KR19980067398A - Process for producing high quality fuel oil by simultaneous pyrolysis of waste lubricant and waste plastic - Google Patents

Process for producing high quality fuel oil by simultaneous pyrolysis of waste lubricant and waste plastic Download PDF

Info

Publication number
KR19980067398A
KR19980067398A KR1019970003407A KR19970003407A KR19980067398A KR 19980067398 A KR19980067398 A KR 19980067398A KR 1019970003407 A KR1019970003407 A KR 1019970003407A KR 19970003407 A KR19970003407 A KR 19970003407A KR 19980067398 A KR19980067398 A KR 19980067398A
Authority
KR
South Korea
Prior art keywords
waste
oil
pyrolysis
waste plastic
fuel oil
Prior art date
Application number
KR1019970003407A
Other languages
Korean (ko)
Other versions
KR100213986B1 (en
Inventor
윤왕래
박종수
황영재
이호태
정헌
박상호
Original Assignee
손영목
한국에너지기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손영목, 한국에너지기술연구소 filed Critical 손영목
Priority to KR1019970003407A priority Critical patent/KR100213986B1/en
Publication of KR19980067398A publication Critical patent/KR19980067398A/en
Application granted granted Critical
Publication of KR100213986B1 publication Critical patent/KR100213986B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/02Combustion or pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

본 발명은 폐윤활유와 폐플라스틱의 동시에 열분해에하여 고급연료유를 생산할 수 있는 공정에 관한 것이다.The present invention relates to a process capable of producing high quality fuel oil by pyrolysis of waste lubricant and waste plastic at the same time.

고체인 폐플라스틱을 폐윤활유를 이용하여 액상으로 변화시켜 기존의 공정에서 고체를 다룸으로써 발생되는 문제를 일소할 수 있었다.The waste plastic, which is a solid, was converted into a liquid phase using waste lubricants to solve the problems caused by treating solids in the existing process.

액상으로 변화시킨 연료류를 열분해 반응기에서 분해한 후 평형증류 드럼을 이용하여 탄소수 21개 이하인 고급연료유를 분리하였으며 탑저제품은 재차 열분해하기 위하여 순환하는 독창적인 방법을 사용함으로써 본 공정에서는 가스와 코크성분을 제외한 모든 성분을 고급연유로 전환할 수 있도록 하였다.After decomposing the fuel in the liquid phase into the pyrolysis reactor, high-quality fuel oil having 21 or less carbon atoms was separated by using an equilibrium distillation drum, and the bottom product was circulated to pyrolyze again. All the ingredients except for the ingredient can be converted into high-quality condensed milk.

이와같이 탑저제품을 재순환하여 고급 연료유의 생산량을 19% 이상 증가시킬 수 있었다.Recycling the bottom products thus increased the production of high quality fuel oil by more than 19%.

또한 열분해시 생성되는 코크 성분은 플래시드럼에서 침강시켜서 드럼의 하부로 배출할 수 있도록 하여 공정상에 코크의 함량을 일정량 이하로 유지하여 공정의 안정성을 확보할 수 있는 획기적인 공정을 개발하였다.In addition, the coke component generated during pyrolysis is sedimented in the flash drum to be discharged to the lower part of the drum to develop a breakthrough process to ensure the stability of the process by maintaining the content of coke in the process below a certain amount.

Description

폐윤활유와 폐플라스틱의 동시 열분해에 의한 고급연료유 제조방법Process for producing high quality fuel oil by simultaneous pyrolysis of waste lubricant and waste plastic

본 발명은 폐윤활유(이하 폐유) 단독 및 폐윤활유와 폐플라스틱을 동시에 열분해하여 탄소수 21개 이하 혼합물(이하 고급연료유) 제조시 생산유 전량을 고급연료유화 할 수 있으며 또한 공정내 생성되는 코크성분을 손쉽게 분리할 수 있는 공정에 관한 것이다.The present invention can pyrolyze waste lubricating oil (hereinafter referred to as waste oil) alone and waste lubricating oil and waste plastic at the same time to produce a mixture of up to 21 carbon atoms (hereinafter referred to as high-grade fuel oil), thereby producing high-grade fuel oil and also producing coke components It is about a process that can be easily separated.

내연기관과 변속용 기어박스 등에 사용후 폐기처분되는 폐윤활유의 발생량은 94년도를 기준으로 연간 1백만 드럼에 달하는 막대한 양이다.The amount of waste lubricating oil that is disposed of after use in internal combustion engines and transmission gearboxes is an enormous amount of 1 million drums per year as of 1994.

또한 플라스틱은 94년도에 260만톤에 달하는 막대한 양이 발생되고 있으며 이의 증가 폭을 고려해 볼 때 현재의 주요 폐기방법인 매립법을 대체할 수 있는 기술이 절실한 상황이다.In addition, the amount of plastics amounted to 2.6 million tons in 1994, and considering the increase, the technology to replace the landfill method, which is the current major disposal method, is urgently needed.

따라서 본 발명에서는 이들을 효과적으로 처리하며 자원의 재활용을 득할 수 있는 방안에 대하여 수차례의 실험과 연구를 수행한 결과 폐플라스틱과 폐유를 이용하여 발열량이 높은 고급 연료유를 생산할 수 있는 연속공정을 발명하였다.Therefore, in the present invention, as a result of several experiments and studies on how to effectively treat them and obtain recycling of resources, the inventors have invented a continuous process capable of producing high-grade fuel oil having high calorific value using waste plastic and waste oil. .

본 발명이 기술적인 부분을 상세하게 설명하면 다음과 같다.The present invention will be described in detail below.

공정은 도 1에 나타낸 바와 같이 크게 폐플라스틱의 용해조 A, 열분해 반응기 B, 평형증류 드럼 C. Coke receiver D 부분으로 구성된다.As shown in FIG. 1, the process is largely composed of a dissolution tank A, a pyrolysis reactor B, and an equilibrium distillation drum C. Coke receiver D of waste plastic.

먼저 폐유만을 사용한 고급연료유의 생산과정에 대하여 설명하면 다음과 같다.First, the production process of high quality fuel oil using only waste oil is as follows.

이때는 용해조에서 폐유를 일정온도까지 예열한 후 반응기로 공급하여 일정체류시간을 부여하여 열분해한 후 평형증류 드럼에 분사하면 경질유인 증기성분은 탑상부로 배출되는데 이를 냉각하여 고급연료유를 얻는다.At this time, the waste oil is preheated to a certain temperature in the melting tank, fed to the reactor, given a certain residence time, pyrolyzed and sprayed on an equilibrium distillation drum, and the steam component, which is light oil, is discharged to the upper part of the column.

이때 평형증류 드럼은 2~100mmHg로 감압한 조건에서 진행함으로써 드럼의 온도를 가급적 낮게 유지할 수 있도록 하였다.At this time, the equilibrium distillation drum was carried out under reduced pressure to 2 ~ 100mmHg to keep the temperature of the drum as low as possible.

또한 반응기의 온도는 400~500℃를 유지하였으며, 체류시간은 20~50min을 부여하여 충분히 그러나 C1~C5가스의 발생량을 최소화할 수 있도록 하였다.In addition, the temperature of the reactor was maintained at 400 ~ 500 ℃, the residence time was given to 20 ~ 50min enough to minimize the generation of C 1 ~ C 5 gas.

열분해가 진행됨에 따라 오일의 수소 대 탄소(H/C)의 비는 약 1.6으로서 외견상 일반 연료유의 범주에 속하지만 별도의 수소공급이 진행되지 않으므로 코크의 발생은 피할 수 없다.As pyrolysis proceeds, the ratio of hydrogen to carbon (H / C) in the oil is about 1.6, which is apparently in the category of ordinary fuel oil, but coke is inevitable because no separate hydrogen supply proceeds.

그러나 생성된 코크는 연속공정 운전시 가장 큰 장애요소로서 이의 제거를 필수적이다.However, the coke produced is the biggest obstacle to continuous process operation and its removal is essential.

따라서 이에 대한 연구를 수행한 결과 플래시드럼에서 액상의 체류시간을 부여하여 코크성분이 코크 receiver의 하부까지 침강할 수 있도록 하였으며 주기적으로 하부로 배출함으로써 장치내부에 코크를 일정량 이하로 유지할 수 있었다.Therefore, as a result of this study, the liquid residence time was given in the flash drum so that the coke component could settle down to the lower part of the coke receiver.

평형증류 드럼의 탑저제품은 반응기로 순환시켜 열분해될 수 있는 시간을 재부여하는 독창적인 방법을 이용하였다.The bottoms of the equilibrium distillation drum used a unique method of circulating through the reactor and re-establishing time for pyrolysis.

따라서 본 발명에서 개발한 이러한 획기적인 방법에 의하여 공급된 연료유중 코크와 가스 성분을 배출되는 탄화수소 성분을 제외하고 전량을 고급연료유로 전환함으로서 1차 열분해로 종결하는 방법에 비해서 고급연료유의 수율을 19%이상 증가시킬 수 있었다.Therefore, the yield of high-grade fuel oil is 19 compared to the method of terminating primary pyrolysis by converting the entire amount to high-quality fuel oil except for the hydrocarbon component which discharges coke and gas components in the fuel oil supplied by the breakthrough method developed in the present invention. Could increase by more than%.

폐유와 폐플라스틱의 동시 연료유화 방법은 다음과 같다.The method of simultaneous fuel emulsification of waste oil and waste plastic is as follows.

250~280℃로 유지되는 용해조에 폐유와 폐플라스틱을 공급하여 폐플라스틱을 액상으로 전환한 후 열분해 반응기에 공급하였다.Waste oil and waste plastic were supplied to a dissolution tank maintained at 250 to 280 ° C. to convert waste plastic into liquid phase and then supplied to a pyrolysis reactor.

이러한 용해조를 이용하여 고체인 폐플라스틱을 액상과 같이 연속조업이 용이하도록 할 수 있었다.Using such a dissolution tank it was possible to facilitate the continuous operation of the solid waste plastic as a liquid phase.

이때 폐유를 폐플라스틱과 동시에 공급하여 폐유가 폐플라스틱의 분산매체인 용매역활과 열전달매체로 작용됨으로써 플라스틱만을 단독으로 처리할 때보다 연속공정의 용이성 및 반응효율의 동반상승 효과를 얻을 수 있었다.At this time, by supplying the waste oil at the same time with the waste plastic, the waste oil acts as a solvent and heat transfer medium as a dispersion medium of the waste plastic, thereby achieving a synergistic effect of the ease of the continuous process and the reaction efficiency than when the plastic alone.

이와같이 액상으로 전환된 폐플라스틱을 열분해 반응기로 이송한 후의 처리과정은 폐유만을 사용할 때와 동일하다.The process after transferring the waste plastic converted into liquid phase to the pyrolysis reactor is the same as when using only waste oil.

열분해시 반응기의 온도, 반응물의 체류시간, 폐유와 폐플라스틱의 혼합율은 소형 반응기에서 5대 범용수지 각각에 대하여 최적화한 결과를 이용하여 설정하였으며 또한 폐플라스틱의 조성은 발생비를 기준으로 설정하였다.The temperature of the reactor, the residence time of the reactants, and the mixing ratio of waste oil and waste plastic in pyrolysis were set using the optimized results for each of the five general purpose resins in a small reactor, and the composition of waste plastic was set based on the generation ratio.

도 1은 본 발명에서 구성한 공정의 개략도1 is a schematic view of a process constructed in the present invention

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

A:폐플라스틱의 용해조B:열분해 반응기A: melting tank of waste plastic B: pyrolysis reactor

C:플래시 종류 드럼D:코크 receiverC: Flash type drum D: Coke receiver

도 2는 1차 열분해후 가스, 유분 및 코크의 수율2 shows the yield of gas, oil and coke after primary pyrolysis

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

A:폐윤활유만을 1차 열분해 할 때 각 성분의 수율A: Yield of each component when primary pyrolysis of only waste lubricant

B:폐윤활유에 폐플라스틱 33wt.% 혼합하여 1차 열분해시 각 성분의 수율B: Yield of each component during primary pyrolysis by mixing 33wt.% Of waste plastic with waste lubricant

C:폐윤활유에 폐플라스틱 50wt.% 혼합하여 1차 열분해시 각 성분의 수율C: Yield of each component during primary pyrolysis by mixing waste plastic 50wt.% With waste lubricant

D:폐윤활유에 폐플라스틱 66wt.% 혼합하여 1차 열분해시 각 성분의 수율D: Yield of each component during primary pyrolysis by mixing waste plastic 66wt.% With waste lubricant

도 3은 폐윤활유 및 동시열분해시 생성가스 성분의 조성3 shows the composition of waste lubricating oil and the product gas during co-pyrolysis

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

A:폐윤활유만을 열분해 할 때 생성되는 가스의 조성A: Composition of gas produced when pyrolyzing only waste lubricant

B:폐윤활유에 폐플라스틱 33wt.% 혼합시B: When 33wt.% Of waste plastic is mixed with waste lubricant

C:폐윤활유에 폐플라스틱 50wt.% 혼합시C: When 50wt.% Of waste plastic is mixed with waste lubricant

D:폐윤활유에 폐플라스틱 66wt.% 혼합시D: When 66wt.% Of waste plastic is mixed with waste lubricant

도 4는 각 조건에 따른 생성유의 조성4 is a composition of the oil produced according to each condition

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

A:폐윤활유(Feed)의 탄소수 분포A: Carbon number distribution of waste lubricating oil

B:폐윤활유만을 열분해 할 때 생성유의 탄소수 분포B: Distribution of carbon number of produced oil when pyrolyzing only waste lubricant

C:폐윤활유에 폐플라스틱 33wt.% 혼합 열분해유의 탄소수 분포C: Distribution of carbon number of waste plastic 33wt.% Mixed pyrolysis oil in waste lubricating oil

D:폐윤활유에 폐플라스틱 50wt.% 혼합 열분해유의 탄소수 분포D: Carbon number distribution of waste plastic 50wt.% Mixed pyrolysis oil in waste lubricating oil

E:폐윤활유에 폐플라스틱 66wt.% 혼합 열분해유의 탄소수 분포E: Carbon number distribution of waste plastic 66wt.% Mixed pyrolysis oil in waste lubricating oil

도 5는 미분해된 탑저 제품의 순환에 따른 고급연료유 생성량의 변화5 is a change in the amount of high-grade fuel oil produced by the circulation of undecomposed top bottom products

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

A:폐플라스틱 첨가량에 따른 1차 열분해시 고급연료유의 수율A: Yield of high grade fuel oil during primary pyrolysis according to the amount of waste plastic added

B:A에서 얻어진 탑저제품의 순환시 고급연료유의 최종수율Final yield of high quality fuel oil during circulation of the bottom product obtained in B: A

도 6은 진공증류에 따른 탄소수 분포의 변화6 is a change in carbon number distribution according to vacuum distillation

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

A:동시열분해유의 탄소수 분포(플라스틱 66wt.%)A: Carbon number distribution of co-pyrolysis oil (66 wt.% Plastic)

B:A에서 얻어진 제품을 252℃, 2torr에서 진공증류할 때 탑상부 제품의 조성The composition of the tower top product when the product obtained in B: A is vacuum distilled at 252 ° C and 2torr.

[실시예 1]Example 1

폐윤활유를 단독으로 열분해한 예시이며 방법은 다음과 같다.This is an example of pyrolysis of waste lubricating oil alone, and the method is as follows.

260℃로 유지되는 용해조(A)에 폐유를 공급하여 예열한 후 열분해 반응기에 연속적으로 공급한다.Waste oil is supplied to the dissolution tank A maintained at 260 ° C., preheated, and continuously supplied to the pyrolysis reactor.

반응기의 온도는 460℃로 일정하게 유지하였으며 폐유의 평균체류시간은 30분을 부여하였다.The temperature of the reactor was kept constant at 460 ℃ and the average residence time of the waste oil was given 30 minutes.

열분해 생성물은 (도 2)에 나타낸 바와 같이 가스성분 6.2wt%, 오일성분 70.2wt.%, 코크 23.57wt.%를 얻을 수 있었다.As shown in FIG. 2, the pyrolysis product was able to obtain 6.2 wt% of a gas component, 70.2 wt.% Of an oil component, and 23.57 wt.% Of coke.

이때 가스성분은 가스 크로마토그래피(HP 5890, 감마알루미나 칼럼, FID검출기)로 분석한 결과 (도 3)의 A와 같이 탄소수 1~3개로 구성된 혼합물이며 소량의 C4화합물과 미량의 C5~C6성분이었다.At this time, the gas component is analyzed by gas chromatography (HP 5890, gamma alumina column, FID detector) as a result of the mixture of 1 to 3 carbon atoms as shown in A (Fig. 3), a small amount of C 4 compound and a small amount of C 5 ~ C It was six components.

오일성분의 탄소수 분포는 가스 크로마토그래피(HP 5890, 모세관 칼럼, FID검출기)를 이용하여 모사증류한 결과 (도 4)의 B에 보인 바와 같이 C6~C40의 혼합물로서 이는 초기 공급물질인 (도 4)이 A인 폐유의 평균탄소수 C35와 비교해보면 대부분이 분해되어 경질화 되었음을 알 수 있다.Carbon number distribution of the oil component is a gas chromatograph which the initial feed material as a mixture of C 6 ~ C 40, as shown in B of the results (Figure 4), simulated distillation using a (HP 5890, capillary column, FID detector) ( Compared with the average carbon number C 35 of the waste oil of FIG. 4), it can be seen that most of them were decomposed and hardened.

이때 유분의 발열량과 구성원소는 (표 1)에서 보인 바와 같이 폐유자체에 포함된 황의 농도는 4100ppm으로 대단히 높으나 열분해후의 농도는 1000ppm으로 감소되는 결과를 보였으며, 생성유분의 발열량은 최소 10.370cal/g이다.As shown in (Table 1), the calorific value of the oil component and the element concentration of sulfur were 4100ppm, but the concentration after pyrolysis was reduced to 1000ppm, and the calorific value of the produced oil was at least 10.370cal / g.

반응후 생성유는 플래시드럼에 연속적으로 분사하여 라이트(light) 성분을 분리하였다.After the reaction, the product oil was continuously sprayed on a flash drum to separate a light component.

이때 플래시드럼의 온도와 압력은 252℃, 2torr를 유지한 결과 생성유의 탄소수 C6~C21인 탄화수소가 95.5wt.%인 휘발유, 백등유, 경유, 미량의 중질유의 혼합물로 구성된 고급연료유의 사양(B.P. 350℃이하)을 만족시킬 수 있었다.The flash drum temperature and the pressure is significant results produced being kept in a 252 ℃, 2torr carbon atoms, C 6 ~ C 21 hydrocarbons is 95.5wt.% Gasoline, premium fuel consisting baekdeungyu, diesel, a mixture of a small amount of heavy oil significantly specifications ( BP 350 ° C. or less).

또한 기존의 열분해 공정과는 다르게 플래시드럼의 탑하부 제품을 반응기로 재공급하여 재차 열분해를 수행함으로써 공급되는 원료로부터 생성유의 전량을 고급연료유 성상으로 얻을 수 있도록 하였다.In addition, unlike the existing pyrolysis process, the lower part of the flash drum was re-supplied to the reactor to perform pyrolysis again, so that the total amount of oil produced from the supplied raw material can be obtained in the form of high quality fuel oil.

그 결과 (도 6)에 나타낸 바와 같이 고급연료유의 생산량을 10% 이상 증가시킬 수 있었다.As a result (as shown in Figure 6) it was possible to increase the production of high-grade fuel oil more than 10%.

[표 1]TABLE 1

1차 열분해 생성유 및 폐유의 구성원소 비율 및 발열량Percentage and Calorific Value of Primary Pyrolysis Generating Oil and Waste Oil

[실시예 2]Example 2

폐유와 폐플라스틱의 실제 발생량을 기준으로 볼 때 폐플라스틱의 양이 절대적이다.The amount of waste plastic is absolute based on the actual amount of waste oil and waste plastic produced.

따라서 폐유와 폐플라스틱을 이용하여 고급연료유를 생산할 때 원료인 폐플라스틱의 양은 폐유에 비해서 매우 풍부하므로 폐플라스틱의 함량을 높여서 공정의 조업이 가능하다면 여러 면에서 장점이 있는 것으로 기대되는 바 이를 폐플라스틱과 폐유의 함량에 따른 고급연료유 제조에 대하여 수차례의 실험과 연구를 수행하였다.Therefore, when producing high-quality fuel oil using waste oil and waste plastic, the amount of waste plastic as raw material is much richer than waste oil. Therefore, it is expected to have advantages in many ways if the operation of the process is possible by increasing the content of waste plastic. Several experiments and studies have been carried out on the production of high quality fuel oils according to the plastic and waste oil contents.

예시로서 폐유에 폐플라스틱의 함량 33%, 50%, 66%을 혼합하여 각각 열분해한 결과를 설명하면 다음과 같다.As an example, the results of thermal decomposition of waste plastics content of 33%, 50%, and 66% by mixing waste oil are as follows.

먼저 폐플라스틱의 함량에 따라 열분해 반응기내 비응측성 가스, 유분, 코크의 생성량은 (도 2)에 보인 바와 같다.First, the amount of non-condensing gas, oil, and coke in the pyrolysis reactor according to the amount of waste plastic is shown in FIG. 2.

플라스틱이 혼합됨에 따라서 오일성분의 수율이 8~15wt%가 증가되었다.As the plastic was mixed, the yield of oil component increased by 8-15 wt%.

발생가스의 탄소수 조성비는 (도 3)에 보인 바와 같이 폐윤활유만을 열분해할 때와 같은 경향을 보였다.As shown in FIG. 3, the carbon number composition ratio of the generated gas showed the same tendency as pyrolysis of only waste lubricant oil.

그러나 생성유분의 성상은 전혀 다른 결과를 보였다.However, the composition of produced oil showed a completely different result.

(도 4)의 C-E에서 볼 수 있는 바와 같이 휘발유분의 성상으로 탄소수 7-10의 함량이 현저하게 증가되었다.As seen in C-E of FIG. 4, the content of 7-10 carbon atoms was significantly increased due to the gasoline content.

또한 생성유분중 황의 농도는 폐유 단독처리시에 비해서 절반의 수준으로 감소시킬 수 있었다.(표 1)In addition, the concentration of sulfur in the product fraction could be reduced to half the level of waste oil treatment (Table 1).

따라서 폐유단독 열분해에 의한 고급연료유의 제조보다 일정량의 플라스틱성분을 첨가함으로서 보다 양질의 유분을 얻을 수 있음은 물론이며 고체인 플라스틱을 액상과 같이 운전가능하게 함으로써 순조로운 연속공정을 발명하였다.Therefore, by adding a certain amount of plastic components to the production of high-quality fuel oil by waste oil alone pyrolysis, a higher quality of oil can be obtained, and a smooth continuous process can be invented by allowing plastic to be operated as a liquid.

또한 탑저 제품의 재순환할 때 오일, 가스, 코크성분의 최종수율은 (표 2)에 나타낸 바와 같이 플라스틱이 첨가될 때 고급연료유의 수율이 최고 74.5wt%인 놀라운 결과를 얻었다.In addition, the final yield of oil, gas, and coke components when recycling the bottom product was astonishing, with the highest yield of high fuel oil when plastic was added, as shown in (Table 2).

탑저제품을 재순환하지 않을때와 비교할 때 (도 5)에서 볼 수 있는 바와 같이 모든 조건에서 고급연료유의 수율이 최고 19.4% 증가되는 놀라운 효과를 얻을 수 있었다.As shown in FIG. 5, the yield of high-grade fuel oil was increased by up to 19.4% as compared to when the bottom product was not recycled.

플라스틱을 66wt% 혼합하여 동시열분해한 최종제품의 탄소수 분포는 (도 6)의 B와 같으며 반응기에서 플래시드럼으로 공급되는 유분의 성상인 (도 6)의 A와 비교해볼 때 경유분에 해당되는 유분이 완전하게 회수되었음을 알 수 있다.The carbon number distribution of the final product co-pyrolyzed by mixing 66wt% of plastics is the same as B in (Fig. 6), and it corresponds to the diesel oil as compared to A in (Fig. 6), which is the property of the oil supplied to the flash drum from the reactor. It can be seen that the oil has been completely recovered.

최종 제품에 대한 조성을 석유품질검사소에 의뢰하여 분석한 결과 잔류탄소 0.01%, 회분 0.01 이하, 황 900ppm, 발열량 10,490cal/g, 카드뮴, 납, 크롬, 비소 등의 중금속 성분은 검출되지 않아 열분해유의 사항을 만족하는 제품임을 확인하였다.The composition of the final product was analyzed by requesting the Petroleum Quality Inspection Center. As a result of pyrolysis oil, no heavy metals such as residual carbon 0.01%, ash 0.01 or less, sulfur 900ppm, calorific value 10,490cal / g, cadmium, lead, chromium and arsenic were not detected. It was confirmed that the product satisfies.

[표 2]TABLE 2

각 성분의 최종 수율Final yield of each ingredient

Claims (3)

폐유와 폐플라스틱을 회분식 또는 연속공정에서 동시에 열분해한 후 생성유분의 재 열분해를 목적으로 반응기 또는 반응기전 공정으로 순환하는 단계와 폐플라스틱을 액상으로 전환하기 위하여 용해조에서 용해하는 단계와 생성된 코크 성분을 평형 증류드럼에서 침강분리하는 단계를 결합한 것을 특징으로 하는 폐윤활유와 폐플라스틱의 동시 열분해에 의한 고급연료유 제조방법.Circulating waste oil and waste plastic at the same time in batch or continuous process and then circulating to the reactor or pre-reactor process for the purpose of re-pyrolysis of the produced oil, dissolving waste plastic in liquid tank and converting coke component A method for producing advanced fuel oil by simultaneous pyrolysis of waste lubricant and waste plastic, characterized in that the step of sedimentation separation in an equilibrium distillation drum. 제1항에 있어서, 폐플라스틱의 함량을 무게비 0~70%로 첨가함을 특징으로 하는 폐윤활유와 폐플라스틱의 동시 열분해에 의한 고급연료유 제조방법.The method of claim 1, wherein the amount of waste plastic is added at a weight ratio of 0 to 70%. 제1항에 있어서, 폐유와 폐플라스틱 또는 폐유만을 열분해할 때 반응기의 온도 380~500℃, 체류시간 10~50분을 부여하는 것을 특징으로 하는 폐윤활유와 폐플라스틱의 동시 열분해에 의한 고급연료유 제조방법.The high-quality fuel oil according to the simultaneous pyrolysis of waste lubricating oil and waste plastic is characterized in that when thermally decomposing waste oil and waste plastic or waste oil, a reactor temperature of 380 to 500 ° C. and a residence time of 10 to 50 minutes are given. Manufacturing method.
KR1019970003407A 1997-02-04 1997-02-04 Process for fuel by thermal decomposition waste of lubricating and waste plastics KR100213986B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970003407A KR100213986B1 (en) 1997-02-04 1997-02-04 Process for fuel by thermal decomposition waste of lubricating and waste plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970003407A KR100213986B1 (en) 1997-02-04 1997-02-04 Process for fuel by thermal decomposition waste of lubricating and waste plastics

Publications (2)

Publication Number Publication Date
KR19980067398A true KR19980067398A (en) 1998-10-15
KR100213986B1 KR100213986B1 (en) 1999-08-02

Family

ID=19496376

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970003407A KR100213986B1 (en) 1997-02-04 1997-02-04 Process for fuel by thermal decomposition waste of lubricating and waste plastics

Country Status (1)

Country Link
KR (1) KR100213986B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324779B1 (en) * 1999-10-28 2002-02-20 김성현 device for fabricating hydrocarbon oil from waste oil
CN104611007B (en) * 2015-02-25 2016-05-11 烟台荣盛压力容器制造有限公司 A kind of waste lubricating oil refines petrol and diesel oil device
KR102555725B1 (en) * 2020-10-21 2023-07-17 주식회사 웨이스트에너지솔루션 Continuous pyrolysis petrolizing
KR102603054B1 (en) * 2021-11-25 2023-11-17 한국기계연구원 Organic waste and carbon dioxide pyrolysis apparatus using thermal plasma, and organic waste and carbon dioxide pyrolysis method using the same

Also Published As

Publication number Publication date
KR100213986B1 (en) 1999-08-02

Similar Documents

Publication Publication Date Title
JP3385025B2 (en) How to process used or waste plastic
JP6378368B2 (en) Method of converting mixed waste plastics (MWP) into valuable petrochemical products
US20180355256A1 (en) Production of hydrocarbon fuels from plastics
EP0132612B1 (en) Process for the production of liquid hydrocarbons
CN85109131A (en) The process for subsequent treatment of carbonaceous wastes and biomass
US5049258A (en) Reprocessing of contaminated oils
WO1995014069A1 (en) Disposal of plastic waste material
US20120149954A1 (en) Method of production of high-value hydrocarbon products from waste plastics and apparatus for method of production of high-value hydrocarbon products from waste plastics
WO2010012997A2 (en) Process for production of bio-oil by coprocessing of biomass in a delayed coking unit
KR100265273B1 (en) Emulsification Method and Apparatus of Waste Plastic
RU2500789C1 (en) Procedure for thermal conversion of heavy hydrocarbon stock
US4725350A (en) Process for extracting oil and hydrocarbons from crushed solids using hydrogen rich syn gas
CN1054392C (en) Method of coal liquefaction
KR100213986B1 (en) Process for fuel by thermal decomposition waste of lubricating and waste plastics
US4428821A (en) Oil shale extraction process
RU2398811C1 (en) Method of processing heavy hydrocarbon raw material
JP4154929B2 (en) Method for producing useful substances from plastic
US4465584A (en) Use of hydrogen sulfide to reduce the viscosity of bottoms streams produced in hydroconversion processes
US4390409A (en) Co-processing of residual oil and coal
WO2021214384A1 (en) Method and apparatus for producing hydrocarbons and use
RU2490308C1 (en) Procedure for processing heavy hydrocarbon stock
DE102011111526B4 (en) Process for the conversion of valuable materials
KR970001511A (en) Oiling apparatus and its method by complex pyrolysis of waste tire / waste oil
DE4344845C1 (en) Pumpable hydrocarbon melts with low viscosity at 150 to 180 degrees centigrade
DE3030609C2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130521

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20140512

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20150514

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20160511

Year of fee payment: 18

EXPY Expiration of term