KR19980039738A - New Cell Culture Media for Glycation and Productivity of Mammalian Cell-Derived Glycoproteins - Google Patents
New Cell Culture Media for Glycation and Productivity of Mammalian Cell-Derived Glycoproteins Download PDFInfo
- Publication number
- KR19980039738A KR19980039738A KR1019960058826A KR19960058826A KR19980039738A KR 19980039738 A KR19980039738 A KR 19980039738A KR 1019960058826 A KR1019960058826 A KR 1019960058826A KR 19960058826 A KR19960058826 A KR 19960058826A KR 19980039738 A KR19980039738 A KR 19980039738A
- Authority
- KR
- South Korea
- Prior art keywords
- cell culture
- culture medium
- added
- glycoproteins
- productivity
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
- C07K14/505—Erythropoietin [EPO]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/60—Buffer, e.g. pH regulation, osmotic pressure
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Toxicology (AREA)
- General Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
본 발명은 유전자 재조합 방법에 따라 동물세포로부터 유래하는 당단백질을 생산하고자 단백질 생산용 세포주를 대량으로 배양하는 경우에, 당단백질의 당쇄화 향상에 따른 생체내 이용율 및 생산 수율을 개선시키기 위한 목적으로 레티노산 및 부티르산 또는 그의 염을 함유시킨 새로운 세포배양배지에 관한 것이다.The present invention is to improve the bioavailability and production yield according to the glycosylation of glycoproteins in the case of culturing a large number of cell lines for protein production to produce glycoproteins derived from animal cells according to the genetic recombination method A new cell culture medium containing retinoic acid and butyric acid or salts thereof.
Description
제1도는 세포배양배지의 pH 상승에 따른 당단백질 생산농도의 증가양상을 나타낸 것이고, 제2도는 소듐부티레이트가 첨가된 세포배양액에서 생산된 당단백질 농도의 증가양상을 나타낸 것이며, 제3도는 레티노산이 첨가된 세포배양액에서 생산된 당단백질의 당쇄화 향상정도를 나타낸 것이고, 제4도는 소듐부티레이트가 첨가된 세포배양액에서 생산된 당단백질의 당쇄화 향상정도를 나타낸 것이다.Figure 1 shows the increase in glycoprotein production concentration with increasing pH of the cell culture medium, Figure 2 shows the increase in the glycoprotein concentration produced in the cell culture medium with sodium butyrate added, Figure 3 is the retinoic acid It shows the degree of glycation of glycoproteins produced in the added cell culture medium, Figure 4 shows the degree of glycation of glycoproteins produced in the cell culture medium added with sodium butyrate.
본 발명은 유전자 재조합 방법에 따라 동물세포로부터 유래하는 당단백질을 생산하고자 단백질 생산용 세포주를 대량으로 배양하는 경우에, 당단백질의 당쇄화 향상에 따른 생체내 이용율 및 생산 수율을 개선시키기 위한 목적으로 레티노산 및/또는 부티르산염을 함유시킨 새로운 세포배양배지에 관한 것이다.The present invention is to improve the bioavailability and production yield according to the glycosylation of glycoproteins in the case of culturing a large number of cell lines for protein production to produce glycoproteins derived from animal cells according to the genetic recombination method A new cell culture medium containing retinoic acid and / or butyrate.
유전자 재조합 기술에 의해 생산되는 당단백 의약품이 생체에 투여된 후 분자구조의 안정성 및 높은 생물학적 활성을 유지하기 위해서는 번역 후 변형 (posttranslational modification) 및 당쇄화(glycosylation)과정이 매우 중요하다. 그러나, 이러한 당쇄화과정은 미생물내에서는 불완전하거나 거의 이루어지지 않기 때문에 동물세포를 이용한 대량 배양방법이 당단백질을 생산하기 위한 중요한 생산공정으로서 자리잡았다.Posttranslational modification and glycosylation are very important to maintain the stability of the molecular structure and high biological activity after the glycoprotein drug produced by the recombinant technology is administered to the living body. However, since the glycosylation process is incomplete or rarely performed in microorganisms, the mass culture method using animal cells has become an important production process for producing glycoproteins.
당단백질의 당쇄화 과정은 소포체(endoplasmic reticulum)와 골지체에 존재하는 다양한 엑소글리코시다아제(exoglycosidase) 및 글리코실 트랜스퍼라아제(glycosyl transferase)에 의하여 수행되는 것으로 알려져 있으며(참조: C.F Goochee, M.J. Gramer, D. C. Andersen, J.B. Bahr and J.R. Rasmussen Biotechnology, 1991, 9, 1347-1354), 특히 다당구조(Oligosaccharide structure)에서 말단에 결합되는 시알산(sialic acid)은 자기면역반응 등의 부작용을 피할 수 있게 해주고, 간에 존재하는 아시알로글리코프로테인(asialoglycoprotein)수용체에 의한 당단백질의 소실을 방지하여 혈중내 반감기를 최대화시키는데 매우 중요한 작용을 한다(참조: E. Goldwasser, C K-H Kung and J. Eliason. J. Biol. Chem, 1974, 249, 4202-4210). 이와 같이 중요한 작용을 하는 시알산의 결합은 골지체중에 존재하는 시알릴트랜스퍼라아제(sialyltranserase)에 의하여 수행된다. 즉, 당쇄화 과정은 일련의 효소반응에 의해 수행되며, 완벽한 당쇄화 과정이 이루어지기 위해서는 각 단계마다 적합한 효소의 활성화가 필수적인 것이다.The glycosylation process of glycoproteins is known to be performed by various exoglycosidases and glycosyl transferases present in the endoplasmic reticulum and Golgi (cf. CF Goochee, MJ Gramer). , DC Andersen, JB Bahr and JR Rasmussen Biotechnology, 1991, 9, 1347-1354), especially sialic acid, which is bound to the terminal in the oligosaccharide structure, helps to avoid side effects such as autoimmune reactions. In addition, it plays a very important role in maximizing blood half-life by preventing the loss of glycoproteins by the asialoglycoprotein receptors present in the liver (see E. Goldwasser, C KH Kung and J. Eliason. J. Biol). Chem, 1974, 249, 4202-4210. The binding of sialic acid, which plays such an important function, is performed by sialyltranserase present in the Golgi apparatus. That is, the glycosylation process is performed by a series of enzymatic reactions, and the activation of a suitable enzyme is essential for each step in order to achieve a complete glycosylation process.
이에, 본 발명자들은 유전자공학적 방법으로 재조합 당단백질을 생산하는 경우에 숙주세포로서 포유동물세포를 사용하는 것 이외에도 당쇄화 과정에 참여하는 일련의 효소들을 활성화시킴과 아울러 단백질 프로세싱(processing) 및 분비를 촉진시킬 수 있다면 보다 높은 생물학적 활성을 지닌 당단백질을 고수율로 생산할 수 있으리라는 점에 착안하여 이 목적을 위해 집중적인 연구를 수행하였으며, 그 결과 단백질 생산용 세포주를 배양하는 과정에서 레티노산 및/또는 부티르산염을 세포배양배지에 첨가하면 이러한 목적을 달성할 수 있음을 발견하고 그 효과를 직접 확인함으로써 본 발명을 완성하게 되었다. 이하, 본 발명의 구성을 좀더 상세히 설명한다.Thus, the inventors of the present invention, in addition to using mammalian cells as host cells when producing recombinant glycoproteins by genetic engineering method, activate the series of enzymes involved in the glycosylation process, as well as protein processing and secretion. Intensive research has been carried out for this purpose, focusing on the high yield of glycoproteins with higher biological activity if they can be promoted, resulting in retinoic acid and / or in culturing protein-producing cell lines. Or it was found that the addition of butyrate to the cell culture medium can achieve this purpose and to complete the present invention by directly confirming the effect. Hereinafter, the configuration of the present invention in more detail.
본 발명은 레티노산 및/또는 부티르산염을 함유함을 특징으로 하는 새로운 세포배양배지에 관한 것이다. 이와 같은 구성을 취함으로써 본 발명에 따른 세포 배양배지는 재조합 당단백질의 당쇄화 및 생산수율을 증가시킬 수 있다.The present invention relates to a new cell culture medium characterized by containing retinoic acid and / or butyrate. By taking such a configuration, the cell culture medium according to the present invention can increase the glycosylation and production yield of the recombinant glycoprotein.
본 발명에 따른 세포배양배지에서 유효성분으로 사용한 레티노산은 동물세포의 배양시 당쇄화에 관계하는 일련의 효소들을 활성화시키는 작용을 할 수 있으며 부티르산은 단백질 프로세싱 및 분비에 관련하는 GRP(Glucose regulated proteins) 및 PDI(protein disulfide isomerase)의 발현을 향상시킬 수 있으므로, 본 발명에서는 이들을 세포배양배지에 함유시킴으로서 재조합 단백질의 당쇄화 및 생산수율을 높이기 위한 수단으로 사용하였고 이에 따라 높은 생체내 생물학적 활성 (in vivo biological activity)을 갖는 당 단백질의 생산수율을 극대화시키는데 성공하였다.Retinoic acid used as an active ingredient in the cell culture medium according to the present invention can act to activate a series of enzymes involved in glycosylation in the culture of animal cells, butyric acid is GRP (Glucose regulated proteins) involved in protein processing and secretion And since it can improve the expression of protein disulfide isomerase (PDI), in the present invention it was used as a means for increasing the glycosylation and production yield of recombinant protein by containing them in the cell culture medium and accordingly high in vivo biological activity (in vivo) We have succeeded in maximizing the yield of glycoproteins with biological activity.
즉, 제3도 및 4도의 결과로부터 알 수 있듯이, 세포배양배지에 레티노산을 첨가하면 보다 낮은 등전점(isoelectric point)을 갖는 당단백질의 함량이 증가하는데, 이는 당쇄 말단에 시알산을 포함하는 당단백질의 함량이 보다 증가한 것을 의미하며, 부티르산염(예를들어, 소듐부티레이트)을 첨가한 경우에도 당단백질의 당쇄화가 향상되고 있다. 또한, 제2도는 세포배양배지중에 부티르산염을 첨가한 경우에 시일 경과에 따른 당단백질 생산성의 향상정도를 나타낸 것인데, 이로부터 부티르산염을 첨가하면 대조군에 비하여 13 내지 211%의 범위에서 다양하게 생산성이 증대되고 있음을 알 수 있다.That is, as can be seen from the results of FIGS. 3 and 4, the addition of retinoic acid to the cell culture medium increases the content of glycoproteins having a lower isoelectric point, which is a sugar containing sialic acid at the end of the sugar chain. This means that the protein content is increased, and glycoprotein glycation is improved even when butyrate (for example, sodium butyrate) is added. In addition, FIG. 2 shows the improvement of glycoprotein productivity over time when butyrate was added to the cell culture medium. From this, when butyrate was added, the productivity was varied in the range of 13 to 211% compared to the control group. It can be seen that this is increasing.
이러한 목적으로 레티노산을 첨가하는 경우에 세포배양배지중의 레티노산의 함량은 0.05pM 내지 20μM의 농도로 유지시키는 것이 바람직하고, 부티르산염은 0.05pM 내지 2mM의 농도로 유지시키는 것이 바람직하다.When retinoic acid is added for this purpose, the retinoic acid content in the cell culture medium is preferably maintained at a concentration of 0.05 pM to 20 μM, and the butyrate is preferably maintained at a concentration of 0.05 pM to 2 mM.
한편, 본 발명에 따른 세포배양배지의 pH를 8.5이상으로 조정하여 사용하면 시알리다아제(sialidase)에 의하여 최종 생산물인 시알화 프로테인(sialy protein)으로 부터 시알산이 제거되는 것을 억제할 수 있으므로, 세포배양배지의 pH는 8.5 내지 9.0으로 유지시키는 것이 바람직하다. 제1도는 세포배양배지의 pH를 8.5 및 7.8로 각각 조정한 배양지배지중에서 단백질 생산용 세포를 배양한 다음, 단백질의 생산성을 측정한 결과를 나타낸 것인데, 이로부터 pH를 8.5 조정한 경우에 pH 7.8의 대조군에 비하여 25% 정도 생산성이 증가됨을 알 수 있다.On the other hand, by adjusting the pH of the cell culture medium according to the present invention to 8.5 or more, it is possible to inhibit the removal of sialic acid from the sialy protein, which is the final product, by sialidase. The pH of the culture medium is preferably maintained at 8.5 to 9.0. FIG. 1 shows the results of measuring protein productivity after culturing the cells for protein production in the culture medium in which the pH of the cell culture medium was adjusted to 8.5 and 7.8, respectively. It can be seen that the productivity is increased by about 25% compared to the control of.
본 발명에 따른 세포배양배지를 적용하여 생산하고자 하는 당단백질의 종류를 한정할 필요는 없으며, 유전자 재조합 방법에 따라 당단백질을 생산하고자 하는 경우라면 어떤 경우든 적용가능하다. 본 발명을 적용하기에 바람직한 당단백질의 대표적인 예로는 생체내에서 적혈구 생성 자극인자로서 작용을 하며, 전체 분자량의 약 40%가 다당구조로 되어 있는 에리트로포이에틴(Erythropoietin; 이하, “EPO”라 한다)를 언급할 수 있으며, 이하의 실시예에서는 이 당단백질을 대상으로 하여 본 발명에 따른 세포배양배지의 효과를 확인하였다. 그러나, 이들 실시예는 본 발명에 대한 이해를 돕기위한 것일 뿐, 어떤 의미로든 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.It is not necessary to limit the type of glycoprotein to be produced by applying the cell culture medium according to the present invention, and any case can be applied if the glycoprotein is to be produced by the genetic recombination method. Representative examples of preferred glycoproteins to which the present invention is applied are erythropoietin (EPO), which acts as a erythropoietin-stimulating factor in vivo and has a polysaccharide structure of about 40% of its total molecular weight. In the following Examples, the effect of the cell culture medium according to the present invention was confirmed for the glycoprotein. However, these examples are only for the understanding of the present invention, and the scope of the present invention in any sense is not limited to these examples.
실시예 1 : 배지조성의 변화에 따른 당단백질 생산량의 증가Example 1 Increase of Glycoprotein Production According to the Change of Medium Composition
EPO를 생산할 수 있도록 형질전환된 중국 햄스터 난소(Chinese Hamster Ovary: CHO)세포를 175㎠ 세포배양 플라스크 또는 490㎠ 롤러 버틀에 1×105세포/㎖ 밀도로 분주한 다음, 여기에 소태아혈청(GIBCO BRL) 3%가 함유된 DMEM/F12 배지(GIBCO BRL) 40 내지 80㎖를 첨가하였다. 음성대조군으로는 pH가 7.2 내지 7.8로 조정된 것을 사용하였고 양성대조 I군으로는 pH가 8.5 내지 9.0으로 조정된 것을 사용하였다. 이때, pH를 8.5 내지 9.0으로 조정하기 위하여 헤페스소듐염(HEPES sodium salt) 및 중탄산나트륨(Sodium bicarbonate)을 혼합사용하였다. 사용된 배지에 농도범위는 모두 10 내지 3mM이었다. 양성대조 II군에는 레티노산을 최종농도가 0.5 내지 20μM이 되도록 첨가하였으며, 양성대조 III군에는 소듐부티레이트를 최종농도가 0.05 내지 2mM이 되도록 첨가하였다.Chinese Hamster Ovary (CHO) cells transformed to produce EPO were dispensed at a density of 1 × 10 5 cells / ml in a 175 cm 2 cell culture flask or 490 cm 2 roller bottle, and then fetal bovine serum ( 40-80 mL of DMEM / F12 medium (GIBCO BRL) containing 3% of GIBCO BRL) was added. The negative control group used a pH adjusted to 7.2 to 7.8 and the positive control group I used a pH adjusted to 8.5 to 9.0. At this time, in order to adjust the pH to 8.5 to 9.0, a mixture of hepes sodium salt (HEPES sodium salt) and sodium bicarbonate (Sodium bicarbonate) was used. The concentration range in the medium used was all 10 to 3 mM. In the positive control group II, retinoic acid was added so as to have a final concentration of 0.5 to 20 μM, and in the positive control group III, sodium butyrate was added so as to have a final concentration of 0.05 to 2 mM.
37℃의 CO2배양기 또는 항온실에서 각 배지중의 세포를 배양하였으며, 세포가 증식하고 있는 세포배양 플라스크 또는 롤러 버틀에서 배지를 1 내지 3일 마다 교환하면서 배지를 회수하였다.The cells in each medium were cultured in a CO 2 incubator or a thermostatic chamber at 37 ° C., and the medium was recovered by changing the medium every 1-3 days in a cell culture flask or roller bottle in which the cells were growing.
상기한 바와 같이 다양한 조성을 갖는 배지에서 세포를 배양한 다음, 세포 배양배지를 900×g에서 원심분리하여 수득한 상등액 100㎕ 검체로 하여 세포내에서 생산된 EPO 단백질의 양을 효소면역학적 분석법(ELISA)에 따라 다음과 같이 확인하였다. 96 웰 플레이트의 각 웰마다 PBS(Phosphate Buffered Solution) 1㎖당 5㎍의 항 EPO 단일클론항체를 100㎕씩 넣고 37℃에서 2시간 동안 부착시켰다. 항체용액을 제거하고 PBST(Phosphate buffered solution에 tween을 0.05%녹임)로 4회 세척하였다. 각 웰마다 검체를 100㎕씩 넣고 37℃에서 2시간동안 반응시켰다. 그후 PBST로 4회 세척한 후 5㎍/㎖의 항 EPO 다가항체를 100㎕씩 넣고 37℃에서 2시간동안 반응시켰다. 다시 PBST로 4회 세척한 후 200mU/㎖ 퍼옥시다아제 콘쥬게이트 이뮤노글로블린 G (peroxidase conjugate immunoglobulin G)를 100㎕씩 넣고 37℃에서 2시간 반응시켰다. PBST로 4회 세척 후 1㎎/㎖ 농도의 o-페닐렌디아민(Phenylenediamine; OPD)을 100㎕씩 넣고 실온에서 10분간 반응시켰다. 1N황산 50㎕를 가하여 반응을 종료시킨 후 490nm에서의 흡광도를 측정하였다. 용량 반응 기준 곡선은 국제표준 EPO를 계대희석한 것을 사용하였다.After culturing the cells in a medium having various compositions as described above, 100 μl of the supernatant obtained by centrifuging the cell culture medium at 900 × g, the amount of EPO protein produced intracellularly was analyzed by enzyme immunoassay (ELISA). ) Was confirmed as follows. 100 μl of 5 μg of anti-EPO monoclonal antibody per 1 ml of PBS (Phosphate Buffered Solution) was added to each well of a 96 well plate and attached at 37 ° C. for 2 hours. The antibody solution was removed and washed four times with PBST (tween 0.05% dissolved in Phosphate buffered solution). 100 μl of the sample was added to each well and reacted at 37 ° C. for 2 hours. Then, after washing four times with PBST, 100 μl of 5 μg / ml anti-EPO polyvalent antibody was added and reacted at 37 ° C. for 2 hours. After washing four times with PBST again, 100 μl of 200mU / ml peroxidase conjugated immunoglobulin G (peroxidase conjugate immunoglobulin G) was added and reacted at 37 ° C. for 2 hours. After washing four times with PBST, 100 μl of 1-mg / ml concentration of o-phenylenediamine (OPD) was added thereto and reacted at room temperature for 10 minutes. 50 µl of 1N sulfuric acid was added to terminate the reaction, and the absorbance at 490 nm was measured. The dose response reference curve was obtained by subdiluting the international standard EPO.
그 결과, pH가 8.5 내지 9.0인 경우 pH 7.2 내지 7.8의 음성대조군에 비하여 EPO 생산성에 있어서 25.1%의 증가를 나타내었으며(제1도 참조), 소듐부티레이트를 배지중에 첨가한 경우에는 소듐부티레이트를 첨가하지 않은 경우에 비해 13 내지 211%의 EPO 생산성 증가를 나타내었다(제2도 참조).As a result, when the pH was 8.5 to 9.0, it showed a 25.1% increase in EPO productivity compared to the negative control of pH 7.2 to 7.8 (see FIG. 1), and when sodium butyrate was added to the medium, sodium butyrate was added. The increase in EPO productivity was 13 to 211% compared to that without (see also Figure 2).
실시예 2 : 배지내 레티노산 첨가에 의한 EPO 당쇄화 향상Example 2 Enhancement of EPO Glycation by Addition of Retinoic Acid in Medium
레티노산을 첨가하여 세포배양배지내 최종농도가 0.5 내지 20μM되도록 조정한 후 실시예 1에서와 동일한 조건에서 세포를 배양하였다. 세포배양액으로 부터 유리된 EPO의 당쇄화 향상정도는 등전 포커싱(isoelectric focusing)분석법에 따라 다음과 같이 확인하였다.The cells were cultured under the same conditions as in Example 1 after adjusting the final concentration in the cell culture medium by adding retinoic acid to 0.5 to 20μM. The degree of glycosylation of EPO released from the cell culture was confirmed by the isoelectric focusing method as follows.
먼저, 등전 포커싱 분석을 위하여 30㎖의 세포배양액을 정제하였다. 즉, 항 EPO 단일클론항체를 결합시키고 시안화 브로마이드에 의해 활성화된 세파로오스(CNBr-activated sepharose)-4B 3㎖를 충진시킨 칼럼에 원심분리한 세포 배양 상등액을 통과시킨 후 10㎖의 PBS를 통과시켰다. 칼럼물질과 비특이적으로 결합한 단백질을 제거하기 위하여 0.5M 염화나트륨이 포함된 PBS를 통과시킨 후, 0.1M 구연산 10㎖로 용출시켜 280nm에서 흡광도를 나타내는 분획을 수거하였다. 수거한 분획의 pH를 1N 수산화나트륨 수용액을 사용하여 7.0으로 조정한 다음, 10mM Tris 용액(pH 7.5)에서 투석하고 농축시켜 20㎕ 부피로 만들었다.First, 30 ml of cell culture solution was purified for isoelectric focusing analysis. That is, after passing the cell culture supernatant centrifuged through a column filled with 3 ml of CNBr-activated sepharose-4B bound with anti-EPO monoclonal antibody and activated by cyanide bromide, and then passed through 10 ml of PBS. I was. In order to remove the non-specifically bound protein with column material, PBS containing 0.5 M sodium chloride was passed through, and eluted with 10 ml of 0.1 M citric acid, and the fraction showing absorbance at 280 nm was collected. The pH of the collected fractions was adjusted to 7.0 using 1N aqueous sodium hydroxide solution, then dialyzed in 10 mM Tris solution (pH 7.5) and concentrated to 20 [mu] l volume.
이러한 방법으로 다양한 세포 배양액으로부터 정제한 EPO 10㎕를 pH3 내지 10의 IEF 샘플 완충액(Novex Experimental Technology, San Diego, CA, U.S.A) 10㎕와 혼합한 후, pH 3 내지 10의 IEF 젤에서 100V로 1시간, 200V로 1시간, 500V로 30분간 전개시키고 쿠마시브릴리언트블루 0.1%, 메탄올 50%, 빙초산 10%가 포함된 용액중에서 30분간 염색하였다. 그 후, 메탄올 10% 및 빙초산 10%를 함유하는 용액중에서 16시간 동안 탈색시킨 후 80℃의 젤 건조기에서 3시간 동안 건조시켰다(제3도 참조).In this manner, 10 μl of purified EPO from various cell cultures was mixed with 10 μl of IEF sample buffer (Novex Experimental Technology, San Diego, Calif., USA) at pH 3 to 10, then at 100 V in an IEF gel at pH 3 to 10. It was developed for 1 hour at 200V for 30 minutes at 500V, and stained for 30 minutes in a solution containing 0.1% Coomasibrillant Blue, 50% methanol, and 10% glacial acetic acid. Thereafter, the solution was decolorized for 16 hours in a solution containing 10% methanol and 10% glacial acetic acid, followed by drying in a gel dryer at 80 ° C. for 3 hours (see FIG. 3).
그 결과 레티노산을 세포배지에 첨가한 경우(lane 4와 5)에는 음성대조군(lane 7와 8)에 비하여 낮은 등전점을 갖는 EPO 단백질 함량이 증가함을 확인할 수 있었는데, 이와 같이 낮은 등전점을 갖는 EPO는 당쇄화 말단에 많은 시알선을 포함하고 있음을 의미한다.As a result, when the retinoic acid was added to the cell medium (lanes 4 and 5), it was confirmed that the content of EPO protein having a lower isoelectric point was increased compared to the negative control group (lanes 7 and 8). Means that many sialic lines are included at the end of glycosylation.
실시예 3 : 배지내 소듐부티레이트 첨가에 의한 EPO 당쇄화 향상Example 3 Enhancement of EPO Glycation by Addition of Sodium Butyrate in Medium
세포배양배지내에 소듐부티레이트를 첨가하여 최종농도가 0.05 내지 5mM이 되도록 조정한 후 실시예 1에서와 동일한 조건에서 세포를 배양하였다. 세포배양액으로부터 유리된 EPO의 당쇄화 향상정도를 렉틴을 이용한 효소면역학적 분석법에 의해 확인하였다. 이때, 2종의 렉틴을 사용하였는데 하나는 마키아 아뮤렌시스 루코아글루티닌(Maackia amurensis leukoagglutinin; MAL로 표시)으로 컴플렉스 타입의 N-연결 다당체에서 3분지 또는 4분지 말단에 존재하는 α2,3 시알산과 특이적으로 결합하는 렉틴이며, 나머지 하나는 리시누스 코뮤니스 톡신으로 컴플렉스 타입의 N-연결 다당체에서 3분지 또는 4분지 말단에 존재하는 유당과 특이적으로 결합하는 리신(RIC로 표시)이다. 분석은 다음과 같은 방법으로 수행하였다.After adding sodium butyrate in the cell culture medium to adjust the final concentration to 0.05 to 5 mM, cells were cultured under the same conditions as in Example 1. The degree of glycosylation improvement of EPO released from the cell culture was confirmed by enzymatic immunoassay using lectin. At this time, two kinds of lectins were used, one of which is Macia amurensis leukoagglutinin (denoted as MAL), and α2,3 which is present at the third or fourth branch of the complex-type N-linked polysaccharide. A lectin that specifically binds sialic acid, the other is lysine communis toxin, a lysine that specifically binds to the lactose present at the three- or four-branched terminus of the complex-type N-linked polysaccharide. to be. The analysis was performed in the following manner.
96 웰 플레이트의 각 웰마다 PBS에 5㎍/㎖의 농도로 녹인 항 EPO 단일클론항체를 100㎕씩 넣고, 37℃에서 2시간동안 부착시켰다. 항체용액을 제거하고, 1시간 동안 실온에서 3% 젤라틴이 포함된 TBS(Tris Buffered Solution)로 비특이적 반응을 차단시켰다. 그후 PBST용액(2.5mM Sodium dihyrogen orthophosphate, 7.5mM Sodium hydrogen orthophosphate, 0.5mM Sodium chloride, 0.05% Tween 20, pH 7.2) 200㎕로 4회 세척한 다음, PBST 용액으로 적절하게 희석한 검체 100㎕를 가하고 실온에서 3시간동안 조용히 흔들면서 반응시켰다. 다시 PBST 용액으로 3회 세척한 후 바이오틴(biotin) 으로 표지된 MAL 또는 RIC를 PBST 용액으로 100 또는 1500배 희석하여 100㎕씩 넣고 실온에서 2시간 동안 흔들면서 반응시켰다. 다시 PBST로 4회 세척하고 아비딘 -홀스래디쉬퍼옥시다아제 100㎕를 첨가하였다. 15분간 반응시킨 후 다시 PBST로 4회 세척하고 과산화수소수 0.4%가 포함된 0.1M 구연산-인산 완충액(pH 5.0)에 오르토페닐렌디아민 1mM이 용해된 용액을 100㎕ 가하여 실온에서 15 내지 30분간 색조반응을 일으킨 다음, 3M 황산 50㎕로 반응을 정지시켰다. 플레이트 리더를 이용하여 490nm에서의 흡광도를 측정하였다. 이때, 표준물질로는 EPO 국제표준품을 사용하였으며, 리신을 이용한 효소면역학적 분석에서는 EPO 국제표준품 (National Institute of biological standard) 50U를 50mM 소듐아세테이트(pH 5.0) 용액에 용해시키고 10U/㎖ 시알리다아제(Boehringer Mannheim) 2㎕를 가하여 반응액 용량을 100㎕로 한 것을 37℃에서 2시간 반응시킨 다음 사용하였다.For each well of a 96 well plate, 100 μl of anti-EPO monoclonal antibody dissolved in PBS at a concentration of 5 μg / ml was added and attached at 37 ° C. for 2 hours. The antibody solution was removed and the nonspecific reaction was blocked with TBS (Tris Buffered Solution) containing 3% gelatin at room temperature for 1 hour. Then wash with 200 µl of PBST solution (2.5 mM Sodium dihyrogen orthophosphate, 7.5 mM Sodium hydrogen orthophosphate, 0.5 mM Sodium chloride, 0.05% Tween 20, pH 7.2) four times, and then add 100 µl of the appropriately diluted sample with PBST solution. The reaction was stirred gently at room temperature for 3 hours. After washing three times with PBST solution, the biotin-labeled MAL or RIC was diluted 100 or 1500 times with PBST solution, and 100 μl each was added and reacted with shaking at room temperature for 2 hours. Again washed four times with PBST and 100 μl of avidin-horseradishperoxidase was added. After reacting for 15 minutes, the resultant was washed 4 times with PBST again, and 100 μl of a solution of 1 mM of orthophenylenediamine was added to 0.1 M citric acid-phosphate buffer (pH 5.0) containing 0.4% hydrogen peroxide solution. After the reaction, the reaction was stopped with 50 µl of 3M sulfuric acid. Absorbance at 490 nm was measured using a plate reader. At this time, EPO international standard was used as standard, and in enzyme immunoassay using lysine, 50U of EPO National Institute of biological standard was dissolved in 50mM sodium acetate (pH 5.0) solution and 10U / ml sialidase. 2 µl of Boehringer Mannheim was added and the reaction solution volume was adjusted to 100 µl, followed by reaction at 37 ° C for 2 hours.
MAL을 이용한 효소면역학적 분석에서 측정된 흡광도를 RIC를 이용한 효소면역학적 분석에서 측정된 흡광도로 나눈 값 (MAL-ELISA/RIC-ELISA, M/R로 표시)을 비교함으로써 시알산의 함유정도를 상대 비교하였다(제4도 참조). 제4도에서 막대 아래 왼쪽 막대그래프는 MAL-ELISA 에서의 흡광도(M)을, 오른쪽 막대그래프는 RIC-ELISA에서는 흡광도(R)을 나타낸다. 막대 위의 수치는 MAL-ELISA에서 흡광도를 RIC-ELISA에서의 흡광도로 나눈 값으로서, EPO 분자내의 시알산과 유당과의 상대적 함량비를 나타내는데, 실험 결과 소듐부티레이트를 첨가한 경우에는 첨가농도에 비례하여 더 높은 M/R 값을 나타내었으며 이로부터 소듐부티레이트를 첨가한 경우에 EPO의 당쇄화가 향상되었음을 확인할 수 있었다.The degree of sialic acid content was compared by comparing the absorbance measured in the enzyme immunoassay using MAL divided by the absorbance measured in the enzyme immunoassay using RIC (expressed as MAL-ELISA / RIC-ELISA, M / R). Relative comparison (see Figure 4). In FIG. 4 the left bar graph below the bar shows absorbance (M) in MAL-ELISA and the right bar graph shows absorbance (R) in RIC-ELISA. The value on the bar is the absorbance in the MAL-ELISA divided by the absorbance in the RIC-ELISA, which represents the relative content ratio of sialic acid and lactose in the EPO molecule, which is proportional to the addition concentration when sodium butyrate is added. It showed higher M / R value and it was confirmed that the glycosylation of EPO was improved when sodium butyrate was added.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960058826A KR100447422B1 (en) | 1996-11-28 | 1996-11-28 | Culture medium for glycosylation of glycoprotein derived from mammal cells and improvement of its productivity containing retinoic acid and butyric acid as effective components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960058826A KR100447422B1 (en) | 1996-11-28 | 1996-11-28 | Culture medium for glycosylation of glycoprotein derived from mammal cells and improvement of its productivity containing retinoic acid and butyric acid as effective components |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980039738A true KR19980039738A (en) | 1998-08-17 |
KR100447422B1 KR100447422B1 (en) | 2004-10-28 |
Family
ID=37362461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960058826A KR100447422B1 (en) | 1996-11-28 | 1996-11-28 | Culture medium for glycosylation of glycoprotein derived from mammal cells and improvement of its productivity containing retinoic acid and butyric acid as effective components |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100447422B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005064002A1 (en) * | 2003-12-31 | 2005-07-14 | Samyang Genex Corporation | Method for mass production of secondary metabolites in plant cell culture by treatment of an alkanoic acid or salt thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8606386D0 (en) * | 1986-03-14 | 1986-04-23 | Celltech Ltd | Production of protein |
WO1989006686A1 (en) * | 1988-01-13 | 1989-07-27 | The Upjohn Company | Enhanced production of cellular proteins using butyrate |
JPH089968A (en) * | 1994-06-28 | 1996-01-16 | Tosoh Corp | Medium characterized by containing n-butyric acid for culturing animal cell and method for culturing the animal cell |
-
1996
- 1996-11-28 KR KR1019960058826A patent/KR100447422B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005064002A1 (en) * | 2003-12-31 | 2005-07-14 | Samyang Genex Corporation | Method for mass production of secondary metabolites in plant cell culture by treatment of an alkanoic acid or salt thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100447422B1 (en) | 2004-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Crossin et al. | Mapping of three carbohydrate attachment sites in embryonic and adult forms of the neural cell adhesion molecule. | |
Ferro-Novick et al. | Yeast secretory mutants that block the formation of active cell surface enzymes. | |
Valetti et al. | Russell bodies: a general response of secretory cells to synthesis of a mutant immunoglobulin which can neither exit from, nor be degraded in, the endoplasmic reticulum. | |
Nyyssönen et al. | Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei | |
TSUDA et al. | The role of carbohydrate in recombinant human erythropoietin | |
JP4234647B2 (en) | Erythropoietin with high specific activity | |
US20020146771A1 (en) | Process for producing erythropoietin containing no animal proteins | |
Randall et al. | The biological effects of IgM hexamer formation | |
US4594336A (en) | Thiolated polypeptide compound derived from a tetanus toxin fragment, the process for obtaining and its application | |
US4558005A (en) | Monoclonal anti-erythropoietin | |
CN107849121A (en) | End-blocking and uncapped antibody cysteine, and its purposes in antibody drug is conjugated | |
Wester et al. | Physicochemical and biochemical characterization of human α1-microglobulin expressed in baculovirus-infected insect cells | |
Monica et al. | Comparative biochemical characterization of a human IgM produced in both ascites and in vitro cell culture | |
KR100447422B1 (en) | Culture medium for glycosylation of glycoprotein derived from mammal cells and improvement of its productivity containing retinoic acid and butyric acid as effective components | |
Mohan et al. | Molecular integrity of monoclonal antibodies produced by hybridoma cells in batch culture and in continuous‐flow culture with integrated product recovery | |
Cabrera et al. | Influence of culture conditions on the N‐glycosylation of a monoclonal antibody specific for recombinant hepatitis B surface antigen | |
Floch et al. | HPCE monitoring of the N‐glycosylation pattern and sialylation of murine erythropoietin produced by CHO cells in Batch processes | |
Fischer et al. | Comparison of N-glycan pattern of recombinant human coagulation factors II and IX expressed in Chinese hamster ovary (CHO) and African green monkey (Vero) cells | |
COCO-MARTIN et al. | Instability of a hybridoma cell line in a homogeneous continuous perfusion culture system | |
Grosbois et al. | Control of maize lipid transfer protein activity by oxido-reducing conditions | |
Vartio et al. | Polypeptide composition of human macrophage gelatinase | |
KR100475417B1 (en) | Method for producing recombinant glycoproteins with high sialic acid content | |
CA1178949A (en) | Thiolated polypeptide compound derived from a tetanus toxin fragment, the process for obtaining and its applications | |
Frommel et al. | Trypanosoma brucei brucei and Trypanosoma brucei gambiense: stage specific differences in wheat germ agglutinin binding and in endoglycosidase H sensitivity of glycoprotein oligosaccharides | |
Kuhns et al. | Sulfate restriction induces hyposecretion of the adhesion proteoglycan and cell hypomotility associated with increased 35SO42− uptake and expression of a band 3 like protein in the marine sponge, Microciona prolifera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130627 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20140603 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |