KR19990008580A - Porous Polyurethane Foam for Wastewater Treatment - Google Patents

Porous Polyurethane Foam for Wastewater Treatment Download PDF

Info

Publication number
KR19990008580A
KR19990008580A KR1019970030608A KR19970030608A KR19990008580A KR 19990008580 A KR19990008580 A KR 19990008580A KR 1019970030608 A KR1019970030608 A KR 1019970030608A KR 19970030608 A KR19970030608 A KR 19970030608A KR 19990008580 A KR19990008580 A KR 19990008580A
Authority
KR
South Korea
Prior art keywords
wastewater treatment
polyurethane foam
weight
porous polyurethane
foam
Prior art date
Application number
KR1019970030608A
Other languages
Korean (ko)
Other versions
KR100228735B1 (en
Inventor
조우현
Original Assignee
최진석
주식회사 동성화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최진석, 주식회사 동성화학 filed Critical 최진석
Priority to KR1019970030608A priority Critical patent/KR100228735B1/en
Publication of KR19990008580A publication Critical patent/KR19990008580A/en
Application granted granted Critical
Publication of KR100228735B1 publication Critical patent/KR100228735B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

본 발명은 폐수처리용 다공성 폴리우레탄 폼에 관한 것으로서, 더욱 상세하게는 폴리테트라메틸렌 글리콜, 폴리프로필렌 글리콜의 폴리올 화합물과 방향족 디이소시아네이트 화합물을 주성분으로 하고, 이와 함께 실리콘계 정포제, 주석촉매, 아민촉매 및 물을 발포 반응시켜 폐수처리 폭기조내에서 장시간 유동시 내마모성 등 기계적 물성이 뛰어날 뿐만 아니라 미생물의 담체로 사용될 경우에도 가수분해 없이 유기물을 분해할 수 있도록 우수한 내구성을 갖도록 제조한 폐수처리용 다공성 폴리우레탄 폼에 관한 것이다.The present invention relates to a porous polyurethane foam for waste water treatment, and more particularly, a polyol compound of polytetramethylene glycol, polypropylene glycol and an aromatic diisocyanate compound as main components, together with a silicone foam stabilizer, tin catalyst, and amine catalyst. And porous polyurethane for wastewater treatment, which is manufactured to have excellent durability to decompose organic matter without hydrolysis even when used as a carrier of microorganisms as well as excellent mechanical properties such as abrasion resistance during long-term flow in wastewater treatment aeration tank by foaming water. It's about a form.

Description

폐수처리용 다공성 폴리우레탄 폼Porous Polyurethane Foam for Wastewater Treatment

본 발명은 폐수처리용 다공성 폴리우레탄 폼에 관한 것으로서, 더욱 상세하게는 폴리테트라메틸렌 글리콜, 폴리프로필렌 글리콜의 폴리올 화합물과 방향족 디이소시아네이트 화합물을 주성분으로 하고, 이와 함께 실리콘계 정포제, 주석촉매, 아민촉매 및 물을 발포 반응시켜 폐수처리 폭기조내에서 장시간 유동시 내마모성 등 기계적 물성이 뛰어날 뿐만 아니라 미생물의 담체로 사용될 경우에도 가수분해 없이 유기물을 분해할 수 있도록 우수한 내구성을 갖도록 제조한 폐수처리용 다공성 폴리우레탄 폼에 관한 것이다.The present invention relates to a porous polyurethane foam for waste water treatment, and more particularly, a polyol compound of polytetramethylene glycol, polypropylene glycol and an aromatic diisocyanate compound as main components, together with a silicone foam stabilizer, tin catalyst, and amine catalyst. And porous polyurethane for wastewater treatment, which is manufactured to have excellent durability to decompose organic matter without hydrolysis even when used as a carrier of microorganisms as well as excellent mechanical properties such as abrasion resistance during long-term flow in wastewater treatment aeration tank by foaming water. It's about a form.

최근 환경보존이 최대 사회문제로 대두되고 있고, 특히 우리나라와 같이 국토가 좁은 국가에서는 환경오염의 주요인인 생활하수 및 산업공장에서 나오는 각종 폐수를 효율적으로 처리하기 위한 기술 개발이 절실히 요구된다. 대부분의 환경관련 엔지니어링 회사에서는 폐수를 처리하는데 있어서 미생물을 이용한 생물학적 처리방법을 적용하여 더이상의 새로운 시설을 추가적으로 투자하지 않고도 기존의 시설을 효율적으로 활용하면서 폐수처리 능력을 향상시키고자 노력하고 있다.Recently, environmental preservation has emerged as the biggest social problem. Especially, in the narrow country such as Korea, there is an urgent need for the development of technology to efficiently treat various wastewaters from domestic sewage and industrial plants, which are the main causes of environmental pollution. Most environmental engineering firms are trying to improve wastewater treatment capacity by efficiently utilizing existing facilities without applying additional new facilities by applying biological treatment method using microorganisms in wastewater treatment.

미생물을 이용한 생물학적 처리방법이라 함은 활성슬러지내에 포함된 미생물의 생리적 현상을 이용하여 폐수를 처리하는 방법으로서, 기존의 물리·화학적 방법에 비해 경제성을 가지며 처리의 신뢰성도 높은 것으로 알려져 있다. 생물학적 폐수처리방법에서 미생물을 담지시키기 위해 사용되는 담체는 폐수처리 시설의 폭기조내에서 유체의 흐름에 따라 유동하기 때문에 내마모성 등 우수한 물리적 성질이 요구되며, 담체의 내부는 고농도로 미생물이 집적되어 유기물을 분해하게 되므로 내산성, 내알카리성 및 내가수분해성을 가져야 한다. 상기의 조건을 만족시키는 여러 담체중에서도 폴리우레탄 폼의 경우는 화학적·기계적으로 안정하고 값이 저렴하여 폐수처리 담체로서 유용하여 널리 이용되어져 왔고, 이에 대한 연구도 다각적으로 전개되어 왔다.Biological treatment using microorganisms is a method of treating wastewater using physiological phenomena of microorganisms contained in activated sludge, and is known to be more economical and reliable than conventional physical and chemical methods. Carriers used to support microorganisms in biological wastewater treatment methods require excellent physical properties such as abrasion resistance because they flow with the flow of fluid in the aeration tank of a wastewater treatment facility. Since it is decomposed, it must have acid resistance, alkali resistance and hydrolysis resistance. Among various carriers satisfying the above conditions, polyurethane foam has been widely used as a wastewater treatment carrier because it is chemically and mechanically stable and inexpensive, and various studies have been developed.

예를들면 일본의 공개 논문 폴리우레탄 폼을 이용한 유동상 생물막 처리[ 용수와 폐수 1990, Vol.32 No.5]에서는, 폴리에테르를 기본 재질로 하여 공극율 95% 이상의 연속기포형을 가지는 폴리우레탄 폼(Everfoam B™, Bridgestone사 제조)을 미생물 담체로 사용하였으나, 내마모도 등의 여러 가지 물성이 저하되는 단점이 있었다.For example, in a fluidized bed biofilm treatment [water and wastewater 1990, Vol. 32 No. 5] using a polyurethane foam in Japan, a polyurethane foam having a continuous bubble type having a porosity of 95% or more based on polyether as a base material (Everfoam B ™, manufactured by Bridgestone) was used as a microbial carrier, but various physical properties such as wear resistance were lowered.

실제로 독일의 환경 엔지리어링사인 린데사(Linde co.)에서는 폴리프로필렌 글리콜을 폴리올 성분으로 사용하여 제조된 폴리우레탄 담체를 폐수처리용으로 사용하고 있다. 상기 폴리우레탄 담체는 물성 및 내마모성은 양호하지만 제조 기술 이전 비용이 높아 제품가격이 매우 비싸므로 실제적으로 사용하는 데에는 경제적으로 문제가 있다.Indeed, Linde co., A German environmental engineering company, uses a polyurethane carrier made of polypropylene glycol as a polyol component for wastewater treatment. The polyurethane carrier has good physical properties and abrasion resistance, but has a high economical cost because the product price is very high due to high manufacturing technology transfer costs.

본 발명에서는 폴리우레탄 폼의 고비용 문제, 내마모성 등의 기계적 물성 문제를 해결하기 위해서 노력하였다. 그 결과, 폴리올 화합물으로서 지금까지 미생물 담체 제조에 사용된 바 없는 새로운 성분을 사용하고 또한 폴리올 화합물과 방향족 디이소시아네이트 화합물의 반응시 실리콘계 정포제, 주석촉매, 아민촉매 및 물을 함께 사용하여 발포 반응시켜 다공성 폴리우레탄 폼을 제조함으로써 본 발명을 완성하였다.In the present invention, efforts have been made to solve mechanical problems such as high cost and wear resistance of polyurethane foam. As a result, as a polyol compound, a new component which has not been used in the preparation of microbial carriers so far is used, and in the reaction of the polyol compound and the aromatic diisocyanate compound, a foaming reaction is performed by using a silicon foam stabilizer, tin catalyst, amine catalyst and water together The present invention has been completed by making porous polyurethane foam.

따라서, 본 발명은 내마모성, 인장력 등 여러 물성을 향상시켜 폐수처리장의 폭기조에서도 마모되지 않고, 물리적으로 기공을 터트려 공극율을 극대화하고 동공의 크기를 균일하게하여 미생물을 담지율을 높이고 이로써 폐수처리 효율을 증대시킬 수 있는 미생물 담체용 폴리우레탄 폼을 제공하는데 그 목적이 있다.Therefore, the present invention improves various properties such as abrasion resistance, tensile strength, and does not wear in the aeration tank of the wastewater treatment plant, and physically bursts the pores to maximize the porosity and uniform the size of the pupils to increase the microbial loading rate, thereby improving wastewater treatment efficiency. It is an object of the present invention to provide a polyurethane foam for microbial carrier that can be increased.

도 1a는 종래 폴리에스테르 폴리우레탄 폼의 폐수처리 폭기조 투입전의 현미경 사진이고, 도 1b는 폐수처리 폭기조 투입 3주후의 현미경 사진이고,Figure 1a is a photomicrograph before the wastewater treatment aeration tank of the conventional polyester polyurethane foam, Figure 1b is a photomicrograph three weeks after the wastewater treatment aeration tank,

도 2는 종래 폴리에테르 폼의 폐수처리 폭기조 투입 2주후의 현미경 사진이고,Figure 2 is a micrograph two weeks after the input of the wastewater treatment aeration tank of the conventional polyether foam,

도 3은 본 발명의 다공성 폴리우레탄 폼의 폐수처리 폭기조 투입 4 개월후의 현미경 사진이다.Figure 3 is a micrograph after 4 months of the waste water treatment aeration tank of the porous polyurethane foam of the present invention.

본 발명은 폴리올 화합물과 방향족 디이소시아네이트 화합물을 주성분으로 하고, 이를 기타 첨가제와 함께 발포 반응시켜 제조한 다공성 폴리우레탄 폼에 있어서, 상기 폴리올 화합물으로는 폴리테트라메틸렌 글리콜, 폴리프로필렌 글리콜 또는 이들의 혼합물을 사용하고, 기타 첨가제로는 폴리올 화합물 100 중량부에 대하여 실리콘계 정포제 0.85 ∼ 1.00 중량부, 주석촉매 0.25 ∼ 0.35 중량부, 아민촉매 0.25 ∼ 0.40 중량부 및 물 3.2 ∼ 4.5 중량부가 첨가된 폐수처리용 다공성 폴리우레탄 폼의 제조방법을 그 특징으로 한다.The present invention is a porous polyurethane foam prepared by using a polyol compound and an aromatic diisocyanate compound as a main component, and foaming reaction with other additives, wherein the polyol compound is polytetramethylene glycol, polypropylene glycol, or a mixture thereof. As other additives, for wastewater treatment, 0.85 to 1.00 parts by weight of a silicon foam stabilizer, 0.25 to 0.35 parts by weight of tin catalyst, 0.25 to 0.40 parts by weight of amine catalyst and 3.2 to 4.5 parts by weight of water are added to 100 parts by weight of the polyol compound. It is characterized by a method for producing a porous polyurethane foam.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명의 다공성 폴리우레탄 폼은 폴리올 화합물으로서 비교적 가격이 저렴한 폴리테트라메틸렌 글리콜(이하,PTMG라 함), 폴리프로필렌 글리콜(이하,PPG라 함) 또는 이들의 혼합물을 사용하고, 이러한 폴리올 화합물과 방향족 디이소시아네이트 화합물을 반응시킬 때에는 실리콘 정포제, 주석촉매, 아민촉매 및 물과 함께 발포 반응시키므로 내마모성, 인장력 등의 물성이 우수하고 기공의 크기가 균일하며 공극율이 높아 미생물의 담지량을 높여 폐수처리효율을 높이게 되므로 폐수처리용 미생물 담체로 유용하다.The porous polyurethane foam of the present invention uses a relatively inexpensive polytetramethylene glycol (hereinafter referred to as PTMG), polypropylene glycol (hereinafter referred to as PPG) or a mixture thereof as a polyol compound. When the diisocyanate compound is reacted, it is foamed together with the silicon foam stabilizer, tin catalyst, amine catalyst, and water, so it has excellent physical properties such as abrasion resistance and tensile strength, uniform pore size, and high porosity, thereby increasing the amount of microorganisms to improve wastewater treatment efficiency. Since it is high, it is useful as a microbial carrier for wastewater treatment.

본 발명에 따른 다공성 폴리우레탄 폼의 제조과정을 보다 구체적으로 설명하면 다음과 같다.Referring to the manufacturing process of the porous polyurethane foam according to the present invention in more detail.

제 1 과정은 폴리올 화합물에 실리콘계 정포제, 주석촉매, 아민촉매 및 물 을 첨가하고 상온에서 700 ∼ 1200 rpm으로 중속혼합하여 충분히 교반하는 과정이다. PTMG의 융점이 22 ∼ 25℃ 범위인 것을 감안한다면 혼합온도는 26℃이상을 유지하는 것이 바람직하다.The first process is a process of adding a silicon foam stabilizer, tin catalyst, amine catalyst and water to the polyol compound and mixing the mixture at medium temperature at 700 to 1200 rpm at room temperature to sufficiently stir it. Considering that the melting point of PTMG is in the range of 22 to 25 ° C, the mixing temperature is preferably maintained at 26 ° C or more.

본 발명에서 특징적으로 사용하고 있는 폴리올 화합물로서의 PTMG는 고유의 강신도, 내마모성, 내가수분해성 등과 낮은 유리전이온도(Tg: -100℃)를 가지고 있는 바, 물성과 저온 특성이 우수하여 종래 PPG를 단독으로 사용하여 제조한 폴리우레탄의 경우보다 물성이 매우 향상된 결과를 보인다. 따라서 본 발명의 폴리우레탄은 연성의 성질을 가지게 되고, 고탄성을 가지며 기계적 물성이 우수하게 된다. 본 발명에서는 폴리올 화합물으로서 PTMG를 단독으도 사용할 수 있으나, 이보다는 PPG와 함께 사용하는 것이 경제적으로 제품가격을 저렴하다는 점에서 특히 좋으며, PTMG 50 ~ 100 중량%에 대하여 PPG 0 ~ 50 중량%일 때 폴리우레탄 폼의 물성이 증대되고 연성의 폴리우레탄 폼을 제조할 수 있다. 그러나, PTMG의 함량이 50 중량% 미만이면 폼의 연질성은 그대로 유지되나 내마모성 및 기계적 물성이 떨어지게 된다.PTMG as a polyol compound, which is characteristically used in the present invention, has a low glass transition temperature (T g : -100 ° C) inherent in elongation, abrasion resistance, hydrolysis resistance, and the like. The physical properties of the polyurethane produced by using it alone show much improved results. Therefore, the polyurethane of the present invention will have a soft property, high elasticity and excellent mechanical properties. In the present invention, PTMG can be used alone as a polyol compound, but it is particularly good in that it is economically inexpensive to use the product with PPG, and PPG 0 to 50% by weight relative to 50 to 100% by weight of PTMG. When the physical properties of the polyurethane foam is increased and can be produced a flexible polyurethane foam. However, when the content of PTMG is less than 50% by weight, the softness of the foam is maintained, but wear resistance and mechanical properties are inferior.

그리고, 실리콘계 정포제는 안정성 확보 및 거대한 셀(cell)의 제조를 가능하게 하고 셀막의 개방(open) 및 동공 크기를 조절하게 되며, 이는 폴리올 화합물 100 중량부에 대하여 0.85 ∼ 1.00 중량부 사용하는 것이 바람직하다. 주석촉매는 이소시아네이트와 폴리올과의 반응에 있어서 발포공정에 따른 폴리우레탄 구조를 활성화하여 수지화를 촉진시키기 위하여 첨가되는 성분으로서, 이는 폴리올 화합물 100 중량부에 대하여 0.25 ∼ 0.35 중량부 사용하는 것이 바람직하다. 아민촉매는 반응을 촉진시키기 위하여 첨가되는 성분으로서, 이는 폴리올 화합물 100 중량부에 대하여 0.25 ∼ 0.40 중량부 사용하는 것이 바람직하다. 물은 발포제로서 사용되는 것으로서 그 사용량에 따라 폴리우레탄의 밀도가 변화되며, 바람직하기로는 폴리우레탄 밀도를 36 ∼45 kg/m3범위로 조절하는 것이다. 이를 위하여 물은 폴리올 화합물 100 중량부에 대하여 3.2∼ 4.5 중량부 사용하는 것이 바람직하다.In addition, the silicon-based foam stabilizer is to ensure the stability and manufacture of large cells (cell) and to control the opening and the pore size of the cell membrane, which is 0.85 ~ 1.00 parts by weight based on 100 parts by weight of the polyol compound desirable. The tin catalyst is a component added to promote the resinization by activating the polyurethane structure according to the foaming step in the reaction between the isocyanate and the polyol, which is preferably 0.25 to 0.35 parts by weight based on 100 parts by weight of the polyol compound. . The amine catalyst is a component added to promote the reaction, and it is preferable to use 0.25 to 0.40 parts by weight based on 100 parts by weight of the polyol compound. Water is used as a blowing agent and the density of the polyurethane is changed according to the amount of use thereof, and preferably the polyurethane density is adjusted in the range of 36 to 45 kg / m 3 . For this purpose, the water is preferably used 3.2 to 4.5 parts by weight based on 100 parts by weight of the polyol compound.

제 2 과정은 상기 폴리올 화합물과 첨가제의 혼합물에 방향족 디이소시아네이트 화합물을 혼합한 후 발포 반응시켜 본 발명의 다공성 폴리우레탄 폼을 제조하는 과정이다.The second process is a process for producing the porous polyurethane foam of the present invention by mixing the aromatic diisocyanate compound in the mixture of the polyol compound and the additive and then foaming reaction.

방향족 디이소시아네이트 화합물은 폴리올 화합물 100 중량부에 대해 30 ∼ 40 중량부 투입하여, OH/NCO의 비율이 0.95 ∼ 1.05 되도록 3000 ∼ 6000 rpm 으로 교반한다. 본 발명에서 사용될 수 있는 방향족 디이소시아네이트 화합물은 폴리우레탄 제조시 통상적으로 사용되는 것이라면 모두 사용될 수 있으며, 특히 폴리올 화합물으로서의 PTMG 및 PPG와의 반응에서 폴리우레탄 폼의 밀도를 낮게 조절할 수 있는 톨루엔 디이소시아네이트(이하, TDI라 함)를 사용하는 것이 바람직하다.30-40 weight part of aromatic diisocyanate compounds are prepared with respect to 100 weight part of polyol compounds, and it stirs at 3000-6000 rpm so that ratio of OH / NCO may be 0.95-1.05. The aromatic diisocyanate compound that can be used in the present invention can be used as long as it is conventionally used in the production of polyurethane, in particular, toluene diisocyanate (hereinafter referred to as "polyol compound"), which can control the density of polyurethane foam low in the reaction with PTMG and PPG. , TDI).

또한, 상기 원료를 이용한 폴리우레탄 제조방법으로는 연속식 방법에 의해 각각의 원료를 별도의 라인에 의해 발포기의 혼합챔버(Chamber)내에 유입시켜 혼합 발포하는 동시 주입(one-shot) 방법이 가능한 바, 이는 폴리우레탄 폼의 가공 제조 공정도 간소화하여 제조 비용을 최소화 할 수 있는 특성을 갖고 있다.In addition, the polyurethane production method using the raw material is a one-shot method in which each raw material is introduced into the mixing chamber of the foaming machine by a separate line and mixed foamed by a continuous method. Bar, it also has the characteristics to minimize the manufacturing cost by simplifying the process of manufacturing polyurethane foam.

이렇게 제조된 폴리우레탄 폼을 천연 가스등과 산소를 폭발한계내에서 혼합, 점화 폭발시켜 그 충격으로 막을 파괴하는 방법을 이용하여 물리적으로 기공을 터뜨려 공극율이 95% 이상되게 제조한다. 이러한 제조 방법을 사용하면 종래의 폴리우레탄 폴리에테르 폼과는 달리 망상의 폼의 기공을 거의 100% 개방시킴으로써 미생물의 부착이 용이하며 비표면적을 크게 할 수 있다는 장점이 있다.The polyurethane foam thus prepared is mixed with a natural gas and oxygen within an explosion limit, and ignited to produce a porosity of 95% or more by physically popping pores using a method of destroying the membrane by the impact. Unlike the conventional polyurethane polyether foam, such a manufacturing method has an advantage that the micropore is easily attached and the specific surface area can be increased by opening the pores of the net foam almost 100%.

상기에서 설명한 바와 같은 본 발명의 폴리우레탄 폼은 우수한 내마모성 및 인장력을 갖을 뿐만 아니라 폼의 기공크기가 균일하고 공극율도 매우 커서 생활 및 도시하수, 그리고 산업 폐수의 생물학적 처리를 위한 미생물 담체로 매우 유용하다.Polyurethane foam of the present invention as described above not only has excellent abrasion resistance and tensile strength, the pore size of the foam is uniform and very large porosity is very useful as a microbial carrier for biological treatment of living and municipal sewage, and industrial wastewater .

이하 본 발명을 실시예에 의해 더욱 상세히 설명하는 바, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

실시예 1 ∼ 3 및 비교예 1 ~ 2Examples 1-3 and Comparative Examples 1-2

폴리올 화합물을 26℃에서 혼합 교반용기 내에 투입하고 실리콘계 정포제, 주석촉매, 아민촉매 및 물을 다음 표 1의 조성으로 투입하여 1000 rpm으로 교반하였다.The polyol compound was added to a mixed stirring vessel at 26 ° C., and a silicon foam stabilizer, tin catalyst, amine catalyst and water were added to the compositions shown in Table 1 below, followed by stirring at 1000 rpm.

상기 혼합물에 톨루엔 디이소시아네이트(TDI-80; 한국 화인케미칼사 제품)를 28℃로 유지하면서 다음 표 1의 조성으로 투입하여 4000 rpm으로 6 초간 고속 교반시켜 개방 박스 및 연속식 콘베어 라인에 주입하여 발포시키고 폭발처리하여 기공을 터뜨려 폴리우레탄 폼을 제조하였다.Toluene diisocyanate (TDI-80; manufactured by Fine Chemicals Co., Ltd.) was added to the mixture while maintaining the composition in the following Table 1 and rapidly stirring at 4000 rpm for 6 seconds at an injection rate in an open box and a continuous conveyor line. And foamed to explode pores to prepare polyurethane foam.

원료명Raw material name 실 시 예Example 비교예Comparative example 1One 22 33 1One 22 폴리올Polyol PTMG-2000(1) PTMG-2000 (1) 50g50 g 70g70 g 100g100 g -- -- PPG-5000(2) PPG-5000 (2) 50g50 g 30g30 g 0g0g -- -- GP-3000(3) GP-3000 (3) -- -- -- 100100 -- PP-2000(4) PP-2000 (4) -- -- -- -- 100100 정포제Defoamer L-580(4) L-580 (4) 0.5g0.5g 0.8g0.8 g 1.0g1.0 g 1.01.0 1.51.5 L-45(5) L-45 (5) 0.2g0.2 g 0.3g0.3 g 0.5g0.5g -- -- 주석촉매Tin catalyst T-9(6) T-9 (6) 0.2g0.2 g 0.3g0.3 g 0.4g0.4g 0.20.2 0.20.2 아민촉매Amine catalyst Dabco-33LV(7) Dabco-33LV (7) 0.2g0.2 g 0.4g0.4g 0.5g0.5g 0.30.3 0.30.3 발포제blowing agent water 3.0g3.0 g 3.5g3.5 g 4.0g4.0g 3.03.0 3.03.0 TDI-80TDI-80 30g30 g 35g35 g 40g40 g 4545 4545 OH/NCO의 비율OH / NCO ratio 1.051.05 1.01.0 0.950.95 1.051.05 1.051.05 (1) PTMG-2000 : 폴리테트라메틸렌글리콜, 일본 Hodogaya 제품(2) PPG-5000 : 폴리프로필렌글리콜, 동성화학 제품(3) GP-3000 : 폴리옥시프로필레이티드 글리세린, 한국 폴리올사 제품(4) PP-2000 : 폴리옥시프로필렌 글리콜, 한국 폴리올사 제품(5) L-45 : 미국 OSi Specialties사 제품(6) L-580 : 미국 OSi Specialties사 제품(7) T-9 (Tin Catalyst) : 미국 Air Product Chemical사 제품(8) Dabco-33LV (Amine Catalyst) : 미국 Air product Chemical사 제품(9) TDI-80 (톨루엔 디이소시아네이트) : 한국 화인케미칼사 제품(1) PTMG-2000: Polytetramethylene glycol, product of Hodogaya, Japan (2) PPG-5000: Polypropylene glycol, homochemical product (3) GP-3000: Polyoxypropylated glycerin, product of Korea Polyol Co., Ltd. (4) PP-2000: Polyoxypropylene Glycol, Korea Polyol Co., Ltd. (5) L-45: US OSi Specialties Co., Ltd. (6) L-580: US OSi Specialties Co., Ltd. (7) T-9 (Tin Catalyst): USA Air Product Chemical Company (8) Dabco-33LV (Amine Catalyst): US Air product Chemical Company (9) TDI-80 (toluene diisocyanate): Korea Fine Chemicals

실험예Experimental Example

상기 실시예 1 ∼ 3, 비교예 1 ∼ 2 및 종래의 폼 제품의 물성을 다음과 같은 방법으로 측정하여 다음 표 2에 나타내었다.The physical properties of Examples 1 to 3, Comparative Examples 1 to 2, and conventional foam products were measured by the following methods, and are shown in Table 2 below.

(1) 밀도측정 : 물성 시험 규격 JIS-K-6401 5.3항에 의거하여 측정하였다.(1) Density measurement: Physical property test It measured according to JIS-K-6401 Clause 5.3.

(2) 인장강도측정 : 물성 시험 규격 JIS-K-6401 5.3항에 의거하여 측정하였다.(2) Tensile strength measurement: Measured according to the property test standard JIS-K-6401 Clause 5.3.

(3) 신율측정 : 물성 시험 규격 JIS-K-6401 5.3항에 의거하여 측정하였다.(3) Elongation measurement: measured according to the physical property test standard JIS-K-6401 Clause 5.3.

(4) 인열강도측정 : 물성 시험 규격 JIS-K-6401 5.3항에 의거하여 측정하였다.(4) Tear strength measurement: Measured according to the physical property test standard JIS-K-6401 Clause 5.3.

(5) 내마모도측정 : 폴리우레탄 폼을 12×12×12mm 사각크기로 절단하여 폐수처리 아크릴 폭기조 전체 용량의 20 부피% 만큼 투입하여 미생물이 담체에 부착되어 폐수의 유기물을 분해하는 공정에 이용하였고, 폐수처리 효율 특성을 관찰하기 위하여 4개월동안 폐수처리 폭기조내에 투여된 폴리우레탄 폼을 공기주입기(Air Blower)에 의해 연속적으로 유동시켰다.(5) Abrasion resistance measurement: Polyurethane foam was cut into 12 × 12 × 12mm square size and 20 volume% of the total capacity of the waste water treatment acrylic aeration tank was used to decompose organic matter in the waste water by attaching microorganisms to the carrier. In order to observe the wastewater treatment efficiency characteristics, the polyurethane foam administered in the wastewater treatment aeration tank for 4 months was continuously flowed by an air blower.

구 분division 실시예Example 비교예Comparative example 1One 22 33 1One 22 폴리에스테르폼(a) Polyester foam (a) 폴리에테르폼(b) Polyether foam (b) 밀도(kg/m3)Density (kg / m 3 ) 3535 3535 4040 3535 3535 3535 3535 인장강도(kg/cm2)Tensile Strength (kg / cm 2 ) 1.61.6 1.71.7 1.71.7 1.121.12 1.101.10 1.41.4 1.031.03 신율(%)% Elongation 455455 450450 450450 205205 305305 366366 180180 인열강도(kg/cm)Tear strength (kg / cm) 1.251.25 1.31.3 1.351.35 0.850.85 1.091.09 1.21.2 0.70.7 공극율(%)Porosity (%) 9595 9595 9595 9595 9595 9595 9595 마모성Wear 마모성 없음No wear 마모성 없음No wear 마모성 없음No wear 시험2주후 모서리에 10%마모발생10% wear on corner after 2 weeks 시험2주후 모서리에 10%마모발생10% wear on corner after 2 weeks 시험3주후 가수분해 발생Hydrolysis occurred after 3 weeks of testing 시험2주후 모서리에 10% 마모발생10% wear on corner after 2 weeks 중량변화(1) Weight change (1) 거의 변화없음Almost unchanged 거의 변화없음Almost unchanged 거의 변화없음Almost unchanged 시험 2주후10% 감소10% decrease after 2 weeks 시험 2주후10% 감소10% decrease after 2 weeks 시험 2주후 30% 감소30% reduction after 2 weeks of testing 시험 2주후 10% 감소10% reduction after 2 weeks of testing (주)(1) 폭기조 투입 전·후의 중량변화를 측정한 것으로 미생물 담체로 사용되는12×12×12mm 크기의 폴리우레탄 폼 100개 중량을 측정(a) 폴리에스테르 폼 : 호주 Joyce사 제품, 제품명: 연성 폴리우레탄 폼Grade S30/30(b) 폴리에테르 폼 : 한국폴리올사 제품, 제품명: KONIX GP-3000(1) Weighing 100 weights of polyurethane foams of 12 × 12 × 12mm size used as microbial carrier by measuring weight change before and after aeration tank (a) Polyester foam: Product of Joyce, Australia : Flexible polyurethane foam Grade S30 / 30 (b) Polyether foam: KOLIX GP-3000

상기 표 2에서 관찰한 바와 같이, 본 발명의 폴리우레탄 폼은 내마모성이 우수하고 폐수처리용으로 통상적으로 적용되고 있는 폴리에테르 폼(한국폴리올사 제품)의 물성보다도 우수하다. 폴리에스테르 폼(호주 Joyce사 제품)의 경우, 시험 2 주만에 중량이 30% 감소하고, 현미경에 의한 마모도 관찰에 있어서도 폐수처리 폭기조에 투입하기전(도 1a 참조)과 투입 3주후(도 1b 참조)를 비교하였을 때 가수분해에 따른 마모도가 심하게 나타남을 알 수 있다. 폴리에테르 폼(한국폴리올사 제품)의 경우도 2주만에 폴리우레탄 폼의 모서리부분에 마모도가 심하게 나타남을 볼 수 있었다(도 2 참조). 그러나, 본 발명에 의한 다공성 폴리우레탄 폼은 폐수처리 폭기조 투입하여 4개월후에도 마모가 거의 나타나지 않은 우수한 내마모성을 확인할 수 있었다(도 3 참조).As observed in Table 2, the polyurethane foam of the present invention is excellent in wear resistance and superior to the physical properties of the polyether foam (manufactured by Korea Polyol Co., Ltd.) which is commonly applied for wastewater treatment. In the case of the polyester foam (manufactured by Joyce, Australia), the weight was reduced by 30% in two weeks after the test, and even before the injection into the wastewater treatment aeration tank (see FIG. 1A) and three weeks after the introduction (see FIG. 1B) also in the observation of wear under the microscope. When comparing the), it can be seen that the wear degree due to hydrolysis is severe. In the case of the polyether foam (manufactured by Korea Polyol Co., Ltd.), it was also seen that the wear was severely shown at the corners of the polyurethane foam in two weeks (see FIG. 2). However, the porous polyurethane foam according to the present invention was confirmed that excellent wear resistance hardly showed abrasion even after 4 months into the waste water treatment aeration tank (see FIG. 3).

따라서, 본 발명의 다공성 폴리우레탄 폼은 폐수처리 미생물 담체용으로 연속 사용 및 재사용이 가능함을 알 수 있다.Therefore, it can be seen that the porous polyurethane foam of the present invention can be continuously used and reused for wastewater treatment microbial carriers.

상술한 바와 같이, 본 발명의 제조방법에 의해 제조된 폴리우레탄 폼은 우수한 내마모성 및 인장력을 갖을 뿐만아니라 폼의 가공 제조 공정도 간소화하여 제조 비용을 최소화 할 수 있으므로 생활 및 도시하수, 산업 폐수의 생물학적 처리를 위한 미생물 담체로 사용되어 폐수처리 효율을 증대시키는 데 매우 유용하다.As described above, the polyurethane foam produced by the manufacturing method of the present invention not only has excellent wear resistance and tensile strength, but also can simplify the processing and manufacturing process of the foam, thereby minimizing the manufacturing cost. Used as a microbial carrier for treatment, it is very useful for increasing wastewater treatment efficiency.

Claims (2)

폴리올 화합물과 방향족 디이소시아네이트 화합물을 주성분으로하고, 이를 기타 첨가제와 함께 발포 반응시켜 제조한 다공성 폴리우레탄 폼에 있어서,In the porous polyurethane foam prepared by using a polyol compound and an aromatic diisocyanate compound as a main component, and foaming reaction with other additives, 상기 폴리올 화합물으로는 폴리테트라메틸렌 글리콜, 폴리프로필렌 글리콜 또는 이들의 혼합물을 사용하고, 기타 첨가제로는 폴리올 화합물 100 중량부에 대하여 실리콘계 정포제 0.85 ∼ 1.00 중량부, 주석촉매 0.25 ∼ 0.35 중량부, 아민촉매 0.25 ∼ 0.40 중량부 및 물 3.2∼ 4.5 중량부가 첨가된 것을 특징으로 하는 폐수처리용 다공성 폴리우레탄 폼.As the polyol compound, polytetramethylene glycol, polypropylene glycol, or a mixture thereof is used, and as other additives, 0.85 to 1.00 parts by weight of a silicon foam stabilizer, 0.25 to 0.35 parts by weight of tin catalyst, and amine based on 100 parts by weight of the polyol compound. A porous polyurethane foam for wastewater treatment, wherein 0.25 to 0.40 parts by weight of catalyst and 3.2 to 4.5 parts by weight of water are added. 제 1 항에 있어서, 상기 폴리올 화합물은 폴리테트라메틸렌 글리콜과 폴리프로필렌 글리콜이 50 ~ 100 중량% : 0 ~ 50 중량%로 이루어진 것을 특징으로 하는 폐수처리용 다공성 폴리우레탄 폼.According to claim 1, wherein the polyol compound polytetramethylene glycol and polypropylene glycol 50 to 100% by weight: porous polyurethane foam for wastewater treatment, characterized in that consisting of 0 to 50% by weight.
KR1019970030608A 1997-07-02 1997-07-02 Porous polyurethane foam for waste water KR100228735B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970030608A KR100228735B1 (en) 1997-07-02 1997-07-02 Porous polyurethane foam for waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970030608A KR100228735B1 (en) 1997-07-02 1997-07-02 Porous polyurethane foam for waste water

Publications (2)

Publication Number Publication Date
KR19990008580A true KR19990008580A (en) 1999-02-05
KR100228735B1 KR100228735B1 (en) 1999-11-01

Family

ID=19513173

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970030608A KR100228735B1 (en) 1997-07-02 1997-07-02 Porous polyurethane foam for waste water

Country Status (1)

Country Link
KR (1) KR100228735B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068367A (en) * 2002-02-15 2003-08-21 김임석 Method of a sewage, waste water disposal
CN114604978A (en) * 2021-03-26 2022-06-10 景赫新材料科技(浙江)有限公司 Application of hydrophilic porous biological carrier in field of circulating aquaculture water purification

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030074063A (en) * 2002-03-09 2003-09-19 김임석 Method of a sewage, waste water disposal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068367A (en) * 2002-02-15 2003-08-21 김임석 Method of a sewage, waste water disposal
CN114604978A (en) * 2021-03-26 2022-06-10 景赫新材料科技(浙江)有限公司 Application of hydrophilic porous biological carrier in field of circulating aquaculture water purification

Also Published As

Publication number Publication date
KR100228735B1 (en) 1999-11-01

Similar Documents

Publication Publication Date Title
KR100245236B1 (en) Polyurethane foams
CN1047182C (en) Process for making flexible foams
CA1268874A (en) Process for the preparation of filler-containing, anionically modified polyurethane (urea) compositions, the polyurethane (urea) compositions so- obtained, and the use thereof
US6214619B1 (en) Water swellable thermoplastic polyurethane gel bioreactor carrier containing a nutrient substance
CA2367077A1 (en) Carbon dioxide blown low density, flexible microcellular elastomers suitable for preparing shoe components
EP0415599A2 (en) Density reduction in flexible polyurethane foams
CA1328319C (en) Process for the production of filler-containing, polymer-bound compositions the compositions obtained by this process and their use
CN100489032C (en) Method for preparing composite magnetic polyurethane foam carrier and use thereof
CN105440304B (en) A kind of preparation method for the reticulated polyurethane microbe carrier for adding modified montmorillonoid
WO1990011970A1 (en) Process for removal of organic pollutants from waste water
JP4123003B2 (en) Microorganism immobilization carrier, sewage purification method and sewage purification device
JP5490426B2 (en) Polyurethane foam for microbial immobilization support
JP4879553B2 (en) Microbial carrier for water treatment
KR19990008580A (en) Porous Polyurethane Foam for Wastewater Treatment
US4503150A (en) Polyurethane foam and a microbiological metabolizing system
CN105367737B (en) The preparation method for the reticulated polyurethane microbe carrier that multi-walled carbon nanotube is modified
KR900001775A (en) Polymer polyol compositions and their use in preparing polyurethane foams
CN111247194B (en) Method of forming polyol premixes and foamable compositions and foams formed therefrom
KR100467062B1 (en) Manufacturing method for porous polyurethane foam media and media thereof
EP0213123A1 (en) Polyurethane foam and a microbiological metabolizing system
CN105348448B (en) A kind of preparation method of the reticulated polyurethane microbe carrier with inierpeneirating network structure
KR100418138B1 (en) Open-cell polyisocyanurate foam for fixing and supporting plants
JP6909364B1 (en) Manufacturing method of flexible polyurethane foam
JP2004359950A (en) Water-swelling polyurethane foam furnished with chemical resistance, method for producing the same, and carrier for bioreactor given by using the same
US4910256A (en) Mixtures of poly(alkylene carbonate) polyols and polymers of ethylenically unsaturated esters

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060814

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee