KR102679301B1 - Retroting Cooking Method for Chicken Meat With Enhanced Antioxidant Effect - Google Patents

Retroting Cooking Method for Chicken Meat With Enhanced Antioxidant Effect Download PDF

Info

Publication number
KR102679301B1
KR102679301B1 KR1020220018701A KR20220018701A KR102679301B1 KR 102679301 B1 KR102679301 B1 KR 102679301B1 KR 1020220018701 A KR1020220018701 A KR 1020220018701A KR 20220018701 A KR20220018701 A KR 20220018701A KR 102679301 B1 KR102679301 B1 KR 102679301B1
Authority
KR
South Korea
Prior art keywords
black garlic
cooking
extract
group
meat
Prior art date
Application number
KR1020220018701A
Other languages
Korean (ko)
Other versions
KR20230122265A (en
Inventor
이성기
하이더 바리도 파룩
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020220018701A priority Critical patent/KR102679301B1/en
Publication of KR20230122265A publication Critical patent/KR20230122265A/en
Application granted granted Critical
Publication of KR102679301B1 publication Critical patent/KR102679301B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/50Poultry products, e.g. poultry sausages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • A23L19/10Products from fruits or vegetables; Preparation or treatment thereof of tuberous or like starch containing root crops
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/10Natural spices, flavouring agents or condiments; Extracts thereof
    • A23L27/105Natural spices, flavouring agents or condiments; Extracts thereof obtained from liliaceae, e.g. onions, garlic
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • A23P20/10Coating with edible coatings, e.g. with oils or fats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • A23V2250/212Garlic
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/14Extraction

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

본 발명의 항산화 효과가 향상된 닭고기 레트로트 조리방법은 항산화 효과가 우수한 흑마늘을 캡슐화하여 사용하므로 고온 고압 조건에서 조리하여 항산화 효과가 유지되는 장점이 있다.The chicken retro cooking method with improved antioxidant effect of the present invention uses encapsulated black garlic with excellent antioxidant effect, so it has the advantage of maintaining the antioxidant effect by cooking under high temperature and high pressure conditions.

Description

항산화 효과가 향상된 닭고기 레트로트 조리방법{Retroting Cooking Method for Chicken Meat With Enhanced Antioxidant Effect} {Retroting Cooking Method for Chicken Meat With Enhanced Antioxidant Effect}

본 발명은 항산화 효과가 향상된 닭고기 레트로트 조리방법에 관한 것이다.The present invention relates to a chicken retro cooking method with improved antioxidant effect.

전 세계적으로 가금류 육류 소비가 꾸준히 증가하는 가운데, 기능성 식품에 대한 소비자의 요구를 충족시키기 위해 천연 건강 증진 물질이 풍부한 육류 제품에 대한 관심과 개발이 급증하고 있다. 최근 수십 년 동안 육류 산업은 카로티노이드, 폴리페놀 또는 다당류가 풍부한 천연 재료로 육류 제품의 기능을 향상시켜 건강한 식품 목표를 달성하는 방향으로 전환해왔다. 항산화 특성을 개선하고 잠재적인 건강 위험을 낮추며 항염, 항당뇨병 및 항암 성분과 같은 건강 증진 요소를 포함한다. 건강상의 이점 외에도 천연 항산화제를 육류에 직접 넣으면 지질 산화에 대한 보호 효과를 유지하는 데 도움이 되어 저장 수명을 연장할 수 있다.As global poultry meat consumption continues to increase, interest in and development of meat products rich in natural health-promoting substances is rapidly increasing to meet consumer demand for functional foods. In recent decades, the meat industry has shifted toward achieving healthy food goals by enhancing the functionality of meat products with natural ingredients rich in carotenoids, polyphenols, or polysaccharides. It improves antioxidant properties, reduces potential health risks, and contains health-promoting factors such as anti-inflammatory, anti-diabetic and anti-cancer properties. In addition to the health benefits, adding natural antioxidants directly to meat can help maintain its protective effect against lipid oxidation, thus extending its shelf life.

흑마늘(BG)은 항산화 특성이 뛰어난 제품이다. 상기 흑마늘은 특정 기간(21~72일) 동안 온도(60~90°C), 습도(60~80%) 및 공기의 흐름이 조절된 상태에서 흑마늘(Allium sativum)을 제조한다. 이러한 과정은 영양 함량을 변화시켜 냄새를 줄이고 단맛을 향상시키며 생마늘보다 항산화 특성이 더 강한 것이 특징이다. 세포 및 동물 모델에 대한 연구에 따르면 흑마늘(BG) 추출물의 강력한 항산화 특성 때문에 환원력, DPPH, ABTS, 하이드록실 라디칼 및 아질산염 소거 활성의 상향 조절에 기인할 수 있다. 신선한 마늘에서 새로 형성된 생리 활성 화합물에는 알리신, 알리인 및 탈산된 알리인이 포함된다. 이는 S-알릴 시스테인 및 S-알릴 메르캅토 시스테인과 같은 황 함유 물질로 변형되어 위에서 설명한 특성을 담당한다. 또한 가공 중 발생하는 메일라드(Maillard) 반응은 BG의 총 페놀산, 플라보노이드, 5-하이드록시메틸푸르푸랄, 멜라노이딘 및 티오설피네이트의 농도를 증가시킨다. 이러한 모든 건강 증진 이점에도 불구하고 BG 추출물을 가금류 제품, 특히 닭고기와 직접 첨가하는 것에 대한 문헌은 여전히 제한적이다. Black garlic (BG) is a product with excellent antioxidant properties. The black garlic (Allium sativum) is manufactured under conditions where temperature (60-90°C), humidity (60-80%) and air flow are controlled for a specific period (21-72 days). This process changes the nutritional content, reduces odor, improves sweetness, and has stronger antioxidant properties than raw garlic. Studies in cell and animal models have shown that the potent antioxidant properties of black garlic (BG) extract can be attributed to the upregulation of reducing power, DPPH, ABTS, hydroxyl radical and nitrite scavenging activities. Newly formed bioactive compounds in fresh garlic include allicin, alliin, and deacidified alliin. It is transformed into sulfur-containing substances such as S-allyl cysteine and S-allyl mercapto cysteine, which are responsible for the properties described above. Additionally, the Maillard reaction that occurs during processing increases the concentration of total phenolic acids, flavonoids, 5-hydroxymethylfurfural, melanoidins, and thiosulfinates in BG. Despite all these health-promoting benefits, literature on the direct addition of BG extracts to poultry products, especially chicken, is still limited.

즉석식(RTE) 제품은 과도한 식사 준비 시간문제를 해결하는 혁신적인 식사형태로 현대 사회에 빠르게 도입되었다. 선진국과 개발도상국의 경제성장으로 인해 사람들은 준비 시간이 덜 필요하고 빠르게 준비되는 식사 문화에 적응할 것을 추구하고 있다. 수비드(SV) 조리 및 레토르팅은 RTE 제품 준비를 위해 육류 산업에서 채택한 조리 방법 중 하나이다. 수비드(Sous-vide)는 진공 밀봉을 사용하여 정밀하게 제어된 온도, 일반적으로 결정된 시간에 60∼80°C의 저온 범위에서 생고기를 요리한다. 레토르트 파우치는 특정 시간 동안 121.1°C 및 1.5kgf/cm2의 고온 고압 조리를 거친 레토르트 파우치를 사용한다. 가금류 육류 제품을 다양한 조리 방법으로 처리하고 그 결과를 기존의 방법과 비교한 후 영양 성분, 관능적 특성 및 품질을 평가하기 위한 연구가 수행되었다. 각각의 조리 방법은 특정한 장점과 단점을 가진 닭고기를 생산하게 된다. 닭고기 가슴살의 지방산 프로필과 항산화 상태에 대한 요리와 항산화 성분이 풍부한 향신료의 결합효과는 실험 결과가 다양하고 여전히 제한적이다.Ready-to-eat meals (RTE) products were quickly introduced into modern society as an innovative meal format that solved the problem of excessive meal preparation time. Due to economic growth in developed and developing countries, people are seeking to adapt to a culture of meals that require less preparation time and are prepared quickly. Sous vide (SV) cooking and retorting are among the cooking methods adopted by the meat industry to prepare RTE products. Sous-vide uses vacuum sealing to cook raw meat at precisely controlled temperatures, typically in the low temperature range of 60 to 80°C for determined times. The retort pouch is used after being cooked at a high temperature and pressure of 121.1°C and 1.5kgf/cm2 for a specific time. A study was conducted to evaluate the nutritional composition, organoleptic properties and quality of poultry meat products after processing them with different cooking methods and comparing the results with conventional methods. Each cooking method produces chicken with specific advantages and disadvantages. The combined effects of cooking and antioxidant-rich spices on the fatty acid profile and antioxidant status of chicken breast are still limited and experimental results vary.

본 명세서에서 언급된 특허문헌 및 참고문헌은 각각의 문헌이 참조에 의해 개별적이고 명확하게 특정된 것과 동일한 정도로 본 명세서에 참조로 삽입된다. Patent documents and references mentioned herein are herein incorporated by reference to the same extent as if each individual document was individually and specifically identified by reference.

Alfaia, C. M. M., S. P. Alves, A. F. Lopes, M. J. E. Fernandes, A. S. H. Costa, C. M. G. A. Fontes, M. L. F. Castro, R. J. B. Bessa, and J. A. M. Prates. 2010. Meat. Sci 84:769-777. AOAC. 2012. Official Methods of Analysis. 19th ed. Assoc. Off. Anal. Chem., Washington, DC. Baldwin, D. E. 2012. Int. J. Gastron. Food Sci. 1:15-30. Ballesteros, L. F., M. J. Ramirez, C. E. Orrego, J. A. Teixeira, and S. I. Mussatto. 2017. Food Chem. 237: 623-631. Barbut, S., L. Zhang, and M. Marcone. 2005. Poult. Sci. 84:797-802. Barido, F. H., A. Jang, J. I. Pak, D. Y. Kim, and S. K. Lee. 2020. Food Sci. Anim. Resour. 40:772-784. Barido, F. H., and S. K. Lee. 2021. Poult. Sci. 100:101056. Barido, F. H., D. T. Utama, H. S. Jeong, J. T. Kim, C. W. Lee, Y. S. Park, S. K. Lee. 2020. Asian-Australas. J. Anim. Sci. 33:69-78. Castroman, G., M. Del Puerto, A. Ramos, M. C. Cabrera, and A. Saadoun. 2013. Am. J. Food Nutr. 1:12-21. Choi, I.S., H. S. Cha, Y. S. Lee. 2014. Molecules 19:16811-16823. Choi, Y. M., L. G. Garcia, and K. Lee. 2019. Food Sci. Anim. Resour. 39:197-208. Corzo-Martinez, M., N. Corso, and M. Villamiel. 2007. Trends Food Sci. Technol. 18:609-625. Dal Bosco, A., C. Castellini, and M. Bernardini. 2001. J. Food Sci. 66:1047-1051.

Figure 112022016100411-pat00001
Domnguez, R., M. Pateiro, M. Gagaoua, F. J. Barba, W. Zhang, and J. M. Lorenzo. 2019. Antioxidants 8:429. Dominguez-Hernandez, E., A. Salaseviciene, and P. Ertbjerg. 2018. Meat Sci. 143:104-113. Frasao, B. D. S., A. I. L. D. S. Rosario, B. L. Rodrigues, H. A. Bitti, J. D. Baltar, R. I. Nogueira, M. P. D. Costa, and C. A. C. Junior. 2021. Poult. Sci. 100:101232. Hathwar, S. C., A. K. Rai, V. K. Modi, and B. Narayan. 2012. J. Food Sci. Technol. 49:563-664. Honikel, K. O., C. J. Kim, R. Hamm, and P. Roncales. 1986. Meat Sci. 16:267-282. Huang, B., J. He, X. Ban, H. Zeng, X. Yao, Y. Wang. 2011. Meat Sci. 87:46-53. Huff-Lonergan, E., and S. M. Lonergan. 2005. Meat Sci. 71:194-204. Hunt, M. C., O. Sorheim, and E. Slinde. 1999. J. Food Sci. 64:847-851. Islam, T. X. Yu, and B. Xu. 2016. LWT - Food Sci. Technol. 72:423-431. Janiszewski, P., E. Grzeskowiak, D. Lisiak, B. Borys, K. Borzuta, E. Pospiech, and E. Polawska. 2016. Meat Sci. 111:161-167. Jeong, H. S., D. T. Utama, J. T. Kim, F. H. Barido, and S. K. Lee. 2020. Asian-Australas J. Anim. Sci. 33:139-147. Jin, S. K., S. R. Ha, S. J. Hur, J. S. Choi. 2015. J. Food Nutr. Res. 3:290-296. Juncher, D., B. Ronn, E. T. Mortensen, P. Henckel, A, Karlsson A and L. H. Skibsted. 2001. Meat Sci. 58:347-357. Kim, J. T., D. T. Utama, H. S. Jeong, F. H. Barido, and S. K. Lee. 2020. J. Anim Sci. Technol. 62:713-729. Kimura, S., Y. C. Tung, M. H. Pan, N. W. Su, Y. J. Lai, and K. C. Cheng. 2016. J. Food Drug. Anal. 25:62-70. King, N. J., and R. Whyte. 2006. J. Food Sci. 71:R31-R40. Kristensen, L., P. P. Purslow. 2001. Meat Sci. 58:17-23. Larsen, D., S. Y. Quek, and L. Eyres. 2010. Food Chem 119:785-790. Lavelli, V., P. S. Harsha, and G. Spigno. 2016. Food Chem. 209: 323-331. Lee, B. C. H. Park, J. Y. Kim, O. Hyeonbin, D. Kim, D. K. Cho, Y. S. Kim, and Y. M. Choi. 2021. Food Sci. Anim. Resour. 41:664-673. Lee, J. H., J. H. Lee, K. T. Lee. 2014. J. Korean Soc. Food Preserv. 21:491-499. Lee, S. J., J. H. Shin, M. J. Kang, W. J. Jung, J. H. Ryu, R. J. Kim, and N. J. Sung. 2010. J. Life Sci. 20:775-781. Lei, F. C., G. Hao, L. Zhu,Y. Yang, and Y. L. Zhang. 2012. Food Sci. Eng. 13:429-432. Mahdavee, K. K.., S. M. Jafari, M. Ghorbani, and A. H. Kakhki. 2014. Carbohydr. Polym. 105: 57-62.
Figure 112022016100411-pat00002
Menegali, B. S., M. B. Selani, E. Saldaa, I. Patinho, J. P. Diniz, P. S. Melo, N. D. J. P. Filho, and C. J. C. Castillo. 2020. LWT - Food Sci. Technol. 121:108986. Okitani, A., N. Ichinose, J. Itoh, Y. Tsuji, Y. Oneda, K. Hatae, K. Migita, and M. Matsuishi. 2009. Meat Sci. 81:446-450. Packer, V. G., P. S. Melo, K. B. Bergamaschi, M. M. Selani, N. D. M. Villa Nueva, and S. M. Alencar, C. Castillo, J. Carmen. 2015. J. Food Sci. Technol. 52:7409-7416. Park, C. H., B. Lee, E. Oh, Y. S. Kim, and Y. M. Choi. 2020. Poult. Sci. 99:3286-3291. Ray, S., U. Raychaudhuri, and R. Chakraborty. 2016. Food Biosci. 13:76-83. Ryu, J. H., and D. Kang. 2017. Molecules. 22:919. Spudich, J. A. 2001. Nat. Rev. Mol. Cell. Biol. 2:387- 392. Suleman, R., Z. Wang, R. M. Aadil, T. Hui, D. L. Hopkins, and D. Zhang. 2020. Meat Sci. 167:108172. Sun, Y. E., and W. Wang. 2018. J. Food Sci. Technol. 55:479-488. Tornberg, E. 2005. Meat Sci. 70:493-508. Utama, D. T., J. H. H. S. Jeong, J. T. Kim, F. H. Barido, and S. K. Lee. 2019. Poult. Sci. 98:3059-3066. Warner, R. D., C. K. McDonnell, A. E. D. Bekhit, J. Claus, R. Vaskoska, A. Sikes, F. R. Dunshea, and M. Ha. 2017. Meat Sci. 132:72-89. Werenska, M., G. Haraf, J. Woloszyn, Z. Goluch, A. Okruszek, and M. Teleszko. 2021. Poult. Sci. 100:101237. Yuan, H., L. Sun, M. Chen, and J. Wang. 2016. J Food Sci. 81:C1662- C1668. Zhang, X., N. Li, X. Lu, P. Liu, and X. Qiao. 2016. J. Sci. Food Agric.96:2366-2372. Alfaia, CMM, SP Alves, AF Lopes, MJE Fernandes, ASH Costa, CMGA Fontes, MLF Castro, RJB Bessa, and JAM Prates. 2010. Meat. Sci 84:769-777. AOAC. 2012. Official Methods of Analysis. 19th ed. Assoc. Off. Anal. Chem., Washington, DC. Baldwin, D. E. 2012. Int. J. Gastron. Food Sci. 1:15-30. Ballesteros, LF, MJ Ramirez, CE Orrego, JA Teixeira, and SI Mussatto. 2017. Food Chem. 237: 623-631. Barbut, S., L. Zhang, and M. Marcone. 2005. Poult. Sci. 84:797-802. Barido, F. H., A. Jang, J. I. Pak, D. Y. Kim, and S. K. Lee. 2020. Food Sci. Anim. Resour. 40:772-784. Barido, F.H., and S.K. Lee. 2021. Poult. Sci. 100:101056. Barido, FH, DT Utama, HS Jeong, JT Kim, CW Lee, YS Park, and SK Lee. 2020. Asia-Australas. J. Anim. Sci. 33:69-78. Castroman, G., M. Del Puerto, A. Ramos, M. C. Cabrera, and A. Saadoun. 2013. Am. J. Food Nutr. 1:12-21. Choi, IS, HS Cha, and YS Lee. 2014. Molecules 19:16811-16823. Choi, Y. M., L. G. Garcia, and K. Lee. 2019. Food Sci. Anim. Resour. 39:197-208. Corzo-Martinez, M., N. Corso, and M. Villamiel. 2007. Trends Food Sci. Technol. 18:609-625. Dal Bosco, A., C. Castellini, and M. Bernardini. 2001. J. Food Sci. 66:1047-1051.
Figure 112022016100411-pat00001
Domnguez, R., M. Pateiro, M. Gagaoua, F. J. Barba, W. Zhang, and J. M. Lorenzo. 2019. Antioxidants 8:429. Dominguez-Hernandez, E., A. Salaseviciene, and P. Ertbjerg. 2018. Meat Sci. 143:104-113. Frasao, BDS, AILDS Rosario, BL Rodrigues, HA Bitti, JD Baltar, RI Nogueira, MPD Costa, and CAC Junior. 2021. Poult. Sci. 100:101232. Hathwar, S. C., A. K. Rai, V. K. Modi, and B. Narayan. 2012. J. Food Sci. Technol. 49:563-664. Honikel, K.O., C.J. Kim, R. Hamm, and P. Roncales. 1986. Meat Sci. 16:267-282. Huang, B., J. He, X. Ban, H. Zeng, X. Yao, and Y. Wang. 2011. Meat Sci. 87:46-53. Huff-Lonergan, E., and S. M. Lonergan. 2005. Meat Sci. 71:194-204. Hunt, M. C., O. Sorheim, and E. Slinde. 1999. J. Food Sci. 64:847-851. Islam, T. T. Yu, and B. Xu. 2016. LWT - Food Sci. Technol. 72:423-431. Janiszewski, P., E. Grzeskowiak, D. Lisiak, B. Borys, K. Borzuta, E. Pospiech, and E. Polawska. 2016. Meat Sci. 111:161-167. Jeong, HS, DT Utama, JT Kim, FH Barido, and SK Lee. 2020. Asian-Australas J. Anim. Sci. 33:139-147. Jin, SK, SR Ha, SJ Hur, and JS Choi. 2015. J. Food Nutr. Res. 3:290-296. Juncher, D., B. Ronn, E. T. Mortensen, P. Henckel, A, Karlsson A and L. H. Skibsted. 2001. Meat Sci. 58:347-357. Kim, JT, DT Utama, HS Jeong, FH Barido, and SK Lee. 2020. J. Anim Sci. Technol. 62:713-729. Kimura, S., Y. C. Tung, M. H. Pan, N. W. Su, Y. J. Lai, and K. C. Cheng. 2016. J. Food Drug. Anal. 25:62-70. King, N.J., and R. Whyte. 2006. J. Food Sci. 71:R31-R40. Kristensen, L., and P. P. Purslow. 2001. Meat Sci. 58:17-23. Larsen, D., S. Y. Quek, and L. Eyres. 2010. Food Chem 119:785-790. Lavelli, V., P. S. Harsha, and G. Spigno. 2016. Food Chem. 209: 323-331. Lee, B.C.H. Park, J.Y. Kim, O. Hyeonbin, D. Kim, D.K. Cho, YS Kim, and Y.M. Choi. 2021. Food Sci. Anim. Resour. 41:664-673. Lee, JH, JH Lee, and KT Lee. 2014. J. Korean Soc. Food Preserve. 21:491-499. Lee, SJ, JH Shin, MJ Kang, WJ Jung, JH Ryu, RJ Kim, and NJ Sung. 2010. J. Life Sci. 20:775-781. Lei, F. C., G. Hao, L. Zhu, Y. Yang, and Y.L. Zhang. 2012. Food Sci. Eng. 13:429-432. Mahdavee, K.K., S.M. Jafari, M. Ghorbani, and A.H. Kakhki. 2014. Carbohydr. Polym. 105: 57-62.
Figure 112022016100411-pat00002
Menegali, BS, MB Selani, E. Saldaa, I. Patinho, JP Diniz, PS Melo, NDJP Filho, and CJC Castillo. 2020. LWT - Food Sci. Technol. 121:108986. Okitani, A., N. Ichinose, J. Itoh, Y. Tsuji, Y. Oneda, K. Hatae, K. Migita, and M. Matsuishi. 2009. Meat Sci. 81:446-450. Packer, VG, PS Melo, KB Bergamaschi, MM Selani, NDM Villa Nueva, and SM Alencar, C. Castillo, and J. Carmen. 2015. J. Food Sci. Technol. 52:7409-7416. Park, C. H., B. Lee, E. Oh, Y. S. Kim, and Y. M. Choi. 2020. Poult. Sci. 99:3286-3291. Ray, S., U. Raychaudhuri, and R. Chakraborty. 2016. Food Bioscience. 13:76-83. Ryu, J. H., and D. Kang. 2017. Molecules. 22:919. Spudich, J. A. 2001. Nat. Rev. Mol. Cell. Biol. 2:387-392. Suleman, R., Z. Wang, R. M. Aadil, T. Hui, D. L. Hopkins, and D. Zhang. 2020. Meat Sci. 167:108172. Sun, Y. E., and W. Wang. 2018. J. Food Sci. Technol. 55:479-488. Tornberg, E. 2005. Meat Sci. 70:493-508. Utama, DT, JHHS Jeong, JT Kim, FH Barido, and SK Lee. 2019. Poult. Sci. 98:3059-3066. Warner, R. D., C. K. McDonnell, A. E. Bekhit, J. Claus, R. Vaskoska, A. Sikes, F. R. Dunshea, and M. Ha. 2017. Meat Sci. 132:72-89. Werenska, M., G. Haraf, J. Woloszyn, Z. Goluch, A. Okruszek, and M. Teleszko. 2021. Poult. Sci. 100:101237. Yuan, H., L. Sun, M. Chen, and J. Wang. 2016. J Food Sci. 81:C1662-C1668. Zhang, X., N. Li, X. Lu, P. Liu, and X. Qiao. 2016. J. Sci. Food Agric.96:2366-2372.

본 발명의 목적은 페놀 화합물을 함유하여 항산화 효과가 우수한 흑마늘을 고온의 닭고기 조리 방법에 사용함에 있어서 고온 조리로 인하여 흑마늘의 항산화 효과가 저하되는 것을 방지하기 위하여 흑마늘 추출물을 전처리하여 사용하는 닭고기 레트로트 조리방법을 제공하는데 있다.The purpose of the present invention is to prevent the antioxidant effect of black garlic from being reduced due to high temperature cooking when using black garlic, which contains phenolic compounds and has excellent antioxidant effects, in a high-temperature chicken cooking method. It provides cooking methods.

본 발명의 다른 목적 및 기술적 특징은 이하의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 구체적으로 제시된다. Other objects and technical features of the present invention are presented in more detail by the following detailed description, claims, and drawings.

본 발명은 캡슐화 흑마늘 추출물을 제조하는 제 1 단계; 및 상기 캡슐화 추출물과 닭고기를 혼합하여 온도 121℃에서 압력 1.5kgf/㎝2에서 조리하는 제 2 단계;를 포함하는 항산화 효과가 향상된 닭고기 레트로트 조리방법을 제공한다.The present invention includes a first step of producing encapsulated black garlic extract; And a second step of mixing the encapsulated extract with chicken and cooking it at a temperature of 121°C and a pressure of 1.5 kgf/cm 2 . It provides a retro cooking method for chicken with improved antioxidant effect, including.

상기 캡슐화 흑마늘 추출물은 말토덱스트린(maltodextrin)을 포함하는 캡슐화 혼합물을 이용하여 흑마늘 추출물을 캡슐화한 것을 특징으로 하며 흑마늘의 껍질을 제거하고 물을 첨가한 후 푸드 블렌더로 분쇄하여 흑마늘 분쇄물을 제조하는 제 1 단계; 상기 흑마늘 분쇄물을 70 내지 90℃에서 40 내지 80분 동안 가열하여 흑마늘 열수추출물을 제조하는 제 2 단계; 상기 흑마늘 열수추출물을 냉각시킨 후 고액 분리하여 흑마늘 열수 추출물 여액을 수득하는 제 3 단계; 상기 흑마늘 열수 추출물 여액과 상기 캡슐화 혼합물을 혼합하고 균질기를 이용하여 흑마늘-캡슐화 혼합물을 제조하는 제 4 단계; 및 상기 흑마늘-캡슐화 혼합물을 동결건조하여 캡슐화 흑마늘 추출물을 제조하는 제 5 단계;를 포함하는 방법으로 제조한 것을 특징으로 한다.The encapsulated black garlic extract is characterized in that the black garlic extract is encapsulated using an encapsulation mixture containing maltodextrin, and is a product that prepares ground black garlic by removing the skin of black garlic, adding water, and pulverizing it with a food blender. Level 1; A second step of preparing a black garlic hot water extract by heating the black garlic powder at 70 to 90° C. for 40 to 80 minutes; A third step of cooling the black garlic hot water extract and then separating solid and liquid to obtain a black garlic hot water extract filtrate; A fourth step of mixing the black garlic hot water extract filtrate and the encapsulation mixture and using a homogenizer to prepare the black garlic-encapsulation mixture; and a fifth step of producing an encapsulated black garlic extract by freeze-drying the black garlic-encapsulation mixture.

본 발명의 항산화 효과가 향상된 닭고기 레트로트 조리방법은 항산화 효과가 우수한 흑마늘을 캡슐화하여 사용하므로 고온 고압 조건에서 조리하여 항산화 효과가 유지되는 장점이 있다.The chicken retro cooking method with improved antioxidant effect of the present invention uses encapsulated black garlic with excellent antioxidant effect, so it has the advantage of maintaining the antioxidant effect by cooking under high temperature and high pressure conditions.

도 1은 본 발명의 흑마늘 추출물을 첨가한 닭 가슴살 시료에 대한 항산화활성(DPPH 분석)을 보여준다.
도 2는 본 발명의 흑마늘 추출물을 첨가한 닭 가슴살 시료에 대한 항산화활성(ABTS 분석)을 보여준다.
도 3은 본 발명의 본 발명의 흑마늘 추출물을 첨가한 닭 가슴살 시료에 대한 지방산화를 분석한 결과를 보여준다.
Figure 1 shows the antioxidant activity (DPPH analysis) of chicken breast samples added with the black garlic extract of the present invention.
Figure 2 shows the antioxidant activity (ABTS analysis) of chicken breast samples added with the black garlic extract of the present invention.
Figure 3 shows the results of analyzing fatty oxidation of chicken breast samples added with the black garlic extract of the present invention.

흑마늘은 마늘을 가공하여 제조하므로 일반 마늘보다 우수한 항산화 효과를 가진다. 상기 흑마늘의 항산화 효과는 주로 폐놀 화합물에 의해 발현되는데 상기 폐놀 화합물은 고온 및 고압 조건에서 쉽게 변질되므로 고온 및 고압 조리방법이 적용되는 요리에[서는 흑마늘로 인한 항산화 효과가 제한적인 문제점이 있었다. Black garlic is manufactured by processing garlic, so it has better antioxidant effects than regular garlic. The antioxidant effect of black garlic is mainly expressed by phenol compounds. Since the phenol compounds are easily deteriorated under high temperature and high pressure conditions, the antioxidant effect of black garlic is limited in cooking using high temperature and high pressure cooking methods.

본 발명에서는 상기 문제점을 해결하기 위하여 고압 고압 조리 조건에서도 흑마늘의 항상화 효과가 유지되는 전처리 방법을 개발하였다.In order to solve the above problems, the present invention developed a pretreatment method that maintains the antioxidant effect of black garlic even under high-pressure cooking conditions.

본 발명은 캡슐화 흑마늘 추출물을 제조하는 제 1 단계; 및 상기 캡슐화 추출물과 닭고기를 혼합하여 온도 121℃에서 압력 1.5kgf/㎝2에서 조리하는 제 2 단계;를 포함하는 항산화 효과가 향상된 닭고기 레트로트 조리방법을 제공한다.The present invention includes a first step of producing encapsulated black garlic extract; And a second step of mixing the encapsulated extract with chicken and cooking it at a temperature of 121°C and a pressure of 1.5 kgf/cm 2 . It provides a retro cooking method for chicken with improved antioxidant effect, including.

상기 흑마늘 추출물은 말토덱스트린(maltodextrin)을 포함하는 캡슐화 혼합물을 이용하여 흑마늘 추출물을 캡슐화한 것을 특징으로 하며 상기 캡슐화 흑마늘 추출물은 흑마늘의 껍질을 제거하고 물을 첨가한 후 푸드 블렌더로 분쇄하여 흑마늘 분쇄물을 제조하는 제 1 단계; 상기 흑마늘 분쇄물을 70 내지 90℃에서 40 내지 80분 동안 가열하여 흑마늘 열수추출물을 제조하는 제 2 단계; 상기 흑마늘 열수추출물을 냉각시킨 후 고액 분리하여 흑마늘 열수 추출물 여액을 수득하는 제 3 단계; 상기 흑마늘 열수 추출물 여액과 상기 캡슐화 혼합물을 혼합하고 균질기를 이용하여 흑마늘-캡슐화 혼합물을 제조하는 제 4 단계; 및 상기 흑마늘-캡슐화 혼합물을 동결건조하여 캡슐화 흑마늘 추출물을 제조하는 제 5 단계;를 포함하는 방법으로 제조된다.The black garlic extract is characterized in that the black garlic extract is encapsulated using an encapsulation mixture containing maltodextrin, and the encapsulated black garlic extract is obtained by removing the skin of the black garlic, adding water, and pulverizing it with a food blender. The first step of manufacturing; A second step of preparing a black garlic hot water extract by heating the black garlic powder at 70 to 90° C. for 40 to 80 minutes; A third step of cooling the black garlic hot water extract and then separating solid and liquid to obtain a black garlic hot water extract filtrate; A fourth step of mixing the black garlic hot water extract filtrate and the encapsulation mixture and using a homogenizer to prepare the black garlic-encapsulation mixture; and a fifth step of producing an encapsulated black garlic extract by freeze-drying the black garlic-encapsulation mixture.

상기 흑마늘 열수 추출물 여액과 상기 캡슐화 혼합물은 5:1의 부피비로 혼합되는 것이 바람직하며 상기 부피비를 벗어나게 되면 흑마늘 추출물의 캡슐화 효율이 저하된다.The black garlic hot water extract filtrate and the encapsulation mixture are preferably mixed at a volume ratio of 5:1, and if the volume ratio exceeds this volume, the encapsulation efficiency of the black garlic extract decreases.

하기에서 실시예를 통해 본 발명을 상세히 설명한다.The present invention will be described in detail below through examples.

실시예 Example

1. 실험방법1. Experimental method

1) 흑마늘 추출물의 제조1) Preparation of black garlic extract

본 발명은 흑마늘 추출물(Black Galic Extract, BG), 오븐 건조 흑마늘 추출물(Oven Dried Black Galic Extract, ODBG), 말토덱스트린 캡슐화 흑마늘 추출물(Maltodextrin Encapsulated Black Galic Extract, MEBG)을 제조하였다. The present invention produced Black Galic Extract (BG), Oven Dried Black Galic Extract (ODBG), and Maltodextrin Encapsulated Black Galic Extract (MEBG).

본 발명의 흑마늘 추출물, 오븐 건조 흑마늘 추출물, 및 말토덱스트린 캡슐화 흑마늘 추출물에 사용한 흑마늘은 Haena Food Co.(20160506929-1, Seoul, SouthKorea)에서 구입하였으며 수분 함량이 66.70±0.13%이었다.The black garlic used in the black garlic extract, oven-dried black garlic extract, and maltodextrin encapsulated black garlic extract of the present invention was purchased from Haena Food Co. (20160506929-1, Seoul, South Korea) and had a moisture content of 66.70 ± 0.13%.

상기 흑마늘 추출물(BG)의 제조방법은 다음과 같다. 먼저 흑마늘의 껍질을 벗긴 후 상기 흑마늘 부피의 10배에 해당하는 물(탈이온수)를 첨가한 후 푸드 블렌더로 13,500xg에서 1분 동안 분쇄하여 흑마늘 분쇄물을 제조하였다. 상기 흑마늘 분쇄물을 수조(BW-20G, Biotechnical service, North little rock, AR, USA)에서 80℃로 1시간동안 가열한 후 4±2℃에서 1시간 동안 냉각시키고 여과지(Whatman No. 1)를 이용하여 여액(흑마늘 추출물)을 수득하였다. 상기 여액은 흑마늘의 열수추출로 인해 폴리페놀이 추출된 것이다.The manufacturing method of the black garlic extract (BG) is as follows. First, black garlic was peeled, water (deionized water) 10 times the volume of the black garlic was added, and then ground with a food blender at 13,500xg for 1 minute to prepare ground black garlic. The black garlic powder was heated at 80°C for 1 hour in a water tank (BW-20G, Biotechnical service, North little rock, AR, USA), cooled at 4±2°C for 1 hour, and filter paper (Whatman No. 1) was added. A filtrate (black garlic extract) was obtained. The filtrate is obtained by extracting polyphenols from hot water extraction of black garlic.

상기 오븐 건조 흑마늘 추출물(ODBG)의 제조방법은 다음과 같다. 먼저 흑마늘의 껍질을 벗긴 후 180℃ 오븐에서 15분간 고온 건조하였다. 상기 고온 건조된 흑마늘은 상기 흑마늘 추출물(BG)의 제조방법과 동일한 방법으로 오븐 건조 흑마늘 추출물을 제조하였다.The manufacturing method of the oven-dried black garlic extract (ODBG) is as follows. First, the black garlic was peeled and then dried at high temperature in an oven at 180°C for 15 minutes. The high-temperature dried black garlic was used to prepare an oven-dried black garlic extract using the same method as the black garlic extract (BG).

상기 말토덱스트린 캡슐화 흑마늘 추출물(MEBG)의 제조방법은 다음과 같다. 먼저 상기 흑마늘 추출물(BG)의 제조방법에 따라 흑마늘 추출물(BG)를 제조한다. 상기 흑마늘 추출물(BG)과 말토덱스트린을 5:1의 부피비(BG 100㎖에 말토덱스트린 20g 첨가)로 혼합하고 균질기를 이용하여 6,5000rpm에서 1분간 혼합한 후 -24℃에서 6시간동안 1차 동결건조하고, -70℃에서 18시간동안 1차 동결건조하여 제조하였다.The manufacturing method of the maltodextrin encapsulated black garlic extract (MEBG) is as follows. First, prepare black garlic extract (BG) according to the method for producing black garlic extract (BG). The black garlic extract (BG) and maltodextrin were mixed at a volume ratio of 5:1 (20 g of maltodextrin added to 100 ml of BG), mixed for 1 minute at 6,5000 rpm using a homogenizer, and then incubated at -24°C for 6 hours. It was freeze-dried and prepared by first freeze-drying at -70°C for 18 hours.

2) 시료의 처리2) Sample processing

상기 제조한 흑마늘 추출물(BG), 오븐 건조 흑마늘 추출물(ODBG), 말토덱스트린 캡슐화 흑마늘 추출물(MEBG)의 처리 효과를 확인하였다.The treatment effect of the prepared black garlic extract (BG), oven-dried black garlic extract (ODBG), and maltodextrin encapsulated black garlic extract (MEBG) was confirmed.

이를 위하여 닭 가슴살을 냉장조건에서 5x5x1.5㎝의 크기(53±2g)로 절단하고 상기 흑마늘 추출물을 첨가하여 보일링(Boiling) 조리방법, 수비드(Sous-vide) 조리방법 및 레토르트(Retoring) 조리방법을 이용하여 조리하였다. 상기 보일링 조리방법은 100℃에서 1시간동안 끓이는 것을 의미하며, 상기 수비드(Sous-vide) 조리방법은 흑마늘 추출물이 처리된 닭가슴살을 나일론 폴리에틸렌 백에 진공포장 한 후 80℃ 수조에서 1시간동안 조리하는 것을 의미하며, 상기 레토르트 조리방법은 흑마늘 추출물이 처리된 닭가슴살을 폴리에틸렌 테레프탈레이트로 제조한 레토르트 파우치에 넣고 온도 121℃, 압력 1.5㎏f/㎝2으로 1시간동안 조리하는 것을 의미한다.For this purpose, chicken breast is cut into 5x5x1.5cm (53±2g) pieces under refrigerated conditions and the black garlic extract is added to cook the boiling, sous-vide, and retorting methods. Cooked using the cooking method. The boiling cooking method refers to boiling at 100°C for 1 hour, and the sous-vide cooking method involves vacuum-packing chicken breast treated with black garlic extract in a nylon polyethylene bag and then placing it in a water bath at 80°C for 1 hour. The retort cooking method refers to placing chicken breast treated with black garlic extract in a retort pouch made of polyethylene terephthalate and cooking it for 1 hour at a temperature of 121°C and a pressure of 1.5 kgf/cm 2 . .

하기 표 1은 본 발명의 흑마늘 추출물을 닭가슴살에 처리한 시료 및 제조한 시료의 수를 보여준다. Table 1 below shows the number of samples and samples prepared by treating chicken breast with the black garlic extract of the present invention.

상기 표 1의 NC는 흑마늘을 처리하지 않고 조리한 닭가슴살 시료를 의미하며; PC는 신선한 흑마늘(FBG)를 처리한 것을 의미하며; ODBG는 오븐 건조 흑마늘 추출물을 처리한 것을 의미하며; MEBG는 말토덱스트린 캡슐화 흑마늘 추출물을 처리한 것을 의미한다.NC in Table 1 refers to chicken breast samples cooked without black garlic treatment; PC refers to fresh processed black garlic (FBG); ODBG refers to processed oven dried black garlic extract; MEBG refers to processed maltodextrin encapsulated black garlic extract.

3) 일반성분의 분석3) Analysis of general ingredients

상기 표 1의 닭 가슴살 시료의 구성 성분 분석은 AOAC(2012)의 절차에 따라 수행되었다. 수분 백분율은 105°C에서 24시간 동안 오븐 건조 후 1g 샘플을 취해 측정하였다. 조단백질 함량은 Kjeltec 시스템 절차(2200 Kjeltec Auto Distillation Unit, Foss, Hillerød, Denmark)에 따라 측정되었다. 조지방은 속슬렛 추출법으로 48시간 동안 측정하였으며, 조회분 함량은 550°C의 머플로(LEF-115S, 대한랩텍, 남양주)에서 연소시켜 측정하였다. 모든 분석은 3회 반복으로 수행되었다.The composition analysis of the chicken breast samples in Table 1 above was performed according to the procedures of AOAC (2012). Moisture percentage was measured by taking 1 g samples after oven drying at 105°C for 24 hours. Crude protein content was determined according to the Kjeltec system procedure (2200 Kjeltec Auto Distillation Unit, Foss, Hillerød, Denmark). Crude fat was measured for 48 hours using the Soxhlet extraction method, and ash content was measured by combustion in a muffle furnace (LEF-115S, Daehan Labtech, Namyangju) at 550°C. All analyzes were performed in triplicate.

4) 색도, pH 전단력, 보수력, 및 요리손실의 분석4) Analysis of color, pH shear force, water holding capacity, and cooking loss

조리된 닭가슴살 시료의 색도는 백판(2°관찰자, Illuminant C:Y=93.6, x=0.3134, y=0.3194)을 이용하였으며 명도(CIE L*), 적색(CIE a*) 및 황색(CIE b*)로 기록하였다. The chromaticity of the cooked chicken breast sample was measured using a white board (2° observer, Illuminant C:Y=93.6, x=0.3134, y=0.3194), with brightness (CIE L*), red (CIE a*), and yellow (CIE b). It was recorded as *).

pH 값은 각 조리된 달가슴살 시료의 슬러리에 대해 3회 측정하였다. 시료 5g에 증류수 45mL를 균질기(PH91, SMT Co., Ltd., Tokyo, Japan)로 혼합한 후, 보정된 pH meter probe(Seven Easy pH, Mettler-Toledo GmbH, Schwerzenbach, Switzerland)로 측정하였다.The pH value was measured three times for the slurry of each cooked moong breast sample. 5 g of sample was mixed with 45 mL of distilled water using a homogenizer (PH91, SMT Co., Ltd., Tokyo, Japan), and then measured with a calibrated pH meter probe (Seven Easy pH, Mettler-Toledo GmbH, Schwerzenbach, Switzerland).

전단력은 조리된 닭가슴살 시료를 1.5×1.5×1.5cm3크기로 만들어 TA-XT2i Plus(Stable Micro Systems, Surrey, UK) 질감 분석기의 V 블레이드 아래에 놓고 일정한 속도로 절단하는 방법으로 분석하였다(분석 매개변수: 사전 테스트 속도: 2.0 mm/s, 테스트 속도: 1.0 mm/s, 사후 테스트 속도 : 10mm/s). 모든 분석은 3반복으로 수행되었다.The shear force was analyzed by cutting cooked chicken breast samples into 1.5 Parameters: pre-test speed: 2.0 mm/s, test speed: 1.0 mm/s, post-test speed: 10 mm/s). All analyzes were performed in triplicate.

수분 보유 능력(WHC)의 측정은 Kristensen and Purslow(2001)의 원심분리 방법에 따라 수행되었다. 5g의 샘플을 철망이 있는 원심분리기 튜브에 넣고 75°C의 수조에서 30분 동안 가열하였다. 시료를 10분 동안 얼음물에 직접 담그고 10분 동안 980 x g에서 원심분리(CS-6R Centrifuge; BeckmanInstruments Inc., Hialeah, FL, USA)하였다. 보수력 백분율은 기록된 잔여 수분량에 대한 총 수분 함량의 비율을 계산하여 얻었다.Measurement of water holding capacity (WHC) was performed according to the centrifugation method of Kristensen and Purslow (2001). 5 g of sample was placed in a centrifuge tube with a wire mesh and heated in a water bath at 75°C for 30 min. Samples were directly immersed in ice water for 10 min and centrifuged at 980 × g for 10 min (CS-6R Centrifuge; BeckmanInstruments Inc., Hialeah, FL, USA). The water holding capacity percentage was obtained by calculating the ratio of total moisture content to the recorded residual moisture content.

요리 손실은 조리 후 제품 수율을 나타내며 조리 전과 후의 샘플 무게를 계산하여 결정하였다((W1-W2)-W1). 조리 손실 분석은 3회 반복으로 실시하였다.Cooking loss represents the product yield after cooking and was determined by calculating the weight of the sample before and after cooking ((W1-W2)-W1). Cooking loss analysis was repeated three times.

5) 지방산화, 및 항산화 활성 분석5) Fat oxidation and antioxidant activity analysis

지질 산화율은 말론디알데히드(Malon dialdehyde)를 정량화하기 위해 2-티오바르비투르산(thiobarbituric acid) 반응성 물질(TBARS) 분석을 사용하여 측정되었다. 간단히 용약하면 가열시킨 가슴살 시료 0.5g을 25㎖ TBARS 시험관에서 삼반복으로 준비하고 항산화 혼합물 0.1㎖과 0.3% NaOH에 1% TBA가 첨가된 용액 3㎖를 넣고 혼합기로 30초간 소용돌이 시켰다. 36mM HCl에 2.5% 트리클로로아세트산(trichloroacetic acid)이 함유된 혼합용액 17㎖를 첨가하고 밀봉한 다음 수조(BW-20G, Biotechnical Services, North Little Rock, AR, USA)에서 100°C에서 30분 동안 가열하였다. 가열이 완료되면 튜브를 얼음물에 10분 동안 담구었다. 각각의 용액 시료 5㎖를 새로운 15㎖ 원뿔형 튜브에 넣고 3㎖의 클로로포름(chloroform)과 혼합하고 4°C(1248R, Labogene, Lynge, 덴마크)에서 30분 동안 2,400xg에서 원심분리를 실시하였다. 상등액을 UV 분광 광도계를 사용하여 532㎚에서 흡광도를 측정하여 계산하였다.Lipid oxidation rates were measured using the 2-thiobarbituric acid reactive substances (TBARS) assay to quantify malon dialdehyde. Briefly, 0.5 g of heated breast meat sample was prepared three times in a 25 mL TBARS test tube, and 0.1 mL of antioxidant mixture and 3 mL of a solution containing 1% TBA in 0.3% NaOH were added and vortexed for 30 seconds with a mixer. Add 17 ml of a mixed solution containing 2.5% trichloroacetic acid in 36mM HCl, seal, and place in a water bath (BW-20G, Biotechnical Services, North Little Rock, AR, USA) at 100°C for 30 minutes. Heated. Once heating was complete, the tube was immersed in ice water for 10 minutes. 5 ml of each solution sample was placed in a new 15 ml conical tube, mixed with 3 ml of chloroform, and centrifuged at 2,400xg for 30 minutes at 4°C (1248R, Labogene, Lynge, Denmark). The absorbance of the supernatant was measured and calculated at 532 nm using a UV spectrophotometer.

6) 통계분석6) Statistical analysis

본 발명의 데이터 분석은 처리 및 요리 방법과 관련하여 R-version 3.6.1(The R-foundation for Statistical Computing, Vienna, Austria)을 사용하여 이원 다변량 분산 분석(MANOVA)을 사용하여 수행되었다. 각 그룹의 유의한 평균값은 Duncan의 다중 범위 검정을 사용하여 지속적으로 분석되었으며 유의성은 0.05 미만의 p-값에서 유의한 것으로 간주되었다.Data analysis for the present invention was performed using two-way multivariate analysis of variance (MANOVA) using R-version 3.6.1 (The R-foundation for Statistical Computing, Vienna, Austria) with respect to processing and cooking methods. Significant mean values for each group were subsequently analyzed using Duncan's multiple range test and significance was considered significant at a p-value of less than 0.05.

2. 실험결과 및 고찰2. Experimental results and considerations

1) 흑마늘 추출물의 항산화력 측정 결과1) Result of measuring antioxidant power of black garlic extract

표 2는 본 발명의 흑마늘 추출물의 특성을 분석한 결과를 보여준다.Table 2 shows the results of analyzing the characteristics of the black garlic extract of the present invention.

DPPH 분석법을 이용하여 흑마늘 추출물의 항산화 활성을 측정한 결과 억제 활성의 범위는 42.39 내지 63.29%인 것으로 확인되었으며 ODBG(Oven dried black garlic), FBG(Fresh black garlic), MEBG(Encapsulated black garlic)의 순이었다. 따라서 본 발명의 흑마늘 추출물에 함유된 페놀릭 및 플라보노이드 화합물의 농도는 ODBG가 가장 높으며 FBG, MEBG의 순인 것으로 확인되었다. As a result of measuring the antioxidant activity of black garlic extract using the DPPH analysis method, it was confirmed that the range of inhibitory activity was 42.39 to 63.29%, in that order: oven dried black garlic (ODBG), fresh black garlic (FBG), and encapsulated black garlic (MEBG). It was. Therefore, it was confirmed that the concentration of phenolic and flavonoid compounds contained in the black garlic extract of the present invention was highest in ODBG, followed by FBG and MEBG.

폴리페놀 화합물(TPC)의 함량은 10.30 내지 14.40 GAE mg/g인 반면 플라보노이드 화합물(TFC)의 함량은 2.5 내지 94.92 CE mg/g인 것으로 확인되었다. 또한 FBG의 수분함량은 66.70%로 관찰되었으며 오븐 건조하여 제조한 ODBG의 수분함량은 44.99%, 캡슐화한 MEBG의 수분 함량은 9.77%로 감소한 것으로 확인되었다. pH 값은 모든 시료에서 큰 차이가 없었다. The content of polyphenol compounds (TPC) was found to be 10.30 to 14.40 GAE mg/g, while the content of flavonoid compounds (TFC) was found to be 2.5 to 94.92 CE mg/g. In addition, the moisture content of FBG was observed to be 66.70%, the moisture content of ODBG manufactured by oven drying was reduced to 44.99%, and the moisture content of encapsulated MEBG was confirmed to be reduced to 9.77%. There was no significant difference in pH values among all samples.

FBG와 MEBG의 항산화 활성을 비교한 결과 말토덱스트린으로 캡슐화한 MEBG에서 항산화 활성이 감소한 것으로 확인되었다. 이는 상온에서 말토덱스트린 캡슐화 샘플에 존재하는 페놀 및 플라보노이드 화합물의 양이 적기 때문에 발생할 수 있다고 판단된다. 상기 결과는 이 말토덱스트린과 아라비아 검으로 캡슐화한 후 사용된 분쇄 커피의 페놀 추출물의 항산화 활성이 감소했다는 것과 유사한 경향인 것으로 판단된다(Ballesteros et al. 2017). As a result of comparing the antioxidant activity of FBG and MEBG, it was confirmed that the antioxidant activity was reduced in MEBG encapsulated with maltodextrin. It is believed that this may occur due to the low amount of phenol and flavonoid compounds present in maltodextrin encapsulated samples at room temperature. The above results are believed to be a similar trend to the decrease in antioxidant activity of the phenolic extract of ground coffee used after encapsulation with maltodextrin and gum arabic (Ballesteros et al. 2017).

2) 흑마늘 추출물 처리 닭가슴살 시료의 일반성분 분석2) Analysis of general components of chicken breast samples treated with black garlic extract

표 3은 본 발명의 흑마늘 추출물 처리 닭가슴살 시료의 일반성분 분석 결과를 보여준다.Table 3 shows the results of general component analysis of chicken breast samples treated with the black garlic extract of the present invention.

수분함량(Moisture) 비율은 조리방법과 흑마늘 처리 모두에 의해 강한 영향을 받는 것으로 확인되었다(P<0.001). 표 3에서 보는 바와 같이 흑마늘(BG)의 첨가는 전처리 여부와 상관없이 레토르트(Retorting) 조리군을 제외한 모든 조리군에서 비율을 증가시켜 수분함량을 크게 변화시켰다. MEBG의 경우 수비드(SV) 조리군 및 음성 대조군(NC)과 비교하여 레토르트(Retorting) 조리군에서 가장 높은 수분 함량을 유지하는 것으로 확인되었다(P<0.001). 신선한 흑마늘(FBG) 처리군(PC)과 오븐 건조 흑마늘 추출물(ODBG) 처리군간에 수분 함량의 현저한 차이는 발견되지 않았다(P>0.05). 또한, 수비드(SV) 조리군은 레토르트(Retorting) 조리군에 비해 수분함량이 유의하게 높았으며(P<0.001) 레토르트(Retorting) 조리군의 수분 비율이 가장 낮았다. Moisture ratio was confirmed to be strongly influenced by both cooking method and black garlic treatment (P<0.001). As shown in Table 3, the addition of black garlic (BG) significantly changed the moisture content by increasing the ratio in all cooking groups except the retorting cooking group, regardless of pretreatment. In the case of MEBG, it was confirmed that the highest moisture content was maintained in the retorting cooking group compared to the sous vide (SV) cooking group and the negative control (NC) group (P<0.001). No significant difference in moisture content was found between the fresh black garlic (FBG) treatment group (PC) and the oven-dried black garlic extract (ODBG) treatment group (P>0.05). In addition, the sous vide (SV) cooking group had a significantly higher moisture content than the retorting cooking group (P<0.001), and the retorting cooking group had the lowest moisture content.

지방(Crude-fat) 비율은 고온-고압 조리방법인 레토르트(Retorting) 조리군이 다른 저온 조리방법보다 지방 비율이 높았다(P<0.001). The crude-fat ratio in the retorting cooking group, which is a high-temperature-high-pressure cooking method, had a higher fat ratio than other low-temperature cooking methods (P<0.001).

조단백질(Crude-protein) 비율 및 조회분(Crude-ash) 비율은 흑마늘 추출물 및 조리방법의 차이에 따라 현저한 차이가 발견되지 않았다. No significant differences were found in the crude protein ratio and crude-ash ratio depending on the difference in black garlic extract and cooking method.

조리 방법은 이화학적 구성과 고기 내부 환경을 변경하여 가공 단계에서 중요한 역할을 한다. 수분 증발 속도, 가열을 통한 단백질 및 지질 분해, Maillard 반응을 결정한다(Werenska et al., 2021). 수분 함량의 상당한 증가는 Dominguez-Hernandez et al.(2018)의 결과와 일치하는데, 그는 증발로 인한 수분 손실을 억제하기 위해 진공 밀봉 및 낮은 조리 온도를 활용하는 것이 좋다고 제안하였다. 반면에 고온 조리는 수분 손실을 높이고 지질과 단백질을 분해하여 결과적으로 닭 가슴살의 영양 성분을 변경할 수 있다(Sun et al., 2015; Suleman et al., 2020).Cooking methods play an important role in the processing stage by changing the physicochemical composition and internal environment of the meat. Determine the rate of water evaporation, protein and lipid decomposition through heating, and Maillard reaction (Werenska et al., 2021). The significant increase in moisture content is consistent with the results of Dominguez-Hernandez et al. (2018), who suggested utilizing vacuum sealing and lower cooking temperatures to suppress moisture loss due to evaporation. On the other hand, high-temperature cooking can increase moisture loss and decompose lipids and proteins, ultimately changing the nutritional composition of chicken breast (Sun et al., 2015; Suleman et al., 2020).

3) 표면육색 분석결과3) Surface color analysis results

표 4는 본 발명의 흑마늘 추출물 처리 닭가슴살 시료의 표면육색 분석 결과를 보여준다.Table 4 shows the results of surface meat color analysis of chicken breast samples treated with the black garlic extract of the present invention.

명도값(CIE·L*)은 수비드(SV) 조리군에서 가장 높았고, 보일링(Boiling) 조리군 및 레토르트(Retoring) 조리군 순으로 나타났다(P<0.001). 레토르트(Retoring) 조리군은 처리구 중 가장 밝기가 낮은 반면 고온 조건의 조리군은 훨씬 더 강렬한 적색값 및 황색값을 나타냈다(P<0.001). 흑마늘 추출물 첨가와 관련하여 닭 가슴살 샘플은 전처리에 관계없이 모든 조리 방법으로 처리한 후 색상이 더 어두워지는 것으로 나타났다(P<0.001). 대조적으로, 닭 가슴살에 흑마늘 추출물을 첨가하면 수비드(SV) 조리군에서 적색 및 황색도 값이 유의하게 높았으며, 보일링(Boiling) 조리군 및 레토르트(Retoring) 조리군에서는 MEBG 처리군에서 가장 높았다(P<0.001). 흑마늘 추출물 첨가과 조리 방법 사이에는 유의한 상호 작용이 있는 것으로 확인되었다(P<0.001). 음성 대조군(NC)의 명도값은 Park et al.(2020) 조리한 닭 가슴살이 81.2∼83.5라고 하였는데, 본 실험에서도 그 범위내에 있었다. 레토르트(Retoring) 조리군에서 값도 Kim et al. (2020)이 보고한 범위내에 있었다. 백색육은 적색육과 다르게 변하지만, 일반적으로 요리 온도의 증가는 미오글로빈 프로필을 변경하여 적색육이 낮아지고 황색도가 증가하는 경향이 있다(Suleman et al., 2020). 닭 가슴살과 같이 백색육은 마이오글로빈 색소가 낮기 때문에 Maillard 반응은 고기 표면 색상을 결정하는 데 더 중요한 역할을 하여 고온에서 발생하는 생화학적 상호작용을 통해 갈색을 띤 붉은색을 만든다(Hunt et al., 1999; King 및 Whyte, 2006). BG 처리군에서 명도가 낮은 것은 페놀 추출물 용액이 고기로 침투하여 갈색-검정색으로 변한 것이기 때문이다. 폴리페놀 화합물은 식품 기능을 개선할 수 있는 건강가능성 외에도 식물과 향신료에서 추출한 독특한 색상은 고기의 시각적으로도 영향을 줄 수 있다(Jin et al., 2015).The brightness value (CIE·L*) was highest in the sous vide (SV) cooking group, followed by the boiling cooking group and the retorting cooking group (P<0.001). The retorting cooking group had the lowest brightness among the treatments, while the high temperature cooking group showed much more intense red and yellow values (P<0.001). With respect to the addition of black garlic extract, chicken breast samples appeared darker in color after being treated with all cooking methods, regardless of pretreatment (P<0.001). In contrast, adding black garlic extract to chicken breast resulted in significantly higher redness and yellowness values in the sous vide (SV) cooking group, and in the boiling and retorting cooking groups, the MEBG treatment group had the highest redness and yellowness values. It was high (P<0.001). It was confirmed that there was a significant interaction between the addition of black garlic extract and cooking method (P<0.001). The brightness value of the negative control (NC) was 81.2 to 83.5 for cooked chicken breast in Park et al. (2020), and it was within that range in this experiment as well. The values in the retorting cooking group were also reported by Kim et al. (2020) was within the range reported. White meat changes differently than red meat, but in general, increasing cooking temperature alters the myoglobin profile, which tends to lower red meat and increase yellowness (Suleman et al., 2020). Because white meat, such as chicken breast, has low myoglobin pigment, the Maillard reaction plays a more important role in determining meat surface color, producing a brownish-red color through biochemical interactions that occur at high temperatures (Hunt et al., 1999; King and Whyte, 2006). The reason the brightness was low in the BG treatment group was because the phenol extract solution penetrated into the meat and turned it brown-black. In addition to the health potential of polyphenol compounds to improve food functionality, unique colors extracted from plants and spices can also affect the visual appearance of meat (Jin et al., 2015).

4) pH 분석결과4) pH analysis results

표 5는 본 발명의 흑마늘 추출물 처리 닭가슴살 시료의 pH 분석 결과를 보여준다.Table 5 shows the pH analysis results of chicken breast samples treated with the black garlic extract of the present invention.

pH의 범주로 보아 닭 가슴살의 모든 샘플은 정상육으로 간주된다(Barido et al., 2020). BG 처리군은 전처리 여부에 관계없이 모든 조리 방법에서 음성 대조군(NC)보다 pH 값이 유의하게 낮았다(P<0.01). 또한, 기존의 보일링(Boiling) 조리군과 레토르트(Retoring) 조리군에서 MEBG 처리군의 pH 값이 가장 낮았고 양성 대조군(PC), ODBG 처리군 및 음성 대조군(NC)이 그 뒤를 이었다. Based on the pH range, all samples of chicken breast were considered normal meat (Barido et al., 2020). The pH value of the BG treated group was significantly lower than the negative control (NC) in all cooking methods regardless of pretreatment (P<0.01). In addition, in the conventional boiling cooking group and the retort cooking group, the pH value of the MEBG-treated group was the lowest, followed by the positive control (PC), ODBG-treated group, and negative control (NC).

종래의 보일링(Boiling) 조리군에서 음성 대조군(NC)의 pH 값은 6.63이었고, 그 값은 6.67인 수비드(Sous-vide) 조리군과 큰 차이가 없었다. 음성 대조구(NC)의 레토르트(Retoring) 조리군에서 pH는 6.79로 가장 높았다. 또한 BG 처리군에서 약간 다른 패턴이 관찰되었는데, pH 값의 순서는 음성대조구(NC)가 가장 높았고, 수비드(Sous-vide) 조리군, 보일링(Boiling) 조리군, 레토르트(Retoring) 조리군 순이었다(P<0.001). 흑마늘 추출물 처리 후 낮은 pH 값은 흑마늘 추출물 용액의 낮은 pH 값에 기인할 수 있다. 여러 번의 전처리를 거친 후, 본 연구에 사용된 흑마늘 추출물의 pH 값은 4.67에서 4.74 사이였다. 본 발명의 결과는 조리 방법 측면에서 Lee et al.(2021)의 연구 결과에서도 확인되었다. 기존 조리법와 SV 조리법 사이에 유의미한 차이를 찾지 못하였다. 그러나 비등 처리에서 음성대조군(NC)에 대한 pH는 대류오븐조리법을 대조군으로 적용한 Park et al.(2020)의 pH 보다 약간 높았다. 일반적으로 pH 값은 육류 환경 내에서 발생하는 생화학적 반응을 나타낸다(Lonergan et al., 2005; Juncher et al., 2001). 이것은 수분 보유 능력(Barbut et al., 2005), 시각적 속성, 질감 속성, 고기 내부의 물리화학적 상태(Honikel et al., 1986)를 포함한 고기품질 속성에서 가장 중요한 지표 중에 하나이다. 고기에서 pH 값이 낮은 것은 품질면에서 좋지 못하다. 이는 과도한 단백질 변성의 징후이며(Huff-Lonergan and Lonergan, 2005), 낮은 수분 보유 능력, 더 단단한 질감, 조리 후 낮은 조리 수율을 가진 육류와 관련이 있기 때문이다(Barido et al., 2021).In the conventional boiling cooking group, the pH value of the negative control (NC) was 6.63, and there was no significant difference from the sous-vide cooking group, which had a value of 6.67. The pH was highest at 6.79 in the retort cooking group of the negative control (NC). Additionally, a slightly different pattern was observed in the BG treatment group, with the negative control (NC) having the highest pH value, followed by the sous-vide cooking group, boiling cooking group, and retorting cooking group. This was in order (P<0.001). The low pH value after black garlic extract treatment may be due to the low pH value of the black garlic extract solution. After several pretreatments, the pH value of the black garlic extract used in this study was between 4.67 and 4.74. The results of the present invention were also confirmed by the research results of Lee et al. (2021) in terms of cooking methods. No significant differences were found between the existing recipe and the SV recipe. However, the pH of the negative control (NC) in the boiling treatment was slightly higher than the pH of Park et al. (2020), which applied the convection oven cooking method as the control. In general, the pH value represents the biochemical reactions occurring within the meat environment (Lonergan et al., 2005; Juncher et al., 2001). It is one of the most important indicators of meat quality attributes, including moisture retention capacity (Barbut et al., 2005), visual properties, textural properties, and internal physicochemical conditions of meat (Honikel et al., 1986). A low pH value in meat is not good in terms of quality. This is a sign of excessive protein denaturation (Huff-Lonergan and Lonergan, 2005) and is associated with meats having lower water holding capacity, firmer texture, and lower cooking yield after cooking (Barido et al., 2021).

5) 가열손실, 보수력, 전단력 분석결과5) Heating loss, water retention capacity, and shear force analysis results

보수력(WHC)은 흑마늘 추출물을 처리하더라도 레토르트(Retoring) 조리군에서 더 향상되지 않는 것으로 확인되었으며 백색도는 음성 대조군(NC)에 비해 BG 처리군이 더 높은 것으로 확인되었다(P<0.05). 음성 대조군(NC)의 백색도 범위는 66.49%에서 80.49%로 수비드(Sous-vide) 조리군에서 더 높은 것으로 확인되었으며 보일링(Boiling) 조리군과 레토르트(Retoring) 조리군 모두에서 가장 낮은 값이 기록된 것으로 확인되었다(P<0.01). It was confirmed that water holding capacity (WHC) did not improve further in the retorting cooking group even when treated with black garlic extract, and whiteness was confirmed to be higher in the BG treated group compared to the negative control (NC) (P<0.05). The whiteness range of the negative control (NC) was found to be higher in the sous-vide cooking group, from 66.49% to 80.49%, and the lowest value was found in both the boiling and retorting cooking groups. It was confirmed to be recorded (P<0.01).

조리 손실(Cooking loss)은 흑마늘 추출물이 첨가된 레토르트(Retoring) 조리군이 음성 대조군(P<0.05)에 비해 유의하게 더 낮은 것으로 확인 되었다(표 5). 오븐 건조 전처리와 상관없이 조리방법과 관련하여 예상한 바와 같이 수비드(Sous-vide) 조리군의 조리 손실이 다른 조리 방법보다 유의하게 낮았으며 레토르트(Retoring) 조리군에서 가장 높은 조리 손실을 보이는 것으로 확인되었다(P<0.05). Cooking loss was confirmed to be significantly lower in the retort cooking group with black garlic extract added compared to the negative control group (P<0.05) (Table 5). As expected, the cooking loss in the sous-vide cooking group was significantly lower than other cooking methods, and the retorting cooking group showed the highest cooking loss, regardless of oven drying pretreatment. It was confirmed (P<0.05).

전단력(Shear force) 측정결과는 수비드(Sous-vide) 조리군에서 조리된 가슴살의 전단력(Shear force)을 측정한 선행결과와 유사하였다(Lee et al.; 2021). 마찬가지로 레토르트(Retoring) 조리군의 전단력값은 Kim et al. (2020)등이 보고한 것과 유사하게 1.44 내지 1.47 kgf의 정상범위에 있었고, 정 (2020)등이 보고한 한국식 닭고기 수프의 가슴살보다 약간 높았다.The shear force measurement results were similar to previous results measuring the shear force of breast meat cooked in the sous-vide cooking group (Lee et al.; 2021). Likewise, the shear force value of the retorting cooking group was calculated by Kim et al. (2020), etc., it was in the normal range of 1.44 to 1.47 kgf, and was slightly higher than the breast meat of Korean chicken soup reported by Jeong (2020).

레토르트(Retoring) 조리군은 가장 부드러운 것으로 확인되었으며 그 다음으로 수비드(Sous-vide) 조리군, 보일링(Boiling) 조리군의 순이었다(P<0.05). 보일링(Boiling) 조리군은 전단력 값이 가장 높았으며, 이는 식감이 더 단단함을 의미한다. 또한, 흑마늘 추출물을 첨가한 모든 조리 방법으로 통해 제조된 시료의 경우 음성 대조군(NC)에 대비하여 유의하게 보다 부드러운 것으로 확인되었다. 육질이 부드럽다는 것은 풍미 및 영양 함량과 함께 식육 산업에서 소비자에게 만족감을 주는 요인이기 때문에 중요한 인자이다(Barido et al., 2020). 또한 고기의 부드러운 정도는 가열손실과 보수력과 같은 다른 경제적으로 중요한 특성과 높은 상관관계가 있다. 수비드(Sous-vide) 조리군에서 현저히 낮은 가열손실과 높은 보수력을 보이는 것은 진공 밀봉 요리의 효과로 설명될 수 있다. 수비드 조리방법을 사용하게 되면 원치 않는 수분 증발을 줄여 고기 내부에 더 많은 수분이 유지된다(Dominguez-Hernandez et al., 2018). 또한 저온 조리 시 급격한 단백질 응고를 억제하여 질긴 질감을 생성하고 조리 수율을 감소시키는 또 다른 작용기작으로 설명할 수 있다(Choi et al., 2019). 고온 처리 후 연도가 증가되는 것은 사후 형성된 악토미오신 결합의 붕괴로 인한 것일 수 있으며(Spudich,The retort cooking group was found to be the softest, followed by the sous-vide cooking group and the boiling cooking group (P<0.05). The boiling cooking group had the highest shear force value, indicating a harder texture. In addition, samples prepared through all cooking methods adding black garlic extract were found to be significantly softer compared to the negative control (NC). Soft meat is an important factor because it is a factor that provides satisfaction to consumers in the meat industry along with flavor and nutritional content (Barido et al., 2020). Additionally, meat tenderness is highly correlated with other economically important properties such as heating loss and water holding capacity. The significantly lower heating loss and higher water holding capacity in the sous-vide cooking group can be explained by the effectiveness of vacuum-sealed cooking. When using the sous vide cooking method, more moisture is retained inside the meat by reducing unwanted moisture evaporation (Dominguez-Hernandez et al., 2018). In addition, it can be explained as another mechanism of action that inhibits rapid protein coagulation during low-temperature cooking, creating a tough texture and reducing cooking yield (Choi et al., 2019). The increase in softness after high-temperature treatment may be due to the disruption of postmortem formed actomyosin bonds (Spudich,

2001; Barbut, 1993) 자유 액틴을 방출하고(Okitani et al., 2009) 구조를 변경하는 것으로 설명할 수 있다(Barido et al., 2021). 보수력이 좋고 가열손실이 낮으면 연도(부드러운 정도)가 증가되지만 풍미가 덜 발달된 닭고기는 대부분 수비드 조리에 의해 기인된다. 레토르트 조리는 Maillard 반응을 통해 풍미를 발전시킨다(Tornberg et al., 2005; Warner et al., 2017).2001; Barbut, 1993) and can be explained by releasing free actin (Okitani et al., 2009) and changing its structure (Barido et al., 2021). Good water holding capacity and low heating loss increase tenderness, but chicken with less developed flavor is mostly caused by sous vide cooking. Retort cooking develops flavor through the Maillard reaction (Tornberg et al., 2005; Warner et al., 2017).

6) 항산화력과 지방산화 분석결과6) Antioxidant power and fat oxidation analysis results

도 1과 도 2는 본 발명의 흑마늘 추출물을 첨가한 닭 가슴살 시료에 대한 항산화활성을 보여준다. 도 1은 DPPH 분석결과를 보여주며 도 2는 ABTS 분석결과를 보여준다.Figures 1 and 2 show the antioxidant activity of chicken breast samples added with the black garlic extract of the present invention. Figure 1 shows the DPPH analysis results and Figure 2 shows the ABTS analysis results.

DPPH 분석결과, 오븐 건조와 같은 전처리 여부와 상관없이 흑마늘 추출물을 첨가한 모든 조리 방법에서 항산화 잠재력이 유의하게 향상된 것으로 확인되었다(P<0.001). BG 처리군의 항산화 활성은 음성대조군(NC)보다 1.83 내지 1.59배 높았고, 수비드(Sous-vide) 조리군에서 가장 크게 개선되었다. 특히 MEBG를 처리하고 레토르트(Retoring) 조리법을 적용한 시료에서 가장 높은 항산화 활성(59.00%)을 보이는 것으로 확인되었다. As a result of DPPH analysis, it was confirmed that the antioxidant potential was significantly improved in all cooking methods using black garlic extract, regardless of pretreatment such as oven drying (P<0.001). The antioxidant activity of the BG treatment group was 1.83 to 1.59 times higher than that of the negative control group (NC), and the greatest improvement was achieved in the sous-vide cooking group. In particular, it was confirmed that the sample treated with MEBG and applied the retorting method showed the highest antioxidant activity (59.00%).

상기 DPPH 분석결과는 ABTS 분석결과와 유사한 패턴을 보이는 것으로 확인되었다. ABTS 분석결과 MEBG를 처리하고 레토르트(Retoring) 조리법을 적용한 시료의 항산화 활성은 음성대조군(NC)에 비해 최대 1.71∼2.37배 증가하였으며(P<0.01), 가장 높은 소거활성(64.05%)을 보이는 것을 확인되었다(도 2 참조). 전처리로서 오븐 건조를 수행한 시료(ODBG 처리군)의 경우 수비드(Sous-vide) 조리군을 제외한 모든 조리방법에서 신선한 흑마늘 추출물을 사용한 시료(BG 처리군)에 비해 유의하게 높은 항산화 활성을 보였다.The DPPH analysis results were confirmed to show a similar pattern to the ABTS analysis results. As a result of ABTS analysis, the antioxidant activity of samples treated with MEBG and applied with a retorting recipe increased up to 1.71 to 2.37 times compared to the negative control (NC) (P<0.01), showing the highest scavenging activity (64.05%). It was confirmed (see Figure 2). Samples subjected to oven drying as a pretreatment (ODBG treatment group) showed significantly higher antioxidant activity compared to samples using fresh black garlic extract (BG treatment group) in all cooking methods except the sous-vide cooking group. .

도 3은 본 발명의 본 발명의 흑마늘 추출물을 첨가한 닭 가슴살 시료에 대한 지방산화를 분석한 결과를 보여준다. Figure 3 shows the results of analyzing the fatty oxidation of chicken breast samples added with the black garlic extract of the present invention.

TBARS 에세이 결과 본 발명의 시료에 대한 지방산화 정도는 흑마늘 추출물 첨가 여부, 조리방법, 및 흑마늘 추출물과 조리 방법 간의 상호작용에 의해 유의한 영향을 받았다(P<0.01). As a result of the TBARS essay, the degree of fat oxidation in the samples of the present invention was significantly affected by the addition of black garlic extract, cooking method, and interaction between black garlic extract and cooking method (P<0.01).

BG 처리군의 경우, 지방산화정도는 모든 조리 방법에서 전처리 여부에 관계없이 흑마늘 추출물의 첨가에 의해 유의하게 억제되는 것으로 확인되었다(P<0.05). 지질산화정도는 조리방법의 종류에 상관없이 MEBG 처리군이 가장 낮았고, ODBG 처리군, BG 처리군, 음성대조군(NC)의 순으로 낮은 것으로 확인되었다(P<0.001). In the case of the BG treatment group, the degree of fat oxidation was confirmed to be significantly suppressed by the addition of black garlic extract regardless of pretreatment in all cooking methods (P<0.05). The degree of lipid oxidation was found to be lowest in the MEBG-treated group, followed by the ODBG-treated group, BG-treated group, and negative control (NC) regardless of the type of cooking method (P<0.001).

레토르트(Retoring) 조리군의 경우 ODBG 처리군과 BG 처리군 사이에 제한된 효과가 확인되었다(p>0.05). 한편, 닭 가슴살은 조리 온도가 높을수록 지질 산화도가 증가하는 것으로 나타났으며, 수비드(Sous-vide) 조리군의 TBARS 값이 가장 낮았고, 보일링(Boiling) 조리군, 레토르트(Retoring) 조리군의 순으로 낮은 것으로 확인되었다(P<0.01).In the case of the retorting cooking group, a limited effect was confirmed between the ODBG treatment group and the BG treatment group (p>0.05). Meanwhile, the lipid oxidation degree of chicken breast was found to increase as the cooking temperature increased, and the sous-vide cooking group had the lowest TBARS value, followed by the boiling cooking group and the retorting cooking group. It was confirmed to be lower in order of group (P<0.01).

도 3에서 보는 바와 같이 흑마늘은 항산화 효과가 뛰어나다. 흑마늘은 생마늘(Allium sativum)을 특정 기간 동안 온도, 습도 및 기류를 제어하여 제조하므로(Lee et al., 2010; Lei et al., 2012) 신선한 마늘과 비교(Zhang et al., 2015; Kimura et al., 2016)하면 항산화 특성이 매우 높다. 연구에 따르면 흑마늘 추출물은 환원력, DPPH, ABTS, 하이드록실 라디칼 및 아질산염 소거 활성의 상향 조절을 통해 강력한 항산화 특성을 가지고 있어 육류 제품에 직접 들어가 가능성을 발휘하는 것으로 밝혀졌다(Ryu et al., 2017). 지질 산화의 더 강력한 억제 특성과 더 높은 항산화 상태는 식물성 화학물질, 특히 페놀과 플라보노이드의 탁월한 활성으로 이루어진다(Barido et al., 2020).As shown in Figure 3, black garlic has excellent antioxidant effect. Black garlic is manufactured from raw garlic (Allium sativum) by controlling temperature, humidity, and airflow for a specific period of time (Lee et al., 2010; Lei et al., 2012), so it is compared with fresh garlic (Zhang et al., 2015; Kimura et al., 2012). al., 2016), it has very high antioxidant properties. Studies have shown that black garlic extract has strong antioxidant properties through upregulation of reducing power, DPPH, ABTS, hydroxyl radical and nitrite scavenging activity, showing potential in direct application to meat products (Ryu et al., 2017) . Stronger inhibitory properties of lipid oxidation and higher antioxidant status are achieved by the outstanding activity of phytochemicals, especially phenols and flavonoids (Barido et al., 2020).

표 6은 본 발명의 시료에 대한 지방산 조성을 분석한 결과를 보여준다. Table 6 shows the results of analyzing the fatty acid composition of the samples of the present invention.

본 발명의 시료에 포함된 지방산 중 가장 높은 함량으로 확인된 것은 C18:1n9(oleic acid)이었으며 C16:0(palmitic acid), C18:2n6(linoleic acid), C18:0(stearic acid), C16:1(palmitoleic acid) 순으로 높은 함량을 보였다. 또한 본 발명의 시료에는 단일불포화지방산(MUFA)의 비율이 가장 높았고, 포화지방산(SFA), 다가불포화지방산(PUFA)이 그 뒤를 이었다. Among the fatty acids contained in the sample of the present invention, the highest content was confirmed to be C18:1n9 (oleic acid), C16:0 (palmitic acid), C18:2n6 (linoleic acid), C18:0 (stearic acid), C16: 1 (palmitoleic acid) showed the highest content in that order. In addition, the sample of the present invention had the highest proportion of monounsaturated fatty acids (MUFA), followed by saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA).

닭 가슴살의 지방산 함량은 표 5와 같이 조리 방법에 따라 유의한 차이가 있었다(P<0.05). 포화지방산 비율은 요리 온도가 높을수록 유의하게 높았으며 수비드(Sous-vide) 조리군에서 가장 낮았다(P<0.05). 레토르트(Retoring) 조리군과 보일링(Boiling) 조리군의 포화지방산 비율은 차이가 없었다. The fatty acid content of chicken breast differed significantly depending on the cooking method, as shown in Table 5 (P<0.05). The saturated fatty acid ratio was significantly higher as the cooking temperature increased, and was lowest in the sous-vide cooking group (P<0.05). There was no difference in the saturated fatty acid ratio between the retort cooking group and the boiling cooking group.

포화지방산 비율의 증가는 주로 팔미트산과 스테아르산의 농도 증가로 인한 것으로 판단된다. 상기 결과는 거위고기 조리 연구 및 한국식 닭고기 수프에 대한 연구 결과에 의해 지지된다. Werenska et al.(2021)는 고온에 장시간 노출시키는 조리법으로 거위고기를 조리하는 경우 포화지방산 비율의 증가하는 것을 보고한바 있으며 Kim et al., 2020는 고온에 장시간 노출시키는 조리법으로 한국식 닭고기 수프를 조리한 결과 스테아르산이 증가하는 것을 보고한 바 있다. 탄소수가 적은 C14:0(미리스트산)와 같은 포화지방산의 농도는 시료 전반에 걸쳐 낮은 것으로 나타났다. 탄소수가 낮은 미리스트산이 증가하게 되면 콜레스테롤 상승 활성에서의 역할을 하기 때문에 고콜레스테롤 혈증을 유발하게 된다(Werenska et al., 2021). The increase in the saturated fatty acid ratio is believed to be mainly due to the increase in the concentration of palmitic acid and stearic acid. The above results are supported by the results of a study on cooking goose meat and a study on Korean-style chicken soup. Werenska et al. (2021) reported that the ratio of saturated fatty acids increased when goose meat was cooked using a recipe that exposed it to high temperatures for a long time, and Kim et al., 2020 reported that Korean-style chicken soup was cooked using a recipe that exposed it to high temperatures for a long time. As a result, it was reported that stearic acid increased. The concentration of saturated fatty acids such as C14:0 (myristic acid), which has a low carbon number, was found to be low throughout the samples. When myristic acid, which has a low carbon number, increases, it causes hypercholesterolemia because it plays a role in cholesterol-raising activity (Werenska et al., 2021).

총 단일불포화지방산(MUFA) 비율은 수비드(Sous-vide) 조리군(47.35∼48.98%)에서 보일링(Boiling) 조리군(46.38∼47.12%) 및 레토르트(Retoring) 조리군(45.44∼46.96%)보다 현저히 높았다(P<0.05). The total monounsaturated fatty acid (MUFA) ratio was in the sous-vide cooking group (47.35-48.98%), the boiling cooking group (46.38-47.12%), and the retort cooking group (45.44-46.96%). ) was significantly higher than that (P<0.05).

마찬가지로, 총 다가불포화지방산(PUFA) 비율은 레토르트(Retoring) 조리군(18.62∼20.08%)보다 보일링(Boiling) 조리군(21.18∼21.74%)과 수비드(Sous-vide) 조리군(21.12∼22.24%)이 유의하게 더 높았다. Likewise, the total polyunsaturated fatty acid (PUFA) ratio was higher in the boiling cooking group (21.18∼21.74%) and sous-vide cooking group (21.12∼21.12%) than in the retort cooking group (18.62∼20.08%). 22.24%) was significantly higher.

총 다가불포화지방산(PUFA) 비율의 감소는 주로 개별 다가불포화지방산(PUFA), 주로 리놀레산의 비율이 낮았기 때문이다. 단일불포화지방산(MUFA)의 변화는 고온 조리시 올레산의 비율이 감소하여 발생하였다(P<0.05). 닭가슴살을 오븐 건조하여 전처리한 후 흑마늘 추출물을 첨가한 경우 레토르트(Retoring) 조리 방법을 적용하게 되면 리놀레산(Linoleic acid)이 약간 보호되는 것으로 관찰되었다. 리놀레산의 농도는 음성대조군(NC)보다 BG 처리군에서 유의하게 높았다(P<0.05). 본 발명에서는 닭 가슴살 샘플에 BG 추출물을 첨가한 후 지방산 프로파일에 대한 다른 유의한 효과는 관찰되지 않았다(p>0.05). The decrease in the proportion of total polyunsaturated fatty acids (PUFA) was mainly due to the lower proportion of individual polyunsaturated fatty acids (PUFA), mainly linoleic acid. Changes in monounsaturated fatty acids (MUFA) occurred due to a decrease in the proportion of oleic acid during high-temperature cooking (P<0.05). It was observed that when chicken breast was pretreated by oven drying and black garlic extract was added, linoleic acid was slightly protected when the retorting cooking method was applied. The concentration of linoleic acid was significantly higher in the BG treatment group than in the negative control group (NC) (P<0.05). In the present invention, no other significant effects on the fatty acid profile were observed after adding BG extract to chicken breast samples (p>0.05).

수비드(Sous-vide) 조리군에서 단일불포화지방산(MUFA) 및 다가불포화지방산(PUFA) 비율이 상대적으로 높은 것은 진공 포장 및 낮은 온도에서 조리하기 때문에 낮은 수분 증발을 보이기 때문으로 판단된다. 상기 결과는 수비드 조리시 지방산 변화가 조리 전반에 걸쳐 유지되었다는 Dal Bosco et al.(2001) 및 Alfaia et al. (2010)의 결과에 의해 지지된다. The relatively high ratio of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) in the sous-vide cooking group is believed to be due to low moisture evaporation due to vacuum packaging and cooking at low temperatures. The above results are consistent with those of Dal Bosco et al. (2001) and Alfaia et al. (2001), who showed that changes in fatty acids during sous vide cooking were maintained throughout cooking. (2010) is supported by the results.

지방산 조성은 수분손실과 관련이 있다. 수분 손실로 인해 육류 환경 내에서 생화학 반응이 발생하면 지질 산화 정도가 변화되어 지방산 함량이 변경된다. 고온 조리 후 불포화 지방산의 비율이 낮은 이유는 지질 산화율이 높았기 때문이다(Jin et al., 2015). 고온 조리를 하게 되면 탄소 사슬 형성이 변경되고 벤즈알데히드, 2-헵탄 알, 2-노네날 및 2-옥텐알과 같은 다른 화합물이 생성된다(Kim et al., 2020). Fatty acid composition is related to water loss. When biochemical reactions occur within the meat environment due to water loss, the degree of lipid oxidation changes, altering the fatty acid content. The reason the proportion of unsaturated fatty acids was low after high-temperature cooking was because the lipid oxidation rate was high (Jin et al., 2015). High-temperature cooking alters carbon chain formation and generates other compounds such as benzaldehyde, 2-heptanal, 2-nonenal, and 2-octenal (Kim et al., 2020).

불포화 지방산은 불포화도가 높을수록 안정도가 저하되며 다가불포화지방산(PUFA)를 가장 불안정한 지방산으로 만들기 때문에 열에 더 민감하다(Larsen et al., 2010). The stability of unsaturated fatty acids decreases as the degree of unsaturation increases, making polyunsaturated fatty acids (PUFA) the most unstable fatty acids, making them more sensitive to heat (Larsen et al., 2010).

따라서 본 발명의 흑마늘 추출물과 같이 항산화 성분이 풍부한 식자재를 사용하여 조리하게 되면 지질 산화율이 억제되어 불포화 지방산의 보호되어 높은 비율로 존재하는 고기능성 식품을 제조할 수 있게 된다(Castroman et al., 2013; Dominguez et al., 2019; Frasao et al., 2021). Therefore, when cooking with ingredients rich in antioxidants, such as the black garlic extract of the present invention, the lipid oxidation rate is suppressed, making it possible to manufacture highly functional foods with a high proportion of unsaturated fatty acids protected (Castroman et al., 2013 ; Dominguez et al., 2019; Frasao et al., 2021).

3. 결론3. Conclusion

본 발명에서는 흑마늘(BG) 추출물과 다양한 조리 조건을 조합하여 사용한 결과 닭 가슴살의 물리화학적, 항산화 및 지방산 조성이 변화하는 것을 확인하였다. In the present invention, it was confirmed that the physicochemical, antioxidant and fatty acid composition of chicken breast changed as a result of using black garlic (BG) extract in combination with various cooking conditions.

흑마늘 추출물을 처리한 닭 가슴살 시료의 항산화 상태는 음성 대조군(NC)에 비해 DPPH assay에서 1.83~11.59배, ABTS assay에서 1.71~2.37배 높았다. The antioxidant status of chicken breast samples treated with black garlic extract was 1.83 to 11.59 times higher in the DPPH assay and 1.71 to 2.37 times higher in the ABTS assay compared to the negative control (NC).

신선한 흑마늘 추출물을 조리한 BG 처리군보다 오븐 건조 전처리를 수행한 흑마늘 추출물을 처리한 ODBG 처리군에서 지질산화가 더 효과적으로 억제되었다. 또한, 말토덱스트린으로 캡슐화한 흑마늘 추출물을 처리한 MEBG 처리군의 경우 고온 조리 시 흑마늘에 의한 항산화 화합물의 보호 효과를 향상시키므로 가장 우수한 항산화 효과를 보이는 것으로 확인되었다. Lipid oxidation was inhibited more effectively in the ODBG treatment group treated with oven-dried black garlic extract than in the BG treatment group with cooked fresh black garlic extract. In addition, the MEBG-treated group treated with maltodextrin-encapsulated black garlic extract was confirmed to have the best antioxidant effect because it improved the protective effect of antioxidant compounds by black garlic when cooked at high temperatures.

포화지방산(SFA) 비율의 증가는 주로 팔미트산과 스테아르산의 농도 증가로 인한 고온 조리의 결과인 것으로 확인되었다. 수비드(Sous-vide) 조리군에서 단일불포화지방산(MUFA) 및 다가불포화지방산(PUFA) 비율이 더 높게 유지되는 것은 수분 손실이 적고 지질 산화 속도가 억제되기 때문으로 판단된다. It was confirmed that the increase in saturated fatty acid (SFA) ratio was mainly the result of high-temperature cooking due to increased concentrations of palmitic acid and stearic acid. It is believed that the reason that the ratio of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) was maintained higher in the sous-vide cooking group was because moisture loss was less and the lipid oxidation rate was suppressed.

본 발명의 전체 시료에 걸쳐 레토르트(Retoring) 조리군에서 리놀레산이 약간 더 유지되는 것으로 나타났다. It was found that slightly more linoleic acid was retained in the retort cooking group across all samples of the present invention.

흑마늘 추출물을 처리하게 되면 가열손실을 낮추고 보수력을 증가시키는 긍정적인 효과가 있는 것으로 확인되었다. It was confirmed that treatment with black garlic extract had a positive effect of lowering heating loss and increasing water holding capacity.

조리방법 측면에서 본 연구의 수비드(SV) 조건에서 조리한 육류 시료는 가열손실이 낮고 보수력이 높아 조리된 육류가 더 밝은 색을 띠는 것으로 나타났다. 조리 온도가 높을수록 닭 가슴살의 항산화 상태는 높아지지만 보수력은 감소하여 수분과 조리 수율이 낮아지는 경향이 있다. In terms of cooking method, meat samples cooked under sous vide (SV) conditions in this study showed lower heating loss and higher water holding capacity, so the cooked meat had a lighter color. The higher the cooking temperature, the higher the antioxidant status of chicken breast, but the water holding capacity decreases, which tends to lower moisture and cooking yield.

정리하면 적절한 조리 방법과 함께 오븐에서 건조된 흑마늘 추출물을 캡슐 형태로 첨가하는 것이 닭 가슴살의 기능성을 향상시키는 우수한 방안이 될 수 있음을 시사한다. In summary, this suggests that adding oven-dried black garlic extract in capsule form along with an appropriate cooking method can be an excellent way to improve the functionality of chicken breast.

본 명세서에서 설명된 구체적인 실시예는 본 발명의 바람직한 구현예 또는 예시를 대표하는 의미이며, 이에 의해 본 발명의 범위가 한정되지는 않는다. 본 발명의 변형과 다른 용도가 본 명세서 특허청구범위에 기재된 발명의 범위로부터 벗어나지 않는다는 것은 당업자에게 명백하다. The specific embodiments described in this specification are meant to represent preferred embodiments or examples of the present invention, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that modifications and other uses of the present invention do not depart from the scope of the invention as set forth in the claims herein.

Claims (3)

캡슐화 흑마늘 추출물을 제조하는 제 1 단계; 및
상기 캡슐화 추출물과 닭고기를 혼합하여 온도 121℃에서 압력 1.5kgf/㎝2에서 조리하는 제 2 단계;
를 포함하는 항산화 효과가 향상된 닭고기 레트로트 조리방법.
A first step of preparing encapsulated black garlic extract; and
A second step of mixing the encapsulated extract with chicken and cooking it at a temperature of 121°C and a pressure of 1.5kgf/cm 2 ;
Chicken retro cooking method with improved antioxidant effect including.
제 1 항에 있어서, 상기 캡슐화 흑마늘 추출물은 말토덱스트린(maltodextrin)을 포함하는 캡슐화 혼합물을 이용하여 흑마늘 추출물을 캡슐화한 것을 특징으로 하는 항산화 효과가 향상된 닭고기 레트로트 조리방법.
The chicken retro cooking method with improved antioxidant effect according to claim 1, wherein the encapsulated black garlic extract is encapsulated using an encapsulation mixture containing maltodextrin.
제 2 항에 있어서, 상기 캡슐화 흑마늘 추출물은
흑마늘의 껍질을 제거하고 물을 첨가한 후 푸드 블렌더로 분쇄하여 흑마늘 분쇄물을 제조하는 제 1 단계;
상기 흑마늘 분쇄물을 70 내지 90℃에서 40 내지 80분 동안 가열하여 흑마늘 열수추출물을 제조하는 제 2 단계;
상기 흑마늘 열수추출물을 냉각시킨 후 고액 분리하여 흑마늘 열수 추출물 여액을 수득하는 제 3 단계;
상기 흑마늘 열수 추출물 여액과 상기 캡슐화 혼합물을 혼합하고 균질기를 이용하여 흑마늘-캡슐화 혼합물을 제조하는 제 4 단계; 및
상기 흑마늘-캡슐화 혼합물을 동결건조하여 캡슐화 흑마늘 추출물을 제조하는 제 5 단계;
를 포함하는 방법으로 제조한 것을 특징으로 하는 항산화 효과가 향상된 닭고기 레트로트 조리방법.
The method of claim 2, wherein the encapsulated black garlic extract is
A first step of preparing ground black garlic by removing the skin of black garlic, adding water, and pulverizing it with a food blender;
A second step of preparing a black garlic hot water extract by heating the black garlic powder at 70 to 90° C. for 40 to 80 minutes;
A third step of cooling the black garlic hot water extract and then separating solid and liquid to obtain a black garlic hot water extract filtrate;
A fourth step of mixing the black garlic hot water extract filtrate and the encapsulation mixture and using a homogenizer to prepare the black garlic-encapsulation mixture; and
A fifth step of producing encapsulated black garlic extract by freeze-drying the black garlic-encapsulation mixture;
A chicken retro cooking method with improved antioxidant effect, characterized in that it is manufactured by a method comprising.
KR1020220018701A 2022-02-14 2022-02-14 Retroting Cooking Method for Chicken Meat With Enhanced Antioxidant Effect KR102679301B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220018701A KR102679301B1 (en) 2022-02-14 2022-02-14 Retroting Cooking Method for Chicken Meat With Enhanced Antioxidant Effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220018701A KR102679301B1 (en) 2022-02-14 2022-02-14 Retroting Cooking Method for Chicken Meat With Enhanced Antioxidant Effect

Publications (2)

Publication Number Publication Date
KR20230122265A KR20230122265A (en) 2023-08-22
KR102679301B1 true KR102679301B1 (en) 2024-06-27

Family

ID=87799999

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220018701A KR102679301B1 (en) 2022-02-14 2022-02-14 Retroting Cooking Method for Chicken Meat With Enhanced Antioxidant Effect

Country Status (1)

Country Link
KR (1) KR102679301B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234944A (en) * 1975-09-13 1977-03-17 Yoshiho Tanaka Method of producing chlorella contained fatty food
KR101148472B1 (en) * 2008-12-17 2012-05-21 김병하 The black garlic powder and its a method, a use
KR101725594B1 (en) * 2014-08-20 2017-04-11 순천대학교 산학협력단 The cheese added with microencapsulated tomato extract powder and manufacturing method thereof

Also Published As

Publication number Publication date
KR20230122265A (en) 2023-08-22

Similar Documents

Publication Publication Date Title
Santos-Sánchez et al. Natural antioxidant extracts as food preservatives
Shobana et al. Antioxidant activity of selected Indian spices
Shah et al. Plant extracts as natural antioxidants in meat and meat products
Kim et al. The effect of garlic or onion marinade on the lipid oxidation and meat quality of pork during cold storage
Barido et al. Combined effects of processing method and black garlic extract on quality characteristics, antioxidative, and fatty acid profile of chicken breast
KR20180125233A (en) Sauce composition for braised spicy chicken with vegetables having enhanced sensuality, safety and functionality, comprising the heat-treated garlic, heat-treated onion, apple and oriental herbs, and producing method thereof
Ratseewo et al. Changes in antioxidant properties and volatile compounds of kaffir lime leaf as affected by cooking processes
KR100757770B1 (en) Seasoned laver to fortify its functionality and to extend its distribution period and Preparation method thereof
Barido et al. The effect of pre-treated black garlic extracts on the antioxidative status and quality characteristics of Korean ginseng chicken soup (Samgyetang)
Bolger et al. Effect of mode of addition of flaxseed oil on the quality characteristics of chicken sausage containing vitamin E and omega 3 fatty acids at levels to support a health claim
KR102361283B1 (en) Manufacturing method of herb rice abundant nutrition and aroma using Ligularia stenocephala
KR102679301B1 (en) Retroting Cooking Method for Chicken Meat With Enhanced Antioxidant Effect
KR101703411B1 (en) Souce composition comprising red crab steaming liquid and method thereof
KR20170134953A (en) Method of manufacturing the turmeric herbal samgyetang
Yun et al. Optimized processing of chicken sausage prepared with turmeric (Curcuma longa L.)
Alabdulkarim et al. Effect of frying oils on quality characteristics of frozen chicken patties incorporated with honey
Kaur et al. Effect of grape seed extract on the physicochemical and sensory properties of chicken nuggets
Liu et al. Antioxidant effects of Stevia rebaudiana leaf and stem extracts on lipid oxidation in salted Pacific saury (Cololabis saira) during processing
Sriket et al. Effects of Ya-nang leaves (Tiliacora triandra) powder on properties and oxidative stability of tilapia emulsion sausage during storage.
Palamutoğlu et al. Antioxidant activity of galangal powder and the effect of addition on some quality characteristics of meatball
KR101493945B1 (en) Dried radish slices kimchi using flying fish roe and manufacturing method thereof
CN112753996A (en) Minced garlic chilli sauce and preparation method thereof
Kumar et al. Effect of Plectranthus amboinicus leaf extract on the quality attributes of microencapsulated fish oil fortified soup powder
Bobko et al. Effect of grape seed extract on quality of raw-cooked meat products.
Mahfouz et al. The influence of adding turnip roots (Brassica rapa var. rapa L.) powder on the antioxidant activity and acrylamide content in some fried foods

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right