KR102679322B1 - Precursor for film deposition, deposition method of film and semiconductor device of the same - Google Patents
Precursor for film deposition, deposition method of film and semiconductor device of the same Download PDFInfo
- Publication number
- KR102679322B1 KR102679322B1 KR1020210179627A KR20210179627A KR102679322B1 KR 102679322 B1 KR102679322 B1 KR 102679322B1 KR 1020210179627 A KR1020210179627 A KR 1020210179627A KR 20210179627 A KR20210179627 A KR 20210179627A KR 102679322 B1 KR102679322 B1 KR 102679322B1
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- group
- transition metal
- forming
- precursor
- Prior art date
Links
- 239000002243 precursor Substances 0.000 title claims abstract description 76
- 238000000151 deposition Methods 0.000 title claims description 20
- 239000004065 semiconductor Substances 0.000 title claims description 16
- 230000008021 deposition Effects 0.000 title claims description 15
- 239000010409 thin film Substances 0.000 claims abstract description 93
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 54
- 150000003624 transition metals Chemical class 0.000 claims abstract description 54
- 150000002902 organometallic compounds Chemical class 0.000 claims abstract description 27
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 125000003282 alkyl amino group Chemical group 0.000 claims abstract description 4
- 125000006165 cyclic alkyl group Chemical group 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 48
- 239000002184 metal Substances 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 46
- 239000002904 solvent Substances 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 24
- 238000000231 atomic layer deposition Methods 0.000 claims description 11
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000009832 plasma treatment Methods 0.000 claims description 5
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 4
- 150000003512 tertiary amines Chemical class 0.000 claims description 4
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 4
- 230000008016 vaporization Effects 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 3
- 150000002170 ethers Chemical class 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- 238000000277 atomic layer chemical vapour deposition Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 24
- 150000001875 compounds Chemical class 0.000 description 24
- 230000008569 process Effects 0.000 description 24
- 239000000047 product Substances 0.000 description 22
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000010408 film Substances 0.000 description 10
- 239000000376 reactant Substances 0.000 description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 239000012299 nitrogen atmosphere Substances 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- GBNDTYKAOXLLID-UHFFFAOYSA-N zirconium(4+) ion Chemical compound [Zr+4] GBNDTYKAOXLLID-UHFFFAOYSA-N 0.000 description 9
- -1 alkylamino compound Chemical class 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910000326 transition metal silicate Inorganic materials 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 229910052735 hafnium Inorganic materials 0.000 description 7
- GVOLZAKHRKGRRM-UHFFFAOYSA-N hafnium(4+) Chemical compound [Hf+4] GVOLZAKHRKGRRM-UHFFFAOYSA-N 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- 229910004129 HfSiO Inorganic materials 0.000 description 6
- 238000005137 deposition process Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910015868 MSiO Inorganic materials 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- ZYLGGWPMIDHSEZ-UHFFFAOYSA-N dimethylazanide;hafnium(4+) Chemical compound [Hf+4].C[N-]C.C[N-]C.C[N-]C.C[N-]C ZYLGGWPMIDHSEZ-UHFFFAOYSA-N 0.000 description 3
- DWCMDRNGBIZOQL-UHFFFAOYSA-N dimethylazanide;zirconium(4+) Chemical compound [Zr+4].C[N-]C.C[N-]C.C[N-]C.C[N-]C DWCMDRNGBIZOQL-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- NVVGDZRCZIYRJV-UHFFFAOYSA-N 3-cyclopenta-2,4-dien-1-ylpropan-1-amine Chemical compound NCCCC1C=CC=C1 NVVGDZRCZIYRJV-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- DCFKHNIGBAHNSS-UHFFFAOYSA-N chloro(triethyl)silane Chemical compound CC[Si](Cl)(CC)CC DCFKHNIGBAHNSS-UHFFFAOYSA-N 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical group 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- PQIYSSSTRHVOBW-UHFFFAOYSA-N 3-bromopropan-1-amine;hydron;bromide Chemical compound Br.NCCCBr PQIYSSSTRHVOBW-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- YGHUUVGIRWMJGE-UHFFFAOYSA-N chlorodimethylsilane Chemical compound C[SiH](C)Cl YGHUUVGIRWMJGE-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000012705 liquid precursor Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- DAZXVJBJRMWXJP-UHFFFAOYSA-N n,n-dimethylethylamine Chemical compound CCN(C)C DAZXVJBJRMWXJP-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- H01L28/40—
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electromagnetism (AREA)
Abstract
본 발명은 4족 전이금속 함유 박막 형성용 전구체에 관한 것으로서, 하기 화학식 1로 표시되는 유기금속 화합물을 포함하는 것을 특징으로 한다.
[화학식 1]
상기 화학식 1에서, M은 Ti, Zr, 또는 Hf이고, X는 수소원자, C1-C5의 알킬기, NR4R5 또는 OR6이며, R1 내지 R6는 서로 같거나 상이할 수 있으며, 각각 독립적으로 수소원자 또는 C1-C5의 직쇄형, 분지형 또는 고리형 알킬기이고, R1은 어느 하나가 알킬아민기일 수 있으며, n은 1, 2 또는 3의 자연수이다.The present invention relates to a precursor for forming a thin film containing a Group 4 transition metal, and is characterized by comprising an organometallic compound represented by the following formula (1).
[Formula 1]
In Formula 1 , M is Ti , Zr , or Hf, , each independently a hydrogen atom or a C 1 -C 5 straight-chain, branched or cyclic alkyl group, R 1 may be an alkylamine group, and n is a natural number of 1, 2 or 3.
Description
본 발명은 4족 전이금속 함유 박막 형성용 전구체, 이를 이용한 4족 전이금속 함유 박막 형성 방법 및 상기 4족 전이금속 함유 박막을 포함하는 반도체 소자에 관한 것으로, 더욱 상세하게는, 원자층 증착(ALD) 또는 화학 기상 증착(CVD) 공정에서 사용되는 4족 전이금속 및 실리콘(Si)을 함유하여 4족 전이금속 함유 박막, 전이금속 실리케이트, 실리콘 도핑 금속 함유 박막 등의 박막을 형성할 수 있는 전구체, 이를 이용한 4족 전이금속 함유 박막 형성 방법 및 상기 4족 전이금속 함유 박막을 포함하는 반도체 소자에 관한 것이다. The present invention relates to a precursor for forming a Group 4 transition metal-containing thin film, a method for forming a Group 4 transition metal-containing thin film using the same, and a semiconductor device including the Group 4 transition metal-containing thin film. More specifically, it relates to atomic layer deposition (ALD). ) or a precursor that contains a Group 4 transition metal and silicon (Si) used in a chemical vapor deposition (CVD) process and can form thin films such as Group 4 transition metal-containing thin films, transition metal silicates, and silicon-doped metal-containing thin films, It relates to a method of forming a thin film containing a Group 4 transition metal using this method and a semiconductor device including the thin film containing the Group 4 transition metal.
원자층 증착(ALD) 또는 화학 기상 증착(CVD) 공정을 위한 전구체로 다양한 형태의 유기금속 화합물이 개발되어 사용되고 있다. 이러한 유기금속 화합물은 기화 특성, 기화 온도와 분해 온도의 격차, 독성, 화학적 안정성, 열적 안정성 및 화합물 합성 용이성, 열분해의 용이성 등의 특성이 요구된다.Various types of organometallic compounds have been developed and used as precursors for atomic layer deposition (ALD) or chemical vapor deposition (CVD) processes. These organometallic compounds require characteristics such as vaporization characteristics, gap between vaporization temperature and decomposition temperature, toxicity, chemical stability, thermal stability, ease of compound synthesis, and ease of thermal decomposition.
이러한 유기금속 화합물 중 하나로서 사이클로펜타디에닐기를 포함하는 착 화합물 형태의 유기금속 화합물을 전구체를 들 수 있는데, 특히 사이클로펜타디에닐기와 중심 금속 원자 간에 가교 결합 구조를 형성한 유기금속 화합물 전구체가 박막 형성에 효과적인 것으로 알려져 있다.One of these organometallic compounds is a precursor of an organometallic compound in the form of a complex compound containing a cyclopentadienyl group. In particular, an organometallic compound precursor that forms a cross-linked structure between the cyclopentadienyl group and the central metal atom can be used as a thin film. It is known to be effective in forming
예를 들어, 대한민국 등록특허공보 10-1263454호에서는 Zr(CpCH2CH2NMe)(NMe2)2 등의 사이클로펜타디에닐기와 지르코늄 원자 사이에 알킬아민의 가교구조가 형성됨으로써 열적 안정성과 단차 피복성이 우수하고 고온에서 장시간 보관해도 분해되지 않는 전구체로서의 우수한 특성을 나타내고 있다.For example, in Republic of Korea Patent Publication No. 10-1263454, a cross-linked structure of alkylamine is formed between a cyclopentadienyl group such as Zr(CpCH 2 CH 2 NMe)(NMe 2 ) 2 and a zirconium atom, thereby providing thermal stability and stepped coating. It has excellent properties and shows excellent properties as a precursor that does not decompose even when stored at high temperatures for a long time.
또한, 대한민국 등록특허공보 10-1959519호에서는 금속 원자와 실리콘 원자를 포함하는 유기금속 화합물을 이용하여 전이금속 실리케이트 박막을 형성하는 기술이 개시되어 있는데, 열 안정성이 높은 가교 구조를 채용함으로써 하나의 전구체로 전이금속 실리케이트 박막을 형성할 수 있다.In addition, Republic of Korea Patent Publication No. 10-1959519 discloses a technology for forming a transition metal silicate thin film using an organometallic compound containing metal atoms and silicon atoms. By adopting a cross-linked structure with high thermal stability, a single precursor A transition metal silicate thin film can be formed.
출원인은 대한민국 공개특허공보 10-2019-0108281호에서 중심금속과 사이클로펜타디에닐기 사이에 가교구조를 형성한 유기금속 화합물을 이용하여 열 안정성이 우수하고 미세화 공정 시 발생하는 문제점을 해결할 수 있는 전구체를 개발한 바 있다.In Korean Patent Publication No. 10-2019-0108281, the applicant used an organometallic compound that formed a cross-linked structure between a central metal and a cyclopentadienyl group to create a precursor that has excellent thermal stability and can solve problems occurring during the micronization process. It has been developed.
이러한 기본구조를 바탕으로 고온 증착에 적합한 새로운 전구체를 개발함으로써 ALD 또는 CVD에 효과적인 전구체를 제공할 수 있을 것으로 기대된다.Based on this basic structure, it is expected that by developing a new precursor suitable for high temperature deposition, it will be possible to provide an effective precursor for ALD or CVD.
본 발명은 상기와 같은 종래기술들을 감안하여 안출된 것으로, 열 안정성이 우수하여 고온 증착에 적합한 4족 전이금속 실리케이트(MSiOx) 박막 형성용 전구체를 제공하는 것을 그 목적으로 한다.The present invention was developed in consideration of the above-described prior technologies, and its purpose is to provide a precursor for forming a Group 4 transition metal silicate (MSiO x ) thin film that has excellent thermal stability and is suitable for high temperature deposition.
또한, 가교 구조의 유기금속 화합물을 통해 안정성이 증가된 4족 전이금속 함유 박막 형성용 전구체를 제공하는 것을 그 목적으로 한다.Additionally, the purpose is to provide a precursor for forming a Group 4 transition metal-containing thin film with increased stability through a cross-linked organometallic compound.
또한, 전이금속과 실리콘 원자를 함유하는 하나의 유기금속 화합물을 전구체로 적용함으로써 전이금속 실리케이트 박막을 형성할 수 있는 전구체를 제공하는 것을 그 목적으로 한다.Additionally, the purpose is to provide a precursor capable of forming a transition metal silicate thin film by applying an organometallic compound containing a transition metal and silicon atoms as a precursor.
또한, 상기 전구체를 이용하여 4족 전이금속 함유 금속 박막을 형성하는 방법 및 상기 4족 전이금속 함유 금속 박막을 포함하는 반도체 소자를 제조하는 방법을 제공하는 것을 그 목적으로 한다.Another purpose is to provide a method of forming a metal thin film containing a Group 4 transition metal using the precursor and a method of manufacturing a semiconductor device including the Group 4 transition metal containing metal thin film.
상기와 같은 목적을 달성하기 위한 본 발명의 4족 전이금속 함유 금속 박막 형성용 전구체는 하기 화학식 1로 표시되는 유기금속 화합물을 포함하는 것을 특징으로 한다.The precursor for forming a metal thin film containing a Group 4 transition metal of the present invention to achieve the above object is characterized by comprising an organometallic compound represented by the following formula (1).
[화학식 1][Formula 1]
상기 화학식 1에서, M은 Ti, Zr, 또는 Hf이고, X는 수소원자, 알킬기, NR4R5 또는 OR6이며, R1 내지 R6는 서로 같거나 상이할 수 있으며, 각각 독립적으로 수소원자 또는 C1-C5의 직쇄형, 분지형 또는 고리형 알킬기이고, R1은 어느 하나가 알킬아민기일 수 있으며, n은 1, 2 또는 3의 자연수이다.In Formula 1 , M is Ti, Zr , or Hf, Or it is a straight-chain, branched or cyclic alkyl group of C 1 -C 5 , any one of R 1 may be an alkylamine group, and n is a natural number of 1, 2 or 3.
또한, 상기 전구체는 용매를 추가적으로 포함할 수 있으며, 상기 용매는 C1-C16의 포화 또는 불포화 탄화수소, 케톤, 에테르, 글라임, 에스테르, 테트라하이드로퓨란, 3차 아민 중 어느 하나 또는 그 이상일 수 있다.In addition, the precursor may additionally include a solvent, and the solvent may be any one or more of C 1 -C 16 saturated or unsaturated hydrocarbons, ketones, ethers, glymes, esters, tetrahydrofuran, and tertiary amines. there is.
또한, 상기 용매는 상기 4족 전이금속 박막 형성용 전구체 총 중량에 대하여 1 내지 99 중량%로 포함될 수 있다.Additionally, the solvent may be included in an amount of 1 to 99% by weight based on the total weight of the precursor for forming the Group 4 transition metal thin film.
본 발명에 따른 4족 전이금속 함유 박막 형성 방법은 상기 4족 전이금속 함유 박막 형성용 전구체를 이용하여 기판 상에 4족 전이금속 함유 박막을 증착하는 단계를 포함한다.The method of forming a Group 4 transition metal-containing thin film according to the present invention includes the step of depositing a Group 4 transition metal-containing thin film on a substrate using the precursor for forming the Group 4 transition metal-containing thin film.
이때, 상기 4족 전이금속 함유 박막은 원자층 증착에 의해 증착될 수 있고, 화학 기상 증착에 의해 증착될 수도 있다.At this time, the group 4 transition metal-containing thin film may be deposited by atomic layer deposition or chemical vapor deposition.
또한, 상기 4족 전이금속 함유 박막 형성용 전구체를 기화시켜 챔버 내부로 이송시키는 단계를 포함할 수 있다.Additionally, it may include vaporizing the precursor for forming a thin film containing a Group 4 transition metal and transferring it into the chamber.
또한, 상기 증착하는 단계는 챔버 내에 기판을 위치하는 단계, 상기 4족 전이금속 함유 박막 형성용 전구체 조성물을 상기 챔버 내에 공급하는 단계, 상기 챔버 내에 반응성 기체 또는 반응성 기체의 플라즈마를 공급하는 단계, 상기 챔버 내에서 열 처리, 플라즈마 처리 및 광 조사 중 어느 하나 또는 그 이상의 수단에 의해 처리하는 단계를 포함하는 것일 수 있으며, 250 내지 400℃에서 수행될 수 있다.In addition, the depositing step includes placing a substrate in a chamber, supplying a precursor composition for forming a thin film containing a Group 4 transition metal into the chamber, supplying a reactive gas or a plasma of a reactive gas into the chamber, It may include treatment in a chamber by any one or more of heat treatment, plasma treatment, and light irradiation, and may be performed at 250 to 400°C.
본 발명에 따른 반도체 소자는 상기 4족 전이금속 함유 박막 형성 방법에 의해 제조된 4족 전이금속 함유 박막을 포함하는 것을 특징으로 한다.The semiconductor device according to the present invention is characterized in that it includes a group 4 transition metal-containing thin film manufactured by the method of forming a group 4 transition metal-containing thin film.
본 발명에 따른 전구체는 열 안정성이 우수하여 고온 증착에 적합하므로 4족 전이금속 함유 박막, 특히, 4족 전이금속 실리케이트(MSiOx) 박막을 형성하기에 적합하다.The precursor according to the present invention has excellent thermal stability and is suitable for high temperature deposition, so it is suitable for forming a thin film containing a Group 4 transition metal, especially a Group 4 transition metal silicate (MSiO x ) thin film.
또한, 가교 구조의 유기금속 화합물을 통해 열 안정성이 증가되며, 하나의 화합물에 금속 원자와 실리콘 원자를 동시에 함유함으로써 단일 공정으로 전이금속 실리케이트 박막을 형성할 수 있다.In addition, thermal stability is increased through cross-linked organometallic compounds, and by simultaneously containing metal atoms and silicon atoms in one compound, a transition metal silicate thin film can be formed in a single process.
또한, 상기 전구체를 이용함으로써 4족 전이금속 함유 박막을 형성하는 방법 및 상기 4족 전이금속 함유 박막을 포함하는 다양한 반도체 소자를 제조하는 방법을 제공할 수 있다.In addition, by using the precursor, a method of forming a thin film containing a Group 4 transition metal and a method of manufacturing various semiconductor devices including the Group 4 transition metal containing thin film can be provided.
도 1은 본 발명의 전구체를 이용한 박막 형성 과정을 나타낸 개념도이다.
도 2는 본 발명의 전구체를 이용하여 HfSiOx 박막을 형성하는 공정에서 GPC 변화를 측정한 그래프이다.
도 3은 본 발명의 전구체를 이용하여 HfSiOx 박막을 형성하는 공정에서 싸이클 수에 따른 증착률의 변화를 측정한 그래프이다.
도 4는 본 발명의 전구체를 이용한 ALD 증착 공정으로 형성된 HfSiOx 박막의 XRD 분석 결과이다.1 is a conceptual diagram showing the thin film formation process using the precursor of the present invention.
Figure 2 is a graph measuring GPC changes in the process of forming an HfSiOx thin film using the precursor of the present invention.
Figure 3 is a graph measuring the change in deposition rate according to the number of cycles in the process of forming an HfSiOx thin film using the precursor of the present invention.
Figure 4 shows the XRD analysis results of the HfSiOx thin film formed through the ALD deposition process using the precursor of the present invention.
이하 본 발명을 보다 상세히 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in more detail. Terms or words used in this specification and claims should not be construed as limited to their common or dictionary meanings, and the inventor may appropriately define the concept of terms in order to explain his or her invention in the best way. It must be interpreted with meaning and concept consistent with the technical idea of the present invention based on the principle that it is.
본 발명에 따른 4족 전이금속 함유 박막 형성용 전구체는 하기 화학식 1로 표시되는 유기금속 화합물을 포함하는 것을 특징으로 한다.The precursor for forming a Group 4 transition metal-containing thin film according to the present invention is characterized by containing an organometallic compound represented by the following formula (1).
[화학식 1][Formula 1]
상기 화학식 1에서, M은 Ti, Zr, 또는 Hf이고, X는 수소원자, C1-C5의 알킬기, NR4R5 또는 OR6이며, R1 내지 R6는 서로 같거나 상이할 수 있으며, 각각 독립적으로 수소원자 또는 C1-C5의 직쇄형, 분지형 또는 고리형 알킬기이고, R1은 어느 하나가 알킬아민기일 수 있으며, n은 1, 2 또는 3의 자연수이다. In Formula 1 , M is Ti , Zr , or Hf, , each independently a hydrogen atom or a C 1 -C 5 straight-chain, branched or cyclic alkyl group, R 1 may be an alkylamine group, and n is a natural number of 1, 2 or 3.
상기와 같은 유기금속 화합물은 통상적인 리간드 합성법을 통해 제조될 수 있다. 즉, 하기 반응식 1 내지 3에서와 같이, 사이클로펜탄과 알킬아미노 화합물을 반응시키는 1단계, 상기 반응 생성물과 알킬실리콘 화합물을 반응시키는 2단계, 상기 반응 생성물과 지르코늄 화합물을 반응시키는 3단계를 거쳐 제조할 수 있다.The above organometallic compounds can be prepared through conventional ligand synthesis methods. That is, as shown in Schemes 1 to 3 below, it is prepared through the first step of reacting cyclopentane and an alkylamino compound, the second step of reacting the reaction product with an alkyl silicon compound, and the third step of reacting the reaction product with a zirconium compound. can do.
[반응식 1][Scheme 1]
[반응식 2][Scheme 2]
[반응식 3][Scheme 3]
화학식 1로 표시되는 유기금속 화합물은 구체적으로 하기 구조에서 선택되는 유기금속 화합물을 들 수 있으나 이에 한정되는 것은 아니다.The organometallic compound represented by Formula 1 specifically includes, but is not limited to, organometallic compounds selected from the structures below.
본 발명의 전구체는 용매를 추가적으로 포함할 수 있다. 상기 용매로는 C1-C16의 포화 또는 불포화 탄화수소, 케톤, 에테르, 글라임, 에스테르, 테트라하이드로퓨란, 3차 아민 중 어느 하나 또는 이들의 혼합물을 사용할 수 있다. 상기 C1-C16의 포화 또는 불포화 탄화수소의 예로는 톨루엔, 헵탄 등을 들 수 있으며, 3차 아민으로는 디메틸에틸아민을 들 수 있다.The precursor of the present invention may additionally include a solvent. The solvent may be any one of C 1 -C 16 saturated or unsaturated hydrocarbons, ketones, ethers, glymes, esters, tetrahydrofuran, tertiary amines, or mixtures thereof. Examples of the C 1 -C 16 saturated or unsaturated hydrocarbon include toluene and heptane, and examples of the tertiary amine include dimethylethylamine.
또한, 상기 용매를 포함하는 경우, 상기 금속막 형성용 전구체 총 중량에 대하여 1 내지 99 중량%로 포함되는 것이 바람직하다.In addition, when the solvent is included, it is preferably included in an amount of 1 to 99% by weight based on the total weight of the precursor for forming the metal film.
용매를 포함하거나 포함하지 않는 전구체는 기화할 수 있는 것으로서, 이를 챔버 내로 공급함으로써 증착 공정을 수행할 수 있으며, 상기 유기금속 화합물의 성질에 따라 용해 가능한 용매를 적절히 선택하여 사용하는 것이 바람직하다. 즉, 유기금속 화합물의 종류에 따라 실온에서 액상으로 존재하는 경우 별도의 용매 없이도 증착 공정을 수행할 수 있다.The precursor containing or not containing a solvent can be vaporized, and the deposition process can be performed by supplying it into the chamber. It is desirable to appropriately select and use a soluble solvent according to the properties of the organometallic compound. That is, depending on the type of organometallic compound, if it exists in a liquid state at room temperature, the deposition process can be performed without a separate solvent.
본 발명의 4족 전이금속 함유 박막 형성 방법은 상기 4족 전이금속 함유 박막 형성용 전구체를 이용하여 기판 상에 4족 전이금속 함유 박막을 증착하는 단계를 포함하는 것을 특징으로 한다.The method of forming a Group 4 transition metal-containing thin film of the present invention is characterized by comprising the step of depositing a Group 4 transition metal-containing thin film on a substrate using the precursor for forming the Group 4 transition metal-containing thin film.
이때, 상기 4족 전이금속 함유 박막 형성용 전구체는 전술한 바와 같이 용매를 추가적으로 포함할 수 있고, 상기 용매는 상기 4족 전이금속 함유 박막 형성용 전구체 총 중량에 대하여 1 내지 99 중량%로 포함될 수 있다.At this time, the precursor for forming the Group 4 transition metal-containing thin film may additionally include a solvent as described above, and the solvent may be included in an amount of 1 to 99% by weight based on the total weight of the precursor for forming the Group 4 transition metal-containing thin film. there is.
상기 화학식 1로 표시되는 유기금속 화합물을 포함하는 전구체를 이용한 4족 전이금속 함유 박막의 제조방법은 금속 전구체로서 화학식 1로 표시되는 유기금속 화합물을 이용하는 것을 제외하고는 통상의 증착에 의한 금속 박막의 제조방법에 따라 실시될 수 있으며, 구체적으로는 화학증착법(chemical vapor deposition, CVD) 또는 원자층 증착법(atomic layer deposition, ALD) 등의 방법으로 실시될 수 있다.The method for producing a Group 4 transition metal-containing thin film using a precursor containing an organometallic compound represented by Formula 1 is the method of producing a metal thin film by conventional deposition, except for using an organometallic compound represented by Formula 1 as a metal precursor. It can be carried out depending on the manufacturing method, and specifically, it can be carried out by methods such as chemical vapor deposition (CVD) or atomic layer deposition (ALD).
즉, 반응기 내에 존재하는 금속 박막 형성용 기판 위로 상기 화학식 1로 표시되는 유기금속 화합물을 공급하는 단계, 및 상기 반응기 내에 반응성 가스를 공급하고, 열처리, 플라즈마 처리 및 광 조사로 이루어진 군에서 선택되는 1종의 처리 공정을 실시하는 단계를 포함하는 제조 방법에 의해 제조될 수 있다.That is, supplying an organometallic compound represented by Formula 1 onto a substrate for forming a metal thin film existing in a reactor, supplying a reactive gas into the reactor, and performing a process selected from the group consisting of heat treatment, plasma treatment, and light irradiation. It may be prepared by a manufacturing method comprising carrying out a treatment process for the species.
도 1을 참조하여, 박막 형성 과정을 설명하면, 먼저, 반응 사이트가 형성된 기판 상에 본 발명의 전구체를 도입한다(도 1(a)). 상기 전구체를 구성하는 화학식 1로 표시되는 유기금속 화합물의 중심 금속 원자에 결합된 반응성 기(X)와 기판 표면의 반응성기가 결합하게 되는데, 이때 이웃한 기판 표면의 반응기는 상기 중심 금속 원자에 가교 결합된 실릴기의 실리콘 원자로 전자 이동이 발생하며, 동시에 상기 실리콘 원자로부터 또 다른 표면 반응기로 전자 이동이 발생하게 된다(도 1(b)). 이후 반응성 가스를 공급하면 기판의 표면에는 금속 원자와 실리콘 원자가 동시에 증착되는 상태를 이루며, 이를 통해 전이금속 실리케이트(MSiOx)의 박막이 형성되게 된다.Referring to FIG. 1, when explaining the thin film formation process, first, the precursor of the present invention is introduced onto a substrate on which a reaction site is formed (FIG. 1(a)). The reactive group ( Electron transfer occurs to the silicon atom of the silyl group, and at the same time, electron transfer occurs from the silicon atom to another surface reactor (Figure 1(b)). Afterwards, when a reactive gas is supplied, metal atoms and silicon atoms are simultaneously deposited on the surface of the substrate, thereby forming a thin film of transition metal silicate (MSiO x ).
상기 4족 전이금속 함유 박막 형성용 기판으로는 기술적 작용으로 인하여 금속 박막에 의해 코팅될 필요가 있는, 반도체 제조에 사용되는 것이라면 특별한 제한 없이 사용 가능하다. 구체적으로는 규소 기판(Si), 실리카 기판(SiO2), 질화 규소 기판(SiN), 규소 옥시 니트라이드 기판 (SiON), 티타늄 니트라이드 기판(TiN), 탄탈륨 니트라이드 기판(TaN), 텅스텐 기판(W) 또는 귀금속 기판, 예를 들어 백금 기판(Pt), 팔라듐 기판(Pd), 로듐 기판(Rh) 또는 금 기판(Au) 등이 사용될 수 있다.The substrate for forming the Group 4 transition metal-containing thin film can be used without particular restrictions as long as it is used in semiconductor manufacturing and needs to be coated with a metal thin film due to technical functions. Specifically, silicon substrate (Si), silica substrate (SiO 2 ), silicon nitride substrate (SiN), silicon oxynitride substrate (SiON), titanium nitride substrate (TiN), tantalum nitride substrate (TaN), and tungsten substrate. (W) or a noble metal substrate, such as a platinum substrate (Pt), a palladium substrate (Pd), a rhodium substrate (Rh), or a gold substrate (Au), may be used.
상기 화학식 1로 표시되는 유기금속 화합물은 휘발된 기체를 통해 이송하거나, 직접 액체 주입 방법 또는 상기 유기금속 화합물을 유기 용매에 용해시켜 이송하는 액체 이송 방법이 이용될 수 있다. 상기 전구체를 휘발된 기체로 이송하는 방법은 상기 전구체가 들어 있는 용기를 항온조에 넣은 후 헬륨, 네온, 아르곤, 크립톤, 제논 또는 질소 등의 비활성 가스로 버블링하여 전구체를 증발시킨 후 금속 박막 형성용 기판 위로 이송시키거나, 또는 액체운반시스템(LDS: Liquid Delivery System)을 사용하여 액상의 전구체를 기화기를 통해 기상으로 변화시킨 후 금속 박막 형성용 기판 위로 이송시킴으로써 실시될 수 있다.The organometallic compound represented by Formula 1 may be transferred through a volatilized gas, a direct liquid injection method, or a liquid transfer method in which the organometallic compound is dissolved in an organic solvent and then transferred may be used. The method of transferring the precursor as a volatilized gas is to place the container containing the precursor in a thermostat and evaporate the precursor by bubbling it with an inert gas such as helium, neon, argon, krypton, xenon, or nitrogen to form a metal thin film. It can be carried out by transferring it onto a substrate, or by using a liquid delivery system (LDS) to change the liquid precursor into a gas phase through a vaporizer and then transferring it onto the substrate for forming a metal thin film.
전구체를 유기 용매에 용해시켜 이송하는 액체 이송 방법의 경우, 전술한 바와 같이 상기 화학식 1로 표시되는 유기금속 화합물 및 용매로 이루어진 조성물 형태로 이용할 수 있는데, 상기 화학식 1로 표시되는 유기금속 화합물 중 높은 점도로 인하여 액체 이송 방식의 기화기에서 충분히 기화되기 어려울 경우 용매를 포함하는 조성물의 형태로 활용하면 증착 공정을 효과적으로 수행할 수 있다.In the case of a liquid transfer method in which the precursor is transported by dissolving it in an organic solvent, it can be used in the form of a composition consisting of an organometallic compound represented by Formula 1 and a solvent, as described above. Among the organometallic compounds represented by Formula 1, the higher If it is difficult to sufficiently vaporize in a liquid transfer type vaporizer due to viscosity, the deposition process can be effectively performed by using it in the form of a composition containing a solvent.
이러한 용매는 고체 성상의 물질을 용해할 수 있는 특성을 가지거나 액체 성상의 물질을 용해 및 분산시킬 수 있는 용매이어야 한다. 또한, 용매의 비점, 밀도 및 증기압 조건을 고려하여 박막 형성용 조성물의 점도 감소 효과 및 휘발성 개선 효과를 향상하고, 이를 통해, 증착된 박막의 균일성(uniformity) 및 단차피복(step coverage) 특성이 개선된 박막의 형성을 할 수 있도록 용매를 선별하는 것이 바람직하다. This solvent must have the property of dissolving solid substances or be capable of dissolving and dispersing liquid substances. In addition, considering the boiling point, density, and vapor pressure conditions of the solvent, the viscosity reduction effect and volatility improvement effect of the composition for forming a thin film are improved, and through this, the uniformity and step coverage characteristics of the deposited thin film are improved. It is desirable to select the solvent to allow for the formation of improved thin films.
또한, 상기 화학식 1로 표시되는 유기금속 화합물을 챔버 내에 공급할 때, 최종 형성되는 금속 박막에서의 전기적 특성, 즉 정전용량을 더욱 개선시키기 위하여 제2 금속 전구체로서 규소(Si), 티타늄(Ti), 게르마늄(Ge), 스트론튬(Sr), 니오브(Nb), 바륨(Ba), 하프늄(Hf), 탄탈륨(Ta) 및 란탄족 원자로부터 선택된 1종 이상의 금속(M")을 포함하는 금속 전구체를 선택적으로 더 공급할 수도 있다. 상기 제2 금속 전구체는 상기 금속을 포함하는 알킬아미드계 화합물 또는 알콕시계 화합물 일 수 있다. 일례로 상기 금속이 Si인 경우 제2금속 전구체로 SiH(N(CH3)2)3, Si(N(C2H5)2)4, Si(N(C2H5)(CH3))4, Si(N(CH3)2)4, Si(OC4H9)4, Si(OC2H5)4, Si(OCH3)4, Si(OC(CH3)3)4 등이 사용될 수 있다.In addition, when supplying the organometallic compound represented by Formula 1 into the chamber, silicon (Si), titanium (Ti), and Select a metal precursor containing one or more metals (M") selected from germanium (Ge), strontium (Sr), niobium (Nb), barium (Ba), hafnium (Hf), tantalum (Ta), and lanthanide atoms. The second metal precursor may be an alkylamide-based compound or an alkoxy-based compound containing the metal. For example, when the metal is Si, SiH(N(CH 3 ) 2 is used. ) 3 , Si(N(C 2 H 5 ) 2 ) 4 , Si(N(C 2 H 5 )(CH 3 )) 4 , Si(N(CH 3 ) 2 ) 4 , Si(OC 4 H 9 ) 4 , Si(OC 2 H 5 ) 4 , Si(OCH 3 ) 4 , Si(OC(CH 3 ) 3 ) 4 , etc. may be used.
상기 제2 금속 전구체의 공급은 화학식 1의 금속 전구체의 공급 방법과 동일한 방법으로 실시될 수 있으며, 상기 제2 금속 전구체는 화학식 1의 금속 전구체와 함께 박막 형성용 기판 위로 공급될 수도 있고, 또는 금속 전구체의 공급 완료 이후 순차적으로 공급될 수도 있다.The supply of the second metal precursor may be carried out in the same manner as the supply method of the metal precursor of Chemical Formula 1, and the second metal precursor may be supplied onto the substrate for forming a thin film together with the metal precursor of Chemical Formula 1, or the metal precursor may be supplied together with the metal precursor of Chemical Formula 1. After supply of the precursor is completed, it may be supplied sequentially.
상기와 같은 화학식 1의 금속 전구체 및 선택적으로 제2 금속 전구체는 상기 금속막 형성용 기판과 접촉시키기 위해 반응 챔버 내로 공급되기 전까지 100 내지 200℃의 온도를 유지하는 것이 바람직하며, 보다 바람직하게는 130 내지 180℃의 온도를 유지하는 것이 좋다.The metal precursor of Formula 1 as described above and optionally the second metal precursor are preferably maintained at a temperature of 100 to 200° C. before being supplied into the reaction chamber for contact with the substrate for forming the metal film, more preferably 130° C. It is recommended to maintain a temperature of 180°C.
또한, 금속 전구체의 공급 단계 후 반응성 가스의 공급에 앞서, 상기 화학식 1의 금속 전구체 및 선택적으로 제2 금속 전구체의 기판 위로의 이동을 돕거나, 반응기 내가 증착에 적절한 압력을 갖도록 하며, 또한, 챔버 내에 존재하는 불순물 등을 외부로 방출시키기 위하여, 반응기 내에 아르곤(Ar), 질소(N2), 또는 헬륨(He) 등의 불활성 기체를 퍼지하는 공정이 실시될 수 있다. 이때 불활성 기체의 퍼지는 반응기내 압력이 1 내지 5Torr가 되도록 실시되는 것이 바람직하다.In addition, before the supply of the reactive gas after the supply step of the metal precursor, it helps the metal precursor of Formula 1 and optionally the second metal precursor move onto the substrate, or ensures an appropriate pressure for deposition in the reactor, and also, the chamber In order to release impurities present within the reactor to the outside, a process of purging an inert gas such as argon (Ar), nitrogen (N 2 ), or helium (He) may be performed within the reactor. At this time, it is preferable that the inert gas is spread so that the pressure within the reactor is 1 to 5 Torr.
상기한 금속 전구체들의 공급 완료 후 반응성 가스를 반응기 내로 공급하고, 반응성 가스의 존재하에서 열처리, 플라즈마 처리 및 광 조사로 이루어진 군에서 선택되는 1종의 처리 공정을 실시한다.After completing the supply of the above-described metal precursors, a reactive gas is supplied into the reactor, and one type of treatment process selected from the group consisting of heat treatment, plasma treatment, and light irradiation is performed in the presence of the reactive gas.
상기 반응성 가스로는 수증기(H2O), 산소(O2), 오존(O3), 과산화수소(H2O2), 수소(H2), 암모니아(NH3), 일산화질소(NO), 아산화질소(N2O), 이산화질소(NO2), 히드라진(N2H4), 및 실란(SiH4) 중 어느 하나 또는 이들의 혼합물을 사용할 수 있다. 상기 수증기, 산소, 오존 등과 같은 산화성 가스 존재 하에서 실시될 경우 금속 산화물 박막이 형성될 수 있고, 수소, 암모니아, 히드라진, 실란 등의 환원성 가스 존재 하에서 실시되는 경우 금속 단체 또는 금속 질화물의 박막이 형성될 수 있다.The reactive gases include water vapor (H 2 O), oxygen (O 2 ), ozone (O 3 ), hydrogen peroxide (H 2 O 2 ), hydrogen (H 2 ), ammonia (NH 3 ), nitrogen monoxide (NO), and nitrous oxide. Any one or a mixture of nitrogen (N 2 O), nitrogen dioxide (NO 2 ), hydrazine (N 2 H 4 ), and silane (SiH 4 ) may be used. When carried out in the presence of an oxidizing gas such as water vapor, oxygen, ozone, etc., a metal oxide thin film may be formed, and when carried out in the presence of a reducing gas such as hydrogen, ammonia, hydrazine, silane, etc., a thin film of a single metal or metal nitride may be formed. You can.
또한, 상기 열처리, 플라즈마 처리 또는 광조사의 처리 공정은 금속 전구체의 증착을 위한 열에너지를 제공하기 위한 것으로, 통상의 방법에 따라 실시될 수 있다. 바람직하게는, 충분한 성장 속도로, 목적하는 물리적 상태와 조성을 갖는 금속 박막을 제조하기 위해서는 반응기내 기판의 온도가 100 내지 1,000℃ 바람직하게는 300 내지 500℃가 되도록 상기 처리 공정을 실시하는 것이 바람직하다.In addition, the heat treatment, plasma treatment, or light irradiation treatment process is intended to provide heat energy for deposition of the metal precursor, and may be performed according to a conventional method. Preferably, in order to produce a metal thin film with a desired physical state and composition at a sufficient growth rate, the treatment process is preferably performed so that the temperature of the substrate in the reactor is 100 to 1,000°C, preferably 300 to 500°C. .
또한, 상기 처리 공정 시에도 전술한 바와 같이 반응성 가스의 기판 위로의 이동을 돕거나, 반응기 내가 증착에 적절한 압력을 갖도록 하며, 또한 반응기내 존재하는 불순물 또는 부산물 등을 외부로 방출시키기 위하여, 반응기 내에 아르곤(Ar), 질소(N2), 또는 헬륨(He) 등의 불활성 기체를 퍼지하는 공정이 실시될 수 있다.In addition, during the treatment process, as described above, in order to help the movement of the reactive gas onto the substrate, to ensure an appropriate pressure for deposition in the reactor, and to release impurities or by-products present in the reactor to the outside, A process of purging an inert gas such as argon (Ar), nitrogen (N 2 ), or helium (He) may be performed.
상기와 같은, 금속 전구체의 투입, 반응성 가스의 투입, 그리고 불활성 기체의 투입 처리 공정은 1 사이클로 하여. 1 사이클 이상 반복 실시함으로써 금속 함유 박막이 형성될 수 있다.As described above, the processing processes of adding the metal precursor, adding the reactive gas, and adding the inert gas are performed as one cycle. A metal-containing thin film can be formed by repeating the process one or more cycles.
구체적으로, 반응성 가스로서 산화성 가스를 사용할 경우 제조되는 금속 함유 박막은 하기 화학식 2의 금속 산화물을 포함할 수 있다.Specifically, when an oxidizing gas is used as a reactive gas, the metal-containing thin film produced may include a metal oxide of the following formula (2).
[화학식 2][Formula 2]
(M1-aM"a)Ob (M 1-a M" a )O b
상기 화학식 2에서, a는 0 ≤ a < 1 이고, b는 0 < b ≤ 2 이며, M는 Zr, Hf 및 Ti로 이루어진 군에서 선택되고, M"은 제2 금속 전구체로부터 유도되는 것으로, 규소(Si), 티타늄(Ti), 게르마늄(Ge), 스트론튬(Sr), 니오브(Nb), 바륨(Ba), 하프늄(Hf), 탄탈륨(Ta) 및 란탄족 원자로부터 선택된 것이다.In Formula 2, a is 0 ≤ a < 1, b is 0 < b ≤ 2, M is selected from the group consisting of Zr, Hf and Ti, and M" is derived from the second metal precursor, silicon (Si), titanium (Ti), germanium (Ge), strontium (Sr), niobium (Nb), barium (Ba), hafnium (Hf), tantalum (Ta) and lanthanide atoms.
이러한 4족 전이금속 함유 박막의 제조방법은, 열 안정성이 우수한 금속 전구체를 이용함으로써 증착 공정시 종래에 비해 높은 온도에서 증착 공정 실시가 가능하고, 전구체의 열분해에 기인한 파티클 오염이나 탄소 등의 불순물 오염없이 고순도의 금속, 금속 산화물 또는 금속 질화물 박막을 형성할 수 있다. 이에 따라 본 발명의 제조방법에 따라 형성된 4족 전이금속 함유 함유 박막은 반도체 소자에서의 고유전 물질막, 특히 반도체 메모리 소자에서의 DRAM, CMOS 등에 유용하다.This method of manufacturing a thin film containing a Group 4 transition metal uses a metal precursor with excellent thermal stability, which allows the deposition process to be performed at a higher temperature than before, and eliminates particle contamination or impurities such as carbon due to thermal decomposition of the precursor. High purity metal, metal oxide or metal nitride thin films can be formed without contamination. Accordingly, the group 4 transition metal-containing thin film formed according to the manufacturing method of the present invention is useful for high dielectric material films in semiconductor devices, especially DRAM and CMOS in semiconductor memory devices.
또 다른 실시형태로서, 상기 4족 전이금속 함유 박막의 형성 방법에 의해 형성된 4족 전이금속 함유 박막, 및 상기 박막을 포함하는 반도체 소자를 제공한다. 일례로 상기 반도체 소자는 임의 접근 메모리(RAM)용 금속 절연체 금속(MIM)을 포함하는 반도체 소자일 수 있다.In another embodiment, a group 4 transition metal-containing thin film formed by the method for forming a group 4 transition metal-containing thin film, and a semiconductor device including the thin film are provided. For example, the semiconductor device may be a semiconductor device including a metal insulator (MIM) for random access memory (RAM).
또한, 상기 반도체 소자는 소자내 DRAM 등 고유전특성이 요구되는 물질막에 본 발명에 따른 금속 함유 박막을 포함하는 것을 제외하고는 통상의 반도체 소자의 구성과 동일하므로, 본 명세서에서는 반도체 소자의 구성에 대한 상세한 설명을 생략한다.In addition, since the configuration of the semiconductor device is the same as that of a typical semiconductor device except that the metal-containing thin film according to the present invention is included in a material film that requires high dielectric properties, such as DRAM in the device, the configuration of the semiconductor device is described in this specification. Detailed description is omitted.
이하 실시예를 통하여 본 발명의 효과를 설명한다.The effects of the present invention will be explained through examples below.
1. 중간체 A의 합성1. Synthesis of Intermediate A
중간체인 3-(cyclopenta-2,4-dien-1-yl)propan-1-amine을 다음과 같은 반응경로로 합성하였다.The intermediate, 3-(cyclopenta-2,4-dien-1-yl)propan-1-amine, was synthesized through the following reaction route.
불꽃 건조된 5,000㎖ 슈렝크 플라스크에서 308.5g(5.710mol, 2.5당량)의 NaOMe와 376.9g(5.710mol, 2.5당량)의 CpH을 3,200㎖ THF 중에서 질소 분위기 하에 12시간 이상 교반하여 어두운 보라색의 생성물을 제조하였다. 반응이 완료된 생성물을 500g(2.284mol, 1당량)의 3-Bromopropylamine hydrobromide와 400㎖ Hexane 중에서 질소 분위기 하에 12시간 이상 교반하여 반응물을 얻었다. 이 반응물에서 필터를 통해 여과액을 얻은 후 감압하에 용매 및 휘발성 부반응물을 제거하였다. 이어서 남겨진 어두운 보라색 액체를 감압 증류하여 투명한 액체 화합물인 3-(cyclopenta-2,4-dien-1-yl)propan-1-amine을 200g(수율:71%) 수득하였다.In a flame-dried 5,000 ml Schlenk flask, 308.5 g (5.710 mol, 2.5 equivalents) of NaOMe and 376.9 g (5.710 mol, 2.5 equivalents) of CpH were stirred in 3,200 ml THF under a nitrogen atmosphere for more than 12 hours to produce a dark purple product. Manufactured. The reaction product was stirred in 500 g (2.284 mol, 1 equivalent) of 3-Bromopropylamine hydrobromide and 400 ml of hexane under a nitrogen atmosphere for more than 12 hours to obtain a reaction product. A filtrate was obtained from this reaction product through a filter, and then the solvent and volatile side reactants were removed under reduced pressure. The remaining dark purple liquid was then distilled under reduced pressure to obtain 200 g (yield: 71%) of 3-(cyclopenta-2,4-dien-1-yl)propan-1-amine, a transparent liquid compound.
생성물을 1H-NMR(400MHz, C6D6, 25℃)로 분석한 결과, δ6.46~5.90, 2.78~2.66 (m, 4H, CpH), δ2.51~2.43 (m, 2H, -CH2-), δ2.31~2.23(m, 2H, -CH2-), δ1.55~1.39 (m, 2H, -CH2-), δ0.46(s, 2H, NH2)의 특성 피크를 확인하여 목적하는 화합물이 합성되었음을 확인하였다.The product was analyzed by 1 H-NMR (400MHz, C 6 D 6 , 25℃), δ6.46~5.90, 2.78~2.66 (m, 4H, CpH), δ2.51~2.43 (m, 2H, - CH 2 -), δ2.31~2.23(m, 2H, -CH 2 -), δ1.55~1.39 (m, 2H, -CH 2 -), δ0.46(s, 2H, NH 2 ) characteristics By checking the peak, it was confirmed that the target compound was synthesized.
2. 중간체 B의 합성2. Synthesis of Intermediate B
중간체인 N-(3-(cyclopenta-2,4-dien-1-yl)propyl)-1,1,1-trimethylsilanamine을 다음과 같은 반응경로로 합성하였다.The intermediate N-(3-(cyclopenta-2,4-dien-1-yl)propyl)-1,1,1-trimethylsilanamine was synthesized through the following reaction route.
불꽃 건조된 5,000㎖ 슈렝크 플라스크에서 200g(1.622mol, 1당량)의 중간체A와 180g(1.784mol, 1.1당량)의 Triethylamine, 194g(1.784mol, 1.1당량)의 chlorotrimethylsilane을 3,000㎖ THF 중에서 질소 분위기 하에 12시간 이상 교반하여 흰색의 현탁액을 제조하였다. 반응이 완료된 이 현탁액을 필터를 통해 여과액을 얻은 후 감압하에 용매 및 휘발성 부반응물을 제거하였다. 이어서 남겨진 연한 노란색 액체를 감압 증류하여 투명한 액체 화합물인 N-(3-(cyclopenta-2,4-dien-1-yl)propyl)-1,1,1-trimethylsilanamine을 152g(수율:48%) 수득하였다. In a flame-dried 5,000 ml Schlenk flask, 200 g (1.622 mol, 1 equivalent) of Intermediate A, 180 g (1.784 mol, 1.1 equivalent) of Triethylamine, and 194 g (1.784 mol, 1.1 equivalent) of chlorotrimethylsilane were dissolved in 3,000 ml THF under a nitrogen atmosphere. A white suspension was prepared by stirring for more than 12 hours. After the reaction was completed, the suspension was filtered to obtain a filtrate, and then the solvent and volatile side reactants were removed under reduced pressure. The remaining light yellow liquid was then distilled under reduced pressure to obtain 152g (yield: 48%) of N-(3-(cyclopenta-2,4-dien-1-yl)propyl)-1,1,1-trimethylsilanamine, a transparent liquid compound. did.
생성물을 1H-NMR(400MHz, C6D6, 25℃)로 분석한 결과, δ6.48~5.96, 2.79~2.69 (m, 4H, CpH), δ2.67~2.60 (m, 2H, -CH2-), δ2.35~2.27 (m, 2H, -CH2-), δ1.61~1.45 (m, 2H, -CH2-), δ0.07(s, 9H, -Si(CH3)3)의 특성 피크를 확인하여 목적하는 화합물이 합성되었음을 확인하였다.The product was analyzed by 1 H-NMR (400MHz, C 6 D 6 , 25℃), δ6.48~5.96, 2.79~2.69 (m, 4H, CpH), δ2.67~2.60 (m, 2H, - CH 2 -), δ2.35~2.27 (m, 2H, -CH 2 -), δ1.61~1.45 (m, 2H, -CH 2 -), δ0.07(s, 9H, -Si(CH 3 ) It was confirmed that the target compound was synthesized by checking the characteristic peak of 3 ).
3. 중간체 C의 합성3. Synthesis of Intermediate C
중간체인 N-(3-(cyclopenta-2,4-dien-1-yl)propyl)-1,1,1-triethylsilanamine을 다음과 같은 반응경로로 합성하였다.The intermediate N-(3-(cyclopenta-2,4-dien-1-yl)propyl)-1,1,1-triethylsilanamine was synthesized through the following reaction route.
불꽃 건조된 500㎖ 슈렝크 플라스크에서 20g(0.16mol, 1당량)의 중간체A와 18.1g(0.16mol, 1당량)의 Triethylamine, 26.9g(0.16mol, 1당량)의 chlorotriethylsilane을 300㎖ Tol 중에서 질소 분위기 하에 12시간 이상 교반하여 흰색의 현탁액을 제조하였다. 반응이 완료된 이 현탁액을 필터를 통해 여과액을 얻은 후 감압하에 용매 및 휘발성 부반응물을 제거하였다. 이어서 남겨진 연한 노란색 액체를 감압 증류하여 투명한 액체 화합물인 N-(3-(cyclopenta-2,4-dien-1-yl)propyl)-1,1,1-triethylsilanamine을 19.15g(수율:49%) 수득하였다. In a flame-dried 500 ml Schlenk flask, 20 g (0.16 mol, 1 equivalent) of Intermediate A, 18.1 g (0.16 mol, 1 equivalent) of Triethylamine, and 26.9 g (0.16 mol, 1 equivalent) of chlorotriethylsilane were dissolved in nitrogen in 300 ml Tol. A white suspension was prepared by stirring under an atmosphere for more than 12 hours. After the reaction was completed, the suspension was filtered to obtain a filtrate, and then the solvent and volatile side reactants were removed under reduced pressure. The remaining light yellow liquid was then distilled under reduced pressure to produce 19.15 g (yield: 49%) of N-(3-(cyclopenta-2,4-dien-1-yl)propyl)-1,1,1-triethylsilanamine, a transparent liquid compound. Obtained.
생성물을 1H-NMR(400MHz, C6D6, 25℃)로 분석한 결과, δ6.49~5.97, 2.80~2.69 (m, 4H, CpH), δ2.71~2.63(m, 2H, -CH2-), δ2.36~2.28 (m, 2H, -CH2-), δ1.63~1.47 (m, 2H, -CH2-), δ1.02~0.98 (t, 9H, -(CH3)3), δ0.57~0.51 (q, 6H, -Si-(CH2)3-), δ0.1 (s, 1H, -NH-)의 특성 피크를 확인하여 목적하는 화합물이 합성되었음을 확인하였다.The product was analyzed by 1 H-NMR (400MHz, C 6 D 6 , 25℃), δ6.49~5.97, 2.80~2.69 (m, 4H, CpH), δ2.71~2.63(m, 2H, - CH 2 -), δ2.36~2.28 (m, 2H, -CH 2 -), δ1.63~1.47 (m, 2H, -CH 2 -), δ1.02~0.98 (t, 9H, -(CH 3 ) 3 ), δ0.57~0.51 (q, 6H, -Si-(CH 2 ) 3 -), δ0.1 (s, 1H, -NH-) were confirmed to confirm that the target compound was synthesized. Confirmed.
4. 중간체 D의 합성4. Synthesis of Intermediate D
중간체인 N-(3-(cyclopenta-2,4-dien-1-yl)propyl)-1,1-dimethylsilanamine을 다음과 같은 반응경로로 합성하였다.The intermediate N-(3-(cyclopenta-2,4-dien-1-yl)propyl)-1,1-dimethylsilanamine was synthesized through the following reaction route.
불꽃 건조된 1,000㎖ 슈렝크 플라스크에서 20g(0.16mol, 1당량)의 중간체A와 18.1g(0.16mol, 1당량)의 Triethylamine, 16.9g(0.16mol, 1당량)의 chlorodimethylsilane을 500㎖ Tol 중에서 질소 분위기 하에 12시간 이상 교반하여 노색의 현탁액을 제조하였다. 반응이 완료된 이 현탁액을 필터를 통해 여과액을 얻은 후 감압하에 용매 및 휘발성 부반응물을 제거하였다. 이어서 남겨진 연한 노란색 액체를 감압 증류하여 투명한 액체 화합물인 N-(3-(cyclopenta-2,4-dien-1-yl)propyl)-1,1-dimethylsilanamine을 23g(수율:79%) 수득하였다. In a flame-dried 1,000 ml Schlenk flask, 20 g (0.16 mol, 1 equivalent) of Intermediate A, 18.1 g (0.16 mol, 1 equivalent) of Triethylamine, and 16.9 g (0.16 mol, 1 equivalent) of chlorodimethylsilane were dissolved in nitrogen in 500 ml Tol. A yellow suspension was prepared by stirring under an atmosphere for more than 12 hours. After the reaction was completed, the suspension was filtered to obtain a filtrate, and then the solvent and volatile side reactants were removed under reduced pressure. The remaining light yellow liquid was then distilled under reduced pressure to obtain 23 g (yield: 79%) of N-(3-(cyclopenta-2,4-dien-1-yl)propyl)-1,1-dimethylsilanamine, a transparent liquid compound.
생성물을 1H-NMR(400MHz, C6D6, 25℃)로 분석한 결과, δ6.45~5.94, 2.78~2.67 (m, 4H, CpH), δ4.72~4.70 (m, 1H, -SiH), δ2.70~2.61 (m, 2H, -CH2-), δ2.32~2.25 (m, 2H, -CH2-), δ1.60~1.44 (m, 2H, -CH2-), δ0.1~0.09 (s, 6H, -Si(CH3)2)의 특성 피크를 확인하여 목적하는 화합물이 합성되었음을 확인하였다.The product was analyzed by 1H -NMR (400MHz, C 6 D 6 , 25℃), δ6.45~5.94, 2.78~2.67 (m, 4H, CpH), δ4.72~4.70 (m, 1H, - SiH), δ2.70~2.61 (m, 2H, -CH 2 -), δ2.32~2.25 (m, 2H, -CH 2 -), δ1.60~1.44 (m, 2H, -CH 2 -) , δ0.1~0.09 (s, 6H, -Si(CH 3 ) 2 ) was confirmed to confirm that the target compound was synthesized.
5. Cyclopentadienpropyltrimethylsilane Hafnium(Ⅳ)의 합성5. Synthesis of Cyclopentadienpropyltrimethylsilane Hafnium(Ⅳ)
Cyclopentadienpropyltrimethylsilane Hafnium(Ⅳ)을 다음과 같은 반응경로로 합성하였다.Cyclopentadienpropyltrimethylsilane Hafnium(IV) was synthesized using the following reaction route.
불꽃 건조된 1,000㎖ 슈렝크 플라스크에서 108.6g(0.55mol, 1당량)의 중간체 B와 202㎖(0.55mol, 1당량)의 Tetrakis(dimethylamino)hafnium(2.5M)을 500㎖ Hexane 중에서 질소 분위기 하에 12시간 이상 교반하여 연노란색의 생성물을 제조하였다. 반응이 완료된 이 생성물을 감압하에 용매 및 휘발성 부반응물을 제거하였다. 이어서 남겨진 연한 노란색 액체를 감압 증류하여 연노란색의 액체 화합물인 Cyclopentadienpropyltrimethylsilane Hafnium(Ⅳ)을 74g(수율:29%) 수득하였다. In a flame-dried 1,000 mL Schlenk flask, 108.6 g (0.55 mol, 1 equivalent) of intermediate B and 202 mL (0.55 mol, 1 equivalent) of Tetrakis(dimethylamino)hafnium (2.5 M) were reacted in 500 mL of hexane under a nitrogen atmosphere for 12 days. After stirring for more than an hour, a light yellow product was prepared. After the reaction was completed, the solvent and volatile side reactants were removed from the product under reduced pressure. The remaining light yellow liquid was then distilled under reduced pressure to obtain 74 g (yield: 29%) of Cyclopentadienpropyltrimethylsilane Hafnium (IV), a light yellow liquid compound.
생성물을 1H-NMR(400MHz, C6D6, 25℃)로 분석한 결과, δ5.97~5.76, 3.08~3.05 (m, 4H, CpH), δ3.08~3.05 (m, 2H, -CH2-), δ2.92 (s, 12H, -(N(CH3)2)2), δ2.51~2.48 (m, 2H, -CH2-), δ1.62~1.56 (m, 2H, -CH2-), δ0.21 (s, 9H, -Si(CH3)3)의 특성 피크를 확인하여 목적하는 화합물이 합성되었음을 확인하였다.The product was analyzed by 1 H-NMR (400MHz, C 6 D 6 , 25℃), δ5.97~5.76, 3.08~3.05 (m, 4H, CpH), δ3.08~3.05 (m, 2H, - CH 2 -), δ2.92 (s, 12H, -(N(CH 3 ) 2 ) 2 ), δ2.51~2.48 (m, 2H, -CH 2 -), δ1.62~1.56 (m, 2H , -CH 2 -), and δ0.21 (s, 9H, -Si(CH 3 ) 3 ) were confirmed to confirm that the target compound was synthesized.
6. Cyclopentadienpropyltrimethylsilane Zirconium(Ⅳ)의 합성6. Synthesis of Cyclopentadienpropyltrimethylsilane Zirconium(Ⅳ)
Cyclopentadienpropyltrimethylsilane Zirconium(Ⅳ)을 다음과 같은 반응경로로 합성하였다.Cyclopentadienpropyltrimethylsilane Zirconium(IV) was synthesized using the following reaction route.
불꽃 건조된 250㎖ 슈렝크 플라스크에서 12g(0.06mol, 1당량)의 중간체 B와 15g(0.06mol, 1당량)의 Tetrakis(dimethylamino)zirconium을 100㎖ Hexane 중에서 질소 분위기 하에 12시간 이상 교반하여 연노란색의 생성물을 제조하였다. 반응이 완료된 이 생성물을 감압하에 용매 및 휘발성 부반응물을 제거하였다. 이어서 남겨진 연한 노란색 액체를 감압 증류하여 연노란색의 액체 화합물인 Cyclopentadienpropyltrimethylsilane Zirconium(Ⅳ)을 3g(수율:13%) 수득하였다. In a flame-dried 250 ㎖ Schlenk flask, 12 g (0.06 mol, 1 equivalent) of intermediate B and 15 g (0.06 mol, 1 equivalent) of Tetrakis(dimethylamino)zirconium were stirred in 100 ㎖ hexane under a nitrogen atmosphere for more than 12 hours to obtain a light yellow color. The product was prepared. After the reaction was completed, the solvent and volatile side reactants were removed from the product under reduced pressure. The remaining light yellow liquid was then distilled under reduced pressure to obtain 3g (yield: 13%) of Cyclopentadienpropyltrimethylsilane Zirconium(IV), a light yellow liquid compound.
생성물을 1H-NMR(400MHz, C6D6, 25℃)로 분석한 결과, δ6.00~5.78 (m, 4H, CpH), δ3.07~3.04 (m, 2H, -CH2-), δ2.88 (s, 12H, -(N(CH3)2)2), δ2.52~2.49 (m, 2H, -CH2-), δ1.63~1.57 (m, 2H, -CH2-), δ0.22 (s, 9H, -Si(CH3)3)의 특성 피크를 확인하여 목적하는 화합물이 합성되었음을 확인하였다.The product was analyzed by 1H -NMR (400MHz, C 6 D 6 , 25℃), δ6.00~5.78 (m, 4H, CpH), δ3.07~3.04 (m, 2H, -CH 2 -) , δ2.88 (s, 12H, -(N(CH 3 ) 2 ) 2 ), δ2.52~2.49 (m, 2H, -CH 2 -), δ1.63~1.57 (m, 2H, -CH 2 -), δ0.22 (s, 9H, -Si(CH 3 ) 3 ) was confirmed to confirm that the target compound was synthesized.
7. Cyclopentadienpropyltriethylsilane Hafnium(Ⅳ)의 합성7. Synthesis of Cyclopentadienpropyltriethylsilane Hafnium(Ⅳ)
Cyclopentadienpropyltriethylsilane Hafnium(Ⅳ)을 다음과 같은 반응경로로 합성하였다.Cyclopentadienpropyltriethylsilane Hafnium(IV) was synthesized using the following reaction route.
불꽃 건조된 250㎖ 슈렝크 플라스크에서 8g(0.03mol, 1당량)의 중간체 C와 12㎖(0.03mol, 1당량)의 Tetrakis(dimethylamino)hafnium(2.5M)을 100㎖ Hexane 중에서 질소 분위기 하에 12시간 이상 교반하여 연노란색의 생성물을 제조하였다. 반응이 완료된 이 생성물을 감압하에 용매 및 휘발성 부반응물을 제거하였다. 이어서 남겨진 연한 노란색 액체를 감압 증류하여 연노란색의 액체 화합물인 Cyclopentadienpropyltriethylsilane Hafnium(Ⅳ)을 2g(수율:12%) 수득하였다.In a flame-dried 250 ml Schlenk flask, 8 g (0.03 mol, 1 equivalent) of intermediate C and 12 ml (0.03 mol, 1 equivalent) of Tetrakis(dimethylamino)hafnium (2.5M) were mixed in 100 ml of hexane under a nitrogen atmosphere for 12 hours. After further stirring, a light yellow product was prepared. After the reaction was completed, the solvent and volatile side reactants were removed from the product under reduced pressure. The remaining light yellow liquid was then distilled under reduced pressure to obtain 2g (yield: 12%) of Cyclopentadienpropyltriethylsilane Hafnium(IV), a light yellow liquid compound.
8. Cyclopentadienpropyltriethylsilane Zirconium(Ⅳ)의 합성8. Synthesis of Cyclopentadienpropyltriethylsilane Zirconium(Ⅳ)
Cyclopentadienpropyltriethylsilane Zirconium(Ⅳ)을 다음과 같은 반응경로로 합성하였다.Cyclopentadienpropyltriethylsilane Zirconium(IV) was synthesized using the following reaction route.
불꽃 건조된 250㎖ 슈렝크 플라스크에서 8g(0.03mol, 1당량)의 중간체 C와 8.2g(0.03mol, 1당량)의 Tetrakis(dimethylamino)zirconium을 100㎖ Hexane 중에서 질소 분위기 하에 12시간 이상 교반하여 연노란색의 생성물을 제조하였다. 반응이 완료된 이 생성물을 감압하에 용매 및 휘발성 부반응물을 제거하였다. 이어서 남겨진 연한 노란색 액체를 감압 증류하여 연노란색의 액체 화합물인 Cyclopentadienpropyltriethylsilane Zirconium(Ⅳ)을 2.5g(수율:18%) 수득하였다. In a flame-dried 250 ml Schlenk flask, 8 g (0.03 mol, 1 equivalent) of intermediate C and 8.2 g (0.03 mol, 1 equivalent) of Tetrakis(dimethylamino)zirconium were stirred in 100 ml hexane under a nitrogen atmosphere for more than 12 hours. A yellow product was prepared. After the reaction was completed, the solvent and volatile side reactants were removed from the product under reduced pressure. The remaining light yellow liquid was then distilled under reduced pressure to obtain 2.5 g (yield: 18%) of Cyclopentadienpropyltriethylsilane Zirconium(IV), a light yellow liquid compound.
생성물을 1H-NMR(400MHz, C6D6, 25℃)로 분석한 결과, δ6.03~5.81 (m, 4H, CpH), δ3.06~2.89 (m, 2H, -CH2-), δ2.89 (s, 12H, -(N(CH3)2)2), δ2.54~2.50(m, 2H, -CH2-), δ1.63~1.57 (m, 2H, -CH2-), δ1.12~1.08 (t, 9H, -(CH3)3), δ0.69~0.63 (q, 6H, -Si-(CH2)3-)의 특성 피크를 확인하여 목적하는 화합물이 합성되었음을 확인하였다.The product was analyzed by 1 H-NMR (400MHz, C 6 D 6 , 25℃), δ6.03~5.81 (m, 4H, CpH), δ3.06~2.89 (m, 2H, -CH 2 -) , δ2.89 (s, 12H, -(N(CH 3 ) 2 ) 2 ), δ2.54~2.50(m, 2H, -CH 2 -), δ1.63~1.57 (m, 2H, -CH 2 - ), δ1.12~1.08 (t, 9H, -(CH 3 ) 3 ), δ0.69~0.63 (q, 6H, -Si-(CH 2 ) 3 -) and identify the target compound. It was confirmed that this was synthesized.
9. Cyclopentadienpropyltetramethylsilanamine Hafnium(Ⅳ)의 합성9. Synthesis of Cyclopentadienpropyltetramethylsilanamine Hafnium(Ⅳ)
Cyclopentadienpropyltetramethylsilanamine Hafnium(Ⅳ)을 다음과 같은 반응경로로 합성하였다.Cyclopentadienpropyltetramethylsilanamine Hafnium(IV) was synthesized using the following reaction route.
불꽃 건조된 250㎖ 슈렝크 플라스크에서 3g(0.016mol, 1당량)의 중간체 D와 5.34g(0.016mol, 1당량)의 Tetrakis(dimethylamino)hafnium을 100㎖ Hexane 중에서 질소 분위기 하에 12시간 이상 교반하여 연노란색의 생성물을 제조하였다. 반응이 완료된 이 생성물을 감압하에 용매 및 휘발성 부반응물을 제거하였다. 이어서 남겨진 연한 노란색 액체를 감압 증류하여 연노란색의 액체 화합물인 Cyclopentadienpropyltetramethylsilanamine Hafnium(Ⅳ)을 7g(수율:87%) 수득하였다. In a flame-dried 250 ml Schlenk flask, 3 g (0.016 mol, 1 equivalent) of intermediate D and 5.34 g (0.016 mol, 1 equivalent) of Tetrakis(dimethylamino)hafnium were stirred in 100 ml hexane under a nitrogen atmosphere for more than 12 hours. A yellow product was prepared. After the reaction was completed, the solvent and volatile side reactants were removed from the product under reduced pressure. The remaining light yellow liquid was then distilled under reduced pressure to obtain 7 g (yield: 87%) of Cyclopentadienpropyltetramethylsilanamine Hafnium (IV), a light yellow liquid compound.
생성물을 1H-NMR(400MHz, C6D6, 25℃)로 분석한 결과, δ5.99~5.78 (m, 4H, CpH), δ3.09~3.06 (m, 2H, -CH2-), δ2.91 (s, 12H, -(N(CH3)2)2), δ2.54~2.49 (m, 6H, -Si(N(CH3)2), δ2.52~2.49 (m, 2H, -CH2-), δ1.66~1.60 (m, 2H, -CH2-), δ0.22 (s, 6H, -Si(CH3)2)의 특성 피크를 확인하여 목적하는 화합물이 합성되었음을 확인하였다.The product was analyzed by 1H -NMR (400MHz, C 6 D 6 , 25℃), δ5.99~5.78 (m, 4H, CpH), δ3.09~3.06 (m, 2H, -CH 2 -) , δ2.91 (s, 12H, -(N(CH 3 ) 2 ) 2 ), δ2.54~2.49 (m, 6H, -Si(N(CH 3 ) 2 ), δ2.52~2.49 (m, The target compound was confirmed by checking the characteristic peaks of 2H, -CH 2 -), δ1.66~1.60 (m, 2H, -CH 2 -), δ0.22 (s, 6H, -Si(CH 3 ) 2 ). It was confirmed that it was synthesized.
10. Cyclopentadienpropyltetramethylsilanamine Zirconium(Ⅳ)의 합성10. Synthesis of Cyclopentadienpropyltetramethylsilanamine Zirconium(Ⅳ)
Cyclopentadienpropyltetramethylsilanamine Zirconium(Ⅳ)을 다음과 같은 반응경로로 합성하였다.Cyclopentadienpropyltetramethylsilanamine Zirconium(IV) was synthesized using the following reaction route.
불꽃 건조된 250㎖ 슈렝크 플라스크에서 3g(0.016mol, 1당량)의 중간체 D와 4.02g(0.016mol, 1당량)의 Tetrakis(dimethylamino)zirconium을 100㎖ Hexane 중에서 질소 분위기 하에 12시간 이상 교반하여 연노란색의 생성물을 제조하였다. 반응이 완료된 이 생성물을 감압하에 용매 및 휘발성 부반응물을 제거하였다. 이어서 남겨진 연한 노란색 액체를 감압 증류하여 연노란색의 액체 화합물인 Cyclopentadienpropyltetramethylsilanamine Zirconium(Ⅳ)을 5g(수율:75%) 수득하였다. In a flame-dried 250 ml Schlenk flask, 3 g (0.016 mol, 1 equivalent) of intermediate D and 4.02 g (0.016 mol, 1 equivalent) of Tetrakis(dimethylamino)zirconium were stirred in 100 ml hexane under a nitrogen atmosphere for more than 12 hours. A yellow product was prepared. After the reaction was completed, the solvent and volatile side reactants were removed from the product under reduced pressure. The remaining light yellow liquid was then distilled under reduced pressure to obtain 5 g (yield: 75%) of Cyclopentadienpropyltetramethylsilanamine Zirconium(IV), a light yellow liquid compound.
생성물을 1H-NMR(400MHz, C6D6, 25℃)로 분석한 결과, δ6.01~5.80 (m, 4H, CpH), δ 3.07~3.05 (m, 2H, -CH2-), δ2.87 (s, 12H, -(N(CH3)2)2), δ2.54~2.51 (m, 2H, -CH2-), δ2.53 (s, 6H, -Si(N(CH3)2), δ1.66~1.61 (m, 2H, -CH2-), δ0.23 (s, 6H, -Si(CH3)2)의 특성 피크를 확인하여 목적하는 화합물이 합성되었음을 확인하였다.The product was analyzed by 1 H-NMR (400MHz, C 6 D 6 , 25°C), δ6.01~5.80 (m, 4H, CpH), δ 3.07~3.05 (m, 2H, -CH 2 -), δ2.87 (s, 12H, -(N(CH 3 ) 2 ) 2 ), δ2.54~2.51 (m, 2H, -CH 2 -), δ2.53 (s, 6H, -Si(N(CH 3 ) 2 ), δ1.66~1.61 (m, 2H, -CH 2 -), δ0.23 (s, 6H, -Si(CH 3 ) 2 ) characteristic peaks were confirmed to confirm that the target compound was synthesized. did.
[실시예 1][Example 1]
HfSiOx 증착 공정을 수행하기 위하여 반응 챔버 내에 6인치 p-타입 Si 웨이퍼를 위치시키고, 반응 챔버 내부를 아르곤(Ar) 가스로 퍼지한 다음, 원자층 증착 장비((주)CN1사 6" ATOMIC PREMIUM)를 사용하여 200 내지 350℃의 분위기에서 전구체와 산화성 기체인 오존(O3) 및 주입하여 HfSiOx의 유전막을 증착하였다. 상기 전구체로는 Cyclopentadienpropyltrimethylsilane Hafnium(Ⅳ)을 사용하여 증착 실험을 실시하였다.To perform the HfSiO ) was used to deposit a dielectric film of HfSiO
이때, 상기 온도의 따른 증착 되는 박막 두께 (GPC) 변화율을 확인하기 위하여 200 내지 350℃ 반응 온도 구간에서 공정 온도를 Spilt하여 공정 온도의 따른 HfSiOx 박막의 GPC 변화(Å/cycle)를 측정하였다. 증착율을 측정한 결과는 하기 표 1 및 도 2와 같다.At this time, in order to check the rate of change in the thickness of the deposited thin film (GPC) according to the temperature, the process temperature was Spilted in the reaction temperature range of 200 to 350 ℃ and the GPC change (Å/cycle) of the HfSiO x thin film according to the process temperature was measured. The results of measuring the deposition rate are shown in Table 1 and Figure 2 below.
또한, 공정의 인큐베이션 싸이클을 확인하기 위하여 공정 싸이클을 1 내지 200 cycle로 Split하여 싸이클 수의 따른 증착률을 확인하였으며 그 결과는 도 8과 같다.In addition, in order to check the incubation cycle of the process, the process cycle was split into 1 to 200 cycles to check the deposition rate according to the number of cycles, and the results are shown in FIG. 8.
또한, 안정적인 유전막 형성용 전구체를 공급하기 위하여 전구체 보관 용기(Canister)를 140℃ 이상 가열하고, 운반 가스로 아르곤(Ar)가스를 사용하여 반응로로 공급하였으며, 산화를 위한 반응 가스로는 오존발생기를 통하여 발생시키는 오존을 반응로로 공급하였다.In addition, in order to supply a stable precursor for forming a dielectric film, the precursor storage container (Canister) was heated to over 140℃, and argon (Ar) gas was used as a carrier gas and supplied to the reactor, and an ozone generator was used as a reaction gas for oxidation. The ozone generated through the reactor was supplied to the reactor.
그 외, 원자층 증착 조건은 하기 표 2와 같으며, 이러한 과정을 1 사이클로 하여 HfSiOx 유전막 증착 공정 싸이클을 반복하여 박막을 증착하였다.In addition, the atomic layer deposition conditions are as shown in Table 2 below, and the HfSiO x dielectric film deposition process cycle was repeated using this process as one cycle to deposit a thin film.
상기 증착 조건에 의해 형성된 박막을 XRD로 분석한 결과 도 4에서와 같이 HfSiOx 유전막이 형성되는 것을 확인하였다.As a result of analyzing the thin film formed under the above deposition conditions by XRD, it was confirmed that an HfSiOx dielectric film was formed as shown in FIG. 4.
또한, 300℃에서 ALD 증착 공정에 의해 제작 된 박막의 XPS 분석을 통해 박막 내 Hf, O, Si 및 탄소 등의 함유량을 측정한 결과, Hf 20.4at%, Si 14.7at%, O 58.9at%로 나타나 Hf : Si : O의 원자비율이 1 : 0.72 : 2.89인 것을 확인하였다. 이와 별개로 산화제로 산소 플라즈마를 사용한 샘플의 조성비는 Hf 19.5at%, Si 19.3at%, O 59.4at%로 나타나 Hf : Si : O의 원자비율이 1 : 0.99 : 3.05로 확인하였다. 어떤 경우에서든 HfSiOx 박막이 형성되는 것으로 나타났다.In addition, as a result of measuring the contents of Hf, O, Si, and carbon in the thin film through It was confirmed that the atomic ratio of Hf:Si:O was 1:0.72:2.89. Separately, the composition ratio of the sample using oxygen plasma as the oxidizing agent was 19.5 at% Hf, 19.3 at% Si, and 59.4 at% O, confirming that the atomic ratio of Hf:Si:O was 1:0.99:3.05. In all cases, it was found that a HfSiO x thin film was formed.
또한, XRR 분석으로 박막의 밀도를 측정한 결과 본 발명의 HfSiOx 박막의 밀도를 분석한 결과, 산화제로 오존을 사용한 Thermal ALD sample의 밀도는 5.41g/㎤이며, 산화제로 O2 플라즈마를 사용한 샘플의 밀도는 5.32g/㎤로 확인되었다.In addition, as a result of measuring the density of the thin film through XRR analysis, the density of the HfSiO The density was confirmed to be 5.32g/cm3.
이러한 결과로부터 본 발명에 따른 전구체를 이용하면 박막 형성 공정을 통해 고품질의 4족 전이금속 함유 박막을 제조할 수 있음을 확인할 수 있었다.From these results, it was confirmed that high-quality Group 4 transition metal-containing thin films can be manufactured through the thin film forming process using the precursor according to the present invention.
본 발명은 상술한 바와 같이 바람직한 실시형태를 들어 설명하였으나, 상기 실시형태들에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.The present invention has been described with reference to preferred embodiments as described above, but is not limited to the above embodiments and may be modified in various ways by those skilled in the art without departing from the spirit of the invention. and can be changed. Such modifications and variations should be considered to fall within the scope of the present invention and the appended claims.
Claims (10)
[화학식 1]
상기 화학식 1에서,
M은 Ti, Zr, 또는 Hf이고,
X는 수소원자, C1-C5의 알킬기, NR4R5 또는 OR6이며,
R1 내지 R6는 서로 같거나 상이할 수 있으며, 각각 독립적으로 수소원자 또는 C1-C5의 직쇄형, 분지형 또는 고리형 알킬기이고,
R1은 어느 하나가 알킬아민기일 수 있으며,
n은 1, 2 또는 3의 자연수이다.
A precursor for forming a Group 4 transition metal-containing thin film, characterized in that it contains an organometallic compound represented by the following formula (1).
[Formula 1]
In Formula 1,
M is Ti, Zr, or Hf,
X is a hydrogen atom, a C 1 -C 5 alkyl group, NR 4 R 5 or OR 6 ,
R 1 to R 6 may be the same or different from each other, and each independently represents a hydrogen atom or a C 1 -C 5 straight-chain, branched, or cyclic alkyl group,
Any one of R 1 may be an alkylamine group,
n is a natural number of 1, 2 or 3.
용매를 추가적으로 포함하는 것을 특징으로 하는 4족 전이금속 함유 박막 형성용 전구체.
In claim 1,
A precursor for forming a thin film containing a Group 4 transition metal, characterized in that it additionally contains a solvent.
상기 용매는 C1-C16의 포화 또는 불포화 탄화수소, 케톤, 에테르, 글라임, 에스테르, 테트라하이드로퓨란, 3차 아민 중 어느 하나 또는 그 이상인 것을 특징으로 하는 4족 전이금속 함유 박막 형성용 전구체.
In claim 2,
A precursor for forming a Group 4 transition metal-containing thin film, wherein the solvent is one or more of C 1 -C 16 saturated or unsaturated hydrocarbons, ketones, ethers, glymes, esters, tetrahydrofuran, and tertiary amines.
상기 용매는 상기 4족 전이금속 박막 형성용 전구체 총 중량에 대하여 1 내지 99 중량%로 포함되는 것을 특징으로 하는 4족 전이금속 함유 박막 형성용 전구체.
In claim 2,
A precursor for forming a Group 4 transition metal-containing thin film, wherein the solvent is contained in an amount of 1 to 99% by weight based on the total weight of the precursor for forming the Group 4 transition metal thin film.
A method of forming a Group 4 transition metal-containing thin film, comprising the step of depositing a metal thin film on a substrate using the precursor for forming a Group 4 transition metal thin film according to claim 1 or 2.
상기 4족 전이금속 박막은 원자층 증착 또는 화학 기상 증착에 의해 증착되는 것을 특징으로 하는 4족 전이금속 함유 박막 형성 방법.
In claim 5,
A method of forming a thin film containing a Group 4 transition metal, wherein the Group 4 transition metal thin film is deposited by atomic layer deposition or chemical vapor deposition.
상기 4족 전이금속 함유 박막 형성용 전구체를 기화시켜 챔버 내부로 이송시키는 단계를 포함하는 것을 특징으로 하는 4족 전이금속 함유 박막 형성 방법.
In claim 5,
A method of forming a thin film containing a Group 4 transition metal, comprising the step of vaporizing the precursor for forming a Group 4 transition metal-containing thin film and transferring it into a chamber.
상기 증착하는 단계는,
챔버 내에 기판을 위치하는 단계;
상기 4족 전이금속 함유 박막 형성용 전구체 조성물을 상기 챔버 내에 공급하는 단계;
상기 챔버 내에 반응성 기체 또는 반응성 기체의 플라즈마를 공급하는 단계;
상기 챔버 내에서 열 처리, 플라즈마 처리 및 광 조사 중 어느 하나 또는 그 이상의 수단에 의해 처리하는 단계;
를 포함하는 것을 특징으로 하는 4족 전이금속 함유 박막 형성 방법.
In claim 5,
The deposition step is,
Positioning a substrate within the chamber;
Supplying a precursor composition for forming a thin film containing a Group 4 transition metal into the chamber;
supplying a reactive gas or a plasma of a reactive gas into the chamber;
Processing within the chamber by any one or more of heat treatment, plasma treatment, and light irradiation;
A method of forming a thin film containing a Group 4 transition metal, comprising:
상기 증착하는 단계는 250 내지 400℃에서 수행되는 것을 특징으로 하는 4족 전이금속 함유 박막 형성 방법.
In claim 8,
A method of forming a thin film containing a Group 4 transition metal, characterized in that the deposition step is performed at 250 to 400 ° C.
A semiconductor device comprising a Group 4 transition metal-containing thin film manufactured by the Group 4 transition metal-containing thin film forming method of claim 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210065367 | 2021-05-21 | ||
KR20210065367 | 2021-05-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220157858A KR20220157858A (en) | 2022-11-29 |
KR102679322B1 true KR102679322B1 (en) | 2024-06-28 |
Family
ID=84235015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210179627A KR102679322B1 (en) | 2021-05-21 | 2021-12-15 | Precursor for film deposition, deposition method of film and semiconductor device of the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102679322B1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9045509B2 (en) * | 2009-08-14 | 2015-06-02 | American Air Liquide, Inc. | Hafnium- and zirconium-containing precursors and methods of using the same |
KR101263454B1 (en) | 2011-03-15 | 2013-11-27 | 주식회사 메카로닉스 | A novel organometallic compounds containing zirconium metal and the preparation thereof |
US9663547B2 (en) * | 2014-12-23 | 2017-05-30 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Silicon- and Zirconium-containing compositions for vapor deposition of Zirconium-containing films |
KR101959519B1 (en) | 2016-04-12 | 2019-03-18 | (주)디엔에프 | transition metal compound, their preparation and composition for depositing a transition metal-containing thin film comprising the same |
KR20190108281A (en) | 2018-03-14 | 2019-09-24 | 에스케이트리켐 주식회사 | Precursor composition for film deposition, deposition method of film and semiconductor device of the same |
KR20200072407A (en) * | 2018-12-12 | 2020-06-22 | 에스케이트리켐 주식회사 | Precursor composition for film deposition, deposition method of film and semiconductor device of the same |
-
2021
- 2021-12-15 KR KR1020210179627A patent/KR102679322B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR20220157858A (en) | 2022-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5181292B2 (en) | Asymmetric ligand source, low symmetry metal-containing compounds, and systems and methods comprising them | |
KR101106349B1 (en) | Method of forming dielectric films, new precursors and their use in the semi-conductor manufacturing | |
US8357784B2 (en) | Beta-diketiminate ligand sources and metal-containing compounds thereof, and systems and methods including same | |
TWI496929B (en) | Hafnium-and zirconium-containing precursors and methods of using the same | |
KR20150139628A (en) | Methods of preparing thin films by atomic layer deposition using hafnium and zirconium-based precursors | |
KR20210118018A (en) | Precursor for silicon containing thin film, deposition method of film and semiconductor device of the same | |
KR20190108281A (en) | Precursor composition for film deposition, deposition method of film and semiconductor device of the same | |
US20110020547A1 (en) | High dielectric constant films deposited at high temperature by atomic layer deposition | |
KR102679322B1 (en) | Precursor for film deposition, deposition method of film and semiconductor device of the same | |
KR102622013B1 (en) | Precursor for film deposition, deposition method of film and semiconductor device of the same | |
KR20210155106A (en) | Lanthanide precursor and lanthanide-containing film using the same and deposition method of the same and semiconductor device comprising the same | |
KR102486128B1 (en) | Precursor comprising organometal halide, deposition method of film and semiconductor device of the same | |
KR102550599B1 (en) | Metal precursor compound and deposition method for preparing film using the same | |
KR102712673B1 (en) | Metal precursor compound including cyclopentadienyl ligand and deposition method for preparing film using the same | |
KR102666160B1 (en) | Precursor comprisi ng for yttrium or actinoid containg thin film, deposition method of film and semiconductor device of the same | |
JP7232307B2 (en) | Rare earth precursor, method for producing same, and method for forming thin film using same | |
KR20240073582A (en) | Precursor comprising amidinate ligand for film deposition, deposition method of film and semiconductor device of the same | |
KR20210064623A (en) | Precursor for film deposition, deposition method of film and semiconductor device of the same | |
KR20220158601A (en) | Metal precursor compound for forming semiconductor film and metal-containing film prepared by using the same | |
KR20240038627A (en) | Precursor comprising for lanthanide containg thin film, deposition method of film and semiconductor device of the same | |
KR20210064658A (en) | Precursor for silicon-containing film deposition, deposition method of silicon-containing film and semiconductor device of the same | |
KR20210041809A (en) | Precursor for silicon containing thin film, deposition method of film and semiconductor device of the same | |
KR20210100804A (en) | Precursor for film deposition, deposition method of film and semiconductor device of the same | |
EP2468755A1 (en) | Novel barium precursors for vapor phase deposition of thin films | |
EP2468754A1 (en) | Novel diazacrown barium and strontium precursors for vapor phase deposition of thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |