KR102759334B1 - 기계-학습 워크로드들에 대한 작업 스케줄링 - Google Patents
기계-학습 워크로드들에 대한 작업 스케줄링 Download PDFInfo
- Publication number
- KR102759334B1 KR102759334B1 KR1020227007076A KR20227007076A KR102759334B1 KR 102759334 B1 KR102759334 B1 KR 102759334B1 KR 1020227007076 A KR1020227007076 A KR 1020227007076A KR 20227007076 A KR20227007076 A KR 20227007076A KR 102759334 B1 KR102759334 B1 KR 102759334B1
- Authority
- KR
- South Korea
- Prior art keywords
- host
- hosts
- resources
- workload
- task
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5011—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5011—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
- G06F9/5016—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals the resource being the memory
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/5044—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering hardware capabilities
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
- G06F2209/502—Proximity
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/25—Using a specific main memory architecture
- G06F2212/254—Distributed memory
- G06F2212/2542—Non-uniform memory access [NUMA] architecture
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/20—Processor architectures; Processor configuration, e.g. pipelining
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Neurology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Advance Control (AREA)
- Multi Processors (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201962938304P | 2019-11-20 | 2019-11-20 | |
| US62/938,304 | 2019-11-20 | ||
| US16/720,717 US11544113B2 (en) | 2019-11-20 | 2019-12-19 | Task scheduling for machine-learning workloads |
| US16/720,717 | 2019-12-19 | ||
| PCT/US2020/049648 WO2021101617A1 (en) | 2019-11-20 | 2020-09-08 | Task scheduling for machine-learning workloads |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20220038497A KR20220038497A (ko) | 2022-03-28 |
| KR102759334B1 true KR102759334B1 (ko) | 2025-01-22 |
Family
ID=75910002
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020227007076A Active KR102759334B1 (ko) | 2019-11-20 | 2020-09-08 | 기계-학습 워크로드들에 대한 작업 스케줄링 |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US11544113B2 (enExample) |
| EP (1) | EP4062281A1 (enExample) |
| JP (2) | JP7379668B2 (enExample) |
| KR (1) | KR102759334B1 (enExample) |
| CN (1) | CN114503077A (enExample) |
| WO (1) | WO2021101617A1 (enExample) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11544113B2 (en) * | 2019-11-20 | 2023-01-03 | Google Llc | Task scheduling for machine-learning workloads |
| WO2021195104A1 (en) * | 2020-03-23 | 2021-09-30 | Mentium Technologies Inc. | Digital-imc hybrid system architecture for neural network acceleration |
| CN111930498B (zh) * | 2020-06-29 | 2022-11-29 | 苏州浪潮智能科技有限公司 | 一种高效的gpu资源分配优化方法和系统 |
| KR102871422B1 (ko) * | 2020-10-21 | 2025-10-15 | 삼성전자주식회사 | 데이터 처리 방법 및 장치 및 이를 포함한 전자 장치 및 가속기 시스템 |
| US11847489B2 (en) * | 2021-01-26 | 2023-12-19 | Apple Inc. | United states graphics processor techniques with split between workload distribution control data on shared control bus and corresponding graphics data on memory interfaces |
| US11436054B1 (en) * | 2021-04-05 | 2022-09-06 | Hewlett Packard Enterprise Development Lp | Directing queries to nodes of a cluster of a container orchestration platform distributed across a host system and a hardware accelerator of the host system |
| US11716257B1 (en) * | 2021-05-24 | 2023-08-01 | Neureality Ltd. | Batching of artificial intelligence jobs |
| DE102021213282A1 (de) * | 2021-11-25 | 2023-05-25 | Robert Bosch Gesellschaft mit beschränkter Haftung | Partizipatives Sicherheitsprotokoll für Datenwolken-basierte Funktionen |
| CN114490002B (zh) * | 2022-02-17 | 2025-11-28 | 上海阵量智能科技有限公司 | 数据处理系统、任务调度方法、装置、芯片、及电子设备 |
| US12417047B2 (en) * | 2023-01-10 | 2025-09-16 | Google Llc | Heterogeneous ML accelerator cluster with flexible system resource balance |
| US20250045099A1 (en) * | 2023-08-02 | 2025-02-06 | Samsung Electronics Co., Ltd. | Systems, methods, and apparatus for assigning machine learning tasks to compute devices |
| US12481534B2 (en) * | 2024-01-22 | 2025-11-25 | Dropbox, Inc. | Dynamically selecting artificial intelligence models and hardware environments to execute tasks |
| TWI897553B (zh) * | 2024-06-19 | 2025-09-11 | 聯發科技股份有限公司 | 處理單元的排程方法及非暫態機器可讀介質 |
Family Cites Families (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1476834A1 (en) | 2002-02-07 | 2004-11-17 | Thinkdynamics Inc. | Method and system for managing resources in a data center |
| JP5056345B2 (ja) | 2007-10-29 | 2012-10-24 | 富士通株式会社 | データ処理装置およびデータ処理方法 |
| US9652372B2 (en) | 2010-12-15 | 2017-05-16 | At&T Intellectual Property I, L.P. | Method and apparatus for improving non-uniform memory access |
| US20130185729A1 (en) | 2012-01-13 | 2013-07-18 | Rutgers, The State University Of New Jersey | Accelerating resource allocation in virtualized environments using workload classes and/or workload signatures |
| FR2991074B1 (fr) | 2012-05-25 | 2014-06-06 | Bull Sas | Procede, dispositif et programme d'ordinateur de controle dynamique de distances d'acces memoire dans un systeme de type numa |
| JP5949188B2 (ja) | 2012-06-08 | 2016-07-06 | 日本電気株式会社 | 密結合マルチプロセッサシステム |
| JP2015132887A (ja) | 2014-01-09 | 2015-07-23 | 富士通株式会社 | 要求分散プログラム、要求分散方法および情報処理装置 |
| US9588804B2 (en) * | 2014-01-21 | 2017-03-07 | Qualcomm Incorporated | System and method for synchronous task dispatch in a portable device |
| US9697045B2 (en) | 2015-03-24 | 2017-07-04 | International Business Machines Corporation | Selecting resource allocation policies and resolving resource conflicts |
| US10241674B2 (en) | 2015-12-11 | 2019-03-26 | Vmware, Inc. | Workload aware NUMA scheduling |
| US11153223B2 (en) * | 2016-04-07 | 2021-10-19 | International Business Machines Corporation | Specifying a disaggregated compute system |
| WO2018067680A1 (en) | 2016-10-05 | 2018-04-12 | Hidden Path Entertainment, Inc. | System and method of capturing and rendering a stereoscopic panorama using a depth buffer |
| US10176550B1 (en) | 2017-03-20 | 2019-01-08 | Nutanix, Inc. | GPU resource usage display and dynamic GPU resource allocation in a networked virtualization system |
| CN107168782A (zh) * | 2017-04-24 | 2017-09-15 | 复旦大学 | 一种基于Spark与GPU的并行计算系统 |
| US11010205B2 (en) | 2017-05-30 | 2021-05-18 | Hewlett Packard Enterprise Development Lp | Virtual network function resource allocation |
| US10686728B2 (en) * | 2017-07-06 | 2020-06-16 | Huawei Technologies Co., Ltd. | Systems and methods for allocating computing resources in distributed computing |
| US11222256B2 (en) | 2017-10-17 | 2022-01-11 | Xilinx, Inc. | Neural network processing system having multiple processors and a neural network accelerator |
| US10445249B2 (en) | 2017-11-09 | 2019-10-15 | International Business Machines Corporation | Facilitating access to memory locality domain information |
| US10713092B2 (en) | 2018-01-02 | 2020-07-14 | Jpmorgan Chase Bank, N.A. | Dynamic resource management of a pool of resources for multi-tenant applications based on sample exceution, query type or jobs |
| US10942767B2 (en) | 2018-02-27 | 2021-03-09 | Microsoft Technology Licensing, Llc | Deep neural network workload scheduling |
| US10728091B2 (en) * | 2018-04-04 | 2020-07-28 | EMC IP Holding Company LLC | Topology-aware provisioning of hardware accelerator resources in a distributed environment |
| US11315013B2 (en) | 2018-04-23 | 2022-04-26 | EMC IP Holding Company LLC | Implementing parameter server in networking infrastructure for high-performance computing |
| US10601903B2 (en) * | 2018-05-17 | 2020-03-24 | International Business Machines Corporation | Optimizing dynamical resource allocations based on locality of resources in disaggregated data centers |
| US11030012B2 (en) | 2018-09-28 | 2021-06-08 | Intel Corporation | Methods and apparatus for allocating a workload to an accelerator using machine learning |
| US11216314B2 (en) * | 2018-11-02 | 2022-01-04 | EMC IP Holding Company LLC | Dynamic reallocation of resources in accelerator-as-a-service computing environment |
| US12254526B2 (en) * | 2019-03-15 | 2025-03-18 | Intel Corporation | On chip dense memory for temporal buffering |
| US11184236B2 (en) * | 2019-04-30 | 2021-11-23 | Intel Corporation | Methods and apparatus to control processing of telemetry data at an edge platform |
| US11521042B2 (en) | 2019-05-21 | 2022-12-06 | Anil Ravindranath | System and method to dynamically and automatically sharing resources of coprocessor AI accelerators |
| US11301307B2 (en) * | 2019-07-24 | 2022-04-12 | Red Hat, Inc. | Predictive analysis for migration schedulers |
| US12052260B2 (en) * | 2019-09-30 | 2024-07-30 | International Business Machines Corporation | Scalable and dynamic transfer learning mechanism |
| US20210149677A1 (en) * | 2019-11-15 | 2021-05-20 | Intel Corporation | Enhanced processor functions for calculation |
| US11726793B2 (en) * | 2019-11-15 | 2023-08-15 | Intel Corporation | Data locality enhancement for graphics processing units |
| US11544113B2 (en) * | 2019-11-20 | 2023-01-03 | Google Llc | Task scheduling for machine-learning workloads |
| US11586932B2 (en) * | 2020-03-10 | 2023-02-21 | International Business Machines Corporation | Model training with variable batch sizing and gradient checkpoint segments |
| US11526964B2 (en) * | 2020-06-10 | 2022-12-13 | Intel Corporation | Deep learning based selection of samples for adaptive supersampling |
| US12216738B2 (en) * | 2020-10-12 | 2025-02-04 | International Business Machines Corporation | Predicting performance of machine learning models |
| WO2022118322A1 (en) * | 2020-12-02 | 2022-06-09 | Unifabrix Ltd. | System and method for multimodal computer address space provisioning |
| US20220188691A1 (en) * | 2020-12-11 | 2022-06-16 | International Business Machines Corporation | Machine Learning Pipeline Generation |
| US20220124005A1 (en) * | 2021-11-16 | 2022-04-21 | Kshitij Arun Doshi | Systems and methods for reactive intent-driven end-to-end orchestration |
| US12461781B2 (en) * | 2021-12-22 | 2025-11-04 | Intel Corporation | Low power inference engine pipeline in a graphics processing unit |
| US20230137191A1 (en) * | 2022-11-12 | 2023-05-04 | Adrian C. Hoban | Mechanism to recompose workload packages in a computing environment |
-
2019
- 2019-12-19 US US16/720,717 patent/US11544113B2/en active Active
-
2020
- 2020-09-08 WO PCT/US2020/049648 patent/WO2021101617A1/en not_active Ceased
- 2020-09-08 CN CN202080061569.2A patent/CN114503077A/zh active Pending
- 2020-09-08 EP EP20775537.2A patent/EP4062281A1/en active Pending
- 2020-09-08 JP JP2022514245A patent/JP7379668B2/ja active Active
- 2020-09-08 KR KR1020227007076A patent/KR102759334B1/ko active Active
-
2022
- 2022-12-29 US US18/091,263 patent/US12321781B2/en active Active
-
2023
- 2023-11-01 JP JP2023187576A patent/JP7637747B2/ja active Active
Non-Patent Citations (1)
| Title |
|---|
| 미국공개특허 제2019-0312772호(2019.10.10.) 1부.* |
Also Published As
| Publication number | Publication date |
|---|---|
| JP7379668B2 (ja) | 2023-11-14 |
| JP2024020271A (ja) | 2024-02-14 |
| JP7637747B2 (ja) | 2025-02-28 |
| WO2021101617A1 (en) | 2021-05-27 |
| US11544113B2 (en) | 2023-01-03 |
| KR20220038497A (ko) | 2022-03-28 |
| US20210149729A1 (en) | 2021-05-20 |
| JP2023511467A (ja) | 2023-03-20 |
| CN114503077A (zh) | 2022-05-13 |
| US12321781B2 (en) | 2025-06-03 |
| US20230136661A1 (en) | 2023-05-04 |
| EP4062281A1 (en) | 2022-09-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102759334B1 (ko) | 기계-학습 워크로드들에 대한 작업 스케줄링 | |
| JP7462028B2 (ja) | 分散ストレージシステム及びデータ処理方法 | |
| CN111247533B (zh) | 用于神经网络加速的机器学习运行时库 | |
| CN109492241B (zh) | 转换方法、装置、计算机设备和存储介质 | |
| TWI547817B (zh) | 叢集運算架構的資源規劃方法、系統及裝置 | |
| US11169846B2 (en) | System and method for managing tasks and task workload items between address spaces and logical partitions | |
| US11915041B1 (en) | Method and system for sequencing artificial intelligence (AI) jobs for execution at AI accelerators | |
| CN102929725A (zh) | 信号处理并行计算软件的动态重配置方法 | |
| US20210390405A1 (en) | Microservice-based training systems in heterogeneous graphic processor unit (gpu) cluster and operating method thereof | |
| US11954518B2 (en) | User-defined metered priority queues | |
| CN113806064A (zh) | 作业调度方法、装置、系统及作业派发装置 | |
| CN118871890A (zh) | 一种ai系统、内存访问控制方法及相关设备 | |
| EP3779778A1 (en) | Methods and apparatus to enable dynamic processing of a predefined workload | |
| CN115048218A (zh) | 一种边缘异构场景中的端云协同推理方法和系统 | |
| CN113841132B (zh) | 用于主机设备接口的非对称数据通信 | |
| CN116670649B (zh) | 用于设计具有优化的系统延时的机器人系统架构的方法和系统 | |
| CN116166396A (zh) | 调度模型的训练方法、装置、电子设备及可读存储介质 | |
| US11341025B2 (en) | Dynamic tuning of computing devices using application log data | |
| US11663465B2 (en) | Method of managing task performance in an artificial neural network, and system executing an artificial neural network | |
| HK40071346A (en) | Task scheduling for machine-learning workloads | |
| WO2021199396A1 (ja) | 分散処理ノードおよび分散処理システム | |
| CN117950816A (zh) | 作业调度方法、装置和芯片 | |
| CN120407195B (zh) | 混合异构计算任务的执行方法、设备、介质和程序产品 | |
| US12493734B1 (en) | Systems and methods for optimizing mixture-of-experts model placement using QUBO-based bin packing | |
| CN114461331B (zh) | 一种资源预部署方法、装置、电子设备及可读存储介质 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0105 | International application |
Patent event date: 20220302 Patent event code: PA01051R01D Comment text: International Patent Application |
|
| PA0201 | Request for examination | ||
| PG1501 | Laying open of application | ||
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20231107 Patent event code: PE09021S01D |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20241029 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20250120 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20250120 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration |