms such as briquettes, have not been properly combined with the product and are unstable and decompose or decompose into small particulates during storage and handling prior to use. It was not successful. However, the present invention not only allows the carbon and iron-containing materials to be formed into solid forms that are strong and durable enough for handling and storage, but also combines the forms sufficiently to prevent premature dissolution of the form in the iron reduction process so that they are dusty. To be transported in the waste gas.

미세한 철이 풍부한 물질로 부터 형태를 제조하는 공정은 다음을 포함한다:The process of manufacturing the form from fine iron-rich materials includes:

(a) 철농후 물질과 탄소원을 혼합하여 철농후/탄소 혼합물을 형성하고, 분말물질은 오일 및 수분이 없고;(a) the iron rich material and carbon source are mixed to form an iron rich / carbon mixture, the powder material free of oil and moisture;

(b) 스티렌 또는 아크릴로니트릴 폴리머 레진을 흡습성 용매에 용해하여 용해된 레진 또는 컨디셔너를 형성하고;(b) dissolving styrene or acrylonitrile polymer resin in a hygroscopic solvent to form a dissolved resin or conditioner;

(c) 용해된 레진, 철농후/탄소 혼합물, 탄산칼슘 및 알루미노-실리케이트 바인더를 조합하고;(c) combining dissolved resin, iron rich / carbon mixture, calcium carbonate and alumino-silicate binder;

(d) 물에 폴리비닐 호모폴리머를 유화시키고 에멀젼을 단계 (c)의 조합에 첨가하고 균질화시키며;(d) emulsify the polyvinyl homopolymer in water and add the emulsion to the combination of step (c) and homogenize;

(e) 단계 (d)의 혼합물을 형태로 압축하는 단계.(e) compacting the mixture of step (d) into a form.

미세한 철이 풍부한 물질이란 말은 철, 철산화물 또는 다른 철화합물을 포함한 분말화된 또는 작은 입자크기의 물질을 의미한다. 분말화된 물질은 금속 산화물 등의 형태인 중금속과 광석, 광물추출에서 나오는 폐기물에서 발견되는 기타 광물을 포함하는 다른 금속을 포함할 수 있다.The term fine iron-rich material means a powdered or small particle sized material containing iron, iron oxides or other iron compounds. Powdered materials may include other metals, including heavy metals in the form of metal oxides, and other minerals found in waste from ore and mineral extraction.

적당한 철농후 물질은 강철생산에 사용된 전기아아크로에서 나오는 폐기 가스 스트림으로 부터 침적된 전기아아크로 먼지(EAF 먼지)이다. 다른 적당한 철농후 물질은 밀 스케일, 침전된 철산화물, 및 산소로의 필터백 하우스에 수집된 먼지(소위 슬러지)와 같은 강제조의 부산물을 포함한다.Suitable iron rich materials are electric arc dust (EAF dust) deposited from waste gas streams from the electric arc used for steel production. Other suitable iron enriched materials include by-products of forced baths such as mill scale, precipitated iron oxides, and dust (so-called sludge) collected in the filter bag house into oxygen.

철농후 물질은 수분이 없으며, 즉 수분이 2중량% 이하이며 오일과 같은 비광물질이 없다. 이것은 실시예에서 상술되는 방법에 의해 적당한 세정 및 건조방법으로 달성될 수 있다.Iron-rich materials are free of moisture, ie up to 2% by weight of moisture and non-minerals such as oil. This can be achieved by a suitable cleaning and drying method by the method detailed in the Examples.

분말물질은 먼저 탄소원과 혼합된다. 이 순간에, 철농후 물질과 탄소원은 보조적으로 염산과 같은 무기산과 반응될 수 있다. 탄소원은 야금학적 등급의 코우크스와 같은 공급원이다. 탄소원은 아래에 설명된 고체 형태의 형성을 허용하는 미립자형태이다. 추가로, 탄소원은 모양의 형성을 방해하거나 모양이 사용되는 후속의 철환원공정을 방해하는 불순물을 포함해서는 안된다. 탄소원은 대체로 미세한 분말 물질이다.The powder material is first mixed with the carbon source. At this moment, the iron-rich material and carbon source can be secondaryly reacted with an inorganic acid such as hydrochloric acid. The carbon source is a source such as metallurgical grade coke. The carbon source is in particulate form which allows the formation of the solid form described below. In addition, the carbon source should not contain impurities that interfere with the formation of the shape or with subsequent iron reduction processes in which the shape is used. The carbon source is usually a fine powder material.

분말물질과 탄소원은 탄소원이 15 내지 35중량%, 특히 25중량%가 되게 혼합된다. 이 혼합물은 이후에 염산과 반응된다. 혼합물은 1 내지 4중량%, 특히 2중량%의 염산과 반응된다.The powdered material and the carbon source are mixed so that the carbon source is 15 to 35% by weight, in particular 25% by weight. This mixture is subsequently reacted with hydrochloric acid. The mixture is reacted with 1 to 4% by weight, in particular 2% by weight of hydrochloric acid.

염산과 반응후 철농후/탄소 혼합물은 하나 이상의 모양으로 형성되기 위해 바인더와 배합된다. 반응된 혼합물은 탄산칼슘, 알루미노-실리케이트 바인더, 유기 바인더 및 폴리비닐 알콜과 혼합된다. 이것은 반응된 혼합물을 탄산칼슘 및 알루미노-실리케이트 물질과 혼합함으로써 수행된다. 탄산칼슘은 경화제와 철로의 환원동안 불순물 제거를 위한 플럭스로 작용한다. 알루미노-실리케이트 역시 모양의 경화제 및 플럭스로 기능을 한다. 알루미노-실리케이트 물질은 카올린 점토물질, 고령석, 알루미나와 실리카 혼합물, 돌로마이트 석회 점토등과 같은 모양형성에 사용되는 물질이다.After reaction with hydrochloric acid, the iron rich / carbon mixture is combined with a binder to form one or more shapes. The reacted mixture is mixed with calcium carbonate, alumino-silicate binder, organic binder and polyvinyl alcohol. This is done by mixing the reacted mixture with calcium carbonate and alumino-silicate materials. Calcium carbonate acts as a flux for removing impurities during the reduction of the hardener and iron. Aluminosilicates also function as shaped hardeners and fluxes. Alumino-silicate materials are materials used for shaping such as kaolin clay, kaolin, alumina and silica mixtures, and dolomite lime clay.

유기 바인더는 탄산칼슘 및 알루미노-실리케이트와 혼합된다. 이러한 바인더는 미국 특허출원 08/184,099 (1994, 1, 21)에 기술된 바인더이다. 이러한 바인더는 스티렌 또는 아크릴로니트릴 폴리머 레진을 메틸에틸케톤과 같은 흡습성 용매에 용해함으로써 제조된다.The organic binder is mixed with calcium carbonate and alumino-silicates. Such binders are the binders described in US patent application Ser. No. 08 / 184,099 (1994, 1, 21). Such binders are prepared by dissolving styrene or acrylonitrile polymer resin in a hygroscopic solvent such as methylethylketone.

물에 폴리비닐 폴리머를 유화시켜 제조한 에멀젼이 스티렌 폴리머 바인더와 함께 혼합물에 첨가된다. 결과물을 균질화시킨다. 폴리비닐 폴리머는 폴리비닐 알콜이나 폴리비닐 아세테이트이다.An emulsion prepared by emulsifying the polyvinyl polymer in water is added to the mixture together with the styrene polymer binder. Homogenize the result. The polyvinyl polymer is polyvinyl alcohol or polyvinyl acetate.

폴리비닐 아세테이트 또는 폴리비닐 알콜과 함께 균질화된 혼합물을 압출, 성형 또는 압축과 같은 적당한 방법에 의해 고체 모양으로 형성된다. 대체로, 압출 또는 성형압력은 치밀하고 분쇄 및 마모에 저항하는 생성물을 생성하기 위해서 15,000 내지 45,000 psi, 특히 30,000 psi이다.The homogenized mixture with polyvinyl acetate or polyvinyl alcohol is formed into a solid shape by a suitable method such as extrusion, molding or compression. In general, the extrusion or molding pressure is 15,000 to 45,000 psi, in particular 30,000 psi, to produce a dense and resistant to grinding and abrasion.

실시예 1Example 1

이 실시예는 분말 철농후 물질(IRM) 공급원료의 처리를 설명하며 고급 철의 생산을 최고로 한다. 도 1 을 참조로, IRM에서 발견되는 오일 및 기타 오염물을 함유한 완화제를 생성하기 위해서 IRM은 먼저 표면활성제를 사용하여 세정된다. IRM은 완화제를 증발시키고 가공되는 조성물에 따라서 최대 6중량%의 수분이 사용될 수 있지만 2중량% 미만으로 총수분 함량을 감소시키기 위해서 회전가마에서 건조된다.This example illustrates the treatment of powdered iron rich material (IRM) feedstock and maximizes the production of high quality iron. With reference to FIG. 1, the IRM is first cleaned with a surfactant to produce an emollient containing oil and other contaminants found in the IRM. IRM evaporates the emollient and may be dried in a rotary kiln to reduce the total moisture content to less than 2% by weight, although up to 6% by weight of water may be used depending on the composition being processed.

세정된 IRM의 무게를 달아 약 25중량%의 야금등급 코우크스와 함께 믹서에 넣고 약 2중량%의 염산과 반응시킨다. IRM, 코우크스 및 염산은 이후에 약 5분간 혼합된다.The washed IRM is weighed and placed in a mixer with about 25% by weight metallurgical coke and reacted with about 2% by weight hydrochloric acid. IRM, coke and hydrochloric acid are then mixed for about 5 minutes.

혼합후 약 5중량% 탄산칼슘과 2.5중량% 고령석(Al2O3+SiO2)이 산처리된 IRM과 코우크스에 첨가되고 5분간 혼합된다. 탄산칼슘과 고령석은 IRM 혼합물에서 경화제로 작용하며 물질이 금속으로 환원될 때 플럭스로 작용한다.After mixing, about 5% by weight calcium carbonate and 2.5% by weight kaolinite (Al 2 O 3 + SiO 2 ) are added to the acid treated IRM and coke and mixed for 5 minutes. Calcium carbonate and kaolin act as hardeners in the IRM mixture and as flux when the material is reduced to metal.

혼합후, 3중량%의 유기 바인더 물질이 배치 믹서에 첨가되고 5분간 혼합된다. 바인더는 메틸에틸케톤과 같은 흡습성 용매에 용해된 스티렌 폴리머 레진(10중량%)이다. 바인더는 흡습성 용매를 포함하기 때문에 이전 반응에서 발생된 물이 용매로 배출된다.After mixing, 3% by weight of organic binder material is added to the batch mixer and mixed for 5 minutes. The binder is styrene polymer resin (10% by weight) dissolved in a hygroscopic solvent such as methylethylketone. Since the binder contains a hygroscopic solvent, the water generated in the previous reaction is discharged into the solvent.

혼합후 약 4중량% 폴리비닐 알콜 호모폴리머가 혼합물에 첨가되고 10분간 혼합된다. 물질은 이후에 높은 사출압력하에서 연탄화 프레스 등의 기계에 이송되어 쉽게 취급되는 단단한 모양을 형성한다.After mixing about 4% by weight polyvinyl alcohol homopolymer is added to the mixture and mixed for 10 minutes. The material is then transferred to a machine such as a briquette press under high injection pressure to form a rigid shape that is easily handled.

형성된 모양이나 다른 고체 모양은 이후에 250 내지 400℉로 가열되어서 경화된다. 경화공정은 연탄의 수분함량을 2중량% 미만으로 감소시킨다. 경화후 연탄은 전기 아아크로에 도입되어서 산화물의 환원이 이루어진다. 철산화물의 환원은 코우크스와 산화된 철간에 환원반응이 일어날 때까지 연탄은 바인더에 의해 슬래그층 아래에 계속 유지된다는 사실 때문에 최소한의 전력으로 이루어진다. 연탄 또는 다른 고체 형태에 첨가된 다른 물질은 액체 금속조위의 슬래그층에 불순물을 운반하는 플럭스로 작용한다.The formed shape or other solid shape is subsequently heated to 250-400 ° F. to cure. The hardening process reduces the water content of briquettes to less than 2% by weight. After hardening, briquettes are introduced into the electric arc to reduce the oxides. Reduction of the iron oxide is done with minimal power due to the fact that briquettes are kept under the slag layer by the binder until a reduction reaction occurs between the coke and the oxidized iron. Other materials added to briquettes or other solid forms act as a flux to transport impurities into the slag layer on the liquid metal bath.

스티렌 폴리머 대신에 아크릴로니트릴 폴리머가 사용될 수 있다. 적당한 호모폴리머로는 National Starch and Adhesive사의 32-024 호모폴리머 PVA 에멀젼이다. 아크릴로니트릴 폴리머는 메틸에틸케톤에 의해 유체상태로 오래 유지된다. 아크릴로니트릴은 Polymerland로 부터 구매가능하며 공업용 메틸에틸케톤은 Dice Chemical Co.와 Thatcher Chemical Co.에서 구매가능하다. 90중량%의 메틸에틸케톤과 10중량%의 아크릴로니트릴 폴리머가 적당하지만 이들 양은 변화가능하다.Acrylonitrile polymers may be used instead of styrene polymers. Suitable homopolymers are 32-024 homopolymer PVA emulsions from National Starch and Adhesive. Acrylonitrile polymers are maintained in fluid state for a long time by methyl ethyl ketone. Acrylonitrile is available from Polymerland and industrial methyl ethyl ketone is available from Dice Chemical Co. and Thatcher Chemical Co. 90% by weight methylethylketone and 10% by weight acrylonitrile polymer are suitable but these amounts are variable.

실시예 II 내지 VExamples II to V

이 실시예들은 분말 철농후 물질(IRM) 공급원료의 처리를 설명하며 고급 철의 생산을 최고로 한다. IRM에서 발견되는 오일 및 기타 오염물을 함유한 완화제를 생성하기 위해서 IRE은 먼저 표면활성제를 사용하여 세정된다. IRE은 완화제를 증발시키고 총수분함량을 감소시키기 위해서 회전가마에서 건조된다.These examples illustrate the treatment of powdered iron rich material (IRM) feedstock and maximize the production of high quality iron. The IRE is first cleaned with a surfactant to produce an emollient containing oils and other contaminants found in IRM. IRE is dried in a rotary kiln to evaporate the emollient and reduce the total moisture content.

세정된 IRM의 무게를 달아 입자성 탄소원과 함께 믹서에 넣고 약 2중량%의 염산과 반응시킨다. IRM, 입자성 탄소원 및 염산은 이후에 약 5분간 혼합된다.The washed IRM is weighed and placed in a mixer with the particulate carbon source and reacted with about 2% by weight hydrochloric acid. IRM, particulate carbon source and hydrochloric acid are then mixed for about 5 minutes.

혼합후 약 5중량% 탄산칼슘과 2.5중량% 고령석(Al2O3+SiO2)이 산처리된 IRM과 입자성 탄소에 첨가되고 5분간 혼합된다.After mixing, about 5% by weight calcium carbonate and 2.5% by weight kaolinite (Al 2 O 3 + SiO 2 ) are added to the acid-treated IRM and particulate carbon and mixed for 5 minutes.

혼합후, 3중량%의 유기 바인더 물질이 배치 믹서에 첨가되고 5분간 혼합된다. 바인더는 아크릴로니트릴 폴리머이며 메틸에틸케톤에 의해 유체상태로 오래 유지된다.After mixing, 3% by weight of organic binder material is added to the batch mixer and mixed for 5 minutes. The binder is an acrylonitrile polymer and is maintained in fluid state for a long time by methyl ethyl ketone.

혼합후 약 4중량% 폴리비닐 알콜 호모폴리머가 혼합물에 첨가되고 10분간 혼합된다. 물질은 이후에 높은 사출압력하에서 연탄화 프레스 등의 기계에 이송되어 쉽게 취급되는 단단한 모양을 형성한다.After mixing about 4% by weight polyvinyl alcohol homopolymer is added to the mixture and mixed for 10 minutes. The material is then transferred to a machine such as a briquette press under high injection pressure to form a rigid shape that is easily handled.

형성된 모양이나 다른 고체모양은 이후에 250 내지 400℉로 가열되어서 경화된다. 경화공정은 연탄의 수분함량을 2중량% 미만으로 감소시킨다. 경화후 연탄은 전기 아아크로에 도입되어서 산화물의 환원이 이루어진다. 출발물질과 환원의 결과인 철 및 슬래그 생성물이 분석된다. 테스트 결과는 아래에 요약된다.The shape or other solid shape formed is then cured by heating to 250 to 400 ° F. The hardening process reduces the water content of briquettes to less than 2% by weight. After hardening, briquettes are introduced into the electric arc to reduce the oxides. Starting materials and iron and slag products as a result of the reduction are analyzed. The test results are summarized below.

실시예 IIExample II

이 실시예에서 입자성 탄소는 코우크스재(10400 BTU)이며 IRM은 강철 밀(Nucor, Plymoth, Utah)의 밀 스케일과 산소로 (Gulf States, Gadston, Alabama)의 철산화물 침전물의 혼합물이다. 출발물질, 생성된 연탄, 및 환원 생성물의 중량% 분석이 표 1 에 도시된다. 환원공정에 도입된 연탄중에서 약 88%가 철생성물이 되고 21%는 슬래그가 된다(이 수치의 합은 측정오차 때문에 정확히 100%가 아니다).Particulate carbon in this example is coke material (10400 BTU) and IRM is a mixture of iron scale precipitates in the mill scale and oxygen furnace (Gulf States, Gadston, Alabama) of steel mills (Nucor, Plymoth, Utah). Weight percent analysis of the starting materials, briquettes produced, and reduction products is shown in Table 1. Of the briquettes introduced in the reduction process, about 88% are iron products and 21% are slags (the sum of these values is not exactly 100% due to measurement errors).

기본적 철 테스트Basic iron test 연탄형성을 위한 출발물질Starting material for briquetting 연탄briquet 환원 생성물Reduction product 코우크스재Coke ash NUCOR 밀스케일NUCOR Millscale GULF STATES의 철산화물Iron oxides from GULF STATES iron 슬래그Slag 샘플번호Sample number 1/8-15-11 / 8-15-1 2/8-15-12 / 8-15-1 3/8-15-13 / 8-15-1 4/8-15-14 / 8-15-1 5/8-15-15 / 8-15-1 6/8-15-16 / 8-15-1 탄소carbon 63.363.3 0.410.41 6.596.59 18.218.2 3.273.27 0.820.82 sulfur 0.540.54 0.030.03 0.120.12 0.220.22 0.120.12 0.460.46 iron 73.473.4 51.151.1 45.545.5 83.683.6 6.886.88 망간manganese 0.540.54 0.260.26 0.3160.316 0.1310.131 0.8430.843 sign 0.010.01 0.010.01 0.010.01 0.0050.005 0.0180.018 실리콘silicon 0.320.32 0.840.84 1.151.15 0.350.35 1212 구리Copper 0.2060.206 0.0610.061 0.0880.088 0.1940.194 0.0280.028 니켈nickel 0.0630.063 0.0290.029 0.0320.032 0.1010.101 0.010.01 크롬chrome 0.0630.063 0.030.03 0.0460.046 0.0940.094 0.0390.039 몰리브덴molybdenum 0.0050.005 0.0150.015 0.0050.005 0.0040.004 0.0030.003

주석Remark 0.0260.026 0.070.07 0.0170.017 0.030.03 0.0010.001 아연zinc 0.0080.008 0.4260.426 0.1430.143 0.0080.008 0.0010.001 붕소boron 0.010.01 0.010.01 0.010.01 0.030.03 0.010.01 티타늄titanium 0.0020.002 0.0220.022 0.0250.025 0.0020.002 0.1670.167 비소arsenic 0.0010.001 0.0010.001 0.0010.001 0.0010.001 0.0010.001

실시예 IIIExample III

이 실시예에서 입자성 탄소는 코우크스재 (10400 BTU)이며 IRM은 강철밀의 밀 스케일과 산소로 (Q-BOP)의 필터에서 나온 슬러지(둘다 Geneva, Utah)의 혼합물이다. 출발물질, 생성된 연탄, 및 환원 생성물의 중량% 분석이 표 2 및 표 3 에 도시된다. 테스트 1 내지 3 에서 3번의 테스트를 축적한 슬래그에 대한 결과이며 환원 공정에 도입된 연탄중에서 철생성물과 슬래그의 백분율이 표 4 에 도시된다(이 수치의 합은 측정오차 때문에 정확히 100%가 아니다).In this example, the particulate carbon is coke material (10400 BTU) and the IRM is a mixture of mill scale of the steel mill and sludge (both Geneva, Utah) from the filter of the oxygen furnace (Q-BOP). Weight percent analysis of the starting materials, briquettes produced, and reduction products are shown in Tables 2 and 3. Results for slag accumulating three tests in tests 1 to 3 and the percentages of iron product and slag in briquettes introduced in the reduction process are shown in Table 4 (the sum of these values is not exactly 100% due to measurement error). .

기본적 철 테스트Basic iron test 연탄형성을 위한 출발물질Starting material for briquetting 연탄briquet 환원 생성물Reduction product GENEVA 밀스케일GENEVA Millscale GENEVA 슬러지GENEVA sludge 테스트 1 철Test 1 iron 테스트 2 철Test 2 iron 테스트 3 철Test 3 iron 테스트1-3 슬래그Test 1-3 Slag 샘플/테스트번호Sample / Test Number 11/8-16-211 / 8-16-2 12/8-16-212 / 8-16-2 13/8-16-213 / 8-16-2 14/8-16-214 / 8-16-2 15/8-16-315 / 8-16-3 16/8-17-416 / 8-17-4 17/8-17-417 / 8-17-4 탄소carbon 2.282.28 19.419.4 7.357.35 1.851.85 2.212.21 1.611.61 0.150.15 sulfur 0.070.07 0.280.28 0.090.09 0.080.08 0.060.06 0.070.07 0.280.28 iron 69.369.3 41.541.5 57.557.5 93.293.2 9696 9797 1.221.22 망간manganese 0.5960.596 0.0830.083 0.4750.475 0.30.3 0.0240.024 0.0810.081 0.940.94

sign 0.010.01 0.0840.084 0.0070.007 0.0070.007 0.0080.008 0.0050.005 0.0110.011 실리콘silicon 0.010.01 0.0140.014 88 0.060.06 0.010.01 0.210.21 0.010.01 구리Copper 0.0870.087 0.010.01 0.0070.007 0.0630.063 0.0090.009 0.0310.031 0.0030.003 니켈nickel 0.0320.032 0.0010.001 0.0080.008 0.0690.069 0.0110.011 0.0220.022 0.0030.003 크롬chrome 0.0420.042 0.010.01 0.010.01 0.890.89 0.0210.021 0.01190.0119 0.0020.002 몰리브덴molybdenum 0.0030.003 0.010.01 0.010.01 0.0140.014 0.0120.012 0.1570.157 0.010.01 주석Remark 0.0030.003 0.0340.034 0.0070.007 0.0040.004 0.0010.001 0.0010.001 0.290.29 아연zinc 0.0150.015 0.350.35 0.0360.036 0.0130.013 0.0050.005 0.0070.007 0.0050.005 붕소boron 0.010.01 0.250.25 0.260.26 0.010.01 0.010.01 0.010.01 1.451.45 티타늄titanium 0.0030.003 0.0340.034 0.0070.007 0.0040.004 0.0010.001 0.0010.001 0.290.29 비소arsenic 0.0030.003 0.0030.003 0.0030.003 0.030.03 0.0030.003 0.0030.003 0.0030.003 알루미늄aluminum 18.418.4 마그네슘magnesium 6.646.64 lead 3.773.77 카드뮴cadmium 0.010.01

기본 철 테스트Basic iron test 연탄형성을 위한 출발물질Starting material for briquetting 연탄briquet 환원 생성물Reduction product GENEVA 밀스케일GENEVA Millscale GENEVA 슬러지GENEVA sludge 테스트 1 철Test 1 iron 테스트 2 철Test 2 iron 테스트 3 철Test 3 iron 테스트1-3 슬래그Test 1-3 Slag 샘플/테스트번호Sample / Test Number 11/8-16-211 / 8-16-2 12/8-16-212 / 8-16-2 13/8-16-213 / 8-16-2 18/8-17-518 / 8-17-5 19/8-17-519 / 8-17-5 20/8-21-620 / 8-21-6 21/8-21-621 / 8-21-6 탄소carbon 2.282.28 19.419.4 7.357.35 2.342.34 0.160.16 2.392.39 0.260.26 sulfur 0.070.07 0.280.28 0.090.09 0.060.06 0.370.37 0.070.07 0.330.33 iron 69.369.3 41.541.5 57.557.5 86.186.1 1.51.5 89.689.6 0.750.75 망간manganese 0.5960.596 0.0830.083 0.4750.475 0.4460.446 1.21.2 0.1750.175 0.6780.678 sign 0.010.01 0.0840.084 0.0070.007 0.090.09 0.0170.017 0.010.01 0.0030.003 실리콘silicon 0.010.01 0.0140.014 88 0.050.05 0.010.01 0.1930.193 23.523.5 구리Copper 0.0870.087 0.010.01 0.0070.007 0.040.04 0.0020.002 0.0360.036 0.0140.014 니켈nickel 0.0320.032 0.0010.001 0.0080.008 0.0430.043 0.0030.003 0.0270.027 0.0010.001 크롬chrome 0.0420.042 0.010.01 0.010.01 0.0640.064 0.010.01 0.0290.029 0.0010.001 몰리브덴molybdenum 0.0030.003 0.010.01 0.010.01 0.0030.003 0.0030.003 0.010.01 0.010.01

주석Remark 0.0030.003 0.0340.034 0.0070.007 0.0580.058 0.2510.251 0.030.03 0.010.01 아연zinc 0.0150.015 0.350.35 0.0360.036 0.0140.014 0.0020.002 0.0060.006 0.0050.005 붕소boron 0.010.01 0.250.25 0.260.26 0.010.01 1.561.56 0.010.01 1.531.53 티타늄titanium 0.0030.003 0.0340.034 0.0070.007 0.0580.058 0.2510.251 0.0460.046 0.3570.357 비소arsenic 0.0030.003 0.0030.003 0.0030.003 0.0030.003 0.0030.003 0.0050.005 0.00580.0058

환원 생성물Reduction product 환원 테스트Reduction test iron 슬래그Slag 1One 96.59496.594 4.6674.667 22 98.38598.385 33 99.219999.2199 44 89.37989.379 5.3425.342 55 92.63792.637 27.454827.4548

실시예 IVExample IV

이 실시예에서 입자성 탄소는 코우크스재 (10400 BTU)이고 IRM은 Cedar City, Utah 근처의 Geneva의 철광석과 산소로 (Q-BOP)의 필터(Geneva Steel, Geneva, Utah)에서 나오는 슬러지의 혼합물이다. 출발물질, 생성된 연탄, 및 5개의 연탄 환원 테스트의 환원생성물에 대한 중량%가 표 5 에 도시된다. 환원공정에 도입된 연탄중에서 88.9%가 철생성물이고 22.1%는 테스트 1 의 경우 슬래그이다(이들 수치의 합은 측정오차 때문에 정확히 100%가 아니다). 이 데이타는 테스트 2 에서는 얻어지지 않는다.In this example, the particulate carbon is coke material (10400 BTU) and the IRM is a mixture of iron ore at Geneva near Cedar City, Utah and sludge from a filter at Q-BOP (Geneva Steel, Geneva, Utah). to be. The weight percentages for starting materials, briquettes produced, and the reduction products of the five briquette reduction tests are shown in Table 5. Of the briquettes introduced in the reduction process, 88.9% are iron products and 22.1% are slag for Test 1 (the sum of these values is not exactly 100% due to measurement errors). This data is not obtained in test 2.

기본 철 테스트Basic iron test 연탄형성을 위한 출발물질Starting material for briquetting 연탄briquet 환원 생성물Reduction product RED SEA 슬러지RED SEA Sludge CEDAR 광석CEDAR Ore 테스트 1 철Test 1 iron 테스트 2 슬래그Slag for test 2 테스트 2 철Test 2 iron 테스트 2 슬래그Slag for test 2 샘플번호Sample number 24/8-21-824 / 8-21-8 25/8-21-825 / 8-21-8 26/8-21-826 / 8-21-8 22/8-21-722 / 8-21-7 23/8-21-723 / 8-21-7 27/8-21-827 / 8-21-8 28/8-21-828 / 8-21-8 탄소carbon 0.820.82 0.240.24 21.621.6 2.292.29 0.860.86 2.692.69 10.710.7 sulfur 0.10.1 0.060.06 0.190.19 0.050.05 0.470.47 0.010.01 1.51.5 iron 46.146.1 46.446.4 33.933.9 8686 2.252.25 40.540.5 2.932.93 망간manganese 0.3190.319 0.0580.058 0.1130.113 0.20.2 0.8970.897 0.0840.084 0.0130.013 sign 0.0120.012 0.060.06 0.0330.033 0.0080.008 0.0130.013 0.030.03 0.010.01 실리콘silicon 1.961.96 3.113.11 6.56.5 0.2290.229 15.715.7 0.5150.515 3.63.6 구리Copper 0.0520.052 0.0010.001 0.0150.015 0.0240.024 0.0020.002 0.0170.017 0.0060.006 니켈nickel 0.0110.011 0.0280.028 0.0140.014 0.0250.025 0.0010.001 0.0250.025 0.0040.004 크롬chrome 0.030.03 0.0060.006 0.0010.001 0.0330.033 0.010.01 0.030.03 0.0050.005 몰리브덴molybdenum 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01 주석Remark 0.020.02 0.020.02 0.010.01 0.030.03 0.010.01 0.010.01 0.010.01 아연zinc 0.3860.386 0.0120.012 0.1420.142 0.0060.006 0.0050.005 0.0050.005 0.0050.005 붕소boron 0.010.01 0.010.01 0.010.01 0.010.01 1.671.67 0.050.05 0.060.06 티타늄titanium 0.020.02 0.0050.005 0.0180.018 0.0330.033 0.2280.228 0.0460.046 0.0210.021 비소arsenic 0.0050.005 0.0050.005 0.0050.005 0.0050.005 0.0050.005 0.0050.005 0.0050.005

실시예 VExample V

이 실시예에서, 입자성 탄소는 코우크스재 (10400 BTU)이며 IRM은 사진필름 제조의 부산물로서 유도된 철산화물 먼지이다. 여러 배치의 출발물질에 대한 분석과 철 환원 생성물의 축적 결과(중량%)가 표 6 에 도시된다.In this example, the particulate carbon is coke material (10400 BTU) and the IRM is iron oxide dust derived as a by-product of photo film production. Analysis of the various batches of starting materials and accumulation results of iron reduction products (% by weight) are shown in Table 6.

기본 철 테스트Basic iron test 연탄 형성을 위한 출발 철 물질Starting iron material for briquette formation 철 생성물 KMFE203Iron Product KMFE203 KMFE203먼지0KMFE203 Dust 0 KMFE203먼지KMFE203 dust KMFE203먼지KMFE203 dust KMFE203먼지KMFE203 dust 테스트번호Test number 29.0029.00 30.0030.00 29.0029.00 30.0030.00 31.0031.00 탄소carbon 0.0300.030 0.0300.030 0.0300.030 0.0300.030 3.0203.020 sulfur 0.0200.020 0.0250.025 0.0200.020 0.0250.025 0.0220.022 iron 60.50060.500 63.60063.600 60.50060.500 63.60063.600 88.20088.200 망간manganese 2.2702.270 2.2802.280 2.2702.270 2.2802.280 0.2000.200 sign 0.0030.003 0.0030.003 0.0030.003 0.0030.003 0.0320.032 실리콘silicon 0.5700.570 0.6100.610 0.5700.570 0.6100.610 0.3300.330 구리Copper 0.0010.001 0.0010.001 0.0010.001 0.0010.001 0.5140.514 니켈nickel 0.0070.007 0.0060.006 0.0070.007 0.0060.006 0.1140.114 크롬chrome 0.0480.048 0.0470.047 0.0480.048 0.0470.047 0.2750.275 몰리브덴molybdenum 0.0100.010 0.0100.010 0.0100.010 0.0100.010 0.0900.090 주석Remark 0.0100.010 0.0200.020 0.0100.010 0.0200.020 0.0300.030 아연zinc 0.0670.067 0.0680.068 0.0670.067 0.0680.068 0.0130.013 티타늄titanium 0.0270.027 0.0300.030 0.0270.027 0.0300.030 0.0150.015

실시예 VIExample VI

이 실시예에서, 입자성 탄소는 석탄 미립자이며 IRM은 실시예 III과 동일하다. 철과 슬래그 환원 생성물의 분석(중량%)이 표 7 에 도시된다.In this example, the particulate carbon is coal fines and the IRM is the same as in Example III. The analysis (% by weight) of iron and slag reduction products is shown in Table 7.

기본 철 테스트Basic iron test 석탄에서 나오는슬래그 생성물Slag product from coal 석탄에서 나오는철 생성물Iron products from coal 샘플/테스트 번호Sample / test number 33/9-21-3733 / 9-21-37 34/9-21-3734 / 9-21-37 탄소carbon 3.293.29 2.742.74 sulfur 0.020.02 1.051.05 iron 14.0314.03 89.1089.10 망간manganese 0.220.22 0.550.55 sign 0.020.02 0.010.01 실리콘silicon 7.387.38 1.651.65 구리Copper 0.000.00 0.450.45 니켈nickel 0.010.01 0.060.06 크롬chrome 0.030.03 0.120.12 몰리브덴molybdenum 0.010.01 0.010.01 주석Remark 0.010.01 0.040.04 아연zinc 0.010.01 0.010.01 티타늄titanium 0.070.07 0.050.05

이론theory

본 발명은 탄소원에 포함된 탄소입자를 새로운 긴 사슬 폴리머 화합물에 중합하여 구조적으로 탁월한 강도의 형태를 만든다고 사료된다. 탄소 산화물은 물속에서 가수분해하는 것으로 알려진다. 이 반응은 화합물에 자유 카르복실 이온이 존재하게 한다.The present invention is believed to polymerize the carbon particles contained in the carbon source to a new long chain polymer compound to form a structurally excellent strength form. Carbon oxides are known to hydrolyze in water. This reaction results in the presence of free carboxyl ions in the compound.

도핑된 메틸에틸케톤의 도입은 용매에 흡수되는 물이 폴리머로 교환됨으로써 스티렌 폴리머를 자유 탄소이온에 부착시킨다고 사료된다.The introduction of doped methylethylketone is believed to attach the styrene polymer to free carbon ions by exchanging water absorbed in the solvent with the polymer.

다음 단계에서 폴리비닐아세테이트가 도입된다. 메틸에틸케톤의 존재는 제거하고 아크릴로니트릴 또는 스티렌이 폴리비닐아세테이트에 반응하게 하는 촉매로서 작용한다.In the next step polyvinylacetate is introduced. The presence of methyl ethyl ketone is removed and acts as a catalyst to allow acrylonitrile or styrene to react with polyvinylacetate.

연탄, 펠렛 또는 압출된 고체 조각과 같은 압축된 형태는 구조적으로 안정적이며 저장 및 취급중 미립자로 해체되지 않는다.Compressed forms such as briquettes, pellets or extruded solid pieces are structurally stable and do not disintegrate into particulates during storage and handling.

Claims (18)

(a) 철농후 물질과 탄소원을 혼합하여 철농후/탄소 혼합물을 형성하고, 분말물질은 오일 및 수분이 없고;(a) the iron rich material and carbon source are mixed to form an iron rich / carbon mixture, the powder material free of oil and moisture; (b) 흡습성 용매에 스티렌 또는 아크릴로니트릴 폴리머를 용해하고;(b) dissolving styrene or acrylonitrile polymer in a hygroscopic solvent; (c) 용해된 스티렌 또는 아크릴로니트릴 폴리머, 철농후/탄소 혼합물, 탄산칼슘, 및 알루미노-실리케이트 바인더를 조합하고;(c) combining dissolved styrene or acrylonitrile polymer, iron rich / carbon mixture, calcium carbonate, and alumino-silicate binder; (d) 물에 폴리비닐 폴리머를 유화하고 에멀젼을 단계 (c)의 조합에 첨가하고 균질화하며;(d) emulsify the polyvinyl polymer in water and add the emulsion to the combination of step (c) and homogenize; (e) 단계 (d)의 혼합물을 형태로 압축하는 단계를 포함하는 미세한 철이 농후한 재료로 부터 형태를 제조하는 방법.(e) compressing the mixture of step (d) into a form, wherein the form is prepared from a fine iron-rich material. 제 1 항에 있어서, 폴리비닐 폴리머가 폴리비닐 알콜임을 특징으로 하는 방법.The method of claim 1 wherein the polyvinyl polymer is polyvinyl alcohol. 제 1 항에 있어서, 폴리비닐 폴리머가 폴리비닐 아세테이트임을 특징으로 하는 방법.The method of claim 1 wherein the polyvinyl polymer is polyvinyl acetate. 제 1 항에 있어서, 염산이 철농후 물질과 탄소원의 혼합단계 (a)에서 첨가됨을 특징으로 하는 방법.The process of claim 1, wherein hydrochloric acid is added in the mixing step (a) of the iron-rich material and the carbon source. 제 1 항에 있어서, 단계 (e)의 혼합물이 연탄 프레스에서 형태로 압축됨을 특징으로 하는 방법.The method of claim 1, wherein the mixture of step (e) is compressed into form in a briquette press. 제 1 항에 있어서, 단계 (e)의 혼합물이 압출을 통해 형태로 압축됨을 특징으로 하는 방법.2. Process according to claim 1, characterized in that the mixture of step (e) is compressed into form via extrusion. 제 1 항에 있어서, 형태로 부터 수분을 제거하기 위해서 형태를 가열하는 단계를 더욱 포함함을 특징으로 하는 방법.2. The method of claim 1, further comprising heating the form to remove moisture from the form. 제 1 항에 있어서, 형태속에 있는 철의 환원을 위해 반응환경에 도입하는 단계를 더욱 포함함을 특징으로 하는 방법.The method of claim 1 further comprising introducing into the reaction environment for the reduction of iron in form. 제 1 항에 있어서, 철농후 물질이 중금속을 포함하며 중금속의 증발과 철의 환원을 위한 로에 형태가 도입됨을 특징으로 하는 방법.The method of claim 1, wherein the iron-rich material comprises heavy metals and a form is introduced into the furnace for evaporation of heavy metals and reduction of iron. 제 1 항에 있어서, 단계 (a) 이전에 이온 농후 물질을 표면활성제와 혼합하여서 분말의 비무기물을 해체시켜 표면활성제와 비무기물로된 연화제를 형성시키며 분말물질을 건조시켜 연화제를 증발시켜 수분함량을 감소시킴을 특징으로 하는 방법.The method of claim 1, wherein the ion-rich material is mixed with the surface active agent prior to step (a) to disintegrate the non-inorganic material of the powder to form a softener composed of the surface active agent and the non-inorganic material, and the powder material is dried to evaporate the softener to moisture content. Characterized in that for reducing. 제 1 항에 있어서, 형태가 30,00 psi의 압력으로 압축됨을 특징으로 하는 방법.The method of claim 1 wherein the form is compressed to a pressure of 30,00 psi. 제 1 항에 있어서, 흡습성 용매가 메틸에틸케톤을 포함함을 특징으로 하는 방법.The method of claim 1 wherein the hygroscopic solvent comprises methyl ethyl ketone. 탄소원과 철농후 물질을 포함하는 조성물의 존재하에서 스티렌이나 아크릴로니트릴을 중합시키고 조성물을 고압축 압력하에서 형태를 형성시키는 단계를 포함하는 미세한 철이 농후한 물질로 부터 형태를 형성하는 방법.A method of forming a form from a fine iron-rich material comprising polymerizing styrene or acrylonitrile in the presence of a composition comprising a carbon source and an iron rich material and forming the composition under high compression pressure. 스티렌 또는 아크릴로니트릴 폴리머와 탄소원의 반응 생성물에 의해 결합된 철농후 물질을 포함하는 조성물에 폴리비닐 아세테이트를 적용하고 조성물을 고압축 압력하에서 형태를 형성시키는 단계를 포함하는 미세한 철이 농후한 물질로 부터 형태를 형성하는 방법.Form from a fine iron-rich material comprising applying polyvinyl acetate to a composition comprising an iron-rich material bound by a reaction product of a styrene or acrylonitrile polymer and a carbon source and forming the composition under high compression pressure. How to form. 철농후 물질, 탄소원, 컨디셔너 및 호모폴리머를 조합 및 혼합하고; 결과의 혼합물을 형태로 압축하는 단계를 포함하는 미세한 철이 농후한 물질로 부터 형태를 형성하는 방법.Combining and mixing iron rich materials, carbon sources, conditioners and homopolymers; Compacting the resulting mixture into a form comprising fine iron-rich material. (a) 철농후 물질과 탄소원을 혼합하여 철농후/탄소 혼합물을 형성하고, 분말물질은 오일 및 수분이 없고;(a) the iron rich material and carbon source are mixed to form an iron rich / carbon mixture, the powder material free of oil and moisture; (b) 흡습성 용매에 아크릴로니트릴 폴리머를 용해하고;(b) dissolving the acrylonitrile polymer in a hygroscopic solvent; (c) 용해된 아크릴로니트릴 폴리머, 철농후/탄소 혼합물, 탄산칼슘, 및 알루미노-실리케이트 바인더를 조합하고;(c) combining dissolved acrylonitrile polymer, iron rich / carbon mixture, calcium carbonate, and alumino-silicate binder; (d) 물에 폴리비닐 폴리머를 유화하고 에멀젼을 단계 (c)의 조합에 첨가하고 균질화하며;(d) emulsify the polyvinyl polymer in water and add the emulsion to the combination of step (c) and homogenize; (e) 단계 (d)의 혼합물을 형태로 압축하는 단계를 포함하는 미세한 철이 농후한 재료로 부터 형태를 제조하는 방법.(e) compressing the mixture of step (d) into a form, wherein the form is prepared from a fine iron-rich material. 긴 사슬의 폴리머에 의해 결합된 분자 탄소 부착자리를 갖는 탄소원과 철농후 물질을 포함하는 형태.A form comprising a carbon source and an iron rich substance having molecular carbon attachment sites bound by long chain polymers. 제 17 항에 있어서, 긴 사슬의 폴리머가 스티렌 또는 아크릴로니트릴로된 화합물을 포함함을 특징으로 하는 형태.18. The form according to claim 17, wherein the long chain polymer comprises a compound of styrene or acrylonitrile.
KR1019970708631A 1995-06-06 1996-02-08 How to recover iron from iron rich materials KR19990022152A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US8/468104 1995-06-06
US08/468,104 US5589118A (en) 1994-01-21 1995-06-06 Process for recovering iron from iron-containing material
US54697595A 1995-10-23 1995-10-23
US8/546975 1995-10-23

Publications (1)

Publication Number Publication Date
KR19990022152A true KR19990022152A (en) 1999-03-25

Family

ID=27042285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970708631A KR19990022152A (en) 1995-06-06 1996-02-08 How to recover iron from iron rich materials

Country Status (11)

Country Link
EP (1) EP0831984A4 (en)
JP (1) JPH11506168A (en)
KR (1) KR19990022152A (en)
AU (1) AU703815B2 (en)
BR (1) BR9608411A (en)
CA (1) CA2223044A1 (en)
HU (1) HUP9801753A2 (en)
NZ (1) NZ303005A (en)
PL (1) PL323625A1 (en)
TR (1) TR199701542T1 (en)
WO (1) WO1996039290A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013890A (en) * 2012-05-23 2015-02-05 발레 에스.에이. Process for the improvement of reducibility of iron ore pellets

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1304374B1 (en) * 1998-05-27 2001-03-15 Gloster Nv METHOD FOR THE RECYCLING OF POWDERS DERIVING FROM STEEL PROCESSING PROCESSES OR SIMILAR THROUGH THE MANUFACTURE OF
FR2930265B1 (en) * 2008-11-21 2012-04-06 Snf Sas PROCESS FOR THE AGGLOMERATION OF INDUSTRIAL DUST, IN PARTICULAR BY A BRIQUETTING TECHNIQUE
CN106544499B (en) * 2015-09-17 2018-07-24 攀钢冶金材料有限责任公司 A kind of composite assistant and its preparation method and application
RU2609884C1 (en) * 2016-02-18 2017-02-06 Александр Николаевич Шаруда Extrusion briquette for steel production
GB202103972D0 (en) * 2021-03-22 2021-05-05 Binding Solutions Ltd Pellet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2648647A (en) * 1951-05-28 1953-08-11 Dow Chemical Co Polymerizing acrylonitrile in aqueous mixed salts
US3893847A (en) * 1970-08-07 1975-07-08 Catoleum Pty Ltd Composition of matter and process
DE2212460C3 (en) * 1972-03-15 1975-03-06 Bergwerksverband Gmbh, 4300 Essen Use of aqueous suspensions of butadiene-acrylonitrile copotymers as binders for fine coal
US3898076A (en) * 1972-10-19 1975-08-05 Robert L Ranke Sealing and briquetting finely divided material with vinyl copolymer and wax
CA1124916A (en) * 1978-07-07 1982-06-01 Saburo Wakimoto Fine spherical polymer particles containing inorganic pigment and/or coloring agent and process for the preparation thereof
AU546359B2 (en) * 1980-12-08 1985-08-29 Revertex (South Africa) Pty. Ltd. Briquetting of particulate materials
SU1730123A1 (en) * 1988-08-05 1992-04-30 Украинский научно-исследовательский углехимический институт Binder for hot briquetting of coal
US5147452A (en) * 1991-04-24 1992-09-15 Betz Laboratories, Inc. Method of agglomerating mineral ore concentrate
US5453103A (en) * 1994-01-21 1995-09-26 Environmental Technologies Group International, Inc. Reclaiming and utilizing discarded and newly formed coke breeze, coal fines, and blast furnace revert materials, and related methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013890A (en) * 2012-05-23 2015-02-05 발레 에스.에이. Process for the improvement of reducibility of iron ore pellets

Also Published As

Publication number Publication date
EP0831984A1 (en) 1998-04-01
BR9608411A (en) 1998-12-29
JPH11506168A (en) 1999-06-02
NZ303005A (en) 1998-11-25
CA2223044A1 (en) 1996-12-12
TR199701542T1 (en) 1998-02-21
EP0831984A4 (en) 1998-09-09
WO1996039290A1 (en) 1996-12-12
PL323625A1 (en) 1998-04-14
AU703815B2 (en) 1999-04-01
HUP9801753A2 (en) 1998-11-30
AU4920096A (en) 1996-12-24

Similar Documents

Publication Publication Date Title
US5738694A (en) Process for recovering iron from iron-containing material
US5589118A (en) Process for recovering iron from iron-containing material
EP1290232B1 (en) Method of producing a metallized briquette
US5667553A (en) Methods for recycling electric arc furnace dust
CN112442589B (en) Method and system for co-processing waste incineration fly ash and zinc-containing dust and mud of iron and steel plant
US4725307A (en) Method of treating dust and sludge simultaneously with steel slag
CA2269937A1 (en) Method for extraction of metals and metal oxides from minerals, industrial by-products and waste materials
US5180421A (en) Method and apparatus for recovering useful products from waste streams
CN114395702A (en) Process for recycling waste activated carbon in oxygen-enriched side-blown molten pool smelting furnace
KR19990022152A (en) How to recover iron from iron rich materials
CN111375623A (en) Method for removing chlorine from fly ash
CN109136563B (en) Method for recycling iron and steel smelting waste
RU2147617C1 (en) Method of recovering iron from iron-containing materials
CN112538557A (en) System and method for harmless and resource treatment of aluminum industry waste cathode carbon blocks
CN1187156A (en) Process for recovering iron from iron-rich material
US6077328A (en) Process for reducing the dioxin and furan content in waste gases from furnaces, and use of the filter dusts produced thereby
KR100891204B1 (en) Reprocessing Method for Industrial Waste
US6136063A (en) Process for separating hazardous metals from waste materials during vitrification
MXPA97009551A (en) Process for the recovery of iron from humid dematerial in hie
KR100270240B1 (en) Method for separating Fe from the heavy metal-mixing solution using the fly-ash
CN115247232B (en) Settling separation method for chalcanthite slag calcified products
RU2205884C1 (en) Method of pyrometallurgical processing of copper- containing raw material
JPH08134557A (en) Operation of dust treatment by vacuum reaction furnace
GB2104882A (en) Briquette for smelting process and method of its production
Traistă et al. Research regarding iron sludge recovery technology

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid