KR19990017713A - Method for preparing 5-vinyl-2-norbornene using heterogeneous catalyst - Google Patents

Method for preparing 5-vinyl-2-norbornene using heterogeneous catalyst Download PDF

Info

Publication number
KR19990017713A
KR19990017713A KR1019970040727A KR19970040727A KR19990017713A KR 19990017713 A KR19990017713 A KR 19990017713A KR 1019970040727 A KR1019970040727 A KR 1019970040727A KR 19970040727 A KR19970040727 A KR 19970040727A KR 19990017713 A KR19990017713 A KR 19990017713A
Authority
KR
South Korea
Prior art keywords
catalyst
reaction
vinyl
norbornene
group
Prior art date
Application number
KR1019970040727A
Other languages
Korean (ko)
Other versions
KR100258196B1 (en
Inventor
이시준
심재구
곽병성
김춘길
김태진
Original Assignee
남창우
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 남창우, 에스케이 주식회사 filed Critical 남창우
Priority to KR1019970040727A priority Critical patent/KR100258196B1/en
Publication of KR19990017713A publication Critical patent/KR19990017713A/en
Application granted granted Critical
Publication of KR100258196B1 publication Critical patent/KR100258196B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/39Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing seven carbon atoms
    • C07C13/42Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing seven carbon atoms with a bicycloheptene ring structure
    • C07C13/43Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing seven carbon atoms with a bicycloheptene ring structure substituted by unsaturated acyclic hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/42Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion
    • C07C2/44Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion of conjugated dienes only
    • C07C2/46Catalytic processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 불균일 촉매를 이용한 5-비닐-2-노르보넨의 제조방법에 관한 것으로, 좀 더 상세하게는 원소주기율 제 1족의 알칼리 금속, 제 2족의 알칼리 토금속, 또는 이들의 혼합물을 알루미나, 실리카, 실리카-알루미나, 활성탄 및 제올라이트로 이루어진 군으로부터 선택된 불균일 고체 담체 기질에 담지시켜 제조한 촉매 및 용매존재하에서, 씨클로 펜타디엔 1몰과 1,3-부타디엔 1∼4몰을 160℃∼250℃, 160∼500psig의 압력하에서 10분∼2시간동안 반응시켜 높은 전환율과 고수율로 5-비닐-2-노르보넨을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing 5-vinyl-2-norbornene using a heterogeneous catalyst, and more particularly, to an alkali metal of Group 1, an alkaline earth metal of Group 2, or a mixture thereof. 1 mole of cyclopentadiene and 1 to 4 moles of 1,3-butadiene are 160 ° C to 250 ° C in the presence of a catalyst and a solvent prepared by supporting a heterogeneous solid carrier substrate selected from the group consisting of silica, silica-alumina, activated carbon and zeolite. The present invention relates to a method for producing 5-vinyl-2-norbornene with high conversion and high yield by reaction under pressure of 160 to 500 psig for 10 minutes to 2 hours.

Description

불균일 촉매를 이용한 5-비닐-2-노르보넨의 제조방법Method for preparing 5-vinyl-2-norbornene using heterogeneous catalyst

본 발명은 불균일 촉매를 이용한 5-비닐-2-노르보넨(5-vinyl-2-norbornene)의 제조방법에 관한 것으로, 좀 더 상세하게는 원소주기율 제 1족 알칼리금속 및/또는 제 2족 알칼리토금속을 상용화된 담체에 담지시켜 제조한 촉매 존재하에서, 씨클로펜타디엔(이하 CPD이라 함)과 1,3-부타디엔(이하 BD라 함)을 반응시켜 높은 전환율과 고수율로 5-비닐-2-노르보넨(이하 VNB라 함)을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing 5-vinyl-2-norbornene using a heterogeneous catalyst, and more particularly, to an element periodic alkali group 1 and / or group 2 alkali In the presence of a catalyst prepared by supporting an earth metal on a commercially available carrier, cyclopentadiene (hereinafter referred to as CPD) and 1,3-butadiene (hereinafter referred to as BD) are reacted to give high yield and 5-vinyl-2- A method for producing norbornene (hereinafter referred to as VNB).

EPDM(Ethylene-propylene-diene terpolymer)고무의 제 3단분자로 사용되는 중용한 물질인 5-에틸리딘-2-노르보넨(이하 ENB라 함)의 원료인 VNB는 CPD와 BD의 딜스-알더(Diels-Alder)반응을 통하여 제조될 수 있다.VNB, a raw material of 5-ethylidine-2-norbornene (hereinafter referred to as ENB), a heavy substance used as the third molecule of ethylene-propylene-diene terpolymer (EPDM) rubber, is a Diels-Alder of CPD and BD. Diels-Alder) can be prepared through the reaction.

예를 들어, 일본특개소 제 48-92353호에는 금속염화물을 활성알루미나에 담지시킨 촉매 존재하에서 VNB를 제조하는 방법으로 상기 특허에 기재된 반응 수율은 다소 양호하나 장기간의 반응시간(3시간)이 요구되며, 입자크기가 작은 활성담체를 사용함으로서 일반적인 상용공정(연속공정)에 적용시 촉매의 효율이 급격히 저하되는 단점이 있다. 또한 상기 특허는 특허등록이 되지 않은 상태로서 기술의 진보성이 의심스러우며 실시예의 방법으로 기술 검증을 하여 본 결과 실시예에 나타난 VNB수율을 전혀 얻을 수 없었다.For example, Japanese Patent Application Laid-Open No. 48-92353 discloses a method for producing VNB in the presence of a catalyst in which metal chlorides are supported on activated alumina, and the reaction yield described in the above patent is rather good, but a long reaction time (3 hours) is required. By using an active carrier having a small particle size, there is a disadvantage in that the efficiency of the catalyst is sharply reduced when applied to a general commercial process (continuous process). In addition, since the patent is not registered in the patent, the progress of the technology is questionable, and the technology was verified by the method of the embodiment, and as a result, the VNB yield shown in the embodiment could not be obtained at all.

다른 방법으로서 반응물인 CPD 와 BD를 연속적인 공정으로 반응시켜 제조하는 방법이 있다. 일본특개소 제 61-2000930호(하기 비교예 1 참조)에는 대량 생산을 위한 상용공정으로 이용되는 방법이지만 무촉매하에서 반응을 수행하므로 반응물의 전환율이 25%정도로 매우 낮고 부산물도 많이 생성되게 된다. 특히, CPD 대신 BD가 다이엔으로 작용하여 생성되는 3a,4,7,7a-테트라히드로인텐(이하 THI라 함)은 VNB의 이성화물로서 VNB분리시 어려움을 야기시킨다.Another method is to prepare a reactant CPD and BD in a continuous process. Japanese Patent Application Laid-Open No. 61-2000930 (see Comparative Example 1 below) is a method used as a commercial process for mass production, but since the reaction is carried out without a catalyst, the conversion rate of the reactants is very low at about 25% and many by-products are generated. In particular, 3a, 4,7,7a-tetrahydrointen (hereinafter referred to as THI), produced by BD acting as a diene instead of CPD, causes difficulties in VNB separation as isomers of VNB.

이에 본 발명자들은 대량생산 공정 적용에 관한 문제를 해결하기 위해 광범위한 연구를 행한 결과, 무촉매하에서 VNB를 제조하는 방법에 비교하면 그 전환율 및 수율이 향상되고 반응부산물인 THI의 형성을 억제하며, 활성알루미나 담체촉매를 사용한 방법에 비교해서는 반응조건, 특히 반응시간을 단축함으로써 상용공정에 적용하기 용이한 조건을 확립하였고, 본 발명은 이에 기초하여 완성되었다.Accordingly, the present inventors have conducted extensive research to solve the problem of applying the mass production process, and as a result, the conversion and yield are improved compared to the method of preparing VNB under a catalyst, and the formation of reaction byproduct THI is suppressed, Compared to the method using the alumina carrier catalyst, the reaction conditions, in particular, the conditions for easy application to a commercial process by shortening the reaction time were established, and the present invention was completed based on this.

따라서, 본 발명의 목적은 불균일 촉매를 이용하여 높은 전환율과 수율로 5-비닐-2-노르보넨을 제조하는 방법을 제공하는데 있다.It is therefore an object of the present invention to provide a process for producing 5-vinyl-2-norbornene with high conversion and yield using heterogeneous catalysts.

상기 목적을 달성하기 위한 본 발명의 제조방법은 원소주기율 제 1족의 알칼리 금속, 제 2족의 알칼리 토금속, 이들의 혼합물, 또는 이들의 합금을 알루미나, 실리카, 실리카-알루미나, 활성탄 및 제올라이트로 이루어진 군으로부터 선택된 불균일 고체 담체 기질에 담지시켜 제조한 촉매 및 용매존재하에서, 씨클로 펜타디엔 1몰과 1,3-부타디엔 1∼4몰을 160℃∼250℃, 160∼500psig의 압력하에서 10분∼2시간동안 반응시키는 것으로 이루어진다.The production method of the present invention for achieving the above object is composed of alumina, silica, silica-alumina, activated carbon and zeolite of an alkali metal of the Group 1 elemental group, an alkaline earth metal of the Group 2, a mixture thereof, or an alloy thereof. In the presence of a catalyst and a solvent prepared by supporting a heterogeneous solid carrier substrate selected from the group, 1 to 4 moles of cyclopentadiene and 1 to 4 moles of 1,3-butadiene are subjected to a temperature of 160 ° C to 250 ° C and 160 to 500 psig for 10 minutes to 2 minutes. It is made to react over time.

이하 본 발명의 방법을 좀 더 구체적으로 살펴보면 다음과 같다.Hereinafter, the method of the present invention will be described in more detail.

본 발명에 사용되는 CPD는 일반적으로 잘 알려진 방법인 디씨클로펜타디엔(이하 DCPD라 함)의 열분해-증류법으로 제조할 수 있다. 순도는 기체크로마토그래피를 사용하여 측정할 수 있는데, 순도의 특별한 제한은 없으며 상업적으로 얻을 수 있는 91% 이상이면 가능하다. 또한, BD는 나프타를 열분해시킨 다음 분별증류-추출공정을 거쳐 얻어지는 순도 97% 이상의 것을 사용하면 된다.CPD used in the present invention can be prepared by the pyrolysis-distillation method of dcclopentadiene (hereinafter referred to as DCPD), which is generally well known. Purity can be measured using gas chromatography, and there is no particular restriction on the purity, and it is possible if it is 91% or more commercially available. BD may be 97% or more of purity obtained through pyrolysis of naphtha followed by a fractional distillation-extraction process.

반응은 용매를 사용하는 것이 바람직한데, 용매는 반응 자체에 영향을 주지 않기 위해 불활성이어야 하며, 반응물의 용해도가 좋아야 하고, 분리의 용이성을 위해 VNB와 끓는점 차이가 많이 날수록 바람직하다. 사용가능한 용매로는 탄화수소계 용매와 방향족 탄화수소계 용매가 바람직하고, 여러 탄화수소계 용매중 톨루엔이나 벤젠이 바람직하며, 톨루엔이 특히 바람직하다.The reaction is preferably to use a solvent, the solvent should be inert so as not to affect the reaction itself, the solubility of the reactants should be good, the more the difference in boiling point and VNB for the ease of separation is preferred. Preferable solvents include hydrocarbon solvents and aromatic hydrocarbon solvents, toluene and benzene are preferred among various hydrocarbon solvents, and toluene is particularly preferred.

한편,반응중, 부생성물로 형성되는 올리고머 및 중합체의 생성량을 억제하기 위해 반응초기에 중합억제제를 사용하는데, 히드로퀴논, N,N'-디에틸하이드록시아민(이하 DEHA라 함) 등이 적당하다.On the other hand, to suppress the amount of oligomers and polymers formed from byproducts during the reaction, a polymerization inhibitor is used at the beginning of the reaction, and hydroquinone, N, N'-diethylhydroxyamine (hereinafter referred to as DEHA) is suitable. .

CPD 1몰에 대한 BD의 반응비는 1∼4몰 당량 정도가 좋으며, 1.5∼2몰 당량이 바람직하다. 반응 온도는 160℃∼250℃, 바람직하게는 190℃∼210℃이며, 상기 온도보다 낮은 온도에서는 반응성이 낮으며 그 이상의 온도에서는 VNB에서 THI로의 이성화가 매우 빠르게 일어나며 올리고머의 발생량이 급격히 증가된다.The reaction ratio of BD to 1 mole of CPD is preferably about 1 to 4 molar equivalents, and preferably 1.5 to 2 molar equivalents. The reaction temperature is 160 ° C. to 250 ° C., preferably 190 ° C. to 210 ° C., and the reactivity is lower at temperatures lower than the above temperature, and at higher temperatures, isomerization of VNB to THI occurs very rapidly and the amount of oligomers is rapidly increased.

반응시간은 반응온도, 촉매, 반응물의 반응비 등의 반응조건에 따라 변화될 수 있으나, 통상 10분∼2시간, 바람직하게는 10∼60분, 특히 10∼30분이 바람직하다. 반응시간이 길어짐에 따라 전환율은 약간씩 증가되나 VNB로의 선택도는 전체적으로 낮아져, 수율이 전반적으로 감소하게 된다.The reaction time may vary depending on reaction conditions such as reaction temperature, catalyst, reaction ratio of reactants, etc., but usually 10 minutes to 2 hours, preferably 10 to 60 minutes, and particularly 10 to 30 minutes is preferable. As the reaction time increases, the conversion is slightly increased, but the selectivity to the VNB is lowered as a whole, resulting in an overall decrease in yield.

본 발명에 따르면, 불활성기체(질소, 아르곤, 네온)를 사용하여 160∼500psig, 바람직하게는 200∼450psig, 특히 바람직하게는 300∼450psig로 반응압력을 유지시킨다. 이러한 압력 범위에서 반응을 실시하는 경우 상압에 비해 수율이 월등히 향상된 좋은 결과를 얻게 된다. 본 발명에 있어서, 불활성 기체를 사용하여 반응초기에 압력의 적용시키는 이유는 상기 반응 조건에서 온도 증가에 따라 반응물인 CPD와 BD를 균일 액상으로 형성하여 반응성의 증가를 유발시켜 CPD의 전환율, VNB로의 선택율 및 수율의 증가를 제공하기 때문이다. 예를 들어, 이러한 상형태에 대한 모사실험결과, 본 발명의 반응조건인 200℃, 400psi의 반응조건하에서 반응 용액 혼합물은 100% 액상임을 확인하였다(참고적으로, 200℃, 150psi일 경우 액상은 약 33.6부피%이고, 나머지는 기상임).According to the present invention, the reaction pressure is maintained at 160 to 500 psig, preferably 200 to 450 psig, particularly preferably 300 to 450 psig using an inert gas (nitrogen, argon, neon). When the reaction is carried out in this pressure range, a good result is obtained that the yield is much improved compared to the normal pressure. In the present invention, the reason for applying the pressure at the beginning of the reaction by using an inert gas is to form the reactants CPD and BD in a uniform liquid phase as the temperature increases in the reaction conditions, causing an increase in the reactivity to the conversion rate of CPD, VNB This provides an increase in selectivity and yield. For example, as a result of the simulation of this phase form, the reaction solution mixture was confirmed to be 100% liquid phase under the reaction conditions of 200 ° C. and 400 psi of the present invention. About 33.6% by volume, the rest being weather).

촉매의 제조시 담체로 사용되는 물질로는 알루미나, 실리카, 실리카-알루미나, 활성탄, 제올라이트 등을 들 수 있으며 알루미나, 제올라이트 등이 바람직하다. 담체로 사용되는 제올라이트에는 제한이 없으나 모더나이트, X형 제올라이트, Y형 제올라이트, 제올라이트 베타(β), ZSM-5, L형 제올라이트 등이 바람직하며, 좀더 바람직하게는 모더나이트이다. 상기 담체에 알칼리 금속(Na, K, Cs, Rb, 이들의 혼합물, 또는 이들의 합금) 및/또는 알칼리희토류 금속(Mg, Ca, Sr, Ba, 이들의 혼합물, 또는 이들의 합금)을 포함하는 화합물을 수용액 상태로 첨가하여 담지체에 대하여 4∼10중량% 정도로 합침시킨 후 건조, 소성하여 촉매로 사용한다. 이때, 상기 함량이 4중량% 미만이면 전환율 및 선택도의 저하가 발생하고, 10중량%를 초과하면 부생성물의 증가 및 촉매 제조비용의 상승을 초래하는 단점이 있다.Examples of the material used as a carrier in the preparation of the catalyst include alumina, silica, silica-alumina, activated carbon, zeolite, and the like. Alumina, zeolite and the like are preferable. The zeolite used as the carrier is not limited, but mordenite, X-type zeolite, Y-type zeolite, zeolite beta (β), ZSM-5, L-type zeolite and the like are preferable, and more preferably mordenite. The carrier comprises alkali metals (Na, K, Cs, Rb, mixtures thereof, or alloys thereof) and / or alkali rare earth metals (Mg, Ca, Sr, Ba, mixtures thereof, or alloys thereof). The compound is added in the form of an aqueous solution, so as to impregnate about 4 to 10% by weight with respect to the carrier, and then dried and calcined to use as a catalyst. At this time, if the content is less than 4% by weight, the conversion and selectivity are lowered. If the content is more than 10% by weight, there is a disadvantage of increasing the by-products and raising the catalyst manufacturing cost.

본 발명에 유용한 금속성분은 제 1족 알칼리금속 및 제 2족 알칼리토금속으로 이루어진 군으로부터 하나 또는 그 이상의 금속으로 하고 금속촉매 성분의 전구체로 사용되는 화합물은 다음과 같다.The metal component useful in the present invention is one or more metals from the group consisting of Group 1 alkali metals and Group 2 alkaline earth metals, and the compounds used as precursors of the metal catalyst components are as follows.

나트륨화합물로는 질산나트륨, 황산나트륨, 염화나트륨, 초산나트륨, 탄산나트륨 또는 수산화나트륨 등을 들 수 있으며, 질산나트륨, 탄산나트륨 또는 초산나트륨 등이 바람직하고, 좀더 바람직하기로는 초산나트륨이다.Examples of the sodium compound include sodium nitrate, sodium sulfate, sodium chloride, sodium acetate, sodium carbonate or sodium hydroxide, and sodium nitrate, sodium carbonate or sodium acetate, and the like, and more preferably sodium acetate.

칼륨화합물로는 질산칼륨, 황산칼륨, 염화칼륨, 초산칼륨, 탄산칼륨 또는 수산화칼륨 등을 들 수 있으며, 질산칼륨, 탄산칼륨 또는 초산칼륨 등이 바람직하고, 좀더 바람직하기로는 초산칼륨이다.Examples of the potassium compound include potassium nitrate, potassium sulfate, potassium chloride, potassium acetate, potassium carbonate or potassium hydroxide, and potassium nitrate, potassium carbonate or potassium acetate, and the like, and more preferably potassium acetate.

세슘화합물로는 질산세슘, 황산세슘, 염화세슘, 초산세슘, 탄산세슘 또는 수산화세슘 등을 들 수 있으며, 질산세슘, 탄산세슘 또는 초산세슘 등이 바람직하고, 좀 더 바람직하기로는 초산세슘이다.Examples of the cesium compound include cesium nitrate, cesium sulfate, cesium chloride, cesium acetate, cesium carbonate or cesium hydroxide, and the like. Cesium nitrate, cesium carbonate or cesium acetate is preferred, and more preferably cesium acetate.

루비듐화합물로는 질산루비듐, 황산루비듐, 염화루비듐, 초산루비듐 또는 탄산루비듐을 들 수 있으며, 질산루비듐, 탄산루비듐 등이 바람직하고, 초산루비듐이 특히 바람직하다.Examples of the rubidium compound include rubidium nitrate, rubidium sulfate, rubidium chloride, rubidium acetate or rubidium carbonate. Rubidium nitrate, rubidium carbonate and the like are preferable, and rubidium acetate is particularly preferable.

마그네슘화합물로는 질산마그네슘, 황산마그네슘, 염화마그네슘, 초산마그네슘, 탄산마그네슘 또는 수산화마그네슘 등을 들 수 있으며, 질산마그네슘, 탄산마그네슘 또는 초산마그네슘 등이 바람직하고, 초산마그네슘이 특히 바람직하다.Examples of the magnesium compound include magnesium nitrate, magnesium sulfate, magnesium chloride, magnesium acetate, magnesium carbonate, magnesium hydroxide, and the like, and magnesium nitrate, magnesium carbonate or magnesium acetate is preferable, and magnesium acetate is particularly preferable.

칼슘화합물로는 질산칼슘, 황산칼슘, 탄산칼슘, 초산칼슘 또는 수산화칼슘 등을 들 수 있으며, 질산칼슘, 탄산칼슘 또는 초산칼슘 등이 바람직하고, 초산칼슘이 특히 바람직하다.Examples of the calcium compound include calcium nitrate, calcium sulfate, calcium carbonate, calcium acetate or calcium hydroxide, and calcium nitrate, calcium carbonate or calcium acetate, and the like, and calcium acetate is particularly preferable.

알칼리 금속 및/또는 알칼리희토류 금속을 담지체에 함침시킬 경우 알칼리 금속 및/또는 알칼리희토금속을 포함하는 화합물을 수용액 상태로 첨가하여 함침시킨 후 100∼120℃에서 3∼10시간 건조 후, 400∼600℃에서 흐르는 산소 분위기 하에서 소성하여 촉매로 사용한다. 이렇게 제조된 촉매는 반응시 CPD 기준으로 5∼50중량%, 바람직하게는 20∼30중량% 사용한다.When impregnating an alkali metal and / or an alkali rare earth metal to a support body, after impregnating by adding the compound containing an alkali metal and / or alkali rare earth metal in aqueous solution, it is dried at 100-120 degreeC for 3 to 10 hours, and 400- to It is calcined in an oxygen atmosphere flowing at 600 ° C. and used as a catalyst. Thus prepared catalyst is used 5 to 50% by weight, preferably 20 to 30% by weight based on the CPD reaction.

전술한 바와 같이, 본 발명의 개선된 제조방법을 사용할 경우 수율이 향상되고 부생성물인 THI의 형성을 억제하고 반응시간이 현저히 단축됨으로서 상용공정에 용이하게 적용할 수 있다.As described above, when the improved production method of the present invention is used, the yield is improved, the formation of by-product THI is suppressed, and the reaction time is significantly shortened, so that it can be easily applied to a commercial process.

이하 실시예를 통하여 본 발명을 좀 더 구체적으로 설명하지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.

촉매제조예Catalyst Production Example

촉매 ACatalyst A

초산세슘 7.3g을 증류수 1,000㎖에 용해시킨 용액을 모더나이트(Na-Mordenite·SiO2/Al2O3=13:Na2O=6wt%) 100g에 넣고 120℃에서 3∼4시간 증발시켜 초산세슘이 담체표면에 골고루 분포되도록 한 후 건조시킨다. 건조된 촉매 전구체를 산소 분위기에서 500℃로 3시간이상 소성시킨다. ICP(Induced Coupled Plasma-Atomic Emission Chromatography) 분석 결과 Cs 성분은 5.0중량%였다.A solution of 7.3 g of cesium acetate dissolved in 1,000 ml of distilled water was added to 100 g of mordenite (Na-MordeniteSiO 2 / Al 2 O 3 = 13: Na 2 O = 6wt%) and evaporated at 120 ° C. for 3 to 4 hours. Cesium is evenly distributed on the surface of the carrier and dried. The dried catalyst precursor is calcined at 500 ° C. for at least 3 hours in an oxygen atmosphere. Induced Coupled Plasma-Atomic Emission Chromatography (ICP) analysis showed that the Cs component was 5.0% by weight.

촉매 BCatalyst B

초산루비듐 8.5g을 사용한 것을 제외하고는 촉매 A의 제조방법과 같으며 ICP분석 결과 Rb성분은 5.1중량%였다.Except that 8.5g of rubidium acetate was used, and the same method as for the preparation of Catalyst A was performed.

촉매 CCatalyst C

초산칼륨 12.6g을 사용한 것을 제외하고는 촉매 A의 제조방법과 같으며 ICP분석결과 K성분은 5.0중량% 였다.Except for using 12.6 g of potassium acetate, the same method as for the preparation of Catalyst A, and the K component of the ICP analysis was 5.0 wt%.

촉매 DCatalyst D

담체로 ZSM-5(SiO2/Al2O3=36)를 사용하여 초산칼륨 12.6g을 담지시킨 것을 제외하고는 촉매 A의 제조방법과 같으며 ICP 분석 결과 K성분은 5.1중량% 였다.Except for carrying 12.6 g of potassium acetate using ZSM-5 (SiO 2 / Al 2 O 3 = 36) as a carrier, it was the same as the preparation method of Catalyst A. The K component was 5.1 wt% as a result of ICP analysis.

촉매 ECatalyst E

담체로 Y형 제올라이트(SiO2/Al2O3=5.2)를 사용하여 초산칼륨 12.6g을 담지시킨 것을 제외하고는 촉매 A의 제조방법과 같으며 ICP분석 결과 K성분은 5.1중량% 였다.Except for carrying 12.6 g of potassium acetate using Y-type zeolite (SiO 2 / Al 2 O 3 = 5.2) as a carrier, it was the same as the preparation method of Catalyst A. The K component was 5.1 wt% as a result of ICP analysis.

촉매 FCatalyst F

담체로 X형 제올라이트를 사용하여 초산칼륨 12.6g을 담지시킨 것을 제외하고는 촉매 A의 제조방법과 같으며 ICP분석 결과 K성분은 5.1중량%였다.Except for carrying 12.6 g of potassium acetate using X-type zeolite as a carrier, it was the same as the preparation method of catalyst A. The K component was 5.1 wt% as a result of ICP analysis.

촉매 GCatalyst G

담체로 ZSM-5(SiO2/Al2O3=36)를 사용하여 초산칼륨 25.2g을 담지시킨 것을 제외하고는 촉매 A의 제조방법과 같으며 ICP분석 결과 K성분은 10.1중량%였다.Except for carrying 25.2 g of potassium acetate using ZSM-5 (SiO 2 / Al 2 O 3 = 36) as a carrier, it was the same as the preparation method of Catalyst A. The K component was 10.1% by weight as a result of ICP analysis.

촉매 HCatalyst H

담체로 Y형 제올라이트(SiO2/Al2O3=5.2)를 사용하여 초산칼륨 25.2g을 담지시킨 것을 제외하고는 촉매 A의 제조방법과 같으며 ICP분석 결과 K성분은 10.1중량%였다.Except for carrying 25.2 g of potassium acetate using Y-type zeolite (SiO 2 / Al 2 O 3 = 5.2) as a carrier, it was the same as the preparation method of Catalyst A. The K component was 10.1% by weight as a result of ICP analysis.

촉매 ICatalyst I

담체로 X형 제올라이트를 사용하여 초산칼륨 25.2g을 담지시킨 것을 제외하고는 촉매 A의 제조방법과 같으며 ICP분석 결과 K성분은 10.0 중량%였다.Except for carrying 25.2 g of potassium acetate using X-type zeolite as a carrier, it was the same as the preparation method of catalyst A, and K component was 10.0 wt% as a result of ICP analysis.

촉매 JCatalyst J

담체로 모더나이트(Na-Mordenite·SiO2/Al2O3=13:Na2O=6wt%)를 사용하여 초산칼륨 25.2g을 담지시킨 것을 제외하고는 촉매 A의 제조방법과 같으며 ICP 분석 결과 K성분은 10.0중량%였다.Except for supporting 25.2 g of potassium acetate using mordenite (Na-MordeniteSiO 2 / Al 2 O 3 = 13: Na 2 O = 6wt%) as a carrier, the same method as in the preparation of Catalyst A was performed. As a result, K component was 10.0 weight%.

촉매 KCatalyst K

담체로 모더나이트(Na-Mordenite·SiO2/Al2O3=13:Na2O=6wt%)를 사용하여 초산루비듐 17.0g을 담지시킨 것을 제외하고는 촉매 A의 제조방법과 같으며 ICP분석 결과 Rb성분은 10.0중량%였다.Except for supporting 17.0 g of rubidium acetate using mordenite (Na-MordeniteSiO 2 / Al 2 O 3 = 13: Na 2 O = 6wt%) as a carrier, the same method as in the preparation of Catalyst A was performed. As a result, the Rb component was 10.0 wt%.

촉매 LCatalyst L

담체인 모더나이트(Na-Mordenite·SiO2/Al2O3=13:Na2O=6wt%)에 다른 성분을 담지시키지 않고 그 자체를 반응촉매로 사용한다.Mordenite (Na-MordeniteSiO 2 / Al 2 O 3 = 13: Na 2 O = 6wt%), which is a carrier, is used as a reaction catalyst without supporting other components.

비교예 1 및 참고예 1Comparative Example 1 and Reference Example 1

무촉매하에서 반응에 대한 압력 효과Pressure effect on the reaction under no catalyst

100㎖의 고압반응기내에 용매인 벤젠 60㎖, CPD 3.3g 및 BD 5.2g을 질소분위기하에서 첨가한다. 별도의 부가 압력을 주지 않은 경우(비교예 1)와 불활성기체를 주입하여 반응온도에서 압력이 400psig인 경우(참고예 1)에 대해 결과를 비교하였다. 반응기를 교반시키면서 온도를 올려 200℃에서 10분 동안 반응을 수행하였다. 반응 완료후, 온도를 상온으로 낮추고, 반응 생성물을 취하여 기체 크로마토그래피를 사용, 생성물을 분석하였다. 분석결과는 하기 표 1과 같다.In a 100 ml autoclave, 60 ml of solvent benzene, 3.3 g CPD and 5.2 g BD are added under a nitrogen atmosphere. The results were compared for the case where no additional pressure was applied (Comparative Example 1) and the inert gas was injected at a pressure of 400 psig at the reaction temperature (Reference Example 1). The temperature was raised while stirring the reactor and the reaction was performed at 200 ° C. for 10 minutes. After the reaction was completed, the temperature was lowered to room temperature, the reaction product was taken, and the product was analyzed using gas chromatography. The analysis results are shown in Table 1 below.

반응압력Reaction pressure 비교예 1(150psi)Comparative Example 1 (150 psi) 참고예 1(400psi)Reference Example 1 (400 psi) CPD 전환율(%)% CPD conversion 56.856.8 88.888.8 선택도(%)Selectivity (%) VNBVNB 10.110.1 37.537.5 THITHI 4.34.3 9.69.6 DCPDDCPD 71.971.9 47.547.5 올리고머Oligomer 13.713.7 5.45.4

상기 표1에서 CPD의 전환율 및 선택도의 계산방법은 각각 하기 수학식 1 및 2와 같다.In Table 1, the calculation method of the conversion rate and the selectivity of CPD is shown in Equations 1 and 2, respectively.

비교예 2Comparative Example 2

무촉매, 반응압력 400psig에서 반응시간 효과No catalyst, reaction time effect at 400 psig

참고예 1과 같이 고압반응기에 반응물을 첨가하고, 불활성가스를 주입 부가압력을 주고, 200℃에서의 반응시간에 대한 효과를 비교하였다. 반응 완료후, 온도를 상온으로 낮추고, 반응 생성물을 취하여 기체 크로마토그래피를 사용, 생성물을 분석하였다. 분석결과는 하기 표2와 같다.As in Reference Example 1, the reactants were added to the high pressure reactor, the inert gas was injected to give an additional pressure, and the effects on the reaction time at 200 ° C. were compared. After the reaction was completed, the temperature was lowered to room temperature, the reaction product was taken, and the product was analyzed using gas chromatography. The analysis results are shown in Table 2 below.

반응시간(분)Response time (minutes) 1010 3030 6060 CPD 전환율(%)% CPD conversion 88.888.8 90.290.2 95.495.4 선택도(%)Selectivity (%) VNBVNB 37.637.6 43.143.1 30.330.3 THITHI 9.69.6 16.216.2 39.939.9 DCPDDCPD 47.547.5 33.433.4 11.211.2 올리고머Oligomer 5.45.4 7.37.3 18.618.6

실시예 1Example 1

개질한 촉매중에 따른 반응Reaction according to modified catalyst

촉매제조예에서 개질시킨 여러 가지 종류의 불균일 촉매 1g을 넣은 상태에서 참고예 1과 같은 조건으로하고, 불활성가스를 사용하여 반응압력을 400psig, 반응 시간은 10분으로 고정하였다. 반응 완료후 온도를 상온으로 낮추고, 반응 생성물을 취한다. 반응물안에 고체 촉매를 제거한 후 반응용액을 기체 크로마토그래피를 사용, 생성물을 분석하였다. 그 결과를 하기 표 3에 기재하였다.1 g of various types of heterogeneous catalysts modified in the catalyst preparation example were put in the same conditions as in Reference Example 1, and the reaction pressure was fixed at 400 psig and the reaction time was 10 minutes using an inert gas. After the reaction was completed, the temperature was lowered to room temperature, and the reaction product was taken. After the solid catalyst was removed from the reaction, the reaction solution was analyzed using gas chromatography. The results are shown in Table 3 below.

촉매catalyst CPD전환율(%)CPD conversion rate (%) 선택도(wt%)Selectivity (wt%) VNBVNB THITHI DCPDDCPD 올리고머Oligomer 촉매 LCatalyst L 94.094.0 36.736.7 18.518.5 10.010.0 34.834.8 촉매 CCatalyst C 95.495.4 54.854.8 19.919.9 17.317.3 8.08.0 촉매 JCatalyst J 91.191.1 54.454.4 19.819.8 17.917.9 7.97.9 촉매 DCatalyst D 93.193.1 54.254.2 20.620.6 16.116.1 9.19.1 촉매 GCatalyst G 91.191.1 53.553.5 22.522.5 14.314.3 9.79.7 촉매 ECatalyst E 92.292.2 52.752.7 22.822.8 15.615.6 8.98.9 촉매 HCatalyst H 92.092.0 53.553.5 22.422.4 15.115.1 9.09.0 촉매 FCatalyst F 93.793.7 48.648.6 21.521.5 14.414.4 15.515.5 촉매 ICatalyst I 94.094.0 53.653.6 23.023.0 12.612.6 10.810.8

비교예 3Comparative Example 3

상압에서 촉매에 담지된 금속중에 따른 반응결과Reaction result according to the metal supported on the catalyst at normal pressure

상기 실시예 1에서 모더나이트에 여러 알칼리금속염들을 담지시켜 촉매로 사용하고 별도의 부가 압력없이 200℃에서 10분간 반응시켰다. 그 결과를 하기 표 4에 기재하였다.In Example 1, various alkali metal salts were supported on mordenite and used as a catalyst, and reacted at 200 ° C. for 10 minutes without additional pressure. The results are shown in Table 4 below.

반응촉매Reaction catalyst 촉매 CCatalyst C 촉매 ACatalyst A 촉매 BCatalyst B 촉매 KCatalyst K CPD 전환율(%)% CPD conversion 89.589.5 69.269.2 82.982.9 81.381.3 선택도(%)Selectivity (%) VNBVNB 33.833.8 20.220.2 32.332.3 24.324.3 THITHI 13.913.9 7.97.9 14.514.5 11.011.0 DCPDDCPD 40.240.2 66.766.7 46.946.9 57.557.5 올리고머Oligomer 7.17.1 5.25.2 6.36.3 7.27.2

비교예 4Comparative Example 4

온도변화에 따른 반응Response to temperature change

상기 실시예 1에서 반응기에 촉매 C 1g과 반응물을 주입하고, 별도의 부가압력 없이 온도를 160℃∼220℃까지 올려 10분간 반응시켰다. 각 온도에 따른 결과는 하기 표 5와 같다.In Example 1, 1g of the catalyst C and the reactant were injected into the reactor, and the reaction was carried out for 10 minutes by raising the temperature to 160 ° C to 220 ° C without additional pressure. Results according to each temperature are shown in Table 5 below.

반응온도(℃)Reaction temperature (℃) 160160 180180 200200 220220 CPD 전환율(%)% CPD conversion 64.464.4 64.264.2 85.985.9 46.846.8 선택도(%)Selectivity (%) VNBVNB 9.99.9 11.611.6 33.833.8 8.58.5 THITHI 2.42.4 2.12.1 13.913.9 10.910.9 DCPDDCPD 87.787.7 85.785.7 40.140.1 71.071.0 올리고머Oligomer 00 0.60.6 7.17.1 9.89.8

실시예 2Example 2

반응압력 400psig 에서 촉매에 담지된 금속염에 따른 반응결과Reaction result according to metal salt supported on catalyst at reaction pressure of 400 psig

Na, K, Cs, Rb을 모더나이트에 5중량%로 담지시킨 촉매 1g을 사용하여 실시예 1과 같이 반응압력 400psig, 반응온도 200℃에서 10분간 반응시켰다. 그 결과를 하기 표 6에 기재하였다.1 g of a catalyst having Na, K, Cs, and Rb supported on mordenite at 5 wt% was reacted for 10 minutes at 400 psig at a reaction pressure of 200 ° C as in Example 1. The results are shown in Table 6 below.

반응촉매Reaction catalyst 촉매 LCatalyst L 촉매 CCatalyst C 촉매 BCatalyst B 촉매 ACatalyst A CPD 전환율(%)% CPD conversion 90.290.2 89.689.6 90.890.8 90.990.9 선택도(%)Selectivity (%) VNBVNB 48.748.7 48.248.2 49.449.4 49.249.2 THITHI 16.516.5 17.617.6 19.019.0 20.420.4 DCPDDCPD 27.127.1 26.726.7 24.324.3 21.921.9 올리고머Oligomer 7.77.7 7.57.5 7.37.3 8.58.5

실시예 3Example 3

반응 압력 400psig에서 시간변화에 따른 반응-금속염을 담지한 모더나이트 촉매Mordenite catalyst carrying reaction-metal salts with time variation at 400 psig

실시예 1에서 반응압력 400psig에서 하기 표 7에 기재된 촉매를 이용하여 200℃에서 시간을 변화시켜 가면서 반응시켰다. 그 결과를 하기 표 7에 기재하였다.In Example 1, the reaction was carried out at 400 ° C. under a reaction pressure of 200 ° C. using a catalyst described in Table 7 below. The results are shown in Table 7 below.

촉매catalyst 촉매 BCatalyst B 촉매 ACatalyst A 반응온도(℃)Reaction temperature (℃) 10분10 minutes 30분30 minutes 60분60 minutes 10분10 minutes 30분30 minutes 60분60 minutes CPD 전환율(%)% CPD conversion 90.890.8 93.093.0 96.496.4 90.990.9 91.491.4 8181 선택도(wt%)Selectivity (wt%) VNBVNB 49.449.4 42.342.3 27.827.8 49.249.2 48.248.2 43.643.6 THITHI 19.019.0 37.037.0 50.450.4 20.420.4 18.818.8 34.634.6 DCPDDCPD 24.324.3 9.29.2 2.62.6 21.921.9 24.924.9 8.88.8 올리고머Oligomer 7.37.3 11.511.5 19.219.2 8.58.5 8.18.1 13.013.0

실시예 4Example 4

반응압력 400psig에서 온도변화에 따른 반응Reaction with temperature change at reaction pressure of 400 psig

반응 압력 400psig에서 반응기를 교반하면서 원하는 온도까지 온도를 올려 실시예 1과 같이 반응을 수행하였다. 반응시간을 10분으로 고정하였다. 그 결과를 하기 표 8에 기재하였다.The reaction was carried out as in Example 1 by raising the temperature to the desired temperature while stirring the reactor at a reaction pressure of 400 psig. The reaction time was fixed at 10 minutes. The results are shown in Table 8 below.

반응온도(℃)Reaction temperature (℃) 160160 180180 200200 220220 CPD 전환율(%)% CPD conversion 85.985.9 84.684.6 90.890.8 90.890.8 선택도(wt%)Selectivity (wt%) VNBVNB 33.833.8 31.631.6 49.449.4 24.524.5 THITHI 13.913.9 7.97.9 1919 53.953.9 DCPDDCPD 40.240.2 56.056.0 24.324.3 6.86.8 올리고머Oligomer 7.17.1 4.54.5 7.37.3 14.814.8

상기 실시예로부터 알 수 있는 바와 같이, 본 발명에 따른 촉매존재하의 반응에 있어서 압력효과를 비교할 때, 400psi로 압력을 상승시킴에 따라 CPD의 전환율이 커질 뿐만 아니라 VNB에 대한 선택도도 약 20% 정도 증가함을 나타내었다. 이는 상기 조건하에서 반응 혼합물이 액상으로 존재함에 따라 촉매하에서 반응물간의 접촉을 용이하게 됨에 따른 것으로 사료된다. 또한, 실시예 1을 비교예 1 및 참고예 1과 비교해볼 때, 촉매 존재하의 반응은 VNB로의 선택도가 15% 이상 상승되는 효과를 가져온다. 아울러, 본 발명에 따른 촉매를 일본 특개소 제 48-92353호에 보고된 활성알루미나 담체 촉매와 비교해볼 때, 반응시 성능은 약간 떨어지는 것으로 나타나나, 입자의 크기, 내구성 및 반응시간 등을 고려하면 연속공정의 적용에 훨씬 유리함을 알 수 있다.As can be seen from the above examples, when comparing the pressure effect in the reaction in the presence of the catalyst according to the present invention, as the pressure is increased to 400 psi, not only the conversion of CPD increases but also the selectivity to VNB is about 20%. It showed an increase. This is believed to be due to facilitating contact between the reactants under the catalyst as the reaction mixture is in the liquid phase under the above conditions. In addition, when comparing Example 1 with Comparative Example 1 and Reference Example 1, the reaction in the presence of a catalyst has the effect of increasing the selectivity to VNB by 15% or more. In addition, when the catalyst according to the present invention is compared with the activated alumina carrier catalyst reported in Japanese Patent Application Laid-Open No. 48-92353, the performance of the reaction appears to be slightly lower, but considering the particle size, durability and reaction time, etc. It can be seen that it is much more advantageous for the application of the continuous process.

Claims (11)

원소주기율 제 1족의 알칼리 금속, 제 2족의 알칼리 토금속, 또는 이들의 혼합물을 알루미나, 실리카, 실리카-알루미나, 활성탄 및 제올라이트로 이루어진 군으로부터 선택된 불균일 고체 담체 기질에 담지시켜 제조한 촉매 및 용매존재하에서, 씨클로펜타디엔 1몰과 1,3-부타디엔 1∼4몰을 160℃∼250℃, 160∼500psig의 압력하에서 10분∼2시간동안 반응시키는 것을 특징으로 하는 5-비닐-2-노르보넨의 제조방법.Catalysts and solvents prepared by loading an alkali metal of Group 1, alkaline earth metals of Group 2, or a mixture thereof on a heterogeneous solid carrier substrate selected from the group consisting of alumina, silica, silica-alumina, activated carbon and zeolite 5-vinyl-2-norbornene characterized by reacting 1 mole of cyclopentadiene and 1 to 4 moles of 1,3-butadiene for 10 minutes to 2 hours at 160 ° C to 250 ° C and 160 to 500 psig. Manufacturing method. 제 1항에 있어서, 상기 촉매의 사용량이 씨클로펜타디엔 기준으로 5∼50중량%임을 특징으로 하는 5-비닐-2-노르보넨의 제조방법.The method of claim 1, wherein the catalyst is used in an amount of 5 to 50% by weight based on cyclopentadiene. 제 1항에 있어서, 상기 알칼리 금속이 Na, K, Cs, Rb, 이들의 혼합물, 또는 이들의 함금임을 특징으로 하는 5-비닐-2-노르보넨의 제조방법.The method of claim 1, wherein the alkali metal is Na, K, Cs, Rb, a mixture thereof, or a mixture thereof. 제 1항에 있어서, 상기 알칼리 토금속이 Mg, Ca, Sr, Ba, 이들의 혼합물, 또는 이들의 합금임을 특징으로 하는 5-비닐-2-노르보넨의 제조방법.The method for preparing 5-vinyl-2-norbornene according to claim 1, wherein the alkaline earth metal is Mg, Ca, Sr, Ba, a mixture thereof, or an alloy thereof. 제 1항에 있어서, 상기 촉매가 담체에 대하여 4∼10중량%로 담지됨을 특징으로 하는 5-비닐-2-노르보넨의 제조방법.The process for producing 5-vinyl-2-norbornene according to claim 1, wherein the catalyst is supported at 4 to 10% by weight based on the carrier. 제 1항에 있어서, 상기 제올라이트가 모더나이트, X형 제올라이트, Y형 제올라이트, ZSM-5, 제올라이트 베타 또는 L형 제올라이트임을 특징으로 하는 5-비닐-2-노르보넨의 제조방법.The method of claim 1, wherein the zeolite is mordenite, X-type zeolite, Y-type zeolite, ZSM-5, zeolite beta or L-type zeolite. 제 1항에 있어서, 상기 1,3-부타디엔의 반응몰비가 씨클로 펜타디엔 1몰에 대하여 1.5∼2몰임을 특징으로 하는 5-비닐-2-노르보넨의 제조방법.The method of claim 1, wherein the reaction molar ratio of 1,3-butadiene is 1.5 to 2 moles with respect to 1 mole of cyclopentadiene. 제 1항에 있어서, 상기 반응 압력이 300∼450psig임을 특징으로 하는 5-비닐-2-노르보넨의 제조방법.The method of claim 1, wherein the reaction pressure is 300 to 450 psig. 제 1항에 있어서, 상기 반응온도가 190∼210℃임을 특징으로 하는 5-비닐-2-노르보넨의 제조방법.The method according to claim 1, wherein the reaction temperature is 190 to 210 ° C. 제 1항에 있어서, 상기 반응시간이 10∼30분임을 특징으로 하는 5-비닐-2-노르보넨의 제조방법.The method of claim 1, wherein the reaction time is 10 to 30 minutes. 제 1항에 있어서, 상기 용매가 탄화수소계 용매 또는 방향족 탄화수소계 용매임을 특징으로 하는 5-비닐-2-노르보넨의 제조방법.The method of claim 1, wherein the solvent is a hydrocarbon solvent or an aromatic hydrocarbon solvent.
KR1019970040727A 1997-08-25 1997-08-25 Method for preparing 5-vinyl-2-norbornene using a ununiform catalyst KR100258196B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970040727A KR100258196B1 (en) 1997-08-25 1997-08-25 Method for preparing 5-vinyl-2-norbornene using a ununiform catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970040727A KR100258196B1 (en) 1997-08-25 1997-08-25 Method for preparing 5-vinyl-2-norbornene using a ununiform catalyst

Publications (2)

Publication Number Publication Date
KR19990017713A true KR19990017713A (en) 1999-03-15
KR100258196B1 KR100258196B1 (en) 2000-06-01

Family

ID=19518478

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970040727A KR100258196B1 (en) 1997-08-25 1997-08-25 Method for preparing 5-vinyl-2-norbornene using a ununiform catalyst

Country Status (1)

Country Link
KR (1) KR100258196B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200061625A (en) * 2018-11-26 2020-06-03 롯데케미칼 주식회사 Method of preparing 5-vinyl-2-norbornene using xylene as solvent

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652921B1 (en) 2005-12-07 2006-12-04 한국과학기술연구원 Preparation method of 5-vinyl-2-norbornene using supported catalysts containg fluoride compound
KR20200064458A (en) 2018-11-29 2020-06-08 롯데케미칼 주식회사 Method for Production of 5-Vinyl-2-Norbornene Using Porous Titanosilicate Catalyst
KR20200064457A (en) 2018-11-29 2020-06-08 롯데케미칼 주식회사 Method for Production of 5-Vinyl-2-Norbornene Using Zeolite Catalyst substituted with Sn

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892353A (en) * 1972-03-15 1973-11-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200061625A (en) * 2018-11-26 2020-06-03 롯데케미칼 주식회사 Method of preparing 5-vinyl-2-norbornene using xylene as solvent

Also Published As

Publication number Publication date
KR100258196B1 (en) 2000-06-01

Similar Documents

Publication Publication Date Title
CA1211098A (en) Conversion of methane to olefins and hydrogen
US4463207A (en) Arene alkylation with metal oxide-tantalum halide/oxide catalysts
EP0429800B2 (en) Process for preparing unsaturated carboxylic acid ester
US4219687A (en) Hydroalkylation of benzene and analogs
JPH0357884B2 (en)
KR100258196B1 (en) Method for preparing 5-vinyl-2-norbornene using a ununiform catalyst
US4358628A (en) Alkylation of benzene compounds with detergent range olefins
US5847223A (en) Process for the preparation of methyl mercaptan
Beregszászi et al. Friedel-Crafts reactions induced by heteropoly acids. Regioselective adamantyl substitution of aromatic compounds
US4380683A (en) Hydroalkylation of benzene and analogs
US5196621A (en) Process for the cyclodimerization of 1,3-butadienes to 4-vinylcyclohexenes
KR100652922B1 (en) A process for preparing 5-vinyl-2-norbornene
KR100652921B1 (en) Preparation method of 5-vinyl-2-norbornene using supported catalysts containg fluoride compound
JP3881754B2 (en) Process for producing 3,5,5-trimethylcyclohex-3-en-1-one
EP0186274B1 (en) Process for the oxidative dehydrogenation of para-ethyltoluene to para-methylstyrene
KR20000062917A (en) Method of producing di- or tri-substituted benzaldehydes in high yields
US3956183A (en) Catalysts for production of cycloalkylaromatics
EP0300498B1 (en) Method for producing p-alkylstyrene
US4806697A (en) Selective liquid phase disproportionation catalysts for iodoaromatics
JPH08176022A (en) Production of 1,6-hepatdiene or 1,6-octadiene
US3257464A (en) Process for the preparation of ethyl mercaptan and diethyl sulfide
JP4162732B2 (en) Method for producing p-dichlorobenzene
JP2799890B2 (en) Method for producing aromatic compound having allyl group
US4094920A (en) Hydroalkylation using multi metallic zeolite catalyst
Al-hassan Palladium-catalyzed cross-coupling of vinylalanes with aryl halides

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080311

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee