KR102826736B1 - 트레이닝된 머신 학습 모델의 성능을 개선시키는 방법 - Google Patents
트레이닝된 머신 학습 모델의 성능을 개선시키는 방법 Download PDFInfo
- Publication number
- KR102826736B1 KR102826736B1 KR1020187005492A KR20187005492A KR102826736B1 KR 102826736 B1 KR102826736 B1 KR 102826736B1 KR 1020187005492 A KR1020187005492 A KR 1020187005492A KR 20187005492 A KR20187005492 A KR 20187005492A KR 102826736 B1 KR102826736 B1 KR 102826736B1
- Authority
- KR
- South Korea
- Prior art keywords
- classifier
- machine learning
- performance
- learning model
- improving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
- G06F18/2148—Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the process organisation or structure, e.g. boosting cascade
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
- G06V10/7747—Organisation of the process, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Medical Informatics (AREA)
- Multimedia (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Databases & Information Systems (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Algebra (AREA)
- Probability & Statistics with Applications (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Image Analysis (AREA)
- Feedback Control In General (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562209859P | 2015-08-25 | 2015-08-25 | |
| US62/209,859 | 2015-08-25 | ||
| US14/863,410 | 2015-09-23 | ||
| US14/863,410 US10332028B2 (en) | 2015-08-25 | 2015-09-23 | Method for improving performance of a trained machine learning model |
| PCT/US2016/046576 WO2017034820A1 (en) | 2015-08-25 | 2016-08-11 | Method for improving performance of a trained machine learning model |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20180044295A KR20180044295A (ko) | 2018-05-02 |
| KR102826736B1 true KR102826736B1 (ko) | 2025-06-27 |
Family
ID=58095916
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020187005492A Active KR102826736B1 (ko) | 2015-08-25 | 2016-08-11 | 트레이닝된 머신 학습 모델의 성능을 개선시키는 방법 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US10332028B2 (enExample) |
| EP (1) | EP3341894B1 (enExample) |
| JP (1) | JP6862426B2 (enExample) |
| KR (1) | KR102826736B1 (enExample) |
| CN (1) | CN108027899B (enExample) |
| WO (1) | WO2017034820A1 (enExample) |
Families Citing this family (96)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014121019A1 (en) | 2013-01-31 | 2014-08-07 | Zestfinance, Inc. | Methods and systems for automatically generating high quality adverse action notifications |
| US10127240B2 (en) | 2014-10-17 | 2018-11-13 | Zestfinance, Inc. | API for implementing scoring functions |
| US20170178346A1 (en) * | 2015-12-16 | 2017-06-22 | High School Cube, Llc | Neural network architecture for analyzing video data |
| US9805255B2 (en) * | 2016-01-29 | 2017-10-31 | Conduent Business Services, Llc | Temporal fusion of multimodal data from multiple data acquisition systems to automatically recognize and classify an action |
| US12276420B2 (en) | 2016-02-03 | 2025-04-15 | Strong Force Iot Portfolio 2016, Llc | Industrial internet of things smart heating systems and methods that produce and use hydrogen fuel |
| JP6623947B2 (ja) * | 2016-06-17 | 2019-12-25 | 富士通株式会社 | 情報処理装置、イジング装置及び情報処理装置の制御方法 |
| JP6468254B2 (ja) * | 2016-07-01 | 2019-02-13 | 富士通株式会社 | 情報処理装置、イジング装置及び情報処理装置の制御方法 |
| JP7106077B2 (ja) | 2016-09-22 | 2022-07-26 | エヌフェレンス,インコーポレイテッド | 意味的情報の可視化およびライフサイエンスエンティティ間の顕著な関連を示す時間的信号の推測のためのシステム、方法、およびコンピュータ可読媒体 |
| EP3520038A4 (en) | 2016-09-28 | 2020-06-03 | D5A1 Llc | LEARNING TRAINER FOR MACHINE LEARNING SYSTEM |
| US11475310B1 (en) * | 2016-11-29 | 2022-10-18 | Perceive Corporation | Training network to minimize worst-case error |
| KR102702184B1 (ko) * | 2016-12-16 | 2024-09-04 | 에스케이하이닉스 주식회사 | 뉴로모픽 장치의 정보 인식 장치 및 방법 |
| US10282668B2 (en) * | 2017-03-09 | 2019-05-07 | Thomas Danaher Harvey | Devices and methods to detect compliance with regulations |
| WO2018175098A1 (en) * | 2017-03-24 | 2018-09-27 | D5Ai Llc | Learning coach for machine learning system |
| US10546237B2 (en) | 2017-03-30 | 2020-01-28 | Atomwise Inc. | Systems and methods for correcting error in a first classifier by evaluating classifier output in parallel |
| US11599783B1 (en) * | 2017-05-31 | 2023-03-07 | Databricks, Inc. | Function creation for database execution of deep learning model |
| US10346724B2 (en) | 2017-06-22 | 2019-07-09 | Waymo Llc | Rare instance classifiers |
| US11228379B1 (en) | 2017-06-23 | 2022-01-18 | DeepSig Inc. | Radio signal processing network model search |
| US11804112B2 (en) | 2017-07-12 | 2023-10-31 | Mastercard Asia/Pacific Pte. Ltd. | Mobile device platform for automated visual retail product recognition |
| CN110019658B (zh) * | 2017-07-31 | 2023-01-20 | 腾讯科技(深圳)有限公司 | 检索项的生成方法及相关装置 |
| US11941650B2 (en) | 2017-08-02 | 2024-03-26 | Zestfinance, Inc. | Explainable machine learning financial credit approval model for protected classes of borrowers |
| CN111066033A (zh) * | 2017-08-30 | 2020-04-24 | 谷歌有限责任公司 | 用于生成模糊结果的标签的机器学习方法 |
| JP6925911B2 (ja) * | 2017-08-30 | 2021-08-25 | 株式会社日立製作所 | 機械学習装置及び機械学習方法 |
| EP3460685A1 (en) | 2017-09-12 | 2019-03-27 | Bricsys NV | Improved semantic classification of an entity in a building information model |
| US11416738B1 (en) * | 2017-11-21 | 2022-08-16 | Amazon Technologies, Inc. | Model reutilization with heterogeneous sensor stacks via sensor data auto-normalization |
| US11615129B2 (en) | 2017-11-28 | 2023-03-28 | International Business Machines Corporation | Electronic message text classification framework selection |
| US10803379B2 (en) | 2017-12-12 | 2020-10-13 | Amazon Technologies, Inc. | Multi-memory on-chip computational network |
| WO2019118363A1 (en) * | 2017-12-12 | 2019-06-20 | Amazon Technologies, Inc. | On-chip computational network |
| US10846621B2 (en) | 2017-12-12 | 2020-11-24 | Amazon Technologies, Inc. | Fast context switching for computational networks |
| US11321612B2 (en) | 2018-01-30 | 2022-05-03 | D5Ai Llc | Self-organizing partially ordered networks and soft-tying learned parameters, such as connection weights |
| TWI729352B (zh) * | 2018-02-09 | 2021-06-01 | 宏達國際電子股份有限公司 | 卷積神經網路的調整方法及電子裝置 |
| US10834227B2 (en) * | 2018-02-13 | 2020-11-10 | International Business Machines Corporation | Conversational agent learning model service selection to address a client service request |
| EP3762869A4 (en) | 2018-03-09 | 2022-07-27 | Zestfinance, Inc. | SYSTEMS AND METHODS FOR PROVIDING ASSESSMENT OF A MACHINE LEARNING MODEL THROUGH DECOMPOSITION |
| US11475306B2 (en) | 2018-03-22 | 2022-10-18 | Amazon Technologies, Inc. | Processing for multiple input data sets |
| JP7108702B2 (ja) * | 2018-03-22 | 2022-07-28 | アマゾン テクノロジーズ インコーポレイテッド | 複数の入力データセットのための処理 |
| US20190302707A1 (en) * | 2018-03-28 | 2019-10-03 | Mitsubishi Electric Research Laboratories, Inc. | Anomaly Detection in Manufacturing Systems Using Structured Neural Networks |
| WO2019212857A1 (en) | 2018-05-04 | 2019-11-07 | Zestfinance, Inc. | Systems and methods for enriching modeling tools and infrastructure with semantics |
| US20200133254A1 (en) * | 2018-05-07 | 2020-04-30 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for data collection, learning, and streaming of machine signals for part identification and operating characteristics determination using the industrial internet of things |
| EP3752962A1 (en) | 2018-05-07 | 2020-12-23 | Google LLC | Application development platform and software development kits that provide comprehensive machine learning services |
| CN108898060A (zh) * | 2018-05-30 | 2018-11-27 | 珠海亿智电子科技有限公司 | 车载环境下基于卷积神经网络的车型识别方法 |
| US20190378210A1 (en) * | 2018-06-08 | 2019-12-12 | Zestfinance, Inc. | Systems and methods for decomposition of non-differentiable and differentiable models |
| US11625609B2 (en) | 2018-06-14 | 2023-04-11 | International Business Machines Corporation | Integration of external applications into deep neural networks |
| US10839791B2 (en) * | 2018-06-27 | 2020-11-17 | International Business Machines Corporation | Neural network-based acoustic model with softening target-layer |
| KR102631031B1 (ko) | 2018-07-27 | 2024-01-29 | 삼성전자주식회사 | 반도체 장치의 불량 검출 방법 |
| KR102170756B1 (ko) * | 2018-08-01 | 2020-10-27 | 가톨릭대학교 산학협력단 | 이중 머신 러닝 모델을 이용한 데이터 분류 방법 및 장치 |
| US11810010B2 (en) * | 2018-08-02 | 2023-11-07 | The Boeing Company | Two tier automatic cost estimation for automatic manufacture of spare parts |
| CN110826721B (zh) * | 2018-08-09 | 2025-06-17 | 松下电器(美国)知识产权公司 | 信息处理方法及信息处理系统 |
| DE102018216298A1 (de) * | 2018-09-25 | 2020-03-26 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Betreiben eines Steuerungssystems |
| US11573962B2 (en) | 2018-10-19 | 2023-02-07 | Oracle International Corporation | Dynamic performance tuning based on implied data characteristics |
| US11568179B2 (en) * | 2018-10-19 | 2023-01-31 | Oracle International Corporation | Selecting an algorithm for analyzing a data set based on the distribution of the data set |
| CN109522949B (zh) * | 2018-11-07 | 2021-01-26 | 北京交通大学 | 目标识别模型建立方法及装置 |
| KR102228196B1 (ko) * | 2018-11-15 | 2021-03-16 | 주식회사 에이아이트릭스 | 기초 메타학습장치에 대한 앙상블가중치를 결정하는 방법 및 장치 |
| KR102692218B1 (ko) | 2018-12-19 | 2024-08-05 | 에스케이하이닉스 주식회사 | 오류 역전파를 이용하여 지도 학습을 수행하는 뉴로모픽 시스템 |
| CA3126601A1 (en) | 2019-01-13 | 2020-07-16 | Strong Force Iot Portfolio 2016, Llc | Methods, systems, kits and apparatuses for monitoring and managing industrial settings |
| KR102211604B1 (ko) | 2019-02-01 | 2021-02-04 | 재단법인대구경북과학기술원 | Gpu 기반의 채널 단위 딥뉴럴 네트워크 구조 검색을 사용하는 인공지능 시스템 |
| US11816541B2 (en) | 2019-02-15 | 2023-11-14 | Zestfinance, Inc. | Systems and methods for decomposition of differentiable and non-differentiable models |
| US10977729B2 (en) | 2019-03-18 | 2021-04-13 | Zestfinance, Inc. | Systems and methods for model fairness |
| US11610154B1 (en) | 2019-04-25 | 2023-03-21 | Perceive Corporation | Preventing overfitting of hyperparameters during training of network |
| US11900238B1 (en) | 2019-04-25 | 2024-02-13 | Perceive Corporation | Removing nodes from machine-trained network based on introduction of probabilistic noise during training |
| US11531879B1 (en) | 2019-04-25 | 2022-12-20 | Perceive Corporation | Iterative transfer of machine-trained network inputs from validation set to training set |
| US12112254B1 (en) | 2019-04-25 | 2024-10-08 | Perceive Corporation | Optimizing loss function during training of network |
| US11605025B2 (en) * | 2019-05-14 | 2023-03-14 | Msd International Gmbh | Automated quality check and diagnosis for production model refresh |
| US12333393B2 (en) | 2019-06-21 | 2025-06-17 | nference, inc. | Systems and methods for adaptively improving the performance of locked machine learning programs |
| US11487902B2 (en) | 2019-06-21 | 2022-11-01 | nference, inc. | Systems and methods for computing with private healthcare data |
| US11545242B2 (en) | 2019-06-21 | 2023-01-03 | nference, inc. | Systems and methods for computing with private healthcare data |
| US11676034B2 (en) * | 2019-06-27 | 2023-06-13 | The Nielsen Company (Us), Llc | Initialization of classification layers in neural networks |
| US11068748B2 (en) | 2019-07-17 | 2021-07-20 | Harris Geospatial Solutions, Inc. | Image processing system including training model based upon iteratively biased loss function and related methods |
| US10984507B2 (en) | 2019-07-17 | 2021-04-20 | Harris Geospatial Solutions, Inc. | Image processing system including training model based upon iterative blurring of geospatial images and related methods |
| US11417087B2 (en) | 2019-07-17 | 2022-08-16 | Harris Geospatial Solutions, Inc. | Image processing system including iteratively biased training model probability distribution function and related methods |
| CN112308233B (zh) * | 2019-08-02 | 2024-07-19 | 伊姆西Ip控股有限责任公司 | 用于处理数据的方法、设备和计算机程序产品 |
| EP3786918B1 (en) * | 2019-08-30 | 2023-11-08 | Zenuity AB | Method and arrangement for determining a current location speed-limit in a road-vehicle |
| US20210073669A1 (en) * | 2019-09-06 | 2021-03-11 | American Express Travel Related Services Company | Generating training data for machine-learning models |
| US12175350B2 (en) * | 2019-09-10 | 2024-12-24 | Nvidia Corporation | Machine-learning-based architecture search method for a neural network |
| WO2021061951A1 (en) * | 2019-09-24 | 2021-04-01 | Google Llc | Distance-based learning confidence model |
| EP3798862A1 (en) * | 2019-09-24 | 2021-03-31 | Robert Bosch GmbH | Method and system for learning rules from a data base |
| US20220383194A1 (en) * | 2019-12-24 | 2022-12-01 | Aising Ltd. | Information processing device, method, and program |
| CN111114541B (zh) * | 2019-12-31 | 2021-08-20 | 华为技术有限公司 | 车辆控制方法、装置、控制器和智能车 |
| US11941496B2 (en) * | 2020-03-19 | 2024-03-26 | International Business Machines Corporation | Providing predictions based on a prediction accuracy model using machine learning |
| KR20230004566A (ko) * | 2020-04-15 | 2023-01-06 | 찬 주커버그 바이오허브, 인크. | 머신 러닝 모델을 사용한 로컬 조상 추론 |
| US11593714B2 (en) * | 2020-05-06 | 2023-02-28 | Citrix Systems, Inc. | Adaptive anomaly detector |
| US10949907B1 (en) * | 2020-06-23 | 2021-03-16 | Price Technologies Inc. | Systems and methods for deep learning model based product matching using multi modal data |
| US12339926B1 (en) | 2020-07-01 | 2025-06-24 | Massachusetts Mutual Life Insurance Company | Systems and methods for risk factor predictive modeling with dynamic training |
| US11687780B2 (en) | 2020-07-02 | 2023-06-27 | Samsung Electronics Co., Ltd | Method and apparatus for data efficient semantic segmentation |
| US20230326191A1 (en) | 2020-08-17 | 2023-10-12 | Siemens Aktiengesellschaft | Method and Apparatus for Enhancing Performance of Machine Learning Classification Task |
| CN113485762B (zh) * | 2020-09-19 | 2024-07-26 | 广东高云半导体科技股份有限公司 | 用可配置器件卸载计算任务以提高系统性能的方法和装置 |
| JP7466429B2 (ja) * | 2020-10-22 | 2024-04-12 | 株式会社日立製作所 | 計算機システム及び計画評価方法 |
| US12112112B2 (en) * | 2020-11-12 | 2024-10-08 | Samsung Electronics Co., Ltd. | Method for co-design of hardware and neural network architectures using coarse-to-fine search, two-phased block distillation and neural hardware predictor |
| US11720962B2 (en) | 2020-11-24 | 2023-08-08 | Zestfinance, Inc. | Systems and methods for generating gradient-boosted models with improved fairness |
| US11972220B2 (en) * | 2020-11-30 | 2024-04-30 | Oracle International Corporation | Enhanced logits for natural language processing |
| KR102307003B1 (ko) * | 2020-12-24 | 2021-10-01 | 주식회사 알고리즘랩스 | 프로그래밍 학습 가이드 방법 및 장치 |
| US20250124739A1 (en) * | 2021-08-12 | 2025-04-17 | Sony Semiconductor Solutions Corporation | Action analysis device, action analysis method, action analysis program, photographing device, and action analysis system |
| KR20230059036A (ko) * | 2021-10-25 | 2023-05-03 | 주식회사 에이치엘클레무브 | 객체인식기 학습 방법 및 장치 |
| US20230132070A1 (en) | 2021-10-27 | 2023-04-27 | International Business Machines Corporation | Features for black-box machine-learning models |
| US12367661B1 (en) | 2021-12-29 | 2025-07-22 | Amazon Technologies, Inc. | Weighted selection of inputs for training machine-trained network |
| CN114494774B (zh) * | 2022-01-24 | 2024-09-06 | 腾讯科技(深圳)有限公司 | 一种图像分类方法、装置、电子设备及存储介质 |
| US12387092B1 (en) | 2022-07-11 | 2025-08-12 | Amazon Technologies, Inc. | Neural network loss function that incorporates incorrect category probabilities |
| CN117437459B (zh) * | 2023-10-08 | 2024-03-22 | 昆山市第一人民医院 | 基于决策网络实现用户膝关节髌骨软化状态分析方法 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005022343A2 (en) * | 2003-08-29 | 2005-03-10 | Exscientia, Llc | System and methods for incrementally augmenting a classifier |
| US20140358831A1 (en) * | 2013-05-30 | 2014-12-04 | President And Fellows Of Harvard College | Systems and methods for bayesian optimization using non-linear mapping of input |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05290013A (ja) * | 1992-04-06 | 1993-11-05 | Sharp Corp | ニューラルネットワーク演算装置 |
| JPH09185394A (ja) * | 1995-12-28 | 1997-07-15 | Meidensha Corp | 離散単語音声認識システムにおける音素認識方法 |
| US6728690B1 (en) * | 1999-11-23 | 2004-04-27 | Microsoft Corporation | Classification system trainer employing maximum margin back-propagation with probabilistic outputs |
| JP2004501465A (ja) * | 2000-06-19 | 2004-01-15 | ダウ グローバル テクノロジーズ インコーポレーテッド | 回転装置診断システム及び適応コントローラ |
| US6778705B2 (en) * | 2001-02-27 | 2004-08-17 | Koninklijke Philips Electronics N.V. | Classification of objects through model ensembles |
| US7103219B2 (en) * | 2001-04-12 | 2006-09-05 | Eastman Kodak Company | Population mixture modeling with an indeterminate number of sub-populations |
| WO2005015366A2 (en) | 2003-08-08 | 2005-02-17 | Electric Power Group, Llc | Real-time performance monitoring and management system |
| US7890438B2 (en) | 2007-12-12 | 2011-02-15 | Xerox Corporation | Stacked generalization learning for document annotation |
| US20090182538A1 (en) * | 2008-01-14 | 2009-07-16 | Fujitsu Limited | Multi-objective optimum design support device using mathematical process technique, its method and program |
| AU2009217184B2 (en) | 2008-02-20 | 2015-03-19 | Digital Medical Experts Inc. | Expert system for determining patient treatment response |
| US8315465B1 (en) | 2009-01-12 | 2012-11-20 | Google Inc. | Effective feature classification in images |
| JP5079760B2 (ja) * | 2009-08-28 | 2012-11-21 | 日本電信電話株式会社 | 音響モデルパラメータ学習装置、音響モデルパラメータ学習方法、音響モデルパラメータ学習プログラム |
| US8438009B2 (en) | 2009-10-22 | 2013-05-07 | National Research Council Of Canada | Text categorization based on co-classification learning from multilingual corpora |
| US8369611B2 (en) * | 2010-04-22 | 2013-02-05 | Microsoft Corporation | Compact handwriting recognition |
| US8554701B1 (en) | 2011-03-18 | 2013-10-08 | Amazon Technologies, Inc. | Determining sentiment of sentences from customer reviews |
| US9060685B2 (en) | 2012-03-26 | 2015-06-23 | Nec Laboratories America, Inc. | Whole tissue classifier for histology biopsy slides |
| CN104598972A (zh) * | 2015-01-22 | 2015-05-06 | 清华大学 | 一种大规模数据回归神经网络快速训练方法 |
| CN104573731B (zh) * | 2015-02-06 | 2018-03-23 | 厦门大学 | 基于卷积神经网络的快速目标检测方法 |
-
2015
- 2015-09-23 US US14/863,410 patent/US10332028B2/en active Active
-
2016
- 2016-08-11 JP JP2018510504A patent/JP6862426B2/ja active Active
- 2016-08-11 KR KR1020187005492A patent/KR102826736B1/ko active Active
- 2016-08-11 CN CN201680048630.3A patent/CN108027899B/zh active Active
- 2016-08-11 EP EP16753803.2A patent/EP3341894B1/en active Active
- 2016-08-11 WO PCT/US2016/046576 patent/WO2017034820A1/en not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005022343A2 (en) * | 2003-08-29 | 2005-03-10 | Exscientia, Llc | System and methods for incrementally augmenting a classifier |
| US20140358831A1 (en) * | 2013-05-30 | 2014-12-04 | President And Fellows Of Harvard College | Systems and methods for bayesian optimization using non-linear mapping of input |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3341894B1 (en) | 2024-09-18 |
| US20170061326A1 (en) | 2017-03-02 |
| CN108027899A (zh) | 2018-05-11 |
| WO2017034820A1 (en) | 2017-03-02 |
| CN108027899B (zh) | 2023-02-24 |
| KR20180044295A (ko) | 2018-05-02 |
| US10332028B2 (en) | 2019-06-25 |
| JP6862426B2 (ja) | 2021-04-21 |
| BR112018003434A2 (pt) | 2018-09-25 |
| EP3341894A1 (en) | 2018-07-04 |
| JP2018529159A (ja) | 2018-10-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102826736B1 (ko) | 트레이닝된 머신 학습 모델의 성능을 개선시키는 방법 | |
| KR102595399B1 (ko) | 미지의 클래스들의 검출 및 미지의 클래스들에 대한 분류기들의 초기화 | |
| KR102806514B1 (ko) | 뉴럴 네트워크들에서의 러닝을 트랜스퍼하기 위한 장치들 및 방법들 | |
| US10275719B2 (en) | Hyper-parameter selection for deep convolutional networks | |
| US11423323B2 (en) | Generating a sparse feature vector for classification | |
| CN107533669B (zh) | 滤波器特异性作为用于神经网络的训练准则 | |
| US10083378B2 (en) | Automatic detection of objects in video images | |
| US20170032247A1 (en) | Media classification | |
| US20160283864A1 (en) | Sequential image sampling and storage of fine-tuned features |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0105 | International application |
St.27 status event code: A-0-1-A10-A15-nap-PA0105 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-2-2-P10-P22-nap-X000 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-2-2-P10-P22-nap-X000 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-2-2-P10-P22-nap-X000 |
|
| A201 | Request for examination | ||
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-2-2-P10-P22-nap-X000 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-2-2-P10-P22-nap-X000 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-2-2-P10-P22-nap-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U12-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| PR1102 | Extension of patent period due to registration delay |
St.27 status event code: A-4-4-G10-G17-tad-PR1102 Protection beyond ip right term event data comment text: Claim Total Quantity : 0, Period Limitation Text : 190 |