KR19980028015A - Method for preparing biodegradable aliphatic polyester - Google Patents

Method for preparing biodegradable aliphatic polyester Download PDF

Info

Publication number
KR19980028015A
KR19980028015A KR1019960046944A KR19960046944A KR19980028015A KR 19980028015 A KR19980028015 A KR 19980028015A KR 1019960046944 A KR1019960046944 A KR 1019960046944A KR 19960046944 A KR19960046944 A KR 19960046944A KR 19980028015 A KR19980028015 A KR 19980028015A
Authority
KR
South Korea
Prior art keywords
aliphatic polyester
molecular weight
dicarboxylic acid
polyester
glycol
Prior art date
Application number
KR1019960046944A
Other languages
Korean (ko)
Inventor
손양국
최동민
Original Assignee
배도
동양폴리에스터 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 배도, 동양폴리에스터 주식회사 filed Critical 배도
Priority to KR1019960046944A priority Critical patent/KR19980028015A/en
Publication of KR19980028015A publication Critical patent/KR19980028015A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

본 발명은 실용성있는 생분해성을 지니며, 높은 분자량을 가지고, 인장강도 및 성형성이 우수한 blown-film용 생분해성 지방족 폴리에스터의 제조방법에 관한 것이다.The present invention relates to a method for producing biodegradable aliphatic polyester for blown-film having practical biodegradability, high molecular weight, and excellent tensile strength and formability.

본 발명은 지방족 글리콜과 디카르복실산의 중합반응을 통해 지방족 폴리에스터를 제조함에 있어서, 1차적으로 지방족 글리콜과 디카르복실산 성분에 커플링제로 산화마그네슘 또는 산화아연 및 반응촉진제로 티타늄 화합물을 첨가하여 높은 분자량 대를 지니는 폴리에스터 프리폴리머를 합성하고, 이후 2차 반응으로서 압출기내에서 결합제로 이소시아네이트 화합물을 첨가하여 제조함을 특징으로 한다.In the present invention, in preparing an aliphatic polyester through polymerization of an aliphatic glycol and dicarboxylic acid, a titanium compound is preferably used as a coupling agent to the aliphatic glycol and the dicarboxylic acid component as a magnesium oxide or zinc oxide and as a reaction accelerator. To prepare a polyester prepolymer having a high molecular weight band, which is then prepared by adding an isocyanate compound as a binder in the extruder as a secondary reaction.

본 발명에서 제조된 지방족 폴리에스터는 일반적으로 사용되는 폴리에틸렌테레프탈레이트 수지의 일부 특수 용도를 대체할 수 있으며, 더 나아가 환경오염 방지 측면에서의 큰 효과를 기대할 수 있다.The aliphatic polyester produced in the present invention can replace some special uses of the generally used polyethylene terephthalate resin, and furthermore, a great effect in terms of environmental pollution prevention can be expected.

Description

생분해성 지방족 폴리에스터의 제조방법Method for preparing biodegradable aliphatic polyester

본 발명은 실용성있는 생분해성을 지니며, 압출공정內 결합제 첨가에 의한 2차반응을 통하여 충분히 높은 분자량을 가지고, 인장강도 및 성형성이 우수한 blown-film용 생분해성 지방족 폴리에스터의 제조방법에 관한 것이다.The present invention relates to a method for producing a biodegradable aliphatic polyester for blown-film having practically biodegradability and having a sufficiently high molecular weight and excellent tensile strength and formability through a secondary reaction by addition of a binder during the extrusion process. will be.

일반적으로 의료용 및 포장용, 농업용 등의 재료로서 사용되는 폴리에스터는 부식 저항성, 높은 강도 등의 우수한 물리적, 화학적 성질 등으로 인해 이미 다양한 제품으로 널리 사용되고 있다. 이러한 폴리에스터로서는 수평균 분자량이 20,000정도인 테레프탈산과 에틸렌글리콜의 축합물인 폴리에틸렌테레프탈레이트(약칭 PET)가 사용된다.In general, polyester used as a material for medical, packaging, agriculture, etc. has already been widely used in a variety of products because of excellent physical and chemical properties such as corrosion resistance, high strength and the like. As such polyester, polyethylene terephthalate (abbreviated PET) which is a condensate of terephthalic acid and ethylene glycol having a number average molecular weight of about 20,000 is used.

그러나 상기의 성분들은 사용후 폐기시 나타나는 난분해성으로 인한 매립지의 안정화 저해, 매립용량 과대소요 및 내부 분해성 물질의 분해 지연, 토질악화 및 토양오염 등을 유발한다. 더우기 쓰레기 배출에 있어서 쓰레기중 플라스틱 함량이 많은 국내 실정에 비추어 볼때 분해성 고분자의 개발이 요구되고 있다.However, the above components may cause stabilization of landfill due to poor decomposability during disposal, excessive landfill capacity, delayed decomposition of internally decomposable substances, soil degradation and soil pollution. Moreover, in view of the domestic situation in which the plastic content of the trash is high in the waste discharge, development of degradable polymers is required.

최근에 카프로락톤의 고리 개환중합에 의한 높은 분자량대의 고분자 제조가 알려지면서 생분해가 가능한 지방족 폴리에스터를 이용한 석유화학 제품, 필름 및 성형품 등의 제조가 꾸준히 늘고 있다. 그러나, 이러한 경우에는 최종 생산 고분자가 62℃ 정도의 낮은 용융점을 가지고, 생산시 높은 비용이 요구된다는 단점으로 인해 그 용도가 몇몇 의료용 섬유등의 한정적인 용도로만 사용되었을 뿐, 산업적 분야, 자동차부품, 가정제품 등에 널리 사용되지는 못하고 있는데, 이것은 특히 이러한 고분자들의 분해온도가 융점과 비슷하여 이로인해 적절치 못한 몰딩(molding) 성향을 가지며, 인장/장력 강도와 같은 기계적 강도가 낮다는 단점 때문이다.Recently, the production of high molecular weight polymers by ring-opening polymerization of caprolactone has been known, and the production of petrochemical products, films, and molded products using aliphatic polyesters capable of biodegradation is steadily increasing. However, in this case, due to the disadvantage that the final polymer has a low melting point of about 62 ° C. and high cost is required for production, it is only used for a limited use such as some medical fibers. It is not widely used in household products, etc. This is due to the disadvantage that the decomposition temperature of these polymers is similar to the melting point, thereby resulting in inadequate molding tendency and low mechanical strength such as tensile / tension strength.

상기와 같은 종래의 생분해성 수지로는 천연 고분자에 지방족 폴리에스터를 공중합한 분해성 수지(대한민국 공개특허 번호 95-18124), 무기충전제를 함유한 분해성 수지(대한민국 공개특허 번호 96-22744), 생분해성을 갖는 지방족 폴리에스터에 광 분해성을 부여하는 케톤기를 함유한 폴리에스터(대한민국 공개특허 번호 95-18116), 에틸렌과 지방족 폴리에스터에 전분을 함유한 생분해성 수지(대한민국 공개특허 번호 95-18214), 열가소성 수지를 기본으로하여 천연고분자, 자동산화제, 광증감제, 가소제, 착색제 등을 첨가한 생분해성 수지(대한민국 공개특허 번호 95-10984), 젖산을 주반복단위로 하는 저분자량 폴리에스터에 헤테로사이클릭 화합물 등의 사슬확장제를 첨가한 생분해성 폴리에스터(대한민국 공개특허 번호 95 - 23663), 미생물합성 지방족 폴리에스터와 화학합성 지방족 폴리에스터의 공중합체 (대한민국 공개특허 번호 96-22669)를 들 수 있다.Such conventional biodegradable resins include degradable resins copolymerized with aliphatic polyesters to natural polymers (Korean Patent No. 95-18124), degradable resins containing inorganic fillers (Republic of Korea Patent No. 96-22744), biodegradable Polyester containing a ketone group to impart photodegradability to an aliphatic polyester having a compound (Korean Patent No. 95-18116), a biodegradable resin containing starch in ethylene and an aliphatic polyester (Korean Patent No. 95-18214), Biodegradable resin (Republic of Korea Patent No. 95-10984) added with natural polymer, automatic oxidizer, photosensitizer, plasticizer, colorant, etc., based on thermoplastic resin, heterocylic to low molecular weight polyester with lactic acid as the main repeating unit Biodegradable polyester (Korean Patent No. 95-23663) which added chain extenders, such as a click compound, microbial synthetic aliphatic polyester And it may be a chemical synthetic co-polymer (Republic of Korea Patent Publication No. 96-22669), of an aliphatic polyester.

이 밖에 글리콜산, 락틱산 등에도 그리 개환중합이 시도 되었으나 역시 몇몇 의료용에 국한 될 뿐 다양한 분야로의 적용은 이루어지지 않고 있는 실정이다.In addition, the ring-opening polymerization has been attempted to glycolic acid, lactic acid, etc., but is also limited to a few medical applications, and is not applied to various fields.

물론 인위적 합성이 아닌 미생물 발효를 통한 생분해성 고분자, 가령 폴리 히드록시 부틸레이트(약칭 PHB)라든가 일반 합성 고분자에 전분을 도입한 생분해성 고분자 등이 소개 되었지만, 전자의 경우 미생물 발효에 의한 생산공정에 있어서의 낮은 생산수율로 인해 비경제적이며, 더우기 용융점과 분해온도가 비슷하여 몰딩(molding)에 어려움을 야기시키고 있다. 후자의 경우에는 단순히 전분의 분해에 따라 조각으로 쪼개지는 측면에서 엄밀한 의미의 생분해성 고분자라기 보다는 생붕괴성 고분자라 할 수 있다.Of course, biodegradable polymers through microbial fermentation rather than artificial synthesis, such as polyhydroxy butylate (abbreviated PHB) or biodegradable polymers incorporating starch into general synthetic polymers, have been introduced. It is uneconomical due to low production yield, and moreover, melting point and decomposition temperature are similar, which causes difficulty in molding. In the latter case, it is a biodegradable polymer rather than a strictly biodegradable polymer in terms of being split into pieces according to the decomposition of starch.

따라서 환경오염 방지 및 실용성을 위해서, 미생물에 의해 쉽게 분해될 수 있으면서도 우수한 열안정성과 기계적강도를 지닌 지방족 폴리에스터의 개발이 요구되어 지고 있다.Therefore, in order to prevent environmental pollution and practicality, development of aliphatic polyester having excellent thermal stability and mechanical strength while being easily decomposed by microorganisms is required.

본 발명은 상기의 문제를 해결하여, 실용적이면서 생분해성이 뛰어나고 우수한 열 안정성과 기계적 강도를 지닌 고분자 지방족 폴리에스터의 제조방법을 제공함을 그 목적으로 한다.The present invention is to solve the above problems, to provide a method for producing a polymeric aliphatic polyester which is practical, excellent in biodegradability, and has excellent thermal stability and mechanical strength.

본 발명에서는 1차적으로 지방족 디올화합물과 디카르복실산의 중합반응을 통해 적정수준의 열안정성을 지니는 고분자를 합성한 후 결합제로 압출기내 사슬확장제인 이소시아네이트 화합물을 첨가하는 2차반응을 통하여 충분히 높은 분자량대의 생분해성 지방족 폴리에스터를 제조함을 특징으로 한다.In the present invention, a polymer having a moderate level of thermal stability is first synthesized through polymerization of an aliphatic diol compound and a dicarboxylic acid, and then sufficiently high through a secondary reaction of adding an isocyanate compound as a chain extender in an extruder as a binder. It is characterized by producing a biodegradable aliphatic polyester of molecular weight band.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명에서는 충분한 기계적 강도 즉, 인장강도나 혹은 결절강도를 부여하기 위하여 일차적으로 말단기에 히드록실기를 가지는 충분히 높은 분자량대의 폴리에스터 프리폴리머를 만든 후, 상기의 폴리에스터 프리폴리머와 결합제(coupling agent)를 반응시켜 균일한 높은 분자량대의 고분자를 만든다.In the present invention, in order to impart sufficient mechanical strength, that is, tensile strength or nodule strength, a polyester prepolymer having a molecular weight of a high molecular weight having a hydroxyl group at the end is formed first, and then the polyester prepolymer and a coupling agent are mentioned. Reaction to make a uniform high molecular weight polymer.

고무, 폼(foams), 코팅물질 그리고 접착제 등의 제조에 있어서 말단기에 히드록실기를 가진 수평균 분자량이 2,000~2,500이 되는 저분자량의 폴리에스터 프리폴리머와 결합제인 디이소시아네이트를 반응시켜서 폴리우레탄을 얻을 수 있다는 것은 이미 알려진 공지의 기술이다. 그러나 실용적인 폴리우레탄을 제조하기 위해서는 디이소시아네이트를 저분자량의 프리폴리머의 20~30 중량%에 해당하는 양으로 첨가하여야 하나, 만약 150℃ 혹은 그 이상에서 결합제를 다량으로 첨가하면 오히려 gelatin이 방생 할 수도 있다. 그러므로 저분자량의 폴리에스터 프리폴리머에 다량의 결합제를 첨가하는 방법은 본 발명에서의 blown film용 제조에는 적합치 못하며, 따라서 적절한 양의 결합제 첨가가 요구된다.In the production of rubbers, foams, coating materials and adhesives, polyurethanes are reacted by reacting a low molecular weight polyester prepolymer having a hydroxyl group at the terminal group with a molecular weight of 2,000 to 2,500 and a diisocyanate as a binder. What can be obtained is known art. However, in order to prepare a practical polyurethane, diisocyanate should be added in an amount corresponding to 20 to 30% by weight of a low molecular weight prepolymer, but gelatin may occur if a large amount of binder is added at 150 ° C or higher. . Therefore, the method of adding a large amount of binder to the low molecular weight polyester prepolymer is not suitable for the production for the blown film in the present invention, and therefore, an appropriate amount of binder is required.

본 발명에서는 글리콜과 디카르복실산의 지방족 계열의 성분을 중합하여 적절한 열 안정성과 기계적 강도를 지닌 높은 분자량대의 지방족 폴리에스터를 생산하고자 한다.In the present invention, it is intended to produce aliphatic polyester of high molecular weight having high thermal stability and mechanical strength by polymerizing aliphatic components of glycol and dicarboxylic acid.

상기의 물리적 성질을 갖는 높은 분자량대의 고분자의 합성은 ① 탈글리콜 반응 촉매의 첨가, ② 커플링제의 첨가, ③ 열안정제의 첨가 등을 통해 얻을 수 있다.Synthesis of high molecular weight polymer having the above physical properties can be obtained by adding ① deglycol reaction catalyst, ② adding coupling agent, ③ adding thermal stabilizer.

즉, 본 발명에서는 일차적으로 글리콜과 디카르복실산 성분에 커플링제로 산화마그네슘 또는 산화아연 및 반응촉진제로 티타늄 화합물을 첨가하여 높은 분자량대를 지니는 폴리에스터 프리폴리머를 합성하고, 이후 압출기내에서 이소시아네이트 화합물의 결합제 첨가에 의한 말단기의 결합 유도를 통해 분자량의 증대 및 적절한 기계적 강도를 부여한다.That is, in the present invention, a magnesium compound or zinc oxide as a coupling agent and a titanium compound as a reaction promoter are added to the glycol and dicarboxylic acid components to synthesize a polyester prepolymer having a high molecular weight band, and then an isocyanate compound in an extruder. Induction of the binding of the end group by the addition of a binder gives an increase in the molecular weight and imparts appropriate mechanical strength.

본 발명에서의 지방족 폴리에스터는 글리콜과 디카르복실산 두 성분의 반응에 의해 얻어지며, 필요에 따라 제3성분으로서 3가작용기 혹은 4가작용기의 폴리올, 옥시카르복실산, 그리고 폴리베이직 카르복실산으로 구성되는 그룹으로부터 선택한 적어도 1개 이상의 다작용성기를 지닌 성분을 첨가할 수 있다. 이러한 제 3성분은 긴사슬의 가지화를 유발하므로 분자량 증대를 이룰 수 있으며, 결국 용융상태에서의 폴리에스터 프리폴리머에 바람직한 성질을 부여할 수 있다.The aliphatic polyester in the present invention is obtained by the reaction of glycol and dicarboxylic acid two components, if necessary, as a third component, a polyol, oxycarboxylic acid, and polybasic carboxyl of a trifunctional or tetrafunctional group. A component with at least one polyfunctional group selected from the group consisting of acids can be added. Such a third component can lead to branching of the long chain, thereby increasing molecular weight, and consequently imparting desirable properties to the polyester prepolymer in the molten state.

상기에서 디카르복실산으로는 호박산, 아디핀산, 데칸산 및 도데칸산 등에서 선택된 1종을 사용하며, 글리콜로는 에틸렌글리콜, 1,4-부탄디올, 1,3-부탄디올, 1,6-부탄디올, 1,6-헥산디올 중에서 선택된 1종을 사용한다.As the dicarboxylic acid, one selected from succinic acid, adipic acid, decanoic acid and dodecanoic acid is used, and glycols include ethylene glycol, 1,4-butanediol, 1,3-butanediol, 1,6-butanediol, One selected from 1,6-hexanediol is used.

본 발명에서는 말단기에 히드록실기를 갖는 비교적 높은 분자량대의 폴리에스터 프리폴리머와 결합제로서 분자량 증대를 위한 사슬확장제인 이소시아네이트를 트윈 스크류형 압출기에서 반응시켜 균일한 높은 분자량대의 고분자를 만든다. 겔화 유도없이 첨가되는 다작용기를 지닌 성분 즉 결합제는 전체 지방족 디카르복실산 성분 및 글리콜 성분에 대하여 1.8 - 2.4 중량%의 양으로 첨가된다. 본 발명에 있어서 결합제로서 사용되는 이소시아네이트 화합물로는 헥사메틸렌 디이소시아네이트 등을 사용할 수 있다.In the present invention, a relatively high molecular weight polyester prepolymer having a hydroxyl group at the end group and an isocyanate which is a chain extender for increasing molecular weight as a binder are reacted in a twin screw extruder to make a uniform high molecular weight polymer. The component with the multifunctional group added without gelation induction, i.e., the binder, is added in an amount of 1.8 to 2.4% by weight based on the total aliphatic dicarboxylic acid component and the glycol component. Hexamethylene diisocyanate etc. can be used as an isocyanate compound used as a binder in this invention.

비교적 높은 분자량대를 가지는 폴리에스터 프리폴리머의 제조시에는 에스테르화 반응과 탈글리콜(deglycol)반응이 수반되며 이때 탈글리콜 반응을 촉진시킬 촉매제의 사용이 필요한데, 본 발명에서는 상기의 촉매제로 티타늄화합물을 지방족 디카르복실산 성분 및 글리콜 성분의 전체 사용량에 대하여 0.1 - 1중량%의 양으로 첨가한다.In preparing a polyester prepolymer having a relatively high molecular weight, it is accompanied by esterification and deglycol reaction, and at this time, a catalyst for promoting the deglycol reaction is required. In the present invention, a titanium compound is aliphatic as the catalyst. It is added in the amount of 0.1-1 weight% with respect to the total usage amount of a dicarboxylic acid component and a glycol component.

본 발명에서는 지방족 폴리에스터가 말단기에 히드록실기를 가지며 수평균 분자량이 적어도 5,000이상, 바람직하게는 10,000이상, 더욱 바람직하게는 20,000~50,000정도의 비교적 높은 분자량대를 가지도록 용융점 60℃ 혹은 그 이상으로, 촉매 존재하에서 글리콜과 디베이직 카르복실산을 반응시켜 지방족 폴리에스터를 제조한다.In the present invention, the aliphatic polyester has a hydroxyl group at the terminal group and has a melting point of 60 ° C. or higher so as to have a relatively high molecular weight band of at least 5,000, preferably 10,000 or more, and more preferably about 20,000 to 50,000. As mentioned above, aliphatic polyester is manufactured by making glycol and dibasic carboxylic acid react in presence of a catalyst.

수평균 분자량 5,000이상의 프리폴리머를 사용할 때 사용되는 커플링제를 0.01 - 0.1중량% 정도의 적은 양으로 사용하면 필름 성형용 폴리에스터에 충분한 물리적 성질을 제공할 수 있다. 폴리에스터 프리폴리머가 5,000이상의 분자량을 갖고, 히드록실기가 30 혹은 그 이하일 때에는 적은 양의 커플링제를 사용하더라도 엄격한 조건하에서는 높은 분자량의 폴리에스터를 생산할 수 있으며, 잔여 촉매제에 의한 겔화는 나타나지 않는다.Coupling agents used when using prepolymers having a number average molecular weight of 5,000 or more may be used in a small amount, such as 0.01 to 0.1% by weight, to provide sufficient physical properties to the polyester for film forming. When the polyester prepolymer has a molecular weight of 5,000 or more, and the hydroxyl group is 30 or less, even a small amount of coupling agent can be used to produce a high molecular weight polyester under stringent conditions, and no gelation by the remaining catalyst occurs.

본 발명의 에스테르화 반응시 진행되는 탈글리콜반응을 촉진시키기 위해 첨가되는 반응 촉진제인 티타늄 화합물로는 테트라부틸 티타네이트 등을 사용할 수 있으며, 사용량은 지방족 디카르복실산 성분 및 글리콜 성분의 전체 사용량에 대해 0.1 - 1중량%, 바람직하게는 0.25 - 0.75 중량%가 적당하다. 또한, 커플링제로는 산화 마그네슘 또는 산화아연을 지방족 디카르복실산 성분 및 글리콜 성분의 전체 사용량에 대해 0.01 - 0.1중량%, 바람직하게는 0.02 - 0.06 중량%의 양으로 첨가하는 것이 적절하다. 커플링제의 양이 0.01중량% 미만인 경우에는 커플링반응이 불충분할 것으로 보이며 0.1중량%를 초과하는 경우에는 겔화가 일어나기 쉽다.Tetrabutyl titanate may be used as a titanium compound which is a reaction accelerator added to promote the deglycolization reaction during the esterification reaction of the present invention, and the amount of use is based on the total amount of aliphatic dicarboxylic acid component and glycol component. 0.1 to 1% by weight, preferably 0.25 to 0.75% by weight, is suitable. As the coupling agent, it is appropriate to add magnesium oxide or zinc oxide in an amount of 0.01 to 0.1% by weight, preferably 0.02 to 0.06% by weight, based on the total amount of the aliphatic dicarboxylic acid component and the glycol component. If the amount of the coupling agent is less than 0.01% by weight, the coupling reaction is likely to be insufficient, and when it exceeds 0.1% by weight, gelation is likely to occur.

이러한 상기의 방법을 통하여 합성한 지방족 폴리에스터를 노즐이 부착된 범용의 용융압출기내에서 이소시아네이트 화합물을 결합제로 첨가하여 용융시킨후 압출시켜 생산한다. 이때 압출시 온도는 160-240℃가 적당하며 240℃를 초과하는 경우에서는 겔화 및 고분자의 급격한 열분해가 일어날 수도 있다. 또한, 압출시 필요에 따라 그 분자의 안정성 증대를 위해 적정량의 산화방지제 및 열안정성 증대를 위해 열안정제를 첨가할 수 있는데, 산화방지제는 지방족 폴리에스터에 대해 0.01 - 0.25 중량%의 양으로 첨가하며, 열안정제로는 인산계 열안정제인 트리메틸 포스페이트를 지방족 폴리에스터에 대해 0.01 - 0.1 중량%의 양으로 첨가한다.The aliphatic polyester synthesized through the above method is produced by adding an isocyanate compound as a binder to melt in a general melt extruder with a nozzle, and then extruding it. At this time, the extrusion temperature is suitable for 160-240 ℃ and if it exceeds 240 ℃ gelation and rapid thermal decomposition of the polymer may occur. In addition, an appropriate amount of antioxidant and heat stabilizer may be added to increase the stability of the molecule as needed during extrusion, and the antioxidant may be added in an amount of 0.01 to 0.25 wt% based on the aliphatic polyester. As the heat stabilizer, trimethyl phosphate, a phosphate-based heat stabilizer, is added in an amount of 0.01 to 0.1 wt% based on the aliphatic polyester.

압출반응을 통해 최종적으로 생산된 생분해성 고분자는 용융점도가 190℃, 2.16Kgf에서 1.0 - 10g/10min의 용융점도와 70 - 150℃의 용융온도 범위를 가지며, 인장강력이 2.5 - 3.0kgf, 신도가 20 - 130%이다. 본 발명의 Blown-Film용 폴리머는 수평균 분자량이 적어도 5,000이상 바람직하게는 10,000이상, 더욱 바람직하게는 20,000 - 50,000정도이며, 지방족 글리콜과 지방족 디카르복실산으로 구성되는 폴리에스터 프리폴리머의 반복적인 사슬구조를 가지며, 디이소시아네이트로 부터 유도된 우레탄결합을 가지게 된다.The final biodegradable polymer produced through the extrusion reaction has a melt viscosity of 190 ° C, 2.16Kgf, 1.0-10g / 10min melt temperature and 70-150 ° C melt temperature, and tensile strength of 2.5-3.0kgf, elongation. 20-130%. The polymer for blown-film of the present invention has a number average molecular weight of at least 5,000 or more, preferably 10,000 or more, more preferably about 20,000 to 50,000, and a repetitive chain of polyester prepolymer composed of aliphatic glycol and aliphatic dicarboxylic acid. It has a structure and has a urethane bond derived from diisocyanate.

또한 본 발명의 폴리에스터는 땅에 묻었을 경우 생분해성을 가지며, 폴리에틸렌과 폴리프로필렌에 비해 낮은 연소열을 갖는다.In addition, the polyester of the present invention is biodegradable when buried in the ground, and has a lower heat of combustion than polyethylene and polypropylene.

이하 본 발명을 실시예 및 비교예를 들어 상세히 설명하면 다음과 같으나, 다음의 실시예들은 본 발명의 범주를 제한하는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the following Examples do not limit the scope of the present invention.

[실시예 1]Example 1

9,538g의 1,4-부탄디올과 8,928g의 호박산을 교반조, 증류컨덴서, 온도계 및 가스도입관이 장착된 반응기에 질소 가스가 흐르는 상태에서 G치(숙신산에 대한 1,4-부탄디올의 함량비)가 1.3-1.4가 되도록 첨가하여 210℃의 온도에서 직접 에스테르화 반응을 시켰다 에스테르화 반응시간은 전환률로 결정되는데, 반응이 진행되면서 나오는 물과 1,4-부탄디올 혼합물의 굴절률을 측정하여, 순수하게 반응으로부터 생성된 물의 양을 평가한 후 에스테르화 반응을 종료하였다. 이때 D.E반응(에스테르화 반응)에서의 반응률은 98±2%수준을 유지하였다. 상기 생성된 에스테르화물을 250℃의 온도로 올린 후 산화 마그네슘 6.5g 및 테트라부틸티타네이트 65g을 투입하고 0.5토르(torr)이하의 저진공하에서 3시간 반응시켜 칩상태의 지방족 폴리에스터를 제조하였다. 이렇게 얻어진 수지를 100℃에서 24hr동안 진공건조한 후 30Ф 트윈스크류 압출기를 이용하여 압출온도 230℃에서 헥사메틸렌 디이소시아네이트를 2.4 중량%, 압출반응시 외부산소유입에 의한 산화방지를 위해 이가녹스 1010을 0.25 중량%, 인산계 열안정제인 트리메틸포스페이트를 0.01 중량% 첨가하여 용융온도 190℃, 2.16Kgf에서 8.0g/10min의 용융흐름점도를 가지는 고분자를 제조하였고, 물성 측정 결과를 다음 표 1에 나타내었다.9,538 g of 1,4-butanediol and 8,928 g of succinic acid are mixed with a stirring tank, a distillation capacitor, a thermometer, and a gas inlet tube in a state where nitrogen gas flows to the G value (the ratio of 1,4-butanediol to succinic acid ) Was added to 1.3-1.4 to directly esterify at a temperature of 210 ℃. The esterification reaction time is determined by the conversion rate, the pure water by measuring the refractive index of the mixture of water and 1,4-butanediol as the reaction proceeds After evaluating the amount of water generated from the reaction, the esterification reaction was terminated. At this time, the reaction rate in the D.E reaction (esterification reaction) was maintained at 98 ± 2%. After raising the esterified product at a temperature of 250 ° C., 6.5 g of magnesium oxide and 65 g of tetrabutyl titanate were added thereto, and reacted under low vacuum of 0.5 torr or less for 3 hours to prepare an aliphatic polyester in a chip state. The resin thus obtained was vacuum dried at 100 ° C. for 24 hr and then 2.4% by weight of hexamethylene diisocyanate at an extrusion temperature of 230 ° C. using a 30Ф twin screw extruder, and 0.25 mg of Iganox 1010 was used to prevent oxidation by external oxygen inflow during extrusion. 0.01% by weight of trimethylphosphate, a phosphate-based thermal stabilizer, was added to prepare a polymer having a melt flow viscosity of 8.0 g / 10 min at a melting temperature of 190 ° C. and 2.16 Kgf. The results of the measurement of the physical properties are shown in Table 1 below.

[실시예 2]Example 2

실시예 1에서 테트라부틸티타네이트(Tetrabutyl titanate)의 함량을 52g으로 변화시킨 것을 제외하고는 실시예 1과 동일한 조건에서 지방족 폴리에스터를 제조하여 그 결과를 다음 표 1에 나타내었다,An aliphatic polyester was prepared under the same conditions as in Example 1 except that the content of Tetrabutyl titanate was changed to 52 g in Example 1, and the results are shown in Table 1 below.

[실시예 3]Example 3

실시예 1에서 테트라부틸 티타네이트(Tetrabutyl titanate)의 함량을 58.5g으로 변화시킨 것을 제외하고는 실시예 1과 동일한 조건에서 지방족 폴리에스터를 제조하여 그 결과를 다음 표 1에 나타내었다.An aliphatic polyester was prepared under the same conditions as in Example 1 except that the content of Tetrabutyl titanate was changed to 58.5 g in Example 1, and the results are shown in Table 1 below.

[비교예 1]Comparative Example 1

실시예 1에서 커플링제로 산화 마그네슘 대신 트리메틸올 프로판을 6.5g의 양으로 사용한 것을 제외하고는 실시예 1과 동일한 조건에서 지방족 폴리에스터를 제조하여 그 결과를 다음 표 1에 나타내었다.An aliphatic polyester was prepared under the same conditions as in Example 1 except that trimethylol propane was used in an amount of 6.5 g instead of magnesium oxide as a coupling agent in Example 1, and the results are shown in Table 1 below.

[비교예 2]Comparative Example 2

실시예 1에서 산화 마그네슘의 함량을 7.8g, 산화방지제로서 이가녹스 1010대신 이가녹스 B1171을 0.25 중량% 첨가한 것을 제외하고는 실시예 1과 동일한 조건에서 지방족 폴리에스터를 제조하여 그 결과를 표 1에 나타내었다.In Example 1, an aliphatic polyester was prepared under the same conditions as in Example 1, except that 7.8 g of magnesium oxide was added and 0.25 wt% of Iganox B1171 instead of Iganox 1010 as an antioxidant. Shown in

수평균분자량Number average molecular weight MFR(g/10분)MFR (g / 10 min) 용융점도Melt viscosity 실시예 1Example 1 40,00040,000 88 3.0×103 3.0 × 10 3 실시예 2Example 2 30,00030,000 1010 1.5×103 1.5 × 10 3 실시예 3Example 3 45,00045,000 44 2.0×103 2.0 × 10 3 비교예 1Comparative Example 1 25,00025,000 4040 1.5×103 1.5 × 10 3 비교예 2Comparative Example 2 16,00016,000 3030 0.8×103 0.8 × 10 3

※ 수평균 분자량은 GPC로 평가※ Number average molecular weight is evaluated by GPC

MFR(Melt Flow Rate) : 190℃, 2.16KgfMFR (Melt Flow Rate): 190 ℃, 2.16Kgf

용융점도 : 전단속도 1,000sec-1, 190℃Melt viscosity: Shear rate 1,000sec -1 , 190 ℃

본 발명에서 제조된 지방족 폴리에스터는 일반적으로 사용되는 폴리에틸렌테레프탈레이트 수지의 일부 특수 용도를 대체할 수 있으며, 더 나아가 환경오염 방지 측면에서의 큰 효과를 기대할 수 있다. 종래에 사용된 폴리에틸렌테레프탈레이트 수지 등은 토양이나 하수에서의 완전한 분해가 이루어지지 않으며, 설사 분해가 된다 하더라도 대략 50년 이상의 긴 시간이 소요되므로 심각한 환경오염을 유발시킬 요인이 많았으나 본 발명에 의해 생성된 생분해성 지방족 폴리에스터의 대체를 통해 그러한 요인을 극소화 할 수 있다. 또한 단순히 상기에서 언급한 용도뿐만이 아닌 산업 용품 즉 낚시줄, 어망사 및 부직포, 라미네이트용 필름 및 일회용 성형품 등 다양한 범위에 걸친 응용이 가능하다.The aliphatic polyester produced in the present invention can replace some special uses of the generally used polyethylene terephthalate resin, and furthermore, a great effect in terms of environmental pollution prevention can be expected. The conventionally used polyethylene terephthalate resin is not completely decomposed in soil or sewage, and even if it is decomposed, it takes a long time of about 50 years or more, so there are many factors causing serious environmental pollution. The replacement of the resulting biodegradable aliphatic polyesters can minimize such factors. In addition to the above-mentioned applications, a wide range of applications are possible, such as industrial articles such as fishing lines, fishing nets and nonwoven fabrics, laminate films, and disposable molded articles.

Claims (5)

지방족 글리콜과 디카르복실산의 중합반응을 통해 지방족 폴리에스터를 제조함에 있어서, 1차적으로 지방족 글리콜과 디카르복실산 성분에 커플링제로 산화마그네슘 또는 산화아연 및 반응촉진제로 티타늄 화합물을 첨가하여 높은 분자량대를 지니는 폴리에스터 프리폴리머를 합성하고, 이후 2차 반응으로서 압출기내에서 결합제로 이소시아네이트 화합물을 첨가하여 제조함을 특징으로 하는 생분해성 지방족 폴리에스터의 제조방법.In preparing aliphatic polyester through the polymerization of aliphatic glycol and dicarboxylic acid, the titanium compound is first added by adding magnesium oxide or zinc oxide as a coupling agent to the aliphatic glycol and dicarboxylic acid, and a reaction accelerator. A method for producing a biodegradable aliphatic polyester, characterized in that it is prepared by synthesizing a polyester prepolymer having a molecular weight band and then adding an isocyanate compound as a binder in an extruder as a secondary reaction. 제1항에 있어서, 제조된 지방족 폴리에스터는 인장강력 2.5~3.0kgf, 신도 20~130%, 수평균 분자량 20,000~50,000의 높은 분자량대를 가짐을 특징으로 하는 생분해성 지방족 폴리에스터의 제조방법.The method of claim 1, wherein the produced aliphatic polyester has a high molecular weight band of tensile strength of 2.5 ~ 3.0kgf, elongation 20 ~ 130%, number average molecular weight 20,000 ~ 50,000. 제1항에 있어서, 디카르복실산으로는 호박산, 아디핀산, 데칸산 및 도데칸산 등에서 선택된 1종을 사용하며, 글리콜로는 에틸렌글리콜, 1,4-부탄디올, 1,3-부탄디올, 1,6-부탄디올, 1,6-헥산디올 중에서 선택된 1종을 사용함을 특징으로 하는 생분해성 지방족 폴리에스터의 제조방법.According to claim 1, dicarboxylic acid is selected from succinic acid, adipic acid, decanoic acid, dodecanoic acid, and the like selected as glycol, ethylene glycol, 1,4-butanediol, 1,3-butanediol, 1, Method for producing a biodegradable aliphatic polyester, characterized in that one selected from 6-butanediol, 1,6-hexanediol. 제1항에 있어서, 반응촉진제인 티타늄 화합물은 디카르복실산 성분 및 글리콜 성분 전체 사용량에 대해 0.1~1 중량%의 양으로 사용되고, 커플링제는 0.01~0.1 중량%의 양으로 사용됨을 특징으로 하는 생분해성 지방족 폴리에스터의 제조방법.The method of claim 1, wherein the titanium compound as a reaction accelerator is used in an amount of 0.1 to 1% by weight based on the total amount of dicarboxylic acid and glycol components, the coupling agent is used in an amount of 0.01 to 0.1% by weight Method for producing biodegradable aliphatic polyester. 제1항에 있어서, 2차 반응에 사용되는 이소시아네이트 화합물은 디카르복실산 및 글리콜 성분 전체 사용량에 대하여 1.8-2.4 중량%의 양으로 사용됨을 특징으로 하는 생분해성 지방족 폴리에스터의 제조방법.The method of claim 1, wherein the isocyanate compound used in the secondary reaction is used in an amount of 1.8 to 2.4% by weight based on the total amount of dicarboxylic acid and glycol component.
KR1019960046944A 1996-10-19 1996-10-19 Method for preparing biodegradable aliphatic polyester KR19980028015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960046944A KR19980028015A (en) 1996-10-19 1996-10-19 Method for preparing biodegradable aliphatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960046944A KR19980028015A (en) 1996-10-19 1996-10-19 Method for preparing biodegradable aliphatic polyester

Publications (1)

Publication Number Publication Date
KR19980028015A true KR19980028015A (en) 1998-07-15

Family

ID=66289928

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960046944A KR19980028015A (en) 1996-10-19 1996-10-19 Method for preparing biodegradable aliphatic polyester

Country Status (1)

Country Link
KR (1) KR19980028015A (en)

Similar Documents

Publication Publication Date Title
AU695820B2 (en) Biodegradable polymers, process for their production and their use in producing biodegradable mouldings
US5470941A (en) Thermoplastic biodegradable resins and a process of preparation thereof
US9040639B2 (en) Method for the continuous production of biodegradable polyesters
KR20150104081A (en) Process for producing a high-molecular-weight polyester or copolyester, and also polymer blends containing such
JP4312764B2 (en) Aliphatic polyester biodegradable resin film molding
JP2003003053A (en) Aliphatic polyester biodegradable resin film-like molding
US5391644A (en) Polyester injection-molded articles
JP2743053B2 (en) Polyester resin composition
KR0163495B1 (en) Method of manufacturing polyester flat yarn
US5324556A (en) Polyester blow-molded articles
KR100255116B1 (en) Process for preparing biodegradable polymer
JP2021191845A (en) Biodegradable resin composition, and biodegradable resin molded body
KR19980028015A (en) Method for preparing biodegradable aliphatic polyester
JP2752881B2 (en) Polyester tape
KR100365689B1 (en) Preparation method of chitosan-containing biodegradable polymer
JP2752876B2 (en) Polyester injection molding
JP2002294045A (en) Aliphatic polyester copolymer/starch-blended resin composition and molded product
KR0138173B1 (en) A process of preaparing fatty polyester multifilament yarn having microbic resolvability
KR0181673B1 (en) Process for preparing polyester resin having excellent biodegradable property
JP3923792B2 (en) High molecular weight aliphatic polyester copolymer and process for producing the same
JP2662492B2 (en) Polyester hollow molded body
JP2002293893A (en) Resin having lactone
JP2002293900A (en) Polylactic acid-based high molecular weight aliphatic copolyester and method for producing the same
KR0181674B1 (en) Biodegradable resin compositions
KR101523092B1 (en) Copolyester and method for manufacturing of it

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application