KR19990021570A - Preparation of Acrolein and Methacrolein Production Catalyst - Google Patents

Preparation of Acrolein and Methacrolein Production Catalyst Download PDF

Info

Publication number
KR19990021570A
KR19990021570A KR1019970045132A KR19970045132A KR19990021570A KR 19990021570 A KR19990021570 A KR 19990021570A KR 1019970045132 A KR1019970045132 A KR 1019970045132A KR 19970045132 A KR19970045132 A KR 19970045132A KR 19990021570 A KR19990021570 A KR 19990021570A
Authority
KR
South Korea
Prior art keywords
catalyst
solution
slurry
water
preparing
Prior art date
Application number
KR1019970045132A
Other languages
Korean (ko)
Other versions
KR100349602B1 (en
Inventor
변영창
이원호
Original Assignee
성재갑
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성재갑, 주식회사 엘지화학 filed Critical 성재갑
Priority to KR1019970045132A priority Critical patent/KR100349602B1/en
Publication of KR19990021570A publication Critical patent/KR19990021570A/en
Application granted granted Critical
Publication of KR100349602B1 publication Critical patent/KR100349602B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0081Preparation by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/10Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
    • B01J2523/14Rubidium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/40Constitutive chemical elements of heterogeneous catalysts of Group IV (IVA or IVB) of the Periodic Table
    • B01J2523/41Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/54Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/68Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/845Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 프로필렌, 2급 프로판올 및 이소부틸렌 또는 3급 부탄올을 공기 중의 산소와 부분 산화 반응시켜 각각 아크롤레인 및 메타크롤레인을 제조하는 몰리브덴, 비스무트, 코발트, 철 등의 산화물 촉매의 제조 방법에 관한 것으로 몰리브덴의 과포화 용액의 촉매 슬러리 제조시 슬러리 온도를 떨어뜨리면서 제조함으로써 촉매의 성능 감소 없이 고형분 함량이 62∼72 % 정도인 촉매 슬러리를 제조하는 방법을 제공한다.The present invention relates to a method for producing an oxide catalyst of molybdenum, bismuth, cobalt, iron, etc., in which propylene, secondary propanol and isobutylene or tertiary butanol are partially oxidized with oxygen in air to produce acrolein and methacrolein, respectively. The present invention provides a method for preparing a catalyst slurry having a solid content of 62 to 72% without decreasing the performance of the catalyst by decreasing the slurry temperature when preparing the catalyst slurry of the supersaturated solution of molybdenum.

Description

아크롤레인 및 메타크롤레인 제조 촉매의 제법Preparation of Acrolein and Methacrolein Production Catalyst

본 발명은 프로필렌 및 이소부틸렌을 산소와 부분 산화 반응시켜 각각 아크롤레인 및 메타크롤레인을 주생성물로 제조하는 반응에 사용되는 몰리브덴, 비스무트, 코발트, 철 등의 산화물 촉매에 관한 것이다.The present invention relates to oxide catalysts such as molybdenum, bismuth, cobalt, iron and the like which are used in the reaction of partially oxidation of propylene and isobutylene with oxygen to produce acrolein and methacrolein as the main products, respectively.

또한 본 발명은 개선된 촉매의 제조 방법 및 그 촉매를 이용한 아크롤레인 및 메타크롤레인의 제조 방법에 관한 것이다.The present invention also relates to an improved method for producing a catalyst and a method for producing acrolein and methacrolein using the catalyst.

일반적으로 프로필렌 및 이소부틸렌의 부분 산화 반응에 쓰이는 촉매는 펠렛(pellet) 또는 타블렛(tablet) 또는 다른 여러 모양으로 성형하여 사용하는데, 이러한 촉매를 성형하는 과정은 촉매 합성(촉매 슬러리 제조), 건조, 분쇄, 성형, 소성의 과정을 거치게 된다.In general, catalysts used for the partial oxidation of propylene and isobutylene are formed into pellets or tablets or various other shapes. The process of forming such catalysts is carried out through catalyst synthesis (catalyst slurry production) and drying. , Grinding, shaping and firing.

본 발명은 이러한 촉매 제조 과정 중의 촉매 슬러리 제조 및 건조 과정에 관한 것이다. 촉매 슬러리를 제조할 때 금속염을 녹이는 용제(대부분 물)를 건조 과정에서 대부분 증발시킨다. 지금까지 알려진 선행 기술에서는 각각의 금속염들을 과량의 물에 녹여 금속염 용액을 만들고 이들 금속염 용액을 서로 침전시킴으로써 촉매 슬러리를 제조하는 것이 알려져 있다. 이렇게 과량의 물을 이용하여 금속염 용액을 만들어 제조한 촉매 슬러리는 고형분 함량이 대부분 30∼50 % 정도에 불과하여 건조 과정에서 50∼70 % 정도의 물을 증발시키게 되는데 증발시켜야 하는 물의 양에 비례하여 에너지와 시간이 소모된다. 예를 들어 미국 특허 제4,049,577호, 미국 특허 제4,129,600호에서는 90 ℃에서 고형분 함량이 44.6 %인 촉매 슬러리를 제조하여 100 ℃에서 건조하였으며, 미국 특허 제4,134,859호에서는 50∼60 ℃에서 고형분 함량이 47.8 %인 촉매 슬러리를 제조하였다. 이러한 촉매는 본 발명자들이 발견한 새로운 사실(촉매 슬러리는 높은 온도(40 ℃이상)에서 오래 유지되면 촉매 성능이 떨어진다)에 비추어 볼 때 고형분 함량이 낮아 건조시 건조 온도에서 더 오랜 시간(2시간 이상)을 유지하여야 하며, 건조하는데 필요한 에너지도 많이 든다. 따라서 촉매 제조 과정에서 증발시키는 물의 양을 줄이기 위한 방법이 요청되어져 왔다.The present invention relates to a catalyst slurry preparation and drying process during such catalyst preparation. When preparing the catalyst slurry, the solvent (mostly water) that dissolves the metal salt is mostly evaporated during the drying process. In the prior art known to the art, it is known to prepare a catalyst slurry by dissolving each metal salt in an excess of water to form a metal salt solution and precipitating these metal salt solutions with each other. The catalyst slurry prepared by using a metal salt solution using excess water has a solid content of only about 30-50%, so that 50-70% of the water is evaporated during the drying process in proportion to the amount of water to be evaporated. It takes energy and time. For example, US Pat. No. 4,049,577 and US Pat. No. 4,129,600 produce catalyst slurries having a solids content of 44.6% at 90 ° C. and dry them at 100 ° C., while US Pat. A catalyst slurry of% was prepared. These catalysts have a low solids content in light of the new findings of the inventors (catalyst slurries degrade at high temperatures (above 40 ° C.) for long periods of time), resulting in longer solids at drying temperatures (more than 2 hours). ), And it takes a lot of energy to dry. Therefore, there has been a need for a method for reducing the amount of water evaporated during catalyst preparation.

본 발명에서는 편의상 고형분 함량을 다음과 같이 정의한다.In the present invention, the solid content is defined as follows for convenience.

고형분 함량 = (슬러리 총질량 - 물질량) / 슬러리 총질량Solids content = (gross weight of slurry-mass) / gross weight of slurry

일반적으로 촉매 슬러리는 암모늄 파라 몰리브데이트([(NH4)6Mo7O24·4H2O])를 녹인 용액에 코발트 나이트레이트(Co(NO3)3·6H2O), 비스무트 나이트레이트(Bi(NO3)3·5H2O), 니켈 나이트레이트(Ni(NO3)3·9H2O), 페릭 나이트레이트(Fe(NO3)3·9H2O) 등의 혼합 용액을 서서히 가하여 침전시킴으로써 촉매 슬러리를 제조한다.In general, the catalyst slurry is cobalt nitrate (Co (NO 3 ) 3 .6H 2 O), bismuth nitrate in a solution of ammonium para molybdate ([(NH 4 ) 6 Mo 7 O 24 4H 2 O]) A mixed solution of (Bi (NO 3 ) 3 · 5H 2 O), nickel nitrate (Ni (NO 3 ) 3 · 9H 2 O), ferric nitrate (Fe (NO 3 ) 3 · 9H 2 O), etc. The catalyst slurry is prepared by addition and precipitation.

본 발명자들은 촉매 슬러리를 제조함에 있어서 물의 양을 줄이고 코발트, 비스무트, 철 등의 용액을 가하면 침전물이 생기고, 침전물의 양이 많아지면서 슬러리의 엉김 현상이 심해짐을 관찰하였다. 촉매 슬러리가 엉기는 경우의 촉매 활성은 엉김 현상이 없는 경우의 촉매 활성 보다 현저히 떨어지는 것이 관찰되었으며, 이러한 슬러리 엉김 현상은 물의 양과 밀접한 관련이 있음을 확인하였다. 즉, 물을 많이 사용하여 촉매 슬러리를 제조하는 경우에는 엉김 현상이 발생되지 않으며, 물을 적게 사용하여 촉매 슬러리를 제조하는 경우에는 엉김 현상이 매우 심해져 촉매 성능이 떨어짐을 확인하였다. 이렇게 물을 적게 사용하면 엉김 현상이 발생하여 촉매 성능이 떨어지게 되므로 촉매 슬러리를 제조할 때에 사용하는 물의 양을 적게 하는 것에는 제한이 있다. 따라서 촉매 슬러리 제조에 있어서 물의 양을 줄여서 에너지 효율을 높이면서 촉매 성능을 유지하기 위한 기술이 연구자들의 목표로 인식되어져 왔다.The present inventors observed that when preparing a catalyst slurry, the amount of water and the addition of a solution such as cobalt, bismuth, iron, etc., resulted in the formation of precipitates, and the increase in the amount of the precipitates resulted in severe entanglement of the slurry. It was observed that the catalyst activity when the catalyst slurry was agglomerated was significantly lower than the catalyst activity when there was no agglomeration, and this slurry agglomeration was closely related to the amount of water. That is, when the catalyst slurry is prepared using a lot of water, no agglomeration phenomenon occurs, and when the catalyst slurry is prepared using less water, the agglomeration phenomenon becomes very severe and the performance of the catalyst is lowered. If less water is used, agglomeration occurs and the catalyst performance is lowered. Therefore, there is a limit to reducing the amount of water used when preparing the catalyst slurry. Therefore, a technique for maintaining catalyst performance while increasing energy efficiency by reducing the amount of water in preparing a catalyst slurry has been recognized as a goal of researchers.

본 발명자들은 슬러리 엉김 현상이 촉매 슬러리 제조시 사용하는 물량뿐만 아니라 촉매 슬러리 온도와도 밀접한 관계가 있음을 발견하여 물의 양을 줄이면서도 엉김 현상을 억제하여 촉매 효율을 유지할 수 있는 방법을 찾아내어 본 발명을 완성하게 되었다. 즉, 높은 온도에서 촉매 슬러리를 제조하면 슬러리 엉김 현상이 심해지고 낮은 온도에서 제조하면 엉김 현상이 거의 발생하지 않음을 발견하여 물을 적게 사용하여 촉매 슬러리를 제조할 경우에 생기는 엉김 현상을 촉매 슬러리 제조 중에 슬러리 온도를 낮춤으로써 고형분 함량이 높은 촉매 슬러리를 제조할 수 있었다. 즉, 처음 40∼90 ℃에서 유지하던 촉매 슬러리 온도를 코발트, 니켈, 비스무트, 제2철 등의 용액을 가하면서 40 ℃ 이하로 떨어뜨림으로써 엉김 현상 없이 고형분 함량이 62∼72 %인 촉매 슬러리를 제조할 수 있었다.The inventors have found that the slurry entanglement is closely related to the catalyst slurry temperature as well as the amount of catalyst used in the preparation of the catalyst slurry, thereby finding a method of maintaining the catalyst efficiency by reducing the amount of water and suppressing the entanglement. To complete. In other words, when the catalyst slurry is prepared at a high temperature, the slurry agglomeration is increased, and when the catalyst slurry is prepared at a low temperature, the agglomeration is hardly generated. Thus, the catalyst slurry is prepared by preparing the catalyst slurry using less water. The catalyst slurry with a high solid content could be manufactured by lowering slurry temperature in the inside. That is, by dropping the catalyst slurry temperature maintained at the first 40 ~ 90 ℃ to 40 ℃ or less while adding a solution of cobalt, nickel, bismuth, ferric, etc. to obtain a catalyst slurry having a solid content of 62 to 72% without entanglement Could be manufactured.

한편, 40 ℃ 이하에서 물양을 적게(물/암모늄 파라 몰리브데이트 = 0.5∼1.0이하) 사용하면 암모늄 파라 몰리브데이트가 완전히 녹지 않게 된다. 암모늄 파라 몰리브데이트가 녹아 있는 수용액과 녹지 않은 암모늄 파라 몰리브데이트가 함께 존재하는 용액에 코발트, 니켈, 비스무트, 철 용액을 가하여 촉매 슬러리를 제조하는 경우에는 촉매 성능이 떨어짐을 확인하였다. 따라서 암모늄 파라 몰리브데이트를 완전히 녹인 상태에서 촉매 슬러리를 제조해야만 함을 알았다.On the other hand, if the amount of water (less than water / ammonium para molybdate = 0.5 ~ 1.0 or less) at 40 ℃ or less is used, ammonium para molybdate is not completely dissolved. When the catalyst slurry was prepared by adding a cobalt, nickel, bismuth, and iron solution to a solution in which an ammonium para molybdate solution was dissolved and an undissolved ammonium para molybdate solution, it was confirmed that the catalyst performance was deteriorated. Therefore, it was found that the catalyst slurry should be prepared in a state in which ammonium para molybdate was completely dissolved.

따라서 40 ℃ 이상에서 암모늄 파라 몰리브데이트를 완전히 녹인 수용액에 코발트, 니켈, 비스무트, 제2철 등의 용액을 가하여 수용액 중에 녹아 있는 암모늄 파라 몰리브데이트와 반응하여 침전물이 생기게 되는데, 이는 용해도 때문에 생기는 침전과는 무관한 것이다. 침전물이 생기면서 수용액 중의 암모늄 파라 몰리브데이트가 침전물 상으로 이동하여 암모늄 파라 몰리브데이트가 더 녹을 수 있는 여지가 생긴다. 이를 용해도 관점에서 보면 온도를 낮추면 암모늄 파라 몰리브데이트의 용해도가 감소하므로 침전이 일어나야 하지만, 코발트, 니켈, 비스무트, 제2철 등과 반응하여 암모늄 파라 몰리브데이트가 수용액 상에서 침전물 상으로 빠져나간 만큼 용해도의 여유가 생겨 재침전이 일어나지 않고 수용액 상에 계속 존재할 수 있게 된다. 따라서, 온도를 떨어뜨려도 암모늄 파라 몰리브데이트는 계속해서 수용액 상에 존재할 수 있어 성능 감소 없이 촉매 슬러리를 제조할 수 있었다. 또한, 온도를 떨어뜨려 촉매 슬러리를 제조함으로써 엉김 현상을 제거할 수 있었다.Therefore, a solution of cobalt, nickel, bismuth, and ferric iron is added to an aqueous solution in which ammonium para molybdate is completely dissolved at 40 ° C. or higher, thereby reacting with ammonium para molybdate dissolved in the aqueous solution to form a precipitate. It is not related to precipitation. As a precipitate forms, the ammonium para molybdate in the aqueous solution is transferred onto the precipitate, leaving room for more ammonium para molybdate to be dissolved. From the point of view of solubility, the lowering of the temperature decreases the solubility of ammonium para molybdate, so precipitation should occur. There is a margin of so that reprecipitation does not occur and can continue to exist in the aqueous solution. Thus, even at a drop in temperature, ammonium para molybdate could continue to be present in the aqueous solution to prepare a catalyst slurry without performance loss. In addition, entanglement could be eliminated by lowering the temperature to prepare a catalyst slurry.

이러한 촉매 슬러리 제조 방법은 프로필렌, 2급 프로판올, 이소부틸렌 또는 3급 부탄올을 아클롤레인 및 메타크롤레인을 주생성물로 전환시키는 촉매, 즉 다음의 일반식 (1)This catalyst slurry production method is a catalyst for converting propylene, secondary propanol, isobutylene or tert-butanol to acrolein and methacrolein to the main product, i.e., the following general formula (1)

MoaBibFecXdYeZfOg … (1)MoaBibFecXdYeZfOg… (One)

로 표시되는 조성물을 함유하는 촉매를 제조하는 경우에 이용될 수 있다(식중 X는 Co 및 Ni 중에서 선택되는 1종 이상의 원소이고, Y는 Li, Na, K, Rb, Cs 및 Tl 중에서 선택되는 1종 이상의 원소이고, Z는 W, Be, Mg, S, Ca, Sr, Ba, Te, Se, Ce, Ge, Mn, Cr, Ag, Sb, Pb, As, B, P, Nb, Cu, Cd, Sn, Al, Zr, Ti 및 Si 중에서 선택되는 1종 이상의 원소를 표시한다. a, b, c, d, e, f, g는 각 원소의 원자 비율을 표시하고, a를 기준으로 해서 a = 12로 했을 때 b = 0.1∼20, c = 0.1∼20, d = 0.52∼20, e = 0.01∼2, f = 0∼10이고, g는 상기 각 성분의 원자가를 만족하는데 필요한 산소의 원자수이다).It can be used when preparing a catalyst containing a composition represented by (wherein X is at least one element selected from Co and Ni, Y is 1 selected from Li, Na, K, Rb, Cs and Tl) Z is W, Be, Mg, S, Ca, Sr, Ba, Te, Se, Ce, Ge, Mn, Cr, Ag, Sb, Pb, As, B, P, Nb, Cu, Cd At least one element selected from among Sn, Al, Zr, Ti, and Si: a, b, c, d, e, f, g represent an atomic ratio of each element, and a is based on a When = 12, b = 0.1-20, c = 0.1-20, d = 0.52-20, e = 0.01-2, f = 0-10, g is an atom of oxygen necessary to satisfy the valence of each of the above components. Number).

본 발명의 방법으로 물량을 줄여 제조한 촉매 슬러리를 실시예 1에 나타내었고, 통상적인 방법으로 제조한 슬러리를 비교예 1, 비교예 2에 나타내었다.The catalyst slurry prepared by reducing the amount of the material by the method of the present invention is shown in Example 1, and the slurry prepared by a conventional method is shown in Comparative Examples 1 and 2.

실시예 1Example 1

물 600 g을 60 ℃에서 가열 교반하면서 암모늄 파라 몰리브데이트 760 g을 용해하였다(용액 A). 물 100 g에 코발트 나이트레이트 420 g을 용해하였다(용액 B). 100 g의 물에 페릭 나이트레이트 150 g, 루비듐 나이트레이트 2.4 g을 용해한 용액에 질산 60 g과 150 g의 물에 비스무트 나이트레이트 170 g을 용해하여 섞었다(용액 C). 그리고 실리카졸 270 g(용액 D)을 준비한다.760 g of ammonium para molybdate were dissolved while heating 600 g of water at 60 ° C (solution A). 420 g of cobalt nitrate was dissolved in 100 g of water (solution B). In a solution in which 150 g of ferric nitrate and 2.4 g of rubidium nitrate were dissolved in 100 g of water, 60 g of nitric acid and 170 g of bismuth nitrate were dissolved and mixed in 150 g of water (solution C). Then, 270 g of silica sol (solution D) is prepared.

용액 A를 격렬하게 교반하면서 용액 B와 C를 동시에 점적시킨 다음, 용액 D를 가하여 고형분 함량이 65.9 %인 촉매 슬러리를 제조하였다. 용액 B와 C를 점적시키는 동안 촉매 슬러리가 엉기는 현상을 보이는데 이때 슬러리 온도를 60 ℃에서 25℃로 떨어뜨린다(용액 B와 C를 1/3 정도 투입하였을 때 슬러리 엉김 현상이 일어난다). 제조한 촉매 슬러리를 120 ℃ 오븐에 넣어 건조시킨 다음 건조된 촉매 케익을 미세한 분말로 분쇄하고 적당량의 물을 첨가하여 직경 6.0 mm, 길이 6 mm인 펠렛을 압출기를 이용하여 성형하였다. 성형된 펠렛은 450 ℃에서 소성하였으며, 얻어진 촉매의 금속 원자 조성은 다음 식 (2)와 같다.Solution B and C were dropped simultaneously with vigorous stirring of solution A, and then solution D was added to prepare a catalyst slurry having a solid content of 65.9%. The catalyst slurry is entangled during the dropping of solutions B and C. At this time, the slurry temperature is dropped from 60 ° C. to 25 ° C. (slurry entanglement occurs when the solution B and C is about 1/3 added). The prepared catalyst slurry was dried in an oven at 120 ° C., dried, and the dried catalyst cake was pulverized into fine powder, and pellets having a diameter of 6.0 mm and a length of 6 mm were formed by using an extruder by adding an appropriate amount of water. The formed pellets were calcined at 450 ° C., and the metal atom composition of the obtained catalyst was shown in the following equation (2).

Mo12Co4Bi1Fe1Rb0.04Si5… (2)Mo 12 Co 4 Bi 1 Fe 1 Rb 0.04 Si 5 . (2)

얻어진 촉매를 내경 15 mm인 철제 반응관에 충진하고 프로필렌 6.5 부피 %, 산소 11.7 부피 %, 질소 71.8 부피 % 및 수증기 10.0 부피 %의 혼합 가스를 공간 속도 1350 hr-1로 흘리면서 반응기 외부의 온도를 320 ℃로 유지하여 반응시켰다.The catalyst obtained was filled in a steel reaction tube with an inner diameter of 15 mm, and a mixture gas of 6.5% by volume of propylene, 11.7% by volume of oxygen, 71.8% by volume of nitrogen, and 10.0% by volume of water vapor was flowed at a space velocity of 1350 hr < -1 > The reaction was carried out while maintaining at 占 폚.

반응 결과 프로필렌 전환율 96.8 %, 아크롤레인 선택율 89.3 %, 아크릴산 선택율 6.3 으로 아크롤레인 + 아크릴산 수율은 92.5 %이다.The reaction resulted in 96.8% propylene conversion, 89.3% acrolein selectivity, and 6.3 acrylic acid selectivity, yielding 92.5% acrolein + acrylic acid.

비교예 1Comparative Example 1

물 2500 g을 60 ℃에서 가열 교반하면서 암모늄 파라 몰리브데이트 760 g을 용해하였다(용액 A). 물 200 g에 코발트 나이트레이트 420 g을 용해하였다(용액 B). 100 g의 물에 페릭 나이트레이트 150 g, 루비듐 나이트레이트 2.4 g을 용해한 용액에 질산 60 g과 150 g의 물에 비스무트 나이트레이트 170 g을 용해하여 섞었다(용액 C). 그리고 실리카졸 270 g(용액 D)을 준비한다.760 g of ammonium para molybdate were dissolved while heating 2500 g of water at 60 ° C. (solution A). 420 g of cobalt nitrate was dissolved in 200 g of water (solution B). In a solution in which 150 g of ferric nitrate and 2.4 g of rubidium nitrate were dissolved in 100 g of water, 60 g of nitric acid and 170 g of bismuth nitrate were dissolved and mixed in 150 g of water (solution C). Then, 270 g of silica sol (solution D) is prepared.

용액 A를 격렬하게 교반하면서 용액 B와 C를 동시에 점적시킨 다음, 용액 D를 가하여 고형분 함량이 39.1 %인 촉매 슬러리를 제조하였다. 제조한 촉매 슬러리를 120 ℃ 오븐에 넣어 건조시킨 다음 건조된 촉매 케익을 미세한 분말로 분쇄하고 적당량의 물을 첨가하여 직경 6.0 mm, 길이 6 mm인 펠렛을 압출기를 이용하여 성형하였다. 성형된 펠렛은 450 ℃에서 소성하였으며, 얻어진 촉매의 금속 원자 조성은 실시예 1과 같았으며, 반응 조건과 반응 장치는 실시예 1과 같았다.Solution B and C were simultaneously dropped while vigorously stirring solution A, and then solution D was added to prepare a catalyst slurry having a solids content of 39.1%. The prepared catalyst slurry was dried in an oven at 120 ° C., dried, and the dried catalyst cake was pulverized into fine powder, and pellets having a diameter of 6.0 mm and a length of 6 mm were formed by using an extruder by adding an appropriate amount of water. The formed pellets were calcined at 450 ° C., and the metal atom composition of the obtained catalyst was the same as in Example 1, and the reaction conditions and the reaction apparatus were the same as in Example 1.

반응 결과 프로필렌 전환율 97.0 %, 아크롤레인 선택율 89.5 %, 아크릴산 선택율 6.0 으로 아크롤레인 및 아크릴산 수율은 92.6 %이다.As a result of the reaction, the yield of acrolein and acrylic acid was 92.6% with a propylene conversion of 97.0%, an acrolein selectivity of 89.5% and an acrylic acid selectivity of 6.0.

비교예 2Comparative Example 2

물 600 g을 60 ℃에서 가열 교반하면서 암모늄 파라 몰리브데이트 760 g을 용해하였다(용액 A). 물 100 g에 코발트 나이트레이트 420 g을 용해하였다(용액 B). 100 g의 물에 페릭 나이트레이트 150 g, 루비듐 나이트레이트 2.4 g을 용해한 용액에 질산 60 g과 150 g의 물에 비스무트 나이트레이트 170 g을 용해하여 섞었다(용액 C). 그리고 실리카졸 270 g(용액 D)을 준비한다.760 g of ammonium para molybdate were dissolved while heating 600 g of water at 60 ° C (solution A). 420 g of cobalt nitrate was dissolved in 100 g of water (solution B). In a solution in which 150 g of ferric nitrate and 2.4 g of rubidium nitrate were dissolved in 100 g of water, 60 g of nitric acid and 170 g of bismuth nitrate were dissolved and mixed in 150 g of water (solution C). Then, 270 g of silica sol (solution D) is prepared.

용액 A를 격렬하게 교반하면서 용액 B와 C를 동시에 점적시킨 다음, 용액 D를 가하여 고형분 함량이 65.9 %인 촉매 슬러리를 제조하였다(용액 B와 C를 점적시키는 동안 촉매 슬러리는 심하게 엉긴다). 제조한 촉매 슬러리를 120 ℃ 오븐에 넣어 건조시킨 다음 건조된 촉매 케익을 미세한 분말로 분쇄하고 적당량의 물을 첨가하여 직경 6.0 mm, 길이 6 mm인 펠렛을 압출기를 이용하여 성형하였다. 성형된 펠렛은 450 ℃에서 소성하였으며, 얻어진 촉매의 금속 원자 조성은 실시예 1과 같았다.Solution B and C were simultaneously dropped while vigorously stirring Solution A, then Solution D was added to produce a catalyst slurry with a solid content of 65.9% (catalyst slurry was entangled while dropping Solution B and C). The prepared catalyst slurry was dried in an oven at 120 ° C., dried, and the dried catalyst cake was pulverized into fine powder, and pellets having a diameter of 6.0 mm and a length of 6 mm were formed by using an extruder by adding an appropriate amount of water. The formed pellets were calcined at 450 ° C., and the metal atom composition of the obtained catalyst was the same as in Example 1.

반응 조건 및 반응 장치는 실시예 1과 같았다.The reaction conditions and the reaction apparatus were the same as in Example 1.

반응 결과 프로필렌 전환율 86.8 %, 아크롤레인 선택율 92.8 %, 아크릴산 선택율 4.3 으로 아크롤레인 + 아크릴산 수율은 84. 3 %이었다.As a result, acrolein + acrylic acid yield was 86.8%, acrolein selectivity 92.8%, and acrylic acid selectivity 4.3, yielding 84.3%.

본 발명은 실시예 1과 비교예 1, 비교예 2에서의 결과와 같이 촉매 성능의 감소 없이 물량을 줄여 고형 분함량을 최대한 높임으로써 건조 과정에서 소모되는 에너지를 줄일 수 있었다.The present invention was able to reduce the energy consumed in the drying process by increasing the solid content as much as possible by reducing the amount of water without reducing the catalyst performance as shown in Example 1, Comparative Example 1, Comparative Example 2.

Claims (7)

아래의 일반식 (1)General formula below (1) MoaBibFecXdYeZfOg … (1)MoaBibFecXdYeZfOg… (One) 로 표시되는 프로필렌, 2급 프로탄올, 이소부틸렌 및 3급 부탄올 산화용 촉매를 제조함에 있어서, 40 ℃ 이상의 온도에서 암모늄 파라 몰리브데이트를 완전 용해시킨 수용액을 제조한 후에 코발트, 비스무트, 니켈, 제2철 용액을 가하면서 온도를 0∼40 ℃로 낮추어서 촉매 슬러리를 제조하는 방법:In preparing a catalyst for the oxidation of propylene, secondary protanol, isobutylene and tertiary butanol, the solution of cobalt, bismuth, nickel, after preparing an aqueous solution in which ammonium para molybdate is completely dissolved at a temperature Process for preparing a catalyst slurry by lowering the temperature to 0-40 ° C. while adding ferric solution: 상기 식에서In the above formula X는 Co 및 Ni 중에서 선택되는 1종 이상의 원소이고,X is at least one element selected from Co and Ni, Y는 Li, Na, K, Rb, Cs 및 Tl 중에서 선택되는 1종 이상의 원Y is at least one member selected from Li, Na, K, Rb, Cs and Tl 소이고,Cow, Z는 W, Be, Mg, S, Ca, Sr, Ba, Te, Se, Ce, Ge, Mn, Cr,Z is W, Be, Mg, S, Ca, Sr, Ba, Te, Se, Ce, Ge, Mn, Cr, Ag, Sb,Ag, Sb, Pb, As, B, P, Nb, Cu, Cd, Sn, Al, Zr, Ti 및 Si 중에서 선택Choose from Pb, As, B, P, Nb, Cu, Cd, Sn, Al, Zr, Ti and Si 되는 1종1 kind 이상의 원소를 표시하며;More than one element is represented; a, b, c, d, e, f, g는 각 원소의 원자 비율을 표시하고, a를 기준으로a, b, c, d, e, f, g represent the atomic ratios of each element, based on a 해서 a = 12로 했을 때 b = 0.1∼20, c = 0.1∼20, d = 0.52∼20, e =When b = 0.1 to 20, c = 0.1 to 20, d = 0.52 to 20, e = 0.01∼2, f = 0∼10이고, g는 상기 각 성분의 원자가를 만족하는데 필0.01-2, f = 0-10, and g is required to satisfy the valence of each of the above components. 요한 산소의 원자수이다.It is the number of atoms of oxygen. 제1항에 있어서, 촉매 슬러리의 고형분 함량이 62∼72 중량 %인 방법.The process of claim 1 wherein the solids content of the catalyst slurry is 62-72 weight percent. 제1항에 있어서, 암모늄 파라 몰리브데이트의 온도가 40∼92 ℃인 방법.The process according to claim 1, wherein the temperature of ammonium para molybdate is 40 to 92 ° C. 제1항에 있어서, 암모늄 파라 몰리브데이트 수용액에서 물:암모늄 파라 몰리브데이트의 중량 조성비가 0.5∼1.0인 촉매 슬러리를 제조하는 방법.The method of claim 1, wherein the weight slurry of water: ammonium para molybdate in an aqueous solution of ammonium para molybdate is 0.5 to 1.0. 40 ℃ 이상의 온도에서 암모늄 파라 몰리브데이트를 완전히 용해시킨 수용액을 제조하는 단계; 및Preparing an aqueous solution in which ammonium para molybdate is completely dissolved at a temperature of 40 ° C. or higher; And 코발트, 비스무트, 니켈, 제2철 용액을 가하면서 온도를 40 ℃ 이하로 낮추는 단계Adding a cobalt, bismuth, nickel and ferric solution to lower the temperature to 40 ° C. or lower; 를 포함하는 고형분 함량 62∼72 %인 하기 일반식(1)로 표시되는 아크롤레인 및 메타크롤레인 제조용 촉매의 제조 방법:Method for producing acrolein and methacrolein production catalyst represented by the following general formula (1) having a solid content of 62 to 72% containing: MoaBibFecXdYeZfOg … (1)MoaBibFecXdYeZfOg… (One) 상기 식에서In the above formula X는 Co 및 Ni 중에서 선택되는 1종 이상의 원소이고,X is at least one element selected from Co and Ni, Y는 Li, Na, K, Rb, Cs 및 Tl 중에서 선택되는 1종 이상의 원Y is at least one member selected from Li, Na, K, Rb, Cs and Tl 소이고,Cow, Z는 W, Be, Mg, S, Ca, Sr, Ba, Te, Se, Ce, Ge, Mn, Cr,Z is W, Be, Mg, S, Ca, Sr, Ba, Te, Se, Ce, Ge, Mn, Cr, Ag, Sb,Ag, Sb, Pb, As, B, P, Nb, Cu, Cd, Sn, Al, Zr, Ti 및 Si 중에서 선택Choose from Pb, As, B, P, Nb, Cu, Cd, Sn, Al, Zr, Ti and Si 되는 1종1 kind 이상의 원소를 표시하며;More than one element is represented; a, b, c, d, e, f, g는 각 원소의 원자 비율을 표시하고, a를 기준으로a, b, c, d, e, f, g represent the atomic ratios of each element, based on a 해서 a = 12로 했을 때 b = 0.1∼20, c = 0.1∼20, d = 0.52∼20, e =When b = 0.1 to 20, c = 0.1 to 20, d = 0.52 to 20, e = 0.01∼2, f = 0∼10이고, g는 상기 각 성분의 원자가를 만족하는데 필0.01-2, f = 0-10, and g is required to satisfy the valence of each of the above components. 요한 산소의 원자수이다.It is the number of atoms of oxygen. 제1항의 방법으로 제조되어진 촉매.A catalyst prepared by the method of claim 1. 제1항의 방법으로 제조되어진 촉매를 사용하여 아크롤레아 및 메타크롤레인을 제조하는 방법.A method for producing acrorea and methacrolein using the catalyst prepared by the method of claim 1.
KR1019970045132A 1997-08-30 1997-08-30 Method for fabricating catalyst for use in acrolein and methacrolein manufacture KR100349602B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970045132A KR100349602B1 (en) 1997-08-30 1997-08-30 Method for fabricating catalyst for use in acrolein and methacrolein manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970045132A KR100349602B1 (en) 1997-08-30 1997-08-30 Method for fabricating catalyst for use in acrolein and methacrolein manufacture

Publications (2)

Publication Number Publication Date
KR19990021570A true KR19990021570A (en) 1999-03-25
KR100349602B1 KR100349602B1 (en) 2002-11-18

Family

ID=37489003

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970045132A KR100349602B1 (en) 1997-08-30 1997-08-30 Method for fabricating catalyst for use in acrolein and methacrolein manufacture

Country Status (1)

Country Link
KR (1) KR100349602B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000073109A (en) * 1999-05-06 2000-12-05 유현식 Preparation method of methacrolein

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677051B1 (en) 2005-03-18 2007-02-01 주식회사 엘지화학 Method of producing unsaturated acid from olefin
KR100868454B1 (en) 2005-07-08 2008-11-11 주식회사 엘지화학 Method of producing unsaturated acid in fixed-bed catalytic partial oxidation reactor with high efficiency
US8013185B2 (en) 2007-04-03 2011-09-06 Lg Chem, Ltd. Method for preparing unsaturated aldehyde and/or unsaturated fatty acid using fixed-bed catalytic partial oxidation reactor
KR101257411B1 (en) 2009-10-09 2013-04-23 주식회사 엘지화학 Method for production of (meth)acrylic acid
KR101628287B1 (en) 2013-07-22 2016-06-08 주식회사 엘지화학 Process for continuous recovering (meth)acrylic acid and apparatus for the process
US9718756B2 (en) 2013-07-23 2017-08-01 Lg Chem, Ltd. Method for continuously recovering (meth)acrylic acid and apparatus for the method
KR101601938B1 (en) 2013-08-30 2016-03-09 주식회사 엘지화학 Process for continuous recovering (meth)acrylic acid and apparatus for the process
KR101616553B1 (en) 2013-08-30 2016-04-28 주식회사 엘지화학 Process for continuous recovering (meth)acrylic acid and apparatus for the process
KR102079774B1 (en) 2016-11-25 2020-02-20 주식회사 엘지화학 Process for continuous recovering (meth)acrylic acid and apparatus for the process
KR102079775B1 (en) 2016-11-25 2020-02-20 주식회사 엘지화학 Process for continuous recovering (meth)acrylic acid and apparatus for the process
KR102080287B1 (en) 2016-12-06 2020-02-21 주식회사 엘지화학 Process for continuous recovering (meth)acrylic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000073109A (en) * 1999-05-06 2000-12-05 유현식 Preparation method of methacrolein

Also Published As

Publication number Publication date
KR100349602B1 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
US4537874A (en) Catalyst for production of unsaturated aldehydes
KR840001003B1 (en) Oxidation catalyst
US7132384B2 (en) Process for producing composite oxide catalyst
KR890000517B1 (en) Catalyst for manufacturing methacrolein
US4438217A (en) Catalyst for oxidation of propylene
US6509508B2 (en) Process for producing (meth)acrolein and (meth)acrylic acid
US4530916A (en) Catalyst for use in a methacrylic acid process
KR100786051B1 (en) Improved catalyst for the manufacture of acrylonitrile
US5840648A (en) Catalyst for the manufacture of acrylonitrile and hydrogen cyanide
KR100349602B1 (en) Method for fabricating catalyst for use in acrolein and methacrolein manufacture
US5138100A (en) Method for preparing methacrolein
JP4095302B2 (en) Fluidized bed catalyst for the ammoxidation of propylene to acrylonitrile.
KR101122346B1 (en) Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JPH0242540B2 (en)
JPS5976541A (en) Catalyst for oxidizing propylene
JP2005246372A (en) Catalyst for producing acrylonitrile and method for producing acrylonitrile
US4070390A (en) Method for the catalytical preparation of acrylonitrile
JPS6033539B2 (en) Oxidation catalyst and its preparation method
JP3872269B2 (en) Method for producing hydrogen cyanide
JP4597782B2 (en) Method for producing fluidized bed ammoxidation catalyst
JPH0597761A (en) Production of methacrolein and catalyst used for producing methacrolein
JP3734403B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2860372B2 (en) Method for producing acrylonitrile by ammoxidation of propane
JPS60209258A (en) Oxidation catalyst and its manufacture
KR900004117B1 (en) Catalyst for preparing methacrolein from isobutylene

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130730

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140716

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150716

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160803

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170718

Year of fee payment: 16