KR19980045193A - Activated Carbon Coexistence Comprehensive Immobilized Microbial Carrier Using Photocurable Resin and Manufacturing Method Thereof - Google Patents

Activated Carbon Coexistence Comprehensive Immobilized Microbial Carrier Using Photocurable Resin and Manufacturing Method Thereof Download PDF

Info

Publication number
KR19980045193A
KR19980045193A KR1019960063354A KR19960063354A KR19980045193A KR 19980045193 A KR19980045193 A KR 19980045193A KR 1019960063354 A KR1019960063354 A KR 1019960063354A KR 19960063354 A KR19960063354 A KR 19960063354A KR 19980045193 A KR19980045193 A KR 19980045193A
Authority
KR
South Korea
Prior art keywords
activated carbon
photocurable resin
microbial carrier
carrier
microorganism
Prior art date
Application number
KR1019960063354A
Other languages
Korean (ko)
Inventor
정현종
윤경식
박용석
박철희
Original Assignee
조규향
주식회사 유공
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조규향, 주식회사 유공 filed Critical 조규향
Priority to KR1019960063354A priority Critical patent/KR19980045193A/en
Publication of KR19980045193A publication Critical patent/KR19980045193A/en

Links

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

본 발명은 폐수처리용 포괄고정화용 담체에 관한 것으로서, 본 발명에 의하면 광경화성 수지에 미생물과 활성탄을 동시에 고정시킨 것을 특징으로 하는 활성탄공존 포괄고정화 미생물담체가 제공된다. 이러한 미생물 담체는 활성탄에 의해 오염물질이 흡착되는 물리적처리와 미생물에 의한 생물적처리를 동시에 수행하게 함으로써 난분해성 물질 및 질소 인을 제거하여 수질의 향상을 기대할 수 있다.The present invention relates to a carrier for comprehensive fixation for wastewater treatment. According to the present invention, there is provided an activated carbon coexistence-encapsulated and stabilized microbial carrier, wherein the microorganism and activated carbon are simultaneously fixed to a photocurable resin. Such microbial carriers can be expected to improve water quality by removing hardly decomposable substances and nitrogen phosphorus by simultaneously performing physical treatments in which contaminants are adsorbed by activated carbon and biological treatments by microorganisms.

Description

광경화성수지를 이용한 활성탄공존 포괄고정화 미생물담체 및 그 제조방법Activated carbon co-existing encapsulated and stabilized microbial carrier using photocurable resin and its manufacturing method

본 발명은 폐수중의 미량화학오염물질인 유기염소화합물 및 질소(N), 인(P) 등을 처리하기 위한 담체에 관한 것으로서, 보다 구체적으로는 광경화성 수지를 이용하여 미생물과 활성탄을 동시에 고정화하여 생물학적처리와 물리학적처리의 효과를 동시에 얻을 수 있는 담체 및 그 제조방법에 관한 것이다.The present invention relates to a carrier for treating organic chlorine compounds, nitrogen (N), phosphorus (P), and the like, which are trace chemical pollutants in wastewater, and more specifically, simultaneously fixing microorganisms and activated carbon using photocurable resins. The present invention relates to a carrier and a method of manufacturing the same, which can simultaneously obtain the effects of biological treatment and physical treatment.

첨단기술공장에서 배출되는 산업폐수, 매립지의 침출수, 제지공정 표백폐수 등에 함유되어 있는 오염물질, 예를 들면 유기염소화합물은 난분해성 물질로 암을 유발하거나 기형을 유발하며 또한 유독성 물질을 발생시켜 생태계를 파괴시키는 오염원이 된다. 또한 미생물의 활성을 저하시켜 자연적인 수처리효율을 저하시키는 등의 문제를 발생시키고 있어, 최근에는 이러한 환경오염물질을 제거하고자 많은 노력이 이루어지고 있다. 또한, 현재 공공수역의 수질을 보전하기 위해 폐수에 포함된 오탁물질은 폐수처리에 의하여 분해 또는 제거하는 것을 필수로 하고 있다.Contaminants, such as organic chlorine compounds, contained in industrial wastewater, landfill leachate, papermaking process, and bleaching wastewater discharged from high-tech factories, are hardly degradable substances that cause cancer or malformations, and also generate toxic substances. It becomes a pollution source that destroys. In addition, it is causing problems such as lowering the activity of microorganisms and natural water treatment efficiency, and in recent years, a lot of efforts have been made to remove such environmental pollutants. In addition, in order to preserve the quality of public waters, contaminants contained in wastewater are required to be decomposed or removed by wastewater treatment.

폐수처리는 크게 물리·화학적처리와 생물학적처리로 나눌 수 있다. 생물학적처리는 미생물의 대사작용을 이용하는 활성오니법이 대표적인 방법으로 사용되고 있다. 활성오니법은 1913년 영국의 맨체스터대학의 플로우어(Flower)에 의해 개발된 후 개량되어 도시하수 및 산업폐수처리에 커다란 효과를 발휘하고 있지만, 오니발생량이 많고, 고액분리가 나빠 벌킹현상의 발생가능성이 있으며, 난분해성물질의 제거능이 낮고, 유지관리가 어려우며, 에너지 소비 또한 높다.Wastewater treatment can be divided into physical and chemical treatment and biological treatment. For biological treatment, an activated sludge method using metabolic activity of microorganisms is used as a representative method. The activated sludge method was developed by the University of Manchester, England, in 1913, and has been improved to show significant effects on urban sewage and industrial wastewater treatment.However, sludge generation is high and solid-liquid separation is bad. There is a possibility, the removal ability of the hardly decomposable substance is low, the maintenance is difficult, and the energy consumption is also high.

이러한 활성오니법의 문제점을 해소하기 위해 생물막법이나 포괄고정화법의 기술이 개발되어 소규모 폐수처리를 중심으로 보급되고 있다. 특히, 포괄고정화법은 의약품이나 식품분야에서 유용물질을 연속적으로 생산하기 위해 개발된 것으로 1973년 일본에서 대장균을 아크릴아미드에 고정화한 아스파라긴산의 제조에 처음으로 적용된 이래, 현재에는 폐수처리에도 적용되고 있다.In order to solve the problem of the activated sludge process, the technology of the biofilm method or the comprehensive fixation method has been developed and spread in the small-scale wastewater treatment. In particular, the comprehensive fixation method was developed to continuously produce useful substances in the pharmaceutical and food fields, and has been applied to wastewater treatment since 1973, when it was first applied to the production of aspartic acid in which E. coli was immobilized to acrylamide in Japan. .

포괄고정화법은 겔의 내부에 미생물이 갇혀있고, 임의의 균을 임의의 양으로 고정화할 수 있기 때문에 미생물을 고농도로 유지할 수 있어, 고도처리를 꾀할 수 있으며, 생물막법에서 발생하는 균체의 벗겨짐에 의한 미생물의 감소가 없어 특이한 기능을 가진 미생물과 증식속도가 적은 균체를 고정화함으로써도 특정물질을 처리할 수 있는 방법으로 처리의 효율성 향상과 대상물질의 효과적인 제거에 이용할 수 있다.Comprehensive immobilization method is because microorganisms are trapped inside the gel, and any bacteria can be immobilized in an arbitrary amount, so that microorganisms can be kept at a high concentration, and high processing can be achieved. There is no reduction of microorganisms, and it can be used to improve the efficiency of treatment and effective removal of target substances by fixing specific microorganisms with specific functions and microorganisms with low growth rate.

페수처리에서 현재까지 연구 논문 및 특허로 발표된 것은 아크릴아미드(acrylamide) 또는 폴리비닐알코올(PVA)에 의한 고정화법이 주로 이용되고 있으며, 부영향화의 원인물질인 질소를 제거하기 위해 질산균을 고정화시켜 이용하는 방법이 실용화되기 위해 연구되고 있는 상황이다.In the waste water treatment, the immunization method using acrylamide or polyvinyl alcohol ( PVA ) is mainly used as a research paper and a patent, and immobilization of nitrate bacteria to remove nitrogen, which is a cause of side effects, is performed. It is a situation that a method to use is being researched for practical use.

또한 폐수처리시 기존의 활성오니 반응조에 분말활성탄을 투입하여 사용함으로써 처리시설의 냄새제거 및 미량오염물질의 제거, 오염부하를 삭감시키는 등의 효과로 이용되고 있으나 이는 일과성으로 사용되고 있다.In addition, by using powder activated carbon in the existing activated sludge reaction tank during wastewater treatment, it is used to remove odors, remove micro-pollutants and reduce pollutant load in treatment facilities, but this is used as a transient.

활성탄은 그 흡착력을 이용하여 폐수의 고도처리, 순환재이용등의 용도에 널리 사용되고 있으며, 활성탄표면에 서식하는 미생물의 대사기능을 이용한 유기물의 제거 및 질소제거등의 생물활성탄처리에의 활용에도 검토되고 있다.Activated charcoal is widely used for the advanced treatment of wastewater and recycling materials by using its adsorption power.It is also considered for use in bio-active charcoal treatment such as organic matter removal and nitrogen removal using the metabolic function of microorganisms living on the surface of activated carbon. have.

본 발명은 활성탄에 의한 물리적처리와 미생물에 의한 생물적처리를 동시에 수행하게 함으로써 난분해성 물질 및 질소 인을 제거하여 수질의 향상을 기대할 수 있는 활성탄공존 포괄고정화 미생물담체 및 그 제조방법을 제공하는 것을 목적으로 한다.The present invention is to provide an activated carbon co-existing encapsulated and stabilized microbial carrier and a method for producing the same which can be expected to improve the water quality by performing the physical treatment with activated carbon and biological treatment with microorganisms at the same time. The purpose.

도 1은 본 발명에 따르는 활성탄공존 포괄고정화 미생물담체의 개략도1 is a schematic diagram of an activated carbon co-existing entrapment fixation microbial carrier according to the present invention

*도면에 대한 상세한 설명** Detailed description of the drawings *

1 : 광경화성 수지2 : 미생물고정부분1: photocurable resin 2: microorganism fixing part

3 : 활성탄고정부분4 : 미생물과 활성탄의 공존상태3: activated carbon fixed part 4: microorganism and activated carbon coexistence state

상기한 목적을 달성하기 위한 본 발명에 의하면, 광경화성 수지에 미생물과 활성탄을 동시에 고정시킨 활성탄공존 포괄고정화 미생물담체가 제공된다.According to the present invention for achieving the above object, there is provided an activated carbon coexistence comprehensive fixation microbial carrier in which the microorganism and the activated carbon is fixed to the photocurable resin at the same time.

또한 본 발명에 의하면 광경화성 수지에 알긴산나트륨과 중합개시제를 혼합하여, 이 혼합물에 원심분리로 농축한 분해세균배양액과 고정화제, 활성탄을 균일하게 혼합하고, 이 혼합물을 염화칼슘용액중에 적하시켜 생성된 액적을 염화칼슘용액에서 꺼내어 가볍게 물로 씻은 후, 광을 조사하여 수지를 광경화시키는 것을 포함하는 활성탄공존 포괄고정화 미생물담체의 제조방법이 제공된다.Further, according to the present invention, sodium alginate and a polymerization initiator are mixed with the photocurable resin, and the disintegrating bacterium culture solution, which is concentrated by centrifugation, the immobilizing agent and the activated carbon are uniformly mixed, and the mixture is added dropwise into the calcium chloride solution. Provided is a method for producing an activated carbon coexistence-encapsulating microorganism carrier comprising removing a droplet from a calcium chloride solution and washing it lightly with water and then irradiating light to photocuring the resin.

이하, 도면을 참조하여 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.

도 1에서는 광경화성 수지(1)에 미생물과 활성탄을 동시에 고정시킨 본 발명의 활성탄공존 포괄고정화 미생물담체가 개략적으로 예시된다. 도시되는 본 발명의 활성탄공존 포괄고정화 미생물담체에서 미생물고정부분(2)에서는 난흡착·이분해성 오염물질이 미생물과의 접촉에 의해 생분해되며, 활성탄고정부분(3)에서는 이흡착·난분해성 오염물질이 활성탄의 흡착효과에 의해 제거되고, 미생물과 활성탄이 함께 고정된 부분(4)에서는 이흡착·이분해성물질이 처리되며, 난흡착·난분해성 오염물질은 그대로 투과된다.In FIG. 1, the activated carbon co-existence-immobilized microbial carrier of the present invention in which microorganisms and activated carbons are simultaneously fixed to the photocurable resin 1 is schematically illustrated. In the activated carbon co-existing comprehensive fixation microbial carrier of the present invention, in the microbial fixation part (2), hardly adsorbable and degradable contaminants are biodegraded by contact with microorganisms, and in the activated carbon fixation part (3), the adsorbed and hardly decomposable contaminants The adsorption effect of this activated carbon is removed, and the adsorption / decomposable decomposable substance is treated in the portion 4 where the microorganism and the activated carbon are fixed together, and the poorly adsorbed and poorly decomposable pollutant is permeated.

본 발명의 활성탄공존 포괄고정화 미생물담체에 있어서, 광경화성수지는 폴리비닐글리콜을 골격으로 하고 양말단과 분자 가운데 광경화성 에칠렌성불포화기를 기본 구조로 가지고 있는 것이 바람직하다. 또한, 활성탄은 입상활성탄과 분말활성탄 모두 사용이 가능하나, 분말활성탄이 입상활성탄보다 흡착속도가 빠르고, 표면적이 크며, 값이 싸므로 보다 바람직하다. 미생물은 대상물질이 난해성이든 특수물질이든 그 물질을 분해할 수 있는 미생물이면 어느종에 관계없이 사용가능하며, 미생물의 양을 대량 고정화할수록 그 물질을 처리하는 분해속도는 빨라진다. 이러한 미생물은 당분야에 잘 알려져 있으며, 그 중에서도 특히 바람직한 것은 염소화합물 및 질소(N), 인(P) 분해세균이다.In the activated carbon co-existing encapsulated and immobilized microbial carrier of the present invention, it is preferable that the photocurable resin has a polyvinyl glycol as a skeleton and has a photocurable ethylene-unsaturated group in the sock end and the molecule as a basic structure. In addition, activated carbon can be used for both granular activated carbon and powdered activated carbon, but powdered activated carbon is more preferable because it has a faster adsorption rate, larger surface area, and lower cost than granular activated carbon. Microorganisms can be used regardless of the species, as long as the target material is difficult to disintegrate or special materials, and the amount of microorganisms is fixed, the faster the decomposition speed of processing the material. Such microorganisms are well known in the art, and particularly preferred among them are chlorine compounds and nitrogen (N), phosphorus (P) decomposition bacteria.

상술한 바와 같은 본 발명의 활성탄공존 포괄고정화 미생물담체의 제조방법에 대해서 바람직한 구현의 방법으로 상세하게 설명하기로 한다. 본 발명의 바람직한 구현에 의하면, 활성탄공존 포괄고정화 미생물담체는 다음과 같이 제조된다. 우선, 광경화성 수지에 알긴산나트륨과 중합개시제를 혼합한다. 이 혼합물에 원심분리로 농축한 분해세균배양액과 고정화제, 분말활성탄을 균일하게 혼합한다. 상기의 혼합물을 염화칼슘용액중에 적하시켜 액적을 생성시킨다. 생성된 액적을 염화칼슘용액에서 꺼내어 담체가 깨끗해지도록 가볍게 물로 씻은 후, 광을 조사한다. 이와 같은 광조사에 의하여 광경화성 수지중의 에칠렌성불포화기는 3차원적으로 가교반응을 일으켜 겔이 형성되어 압축강도가 높은 활성탄공존 포괄고정화 미생물담체가 제조된다.The method for producing the activated carbon co-existing immobilized microbial carrier of the present invention as described above will be described in detail as a preferred embodiment. According to a preferred embodiment of the present invention, activated carbon coexistence entrapment-fixing microbial carrier is prepared as follows. First, sodium alginate and a polymerization initiator are mixed with a photocurable resin. In this mixture, the digested bacterial culture solution concentrated by centrifugation, the immobilizing agent and the powdered activated carbon are mixed uniformly. The mixture is added dropwise into a calcium chloride solution to generate droplets. The resulting droplets are taken out of the calcium chloride solution, washed with water to make the carrier clean, and then irradiated with light. By such light irradiation, the ethylene-unsaturated group in the photocurable resin undergoes a three-dimensional crosslinking reaction to form a gel, thereby preparing an activated carbon coexistence-encapsulating microorganism carrier having high compressive strength.

본 발명의 바람직한 제조예에 의하면, 중합개시제로는 2-히드록시 2-메틸프로피오페놀이 바람직하다. 중합개시제로서 2-히드록시 2-메틸프로피오페놀을 사용하고 알긴산나트륨으로 3% 알긴산나트륨을 사용할 경우, 광경화성 수지에 대한 그 배합비는 광경화 수지 10g에 대하여 3%알긴산나트륨과 2-히드록시 2-메틸프로피오페놀을 2g : 0.04g의 비율로 혼합하는 것이 적합하다. 이 경우, 농축배양액은 4g 정도가 적당하며, 분말활성탄은 상기 혼합물인 고정화제 100g당 0.5∼1g 정도가 적당하다. 이와 같은 비율로 배합한 혼합물을 염화칼슘용액중에 적하하면 액적 표면에 염화칼슘피막이 신속하게 생성된다. 이때 염화칼슘용액의 농도는 0.25∼1M이 적당하며, 염화칼슘피막이 표면에 형성된 액적의 내부는 미가교상태이다. 이러한 상태의 액적은 수세후에 광경화되어 겔상태의 담체로 제조된다. 광경화에는 파장범위 300∼400㎚의 근자외선을 방사하는 형광램프를 사용할 수 있으며, 이 경우 광조사 시간은 파장범위 300∼400㎚의 형광램프로 5∼15분이 적당하다. 광조사는 액적에 묻어있는 염화칼슘이 제거된 깨끗한 담체상태에서 수행하는 것이 적당하다.According to a preferred production example of the present invention, 2-hydroxy 2-methylpropiophenol is preferable as the polymerization initiator. When 2-hydroxy 2-methylpropiophenol is used as the polymerization initiator and 3% sodium alginate is used as the sodium alginate, the blending ratio for the photocurable resin is 3% sodium alginate and 2-hydroxy for 10 g of the photocurable resin. It is suitable to mix 2-methylpropiophenol in the ratio of 2 g: 0.04 g. In this case, about 4 g of the concentrated culture solution is suitable, and about 0.5 to 1 g of the powdered activated carbon per 100 g of the immobilizing agent is suitable. When the mixture blended in such a ratio is dropped into a calcium chloride solution, a calcium chloride film is rapidly formed on the surface of the droplets. At this time, the concentration of the calcium chloride solution is suitable from 0.25 to 1M, the inside of the droplets formed on the surface of the calcium chloride coating is uncrosslinked state. The droplets in this state are photocured after washing with water to prepare a gel carrier. Fluorescent lamps emitting near ultraviolet rays in the wavelength range of 300 to 400 nm can be used for photocuring. In this case, the light irradiation time is 5 to 15 minutes with a fluorescent lamp in the wavelength range of 300 to 400 nm. Light irradiation is suitably carried out in a clean carrier free of calcium chloride from the droplets.

상술한 바와 같은 본 발명에 따라 광경화성 수지에 활성탄과 미생물이 동시에 고정된 활성탄공존 포괄고정화 미생물담체는 활성탄에 의해 오염물질이 흡착되는 물리적처리와 미생물에 의한 생물적처리를 동시에 수행하게 함으로써 난분해성 물질 및 질소 인을 제거하여 수질의 향상을 기대할 수 있으며, 또한 기존의 고정화법에서 사용되는 담체와 대등한 분배계수를 가지며, 기존의 담체에 비하여 현저하게 향상된 압축강도를 나타낸다.According to the present invention as described above, the activated carbon and microorganisms in which the activated carbon and the microorganism are fixed to the photocurable resin at the same time, the stabilized microbial carrier can perform the biodegradation by performing the physical treatment in which the pollutants are adsorbed by the activated carbon and the biological treatment by the microorganism simultaneously It can be expected to improve the water quality by removing the substance and nitrogen phosphorus, and also has a distribution coefficient comparable to the carrier used in the conventional immobilization method, and shows a significantly improved compressive strength compared to the conventional carrier.

상술한 바와 같은 본 발명의 특징 및 기타의 장점은 후술되는 실시예로부터 보다 명백하게 될 것이다. 단 하기 실시예는 본 발명을 한정하는 것은 아니다.Features and other advantages of the present invention as described above will become more apparent from the embodiments described below. However, the following examples do not limit the present invention.

〈실시예 1〉<Example 1>

광경화성수지 10g에 대하여, 3%알긴산나트륨과 중합개시제로서 2-히드록시 2-메틸프로피로페놀을 2g : 0.04g의 비율로 혼합하고, 이 혼합물에 원심분리로 농축한 분해세균배양액 4g, 고정화제 100g당 0.5∼1g의 비율로 분말활성탄을 첨가하여 균일하게 혼합하였다. 이 혼합물을 0.25∼1M의 염화칼슘액중에 적하시켜 액적의 표면에 염화칼슘피막을 형성시켰다. 이때의 액적내부는 미가교상태이었다. 이 액적을 염화칼슘용액에서 꺼내 가볍게 물로 씻은 후 300∼400㎚ 파장범위의 형광램프로 5∼15분간 광을 조사하여 미생물담체를 제조하였다.To 10 g of photocurable resin, 3% sodium alginate and 2-hydroxy 2-methylpropyrophenol as a polymerization initiator were mixed in a ratio of 2 g: 0.04 g, and the mixture was concentrated by centrifugation, 4 g of decomposed bacterial culture solution and fixed. Powder activated carbon was added and mixed uniformly in the ratio of 0.5-1 g per 100 g of agents. The mixture was added dropwise into a 0.25-1 M calcium chloride solution to form a calcium chloride coating on the surface of the droplets. At this time, the inside of the droplet was uncrosslinked. The droplets were removed from the calcium chloride solution, washed with water, and irradiated with a fluorescent lamp in a wavelength range of 300 to 400 nm for 5 to 15 minutes to prepare a microbial carrier.

제조된 활성탄공존 포괄고정화 미생물담체에 대하여, 압축강도 및 분배계수를 측정하여 기존의 담체와 비교하였으며, 또한 환경조건에 의한 영향, 유기염소화합물의 생분해 실험 및 미생물 활성실험을 행하였다. 그 구체적인 내용은 다음과 같다.For the prepared activated carbon co-existing encapsulated microbial carrier, the compressive strength and distribution coefficient were measured and compared with the conventional carriers. Also, the effects of environmental conditions, biodegradation of organic chlorine compounds, and microbial activity tests were performed. The details are as follows.

※ 압축강도 및 분배계수※ compressive strength and distribution coefficient

압축강도(㎏/㎤)는 담체의 원면에 서서히 압력을 넣어 담체가 파손되었을 때의 압축력(㎏)을 측정하고, 이 값을 담체의 단면적(㎤)으로 나눈 값을 산출한 후, 이러한 조작을 5회 반복하여 그 평균치를 산출한 값으로 나타내었다.The compressive strength (kg / cm 3) is measured by compressing the compressive force (kg) when the carrier is broken by gradually applying pressure to the surface of the carrier, and calculating this value by dividing this value by the cross-sectional area (cm 3) of the carrier. It was shown 5 times and the value which calculated the average value.

담체의 압축강도 및 NH4-N과 NO3-N의 분배계수에 대한 결과는 표 1에 나타내었다.The compressive strength of the carrier and the results of partition coefficients of NH 4 -N and NO 3 -N are shown in Table 1.

담체의 종류Type of carrier 압축강도(㎏/㎤)Compressive strength (㎏ / ㎠) 분 배 계 수Distribution factor NH4-NNH 4 -N NO3-NNO 3 -N 실시예 1Example 1 3.653.65 0.860.86 0.930.93 알긴산탄산나트륨(Alginic Sodium Carbonate), 한천(Agar)Sodium alginate (Alginic Sodium Carbonate), agar (Agar) 0.5∼0.80.5 to 0.8 아크릴아미드(Acrylamide) Acrylamide 1.401.40 0.850.85 0.950.95 폴리비닐알코올 - 붕산(PVA-boric acid)Polyvinyl Alcohol-Boric Acid ( PVA-boric acid ) 2.752.75 0.910.91 0.900.90

상기 표 1로부터, 실시예 1의 방법으로 제조된 활성탄공존 포괄고정화 미생물담체는 기존의 담체에 비해 압축강도가 1.3∼7배 정도 높은 것을 알수 있고, 또한 NH4-N와 NO3-N을 이용한 분배계수는 각각 0.86, 0.93을 나타내어 기존의 담체와 대등한 수준으로 판명되어 실용화가 가능하다는 것을 알 수 있다.From Table 1, it can be seen that the activated carbon coexistence entrapment-fixed microbial carrier prepared by the method of Example 1 has a compressive strength of about 1.3 to 7 times higher than that of the conventional carrier, and also using NH 4 -N and NO 3 -N. The distribution coefficients were 0.86 and 0.93, respectively, which proved to be comparable to those of the conventional carriers.

※ 환경조건에 의한 영향※ Impact by environmental conditions

실시예 1의 활성탄공존 포괄고정화 미생물담체, 활성오니 및 기존의 고정화 미생물을 각각 별도의 유효용적 1ℓ의 반응조에 투입하여 각종의 용해성 유기탄소(Dissolved Organic Carbon : DOC) 용적부하를 인공폐수 대상으로 연속실험한 결과, 실시예 1의 활성탄공존 포괄고정화 미생물담체가 활성오니나 기존의 고정화 미생물에 비해 부하변동에 의한 영향이 적었으며, 85∼92%의 처리효율로 안정된 처리수를 얻을 수 있었고, 다른 미생물들보다 저온에서도 수온의 영향을 적게 받았다.Activated carbon co-existing comprehensive immobilized microbial carrier, activated sludge and existing immobilized microorganism of Example 1 were put into a separate effective volume 1L reaction tank to continuously dissolve various dissolved organic carbon (DOC) volume loads into artificial wastewater. As a result, the activated carbon co-existing immobilized microbial carrier of Example 1 was less active due to load fluctuation compared to the conventional immobilized microorganisms, and stable treatment water was obtained with 85 ~ 92% treatment efficiency. Water temperature was less affected by microorganisms at lower temperatures.

이러한 결과로써 활성탄공존 포괄고정화 미생물담체내의 분말활성탄이 기질을 흡착함과 동시에 환경이나 온도등의 변화를 완충시키는 역할을 하는 한편, 미생물에 의한 유기물의 분해활동으로 인해 효율적인 폐수처리가 이루어지는 것을 알 수 있었다.As a result, powder activated carbon in the activated carbon co-existence-fixed microbial carrier adsorbs substrates and buffers changes in environment or temperature, and it can be seen that efficient wastewater treatment is performed due to decomposition of organic matter by microorganisms. there was.

※ 난분해성물질의 생분해 실험※ Biodegradation test of hardly degradable material

다이옥신의 탄소 기본골격인 디벤조퓨란의 생분해능을 검토하기 위해 다이옥신의 분해균인 녹농균(Psedomonas aeruginosa)를 현탁시킨 현탁액, 기존의 방법으로 고정화시킨 미생물 담체, 실시예 1의 방법으로 제조한 활성탄공존 포괄고정화 미생물담체를 각각 준비하였다. 각각에 대해서 같은 조건하에 초기농도 3.7㎎/ℓ의 디벤조퓨란을 생분해 회분실험한 결과, 녹농균의 디벤조퓨란의 처리능력은 현탁액의 경우 약 96시간후에 디벤조퓨란이 검출한계 이하로 저하하였고, 이 때의 균체량은 6.2×105N/㎖에서 5×106N/㎖으로 증가하였다. 고정화미생물의 경우에는 디벤조퓨란이 검출한계이하로 저하하는 데 48시간, 활성탄공존 포괄고정화 미생물담체의 경우에는 24시간만에 기질이 제거되었다.In order to examine the biodegradability of dibenzofuran, the basic skeleton of dioxin, suspension of Pseudomonas aeruginosa , a decomposing bacterium of dioxin, a microbial carrier immobilized by the conventional method, and activated carbon coexisting in the method of Example 1 Inclusive immobilized microbial carriers were prepared, respectively. As a result of biodegradation batch test of dibenzofuran with initial concentration of 3.7 mg / l under the same conditions, the treatment capacity of dibenzofuran of Pseudomonas aeruginosa was lowered below the detection limit of dibenzofuran after about 96 hours in suspension. The cell mass at this time increased from 6.2 × 10 5 N / ml to 5 × 10 6 N / ml. In the case of immobilized microorganisms, the substrate was removed in 48 hours for dibenzofuran to fall below the detection limit, and in 24 hours for the activated carbon co-incorporating immobilized microbial carrier.

이런 결과로써, 미생물을 고정화시킴으로서 미생물의 분해능이 높아진다는 결과를 얻을 수 있었으며, 또한, 활성탄공존 포괄고정화 미생물의 경우에는 현탁미생물보다 처리시간을 ¼까지 단축된 것을 보아 난분해성물질의 처리에 활성탄의 공존이 유효함을 확인할 수 있었다.As a result, it was found that the resolution of the microorganism was increased by immobilizing the microorganism. Also, in the case of the activated carbon coexistence encapsulated and immobilized microorganism, the processing time was shortened to ¼ compared to the suspension microorganism. Coexistence was found to be valid.

※ 활성실험※ Active experiment

상기 난분해성물질의 생분해 실험의 결과에서 활성탄에 의한 흡착효과와 함께 현탁계와 포괄고정화계의 비교에서 다른환경에 있어서 미생물 활성의 차이도 시사함으로 ATP를 측정하여 평가한 결과, 초기 현탁미생물 ATP량이 1×10-7㏖/ℓ은 시간경과와 함께 증가하여 60시간에 최대치인 2.2×10-7㏖/ℓ을 나타내었고, 포괄고정화미생물의 경우에는 3.4×10-6㏖/ℓ으로 높은 값을 나타내었다. 이러한 ATP량의 증가는 균체량이 현탁상태의 경우 7×106N/㎖, 포괄고정화미생물의 경우 1.2×107N/㎖, 활성탄공존 포괄고정화 미생물담체의 경우 1.25×107N/㎖으로 현탁균체에 비해 단위용적당의 고정화 균체량이 고농도로 보유되고 있음이 판명되었다.As a result of the biodegradation test of the hardly decomposable substance, ATP was measured and evaluated as a result of the adsorption effect by activated carbon and the difference of microbial activity in other environments in the comparison between suspension system and comprehensive fixation system. 1 × 10 -7 mol / l increased with time, showing a maximum value of 2.2 × 10 -7 mol / l at 60 hours, and a high value of 3.4 × 10 -6 mol / l in the case of inclusive microorganisms. Indicated. The increase in the amount of ATP was suspended at 7 × 10 6 N / ml in suspension, 1.2 × 10 7 N / ml in inclusion-fixed microorganisms, and 1.25 × 10 7 N / ml in case of activated carbon co-inclusion microorganism carriers. In comparison with the cells, it was found that the immobilized cells per unit volume were held at a high concentration.

본 발명은 폐수처리시 광경화성 수지를 이용하여 활성탄과 미생물이 동시에 고정화된 담체를 사용함으로써 활성탄에 의해 오염물질이 흡착되는 물리적처리와 미생물에 의한 생물적처리를 동시에 수행하게 함으로써 난분해성 물질 및 질소 인을 제거하여 수질의 향상을 기대할 수 있다.In the present invention, by using a photocurable resin in wastewater treatment, activated carbon and microorganisms are simultaneously used to immobilize contaminants adsorbed by activated carbon and biotreatment by microorganisms to simultaneously carry out biodegradable substances and nitrogen. Phosphorus removal can improve the water quality.

Claims (9)

광경화성 수지에 미생물과 활성탄을 동시에 고정시킨 활성탄공존 포괄고정화 미생물담체.Activated carbon coexistence fixation microbial carrier which fixed microorganism and activated carbon at the same time in photocurable resin. 제 1항에 있어서, 상기 광경화성 수지가 폴리비닐글리콜을 골격으로 하고 양말단과 분자 가운데 광경화성 에칠렌성불포화기를 기본 구조로 가지고 있는 것을 특징으로 하는 활성탄공존 포괄고정화 미생물담체.The activated carbon co-incorporation-fixing microbial carrier according to claim 1, wherein the photocurable resin has polyvinyl glycol as a skeleton and has a photocurable ethylene-unsaturated group in the sock end and the molecule as a basic structure. 제 1항에 있어서, 상기 활성탄이 분말활성탄인 것을 특징으로 하는 활성탄공존 포괄고정화 미생물담체.The activated carbon co-existence fixation microorganism carrier according to claim 1, wherein the activated carbon is powder activated carbon. 제 1 항에 있어서, 상기 미생물은 염소화합물, 질소(N) 및 인(P) 분해미생물인 것을 특징으로 하는 활성탄공존 포괄고정화 미생물담체.According to claim 1, wherein the microorganism is activated carbon co-incorporating and immobilized microorganism carrier, characterized in that the chlorine compound, nitrogen (N) and phosphorus (P) decomposition microorganisms. 미생물담체의 제조방법에 있어서, 광경화성 수지에 알긴산나트륨과 중합개시제를 혼합하여, 이 혼합물에 원심분리로 농축한 분해세균배양액과 고정화제, 활성탄을 잘 혼합하고, 이 혼합물을 염화칼슘액중에 적하시켜 생성된 액적을 염화칼슘용액에서 꺼내어 가볍게 물로 씻은 후, 광을 조사하여 수지를 광경화시키는 것을 포함하는 활성탄공존 포괄고정화 미생물담체의 제조방법.In the method for producing a microbial carrier, sodium alginate and a polymerization initiator are mixed with a photocurable resin, and the disintegrating bacterial culture solution concentrated by centrifugation, an immobilizing agent and activated carbon are mixed well, and the mixture is added dropwise into a calcium chloride solution. A method for producing an activated carbon co-existence-fixed microbial carrier comprising removing the resulting droplets from a calcium chloride solution and rinsing lightly with water and then irradiating with light to photocure the resin. 제 5항에 있어서, 상기 광경화성수지가 폴리비닐글리콜을 골격으로 하고 양말단과 분자 가운데 광경화성 에칠렌성불포화기를 기본 구조로 가지고 있는 것을 특징으로 하는 활성탄공존 포괄고정화 미생물담체의 제조방법.6. The method according to claim 5, wherein the photocurable resin has polyvinyl glycol as a skeleton and has a photocurable ethylene-unsaturated group in the sock end and the molecule as a basic structure. 제 5항에 있어서, 상기 활성탄이 분말활성탄인 것을 특징으로 하는 활성탄공존 포괄고정화 미생물담체의 제조방법.The method according to claim 5, wherein the activated carbon is a powder activated carbon. 제 5 항에 있어서, 상기 미생물은 염소, 질소(N) 및 인(P) 분해미생물인 것을 특징으로 하는 활성탄공존 포괄고정화 미생물담체의 제조방법.The method of claim 5, wherein the microorganism is a chlorine, nitrogen (N) and phosphorus (P) decomposition microorganisms, characterized in that the activated carbon co-incorporation-fixing microbial carrier production method. 제 5 항에 있어서, 광경화성 수지 10g에 대하여 3%알긴산나트륨과 광개시제로서 2-히드록시 2-메틸프로피오페놀을 2g : 0.04g의 비율로 혼합하고, 이 혼합물에 원심분리로 농축한 분해세균배양액 4g과 상기 혼합물인 고정화제 100g당 0.5∼1g의 분말활성탄을 잘 혼합한 후, 이 혼합물을 농도는 0.25∼1M의 염화칼슘액중에 적하시켜 생성된 액적을 염화칼슘용액에서 꺼내어 가볍게 물로 씻은 후, 파장범위 300∼400㎚의 형광램프로 5∼15분 동안 광을 조사하여 수지를 광경화시키는 것을 특징으로 하는 활성탄공존 포괄고정화 미생물담체의 제조방법.6. The disintegrating bacterium according to claim 5, wherein 3% sodium alginate and 2-hydroxy 2-methylpropiophenol as a photoinitiator are mixed at a ratio of 2 g: 0.04 g to 10 g of the photocurable resin, and the mixture is concentrated by centrifugation. After mixing 4 g of the culture solution and 0.5-1 g of powdered activated carbon per 100 g of the above-mentioned immobilizing agent, the mixture was dropped in a calcium chloride solution having a concentration of 0.25-1 M. A method of producing an activated carbon co-existence-immobilized microbial carrier, characterized in that the resin is photocured by irradiating light for 5 to 15 minutes with a fluorescent lamp in the range 300 to 400 nm.
KR1019960063354A 1996-12-09 1996-12-09 Activated Carbon Coexistence Comprehensive Immobilized Microbial Carrier Using Photocurable Resin and Manufacturing Method Thereof KR19980045193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960063354A KR19980045193A (en) 1996-12-09 1996-12-09 Activated Carbon Coexistence Comprehensive Immobilized Microbial Carrier Using Photocurable Resin and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960063354A KR19980045193A (en) 1996-12-09 1996-12-09 Activated Carbon Coexistence Comprehensive Immobilized Microbial Carrier Using Photocurable Resin and Manufacturing Method Thereof

Publications (1)

Publication Number Publication Date
KR19980045193A true KR19980045193A (en) 1998-09-15

Family

ID=66522528

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960063354A KR19980045193A (en) 1996-12-09 1996-12-09 Activated Carbon Coexistence Comprehensive Immobilized Microbial Carrier Using Photocurable Resin and Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR19980045193A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030069023A (en) * 2002-02-15 2003-08-25 김임석 Method for eliminating total nitrogen from wastewater
KR100441689B1 (en) * 1999-06-22 2004-07-27 토요 덴카 코교 가부시키가이샤 Method for producing carrier holding degrading bacterium
KR100455335B1 (en) * 1999-12-06 2004-11-06 주식회사 효성 The method for immobilizing bacteria in nitrification
KR101234585B1 (en) * 2010-10-28 2013-02-19 (주)바이오쉴드 Method of fabricating a controlled-release hydrogel bead

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441689B1 (en) * 1999-06-22 2004-07-27 토요 덴카 코교 가부시키가이샤 Method for producing carrier holding degrading bacterium
KR100455335B1 (en) * 1999-12-06 2004-11-06 주식회사 효성 The method for immobilizing bacteria in nitrification
KR20030069023A (en) * 2002-02-15 2003-08-25 김임석 Method for eliminating total nitrogen from wastewater
KR101234585B1 (en) * 2010-10-28 2013-02-19 (주)바이오쉴드 Method of fabricating a controlled-release hydrogel bead

Similar Documents

Publication Publication Date Title
Jianlong et al. Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass
Franquet-Griell et al. Biological and photochemical degradation of cytostatic drugs under laboratory conditions
Girijan et al. Immobilized biomass systems: an approach for trace organics removal from wastewater and environmental remediation
Xiong et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP
Xiangli et al. Immobilization of activated sludge in poly (ethylene glycol) by UV technology and its application in micro-polluted wastewater
Beni et al. Design and optimization of a new reactor based on biofilm-ceramic for industrial wastewater treatment
CN109734199A (en) Immobilized microorganism structural body and preparation method thereof
Pratiwi et al. Decolourization of remazol black-5 textile dyes using moving bed bio-film reactor
Ma et al. Phenol removal and biofilm response in coupling of visible-light-driven photocatalysis and biodegradation: Effect of hydrothermal treatment temperature
Kushwaha et al. An insight into biological and chemical technologies for micropollutant removal from wastewater
CN114433161B (en) Composite material for efficiently activating monopersulfate, and preparation method and application thereof
CN1490263A (en) Water treating technology by reinforced membrane biological reactor
CN114249411A (en) Method for advanced treatment of organic micropollutants in landfill leachate by coupling biochar with peroxyacetic acid
KR100298510B1 (en) wastewater treatment plant by high-speedly bio-degrading method for high-concentration organic wastewater
JP2009066515A (en) Method, device, and agent for decoloring dye-containing wastewater
KR19980045193A (en) Activated Carbon Coexistence Comprehensive Immobilized Microbial Carrier Using Photocurable Resin and Manufacturing Method Thereof
Li et al. On-site treatment of dyeing wastewater by a bio-photoreactor system
JP3488853B2 (en) Deodorant, deodorizing method, deodorizing member and deodorizing device
US20030085174A1 (en) On-site biological treatment of contaminated fluids
CN111762978A (en) UV/H for deeply removing drug micropollutants in sewage2O2Combined biological activated carbon process
KR101277377B1 (en) Hybrid-devices to treat wastewater with a synergy effect
RU2313497C2 (en) Conditioning agent for treatment of sewage water or contaminated air, method for producing and using the same
Sekaran et al. Oxidative destabilization of dissolved organics and E. coli in domestic wastewater through immobilized cell reactor system
WO2024125677A1 (en) Method for elimination of pharmaceuticals from wastewater
KR100205173B1 (en) Alginic acid gel water treatment agent for removing heavy maetal and process for preparing same

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination