KR102677572B1 - A composition comprising an extract of Alpinia officinarum for treating and preventing skeleton muscle-related disorder - Google Patents

A composition comprising an extract of Alpinia officinarum for treating and preventing skeleton muscle-related disorder Download PDF

Info

Publication number
KR102677572B1
KR102677572B1 KR1020210129274A KR20210129274A KR102677572B1 KR 102677572 B1 KR102677572 B1 KR 102677572B1 KR 1020210129274 A KR1020210129274 A KR 1020210129274A KR 20210129274 A KR20210129274 A KR 20210129274A KR 102677572 B1 KR102677572 B1 KR 102677572B1
Authority
KR
South Korea
Prior art keywords
muscle
extract
delete delete
compound
mhc
Prior art date
Application number
KR1020210129274A
Other languages
Korean (ko)
Other versions
KR20230046149A (en
Inventor
류재하
이혜진
Original Assignee
숙명여자대학교산학협력단
Filing date
Publication date
Application filed by 숙명여자대학교산학협력단 filed Critical 숙명여자대학교산학협력단
Priority to KR1020210129274A priority Critical patent/KR102677572B1/en
Publication of KR20230046149A publication Critical patent/KR20230046149A/en
Application granted granted Critical
Publication of KR102677572B1 publication Critical patent/KR102677572B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/906Zingiberaceae (Ginger family)
    • A61K36/9062Alpinia, e.g. red ginger or galangal
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/316Foods, ingredients or supplements having a functional effect on health having an effect on regeneration or building of ligaments or muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Abstract

본 발명은 양강 추출물 또는 이로부터 분리된 화합물들을 유효성분으로 함유하는 골격근 근육관련 질환의 예방 및 치료용 조성물에 대한 것이다. 본 발명의 양강 추출물 및 화합물을 대상으로 (1) 근원세포 분화(myoblast differentiation) 에 미치는 영향실험 (실험예 1 및 5)을 통하여 시료 처치에 의하여 실린더 형(cylinder-shaped) 다핵성 근관세포(multinucleated myotubes)로 분화가 농도의존적으로 유도되었고, 다핵성 근관세포 (multinucleated myotubes)의 수가 증가함을 확인하였으며, (2) 근원세포 분화 촉진에 대한 p38 MAPK 신호전달 체계 기전연구 실험(실험예 2); (3) 근육 소실 시험관 내(in vitro) 모델에서의 양강 추출물 및 이로부터 분리된 화합물들의 근육손실 억제 실험 (실험예 3, 4 및 6)을 통하여, 본 발명의 시료들이 근원 세포 분화 촉진, 근관세포 보호 효능을 가짐을 확인하여 긴장감퇴증(atony), 근위축증(muscular atrophy), 근이영양증(muscular dystrophy), 근육 퇴화, 근경직증, 근위축성 축삭경화증, 근무력증, 악액질 (cachexia) 및 근육감소증(sarcopenia) 등의 골격근 근육 질환 치료제 또는 보조제로 사용 가능함을 확인함으로써, 상기 조성물을 골격근 근육질환의 예방 및 치료용 약학조성물, 건강기능식품 및 건강보조식품 등으로 유용함을 확인하였다.The present invention relates to a composition for preventing and treating skeletal muscle-related diseases containing galangal extract or compounds isolated therefrom as active ingredients. Through (1) an effect experiment (Experimental Examples 1 and 5) on myoblast differentiation using the galangal extract and compounds of the present invention, cylinder-shaped multinucleated myotube cells (multinucleated) were obtained by treatment of the samples. It was confirmed that differentiation into myotubes was induced in a concentration-dependent manner, and the number of multinucleated myotubes increased. (2) Mechanism study of the p38 MAPK signaling system for promoting myoblast differentiation (Experimental Example 2); (3) Through experiments on the inhibition of muscle loss with the galangal extract and the compounds isolated therefrom in an in vitro model of muscle loss (Experimental Examples 3, 4, and 6), it was found that the samples of the present invention promoted myogenic cell differentiation and myotubes. Confirmed to have cell protective effects, it has been confirmed to treat atony, muscular atrophy, muscular dystrophy, muscle degeneration, muscle rigidity, amyotrophic axonal sclerosis, myasthenia gravis, cachexia, and sarcopenia. By confirming that it can be used as a treatment or supplement for skeletal muscle diseases, it was confirmed that the composition is useful as a pharmaceutical composition for preventing and treating skeletal muscle diseases, health functional food, and health supplements.

Description

양강 추출물을 함유하는 골격근 근육관련 질환의 예방 및 치료용 조성물 {A composition comprising an extract of Alpinia officinarum for treating and preventing skeleton muscle-related disorder}A composition comprising an extract of Alpinia officinarum for treating and preventing skeletal muscle-related disorder}

본 발명은 양강 추출물 또는 이로부터 분리된 화합물을 함유하는 골격근 근육관련 질환의 예방 및 치료용 조성물에 관한 것이다.The present invention relates to a composition for preventing and treating skeletal muscle-related diseases containing galangal extract or a compound isolated therefrom.

[문헌 1 ] J Cachexia Sarcopenia Muscle. 2015, 6, 197[Document 1] J Cachexia Sarcopenia Muscle. 2015, 6, 197

[문헌 2 ] Pharmacol Res. 2015, 99, 86)[Document 2] Pharmacol Res. 2015, 99 , 86)

[문헌 3 ] Pharmacol. Res. 2015, 99, 86-100[Document 3] Pharmacol. Res. 2015, 99, 86-100

[문헌 4 ] The Korea Journal of Sports Science 2011, 30, 1551[Document 4] The Korea Journal of Sports Science 2011, 30, 1551

[문헌 5 ] Cell Mol Life Sci 70: 4117-4130, 2013[Document 5] Cell Mol Life Sci 70: 4117-4130, 2013

[문헌 6 ] J. Biol. Chem. 2002, 277, 49831 [Document 6] J. Biol. Chem. 2002, 277, 49831

[문헌 7 ] Korean J Pharmacogn. 2006, 37, 56-59[Document 7] Korean J Pharmacogn. 2006, 37 , 56-59

[문헌 8 ] Chem. Pharm. Bull. 1982, 30, 2279-2282[Document 8] Chem. Pharm. Bull. 1982, 30 , 2279-2282

[문헌 9 ] J Med. Food. 2009, 13, 1235[Document 9] J Med. Food. 2009, 13 , 1235

[문헌 10 ] J Med. Food. 2012, 15, 2286[Document 10] J Med. Food. 2012, 15 , 2286

[문헌 11 ] J Nat. Prod. 2002, 65, 1315-1318[Document 11] J Nat. Prod. 2002, 65 , 1315-1318

[문헌 12 ] Planta Med. 2006, 72, 68-71[Document 12] Planta Med . 2006, 72 , 68-71

[문헌 13] Fitoterapia 2008, 79, 27-31[Document 13] Fitoterapia 2008, 79 , 27-31

[문헌 14] J Ethnopharmacol. 2018, 224, 45-62.[Document 14] J Ethnopharmacol . 2018, 224, 45-62.

[문헌 15] Anticancer Res. 2009, 29, 4981-4988;[Document 15] Anticancer Res. 2009, 29, 4981-4988;

[문헌 16] Chem. Pharm. Bull. 1981, 29: 2383-2385[Document 16] Chem. Pharm. Bull. 1981, 29: 2383-2385

[문헌 17] Chem. Pharm. Bull. 1985, 33, 4889-4893[Document 17] Chem. Pharm. Bull . 1985, 33, 4889-4893

[문헌 18] Arch. Pharmacal Res. 2100, 34: 1289-1296[Document 18] Arch. Pharmacal Res. 2100, 34: 1289-1296

[문헌 19] Chem. Pharm. Bull. 1982, 30: 2279-2282[Document 19] Chem. Pharm. Bull. 1982, 30: 2279-2282

[문헌 20] Planta Med. 2008, 74: 427-431[Document 20] Planta Med. 2008, 74: 427-431

[문헌 21] Magn. Reson. Chem. 2001, 39, 374-380[Document 21] Magn. Reson. Chem. 2001, 39, 374-380

[문헌 22] Chem. Biol. Interact. 2016, 248, 60[Document 22] Chem. Biol. Interact. 2016, 248, 60

[문헌 23] Trends Cell Biol. 2006, 16, 36[Document 23] Trends Cell Biol . 2006, 16 , 36

[문헌 24] Mol. Biol. Cell. 2010, 21, 2399[Document 24] Mol. Biol. Cell. 2010, 21, 2399

[문헌 25] Int. J. Mol. Med. 2015, 36, 29-42 [Document 25] Int. J. Mol. Med. 2015, 36 , 29-42

[문헌 26] Biomed. Pharm. 2017, 95, 1486[Document 26] Biomed. Pharm. 2017, 95 , 1486

본 발명은 양강 추출물 또는 이로부터 분리된 화합물을 함유하는 골격근 근육관련 질환의 예방 및 치료용 조성물에 관한 것이다.The present invention relates to a composition for preventing and treating skeletal muscle-related diseases containing galangal extract or a compound isolated therefrom.

근육은 구조나 기능면에서 다음 3종류로 나눌 수 있는데, (1) 손 ·발 ·가슴 ·배 ·등 따위의 피부 바로 밑에 있으면서 뼈와 뼈 사이에 붙어 있는 골격근(骨格筋), (2) 심장벽을 이루고 있는 심근(心筋), 및 (3) 위 ·방광 ·자궁 등의 벽을 이루고 있는 내장근(內臟筋) 등이다 ([네이버 지식백과] 근육의 종류 (두산백과))Muscles can be divided into the following three types in terms of structure and function: (1) skeletal muscles located directly under the skin in the hands, feet, chest, stomach, and back and attached between bones, (2) heart. These include the myocardium, which forms the wall, and (3) the internal muscles, which form the walls of the stomach, bladder, uterus, etc. ([Naver Knowledge Encyclopedia] Types of Muscles (Doosan Encyclopedia))

근육재생(Muscle regeneration)은 긴장감퇴증(atony), 근위축증(muscular atrophy), 근이영양증(muscular dystrophy), 근육 퇴화, 근경직증, 근위축성 축삭경화증, 근무력증, 악액질 (cachexia) 및 노인성근육감소증(sarcopenia)과 같은 골격근 퇴행 질환을 극복하는 목적으로 주목되어 왔다. (J Cachexia Sarcopenia Muscle. 2015, 6, 197)Muscle regeneration can be used to treat atony, muscular atrophy, muscular dystrophy, muscle degeneration, muscle rigidity, amyotrophic axonal sclerosis, myasthenia gravis, cachexia, and sarcopenia. It has been attracting attention for the purpose of overcoming skeletal muscle degenerative diseases such as. ( J Cachexia Sarcopenia Muscle. 2015, 6, 197)

근육의 진행성 약화 및 기능 소실은 삶의 질을 위협하고 암환자의 생존율을 저하시킨다. 암환자 중 30% 이상이 근육 소실에 의한 체중 감소로 인하여 사망한다. 이러한 근육 기능 소실은 미오-단백질(myo-proteins) 변성 및 근섬유의 단면적(muscle fiber cross-sectional area), 근 강도(muscle strength), 근섬유 숫자(nuclear number of myofibers) 및 인슐린 반응성(insulin responsiveness) 감소 등을 공통적으로 동반한다.Progressive muscle weakness and loss of function threatens quality of life and reduces the survival rate of cancer patients. More than 30% of cancer patients die due to weight loss due to muscle loss. This loss of muscle function is caused by degeneration of myo-proteins and decreases in muscle fiber cross-sectional area, muscle strength, nuclear number of myofibers, and insulin responsiveness. It is commonly accompanied by etc.

암 이외에도 근육 손실은 노화의 진행과 다양한 만성 질환에 의해서도 야기될 수 있다. 노화가 진행됨에 따라, 새롭게 생성되는 골격근의 일부가 섬유 조직으로 대체되면서 인체의 골격 근육량 및 강도가 감소되는 근육감소증이 나타난다. 또한, 고혈압, 내당능 장애 (impaired glucose tolerance) 및 당뇨, 비만, 이상지질혈증, 아테롬성 경화증 및 심혈관 질환 등 연령이 증가할수록 발병률이 증가되는 만성 질환에서도 근육 손실이 나타난다. (Pharmacol Res. 2015, 99, 86).In addition to cancer, muscle loss can also be caused by the aging process and various chronic diseases. As aging progresses, part of the newly created skeletal muscle is replaced by fibrous tissue, resulting in sarcopenia, a decrease in the body's skeletal muscle mass and strength. Additionally, muscle loss also occurs in chronic diseases whose incidence increases with age, such as high blood pressure, impaired glucose tolerance, diabetes, obesity, dyslipidemia, atherosclerosis, and cardiovascular disease. ( Pharmacol Res. 2015 , 99 , 86).

근육 퇴행증치료 전략은 염증성 분자 및 미오스타틴(myostatin)의 억제 또는 시클릭(cyclic) AMP, PGC (proliferator-activated receptor gamma coactivator)-1α 및 인슐린 신호 전달계의 활성화 등이 있다. 다수의 잠재적 약물들이 개발되었음에도 불구하고, 미국 식약청에서 승인된 근위축증 치료제로는 메게스테롤 아세테이트(megestrol acetate)가 유일하다. 근육퇴행증 치료 및 예방을 위한 약물들은 근육 단백질 이화작용(protein catabolism)을 저해하거나 또는 위성세포 기능(satellite cell functions)을 증진시키는 활성을 나타낸다. (Pharmacol. Res. 2015, 99, 86-100).Muscle dystrophy treatment strategies include inhibition of inflammatory molecules and myostatin or activation of cyclic AMP, proliferator-activated receptor gamma coactivator (PGC)-1α, and insulin signaling system. Although many potential drugs have been developed, megestrol acetate is the only treatment for muscular dystrophy approved by the U.S. Food and Drug Administration. Drugs for the treatment and prevention of muscle dystrophy have the activity of inhibiting muscle protein catabolism or promoting satellite cell functions. ( Pharmacol. Res. 2015 , 99, 86-100).

근육에서는 동화작용과 이화작용이 균형을 이루며 근육 생성을 조절하는데, 이 때 근육 세포 내에서는 이와 관련하여 여러 생체 신호전달 과정이 조절된다. 근육 단백질의 분해보다 합성을 유도하는 신호전달 반응이 활성화 될 경우, 근육 단백질의 합성이 증가되어 근육 크기 증가(hypertrophy, 근비대)나 근섬유 수 증가 (hyperplasia)를 유도하여 과도한 근육 생성을 초래한다 (The Korea Journal of Sports Science 2011, 30, 1551). In muscles, anabolism and catabolism are balanced to regulate muscle production, and at this time, various biological signaling processes are regulated in relation to this within muscle cells. When a signaling reaction that induces the synthesis rather than the breakdown of muscle proteins is activated, the synthesis of muscle proteins increases, leading to an increase in muscle size (hypertrophy) or an increase in the number of muscle fibers (hyperplasia), resulting in excessive muscle production (The Korea Journal of Sports Science 2011, 30, 1551).

근원세포 세포의 분화와 근육 형성은 다양한 인자들에 의해 조절된다 (cell Mol Life Sci 70: 4117-4130, 2013). 그 중, myoD는 근육 분화와 관련된 특이적 유전자의 발현을 개시하여, 중간엽줄기세포(mesenchymal stem cell)가 근원세포(myoblast)로 분화하는 것을 유도한다. MyoD에 의해 조절되는 myogenin과 MHC(myosin heavy chain) 은 근원세포의 융합(fusion)을 유도하여, 근관세포 (myotube)와 근섬유가 형성되도록 한다. 이 같은 과정을 통해 형성된 근섬유는 다발을 이루어 최종적으로 근육을 형성하게 된다 (Cell Mol Life Sci 70: 4117-4130, 2013)Myoblast cell differentiation and muscle formation are regulated by various factors (cell Mol Life Sci 70: 4117-4130, 2013). Among them, myoD initiates the expression of specific genes related to muscle differentiation and induces mesenchymal stem cells to differentiate into myoblasts. Myogenin and MHC (myosin heavy chain) regulated by MyoD induce fusion of myogenic cells, leading to the formation of myotubes and muscle fibers. Muscle fibers formed through this process form bundles and ultimately form muscles (Cell Mol Life Sci 70: 4117-4130, 2013)

정상 조건 하에서 원시 줄기세포 (primary stem cell)로서의 휴지상태의 위성세포(quiescent satellite cell)는 연속적으로 증식 및 분화를 진행한다. 손상된 근육은 근원세포로 지칭되는 근원성 위성세포(myogenic satellite cells) 증식을 활성화하는 다양한 성장인자를 분비한다. 활성화된 근원세포는 Myo D, Myf(myogenic factor)-5, myogenin 및 Mrf-4 과 같은 근원성 인자 (myogenic factor)를 유도한다. MyoD 및 Myf-5 는 근원 세포 계열 (myogenic lineage)에 특이적으로 발현되는 전사 인자로써, 근원세포 분화 개시에 중요한 역할을 수행한다. (Langley, B.; Thomas, M.; Bishop, A.; Sharma, M.; Gilmour, S.; Kambadur, R. J. Biol. Chem. 2002, 277, 49831). 특히, Myo D는 E 단백질, Mef-2 계열 단백질 및 전사 보조인자등의 비근육성 특이 인자와의 결합을 통하여 MHC 및 myogenin과 같은 근원성 단백질 발현을 유도한다. Under normal conditions, quiescent satellite cells, known as primary stem cells, continuously proliferate and differentiate. Damaged muscles secrete various growth factors that activate the proliferation of myogenic satellite cells, referred to as myoblasts. Activated myogenic cells induce myogenic factors such as Myo D, Myf (myogenic factor)-5, myogenin, and Mrf-4. MyoD and Myf-5 are transcription factors specifically expressed in the myogenic lineage and play an important role in the initiation of myogenic cell differentiation. (Langley, B.; Thomas, M.; Bishop, A.; Sharma, M.; Gilmour, S.; Kambadur, R. J. Biol. Chem. 2002, 277, 49831). In particular, Myo D induces the expression of myogenic proteins such as MHC and myogenin through binding to non-muscle specific factors such as E protein, Mef-2 family proteins, and transcription cofactors.

양강(Alpinia officinarum)은 생강과(Zingiberaceae)에 속한 다년생 초본 식물의 근경으로서, 고량강이라고 불리기도 한다. 뿌리, 줄기 부분이 약재로 사용되며, 1,8-cinerol, methyl-cinnamate, eugenol, pinene, α-cadinene 등의 정유 성분과 플라보노이드로서 galangin, kampferide, 그리고 다수의 다이아릴헵타노이드 화합물이 함유되어 있다(본초학교수 2000). 동아시아에서는 전통적으로 위완냉통, 토사곽란, 복통 등의 위장 계열의 질환이나 류마티스성 질환에 사용되어 왔다(임종필 2003). 양강의 약리 작용으로는 혈압강하 작용(Kim, Yoo et al. 2006), 프로스타글란딘 억제 효과(Kiuchi, Shibuya et al. 1982), 항비만 작용(Xia, Yu et al. 2010; Jung, Jang et al. 2012), 진토 작용(Shin, Kinoshita et al. 2002), 항염증 작용(Lee, Kim et al. 2006), 항암 작용(An, Zou et al. 2008) 등이 있다. German Commission E Monographs에는 식욕감퇴와 소화 불량에 사용되어지는 것으로 기재되어 있으며, 미국의 FDA에서는 ‘generally regarded as safe (21CFR section 182. 10, 182. 20)' 로 규정하고 있다. Alpinia officinarum is a rhizome of a perennial herbaceous plant belonging to the Zingiberaceae family, and is also called Goryanggang. The roots and stems are used as medicinal ingredients, and contain essential oil components such as 1,8-cinerol, methyl-cinnamate, eugenol, pinene, and α-cadinene, as well as flavonoids such as galangin, kampferide, and many diarylheptanoid compounds. (Professor Bonchohak 2000). In East Asia, it has traditionally been used for gastrointestinal diseases such as cold stomach pain, vomiting, and abdominal pain, as well as rheumatic diseases (Jong-pil Lim, 2003). Pharmacological effects of Yang Gang include blood pressure lowering (Kim, Yoo et al. 2006), prostaglandin inhibition (Kiuchi, Shibuya et al. 1982), and anti-obesity (Xia, Yu et al. 2010; Jung, Jang et al. 2012), anti-emetic action (Shin, Kinoshita et al. 2002), anti-inflammatory action (Lee, Kim et al. 2006), and anti-cancer action (An, Zou et al. 2008). The German Commission E Monographs list it as being used for loss of appetite and indigestion, and the US FDA defines it as ‘generally regarded as safe (21CFR sections 182. 10, 182. 20).’

특히 양강에서 분리한 다이아릴헵타노이드들이 항염증 (Abubakar, I. B., et al. 2018) 활성과 암세포 주기 억제와 세포 자살을 유도함으로써 항암 활성을 나타내는 것이 보고되었다(Tabata, Yamazaki et al. 2009). In particular, it has been reported that diarylheptanoids isolated from Yanggang exhibit anti-inflammatory (Abubakar, I. B., et al. 2018) activity and anti-cancer activity by inhibiting the cancer cell cycle and inducing apoptosis (Tabata, Yamazaki et al. 2009).

그러나, 상기 문헌의 어디에도 양강 추출물을 유효성분으로 함유하는 골격근 근육관련 질환의 치료 효과에 대하여 개시되거나 교시된 바가 없다. However, nowhere in the above literature is there any disclosure or teaching about the therapeutic effect of skeletal muscle-related diseases containing galangal extract as an active ingredient.

이에 본 발명자들은 골격근 근육관련 질환에 효과적인 예방 및 치료제를 개발하기 위해 양강 추출물 및 화합물을 대상으로 (1) 근원세포 분화(myoblast differentiation) 에 미치는 영향실험 (실험예 1 및 5)을 통하여 시료 처치에 의하여 실린더 형(cylinder-shaped) 다핵성 근관세포(multinucleated myotubes)로 분화가 농도의존적으로 유도되었고, 다핵성 근관세포 (multinucleated myotubes)의 수가 증가함을 확인하였으며, (2) 근원세포 분화 촉진에 대한 p38 MAPK 신호전달 체계 기전연구 실험 (실험예 2); (3) 근육 소실 시험관 내(in vitro) 모델에서의 양강 추출물 및 이로부터 분리된 화합물들의 근육손실 억제 실험 (실험예 3, 4 및 6)을 통하여, 본 발명의 시료들이 근육세포로의 분화를 촉진할 뿐 아니라, 근육손상 모델에서 근육의 소실을 억제함을 확인하여. 양강추출물 및 양강 유래 화합물들이 골격근 근육 질환 치료제 또는 보조제로 사용 가능함을 확인하고 본 발명을 완성하였다.Accordingly, in order to develop an effective preventive and therapeutic agent for skeletal muscle-related diseases, the present inventors conducted (1) experiments on the effect of extracts and compounds on myoblast differentiation (Experimental Examples 1 and 5) to treat samples. Differentiation into cylinder-shaped multinucleated myotubes was induced in a concentration-dependent manner, and the number of multinucleated myotubes was confirmed to increase. (2) Promoting myoblast differentiation p38 MAPK signaling system mechanism research experiment (Experimental Example 2); (3) Through experiments on the inhibition of muscle loss with the galangal extract and compounds isolated therefrom in an in vitro model of muscle loss (Experimental Examples 3, 4, and 6), it was found that the samples of the present invention differentiated into muscle cells. It was confirmed that it not only promotes but also inhibits muscle loss in a muscle injury model. The present invention was completed after confirming that galangal extract and galangal-derived compounds can be used as a treatment or adjuvant for skeletal muscle diseases.

본 발명의 과제는 양강 추출물 또는 이로부터 분리된 화합물을 유효성분으로 함유하는 골격근 근육관련 질환의 예방 및 치료용 약학 조성물을 제공한다.The object of the present invention is to provide a pharmaceutical composition for the prevention and treatment of skeletal muscle-related diseases, containing galangal extract or a compound isolated therefrom as an active ingredient.

또한 본 발명은 양강 추출물 또는 이로부터 분리된 화합물을 유효성분으로 함유하는 골격근 근육관련 질환의 예방 및 개선용 건강기능식품을 제공한다.In addition, the present invention provides a health functional food for preventing and improving skeletal muscle-related diseases containing galangal extract or a compound isolated therefrom as an active ingredient.

본원에서 정의되는 양강(고량강 또는 신강으로 지칭)은 알피니아 오피시나룸 (Alpinia officinarum), 알피니아 갈랑가(Alpinia galanga), 갈랑가(Galanga), 갈랑갈(Galangal) 등의 동속식물의 근경, 뿌리, 줄기, 전초 잎, 바람직하게는, 근경, 뿌리 또는 전초를 포함함을 특징으로 한다.Yanggang (referred to as Goryanggang or Xinjiang), as defined herein, is the root of congeners such as Alpinia officinarum, Alpinia galanga, Galanga, and Galangal. , roots, stems, sentinel leaves, preferably rhizomes, roots or sentinels.

본원에서 정의되는 양강 추출물은 양강 조추출물, 양강 조추출물로부터 정제된 극성용매 가용 추출물 또는 비극성용매 가용 추출물을 포함함을 특징으로 한다.The Yangjiang extract as defined herein is characterized as comprising a Yangjiang crude extract, a polar solvent-soluble extract purified from the Yangjiang crude extract, or a non-polar solvent-soluble extract.

본원에서 정의되는 조추출물은 정제수를 포함한 물, 메탄올, 에탄올, 부탄올 등의 탄소수 1 내지 4의 저급알코올 또는 이들의 혼합용매로부터 선택된 용매, 바람직하게는 물 또는 물 및 에탄올 혼합용매, 보다 바람직하게는 에탄올에 가용한 추출물임을 특징으로 한다.The crude extract defined herein is a solvent selected from water including purified water, lower alcohols with 1 to 4 carbon atoms such as methanol, ethanol, butanol, or mixed solvents thereof, preferably water or a mixed solvent of water and ethanol, more preferably It is characterized as an extract soluble in ethanol.

본원에서 정의되는 비극성용매 가용 추출 분획물은 본원의 조추출물로부터 헥산, 메틸렌 클로라이드, 클로로포름, 또는 에틸아세테이트 용매에 가용한 추출물만을 정제한 비극성 용매에 가용한 추출 분획물들을 포함한다.Non-polar solvent-soluble extract fractions, as defined herein, include non-polar solvent-soluble extract fractions obtained by purifying only the extracts soluble in hexane, methylene chloride, chloroform, or ethyl acetate solvents from the crude extract herein.

본원에서 정의되는 극성용매 가용 추출물은 상기 조추출물로부터 비극성용매 가용분획물들을 제거하고 남은 물, 메탄올, 부탄올 또는 이들의 혼합용매로부터 선택되어진 용매에 가용한 추출 분획물을 포함한다.The polar solvent-soluble extract as defined herein includes the extraction fraction soluble in a solvent selected from water, methanol, butanol, or a mixed solvent thereof remaining after removing the non-polar solvent-soluble fractions from the crude extract.

본원에서 정의되는 양강 추출물로부터 분리된 화합물은 7-(4-히드록시-3-메톡시페닐)-1-페닐헵트-4-엔-3-온 [7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one, 화합물 1], 5-히드록시-7-(4-히드록시-3-메톡시페닐)-1-페닐헵탄-3-온 [5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one, 화합물 2], 5-히드록시-1,7-비스(4-히드록시-3- 메톡시페닐)헵탄-3-온 [5-Hydroxy-1,7-bis(4-hydroxy-3- methoxyphenyl)heptan-3-one, 화합물 3], 1,7-디페닐헵트-4-엔-3-온 [1,7-diphenylhept-4-en-3-one, 화합물 4], 1,7-디페닐-5-히드록시-3-헵타논 [1,7-diphenyl-5-hydroxy-3-heptanone, 화합물 5], 5-히드록시-7-(4''-히드록시페닐)-1-페닐-3-헵타논 [5-hydroxy-7-(4''-hydroxyphenyl)-1-phenyl-3-heptanone, 화합물 6], 1,7-디페닐-5-메톡시-3-헵타논 [1,7-diphenyl-5-methoxy-3-heptanone, 화합물 7], 3,5,7-트리히드록시-2-페닐-크로멘-4-온 [3,5,7-Trihydroxy-2-phenyl-chromen-4-one, 화합물 8]을 포함한다. The compound isolated from galangal extract as defined herein is 7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one [7-(4-hydroxy-3-methoxyphenyl) -1-phenylhept-4-en-3-one, compound 1], 5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one [5-hydroxy- 7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one, compound 2], 5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptan-3- one [5-Hydroxy-1,7-bis(4-hydroxy-3- methoxyphenyl)heptan-3-one, compound 3], 1,7-diphenylhept-4-en-3-one [1,7- diphenylhept-4-en-3-one, compound 4], 1,7-diphenyl-5-hydroxy-3-heptanone [1,7-diphenyl-5-hydroxy-3-heptanone, compound 5], 5 -Hydroxy-7-(4''-hydroxyphenyl)-1-phenyl-3-heptanone [5-hydroxy-7-(4''-hydroxyphenyl)-1-phenyl-3-heptanone, compound 6] , 1,7-diphenyl-5-methoxy-3-heptanone [1,7-diphenyl-5-methoxy-3-heptanone, Compound 7], 3,5,7-trihydroxy-2-phenyl- Includes chromen-4-one [3,5,7-Trihydroxy-2-phenyl-chromen-4-one, compound 8].

본원에서 정의되는 양강 추출물 및 화합물의 HPLC(High performance liquid chromatography)분석에는 메탄올(Methanol) 또는 아세트나이트릴(Acetenitrile) 등의 비극성 용매와 산성 수용매를 혼합하는 조건에서 분석한다. High performance liquid chromatography (HPLC) analysis of Yangjiang extracts and compounds as defined herein is performed under conditions in which a non-polar solvent such as methanol or acetenitrile is mixed with an acidic aqueous solvent.

본원에서 정의되는 골격근 근육관련 질환은 긴장감퇴증(atony), 근위축증(muscular atrophy), 근이영양증(muscular dystrophy), 근육 퇴화, 근경직증, 근위축성 축삭경화증, 근무력증, 악액질 (cachexia) 및 노인성근육감소증(sarcopenia)으로 이루어진 군에서 선택되는 하나 이상의 근육질환, 구체적으로, 노인성근위축 또는 암으로 인한 골격근 근육관련 질환, 보다 구체적으로는, 노인성근위축 또는 암으로 인한 근위축증(muscular atrophy), 근이영양증(muscular dystrophy), 근육 퇴화, 근경직증, 근위축성 축삭경화증, 근무력증, 악액질 (cachexia), 노인성근육감소증(sarcopenia) 및 근육소실증을 포함한다. Skeletal muscle-related diseases defined herein include atony, muscular atrophy, muscular dystrophy, muscle degeneration, muscle rigidity, amyotrophic axonal sclerosis, myasthenia gravis, cachexia, and senile sarcopenia ( at least one muscle disease selected from the group consisting of sarcopenia, specifically, skeletal muscle muscle-related disease caused by age-related muscular atrophy or cancer, more specifically, muscular atrophy due to age-related muscular atrophy or cancer, and muscular dystrophy ), muscle degeneration, muscle stiffness, amyotrophic axonal sclerosis, myasthenia gravis, cachexia, sarcopenia, and muscle loss.

또한 본 발명은 양강 추출물 또는 이로부터 분리된 화합물을 함유하는 암으로 인한 골격근 근육관련 질환의 예방 및 치료제 또는 항암 보조 치료제를 제공한다.In addition, the present invention provides a preventive and therapeutic agent for skeletal muscle-related diseases caused by cancer or an adjuvant anticancer therapeutic agent containing a galangal extract or a compound isolated therefrom.

또한, 본 발명은 양강 추출물 또는 이로부터 분리된 화합물과 기존 항암제와의 조합을 유효성분으로 하는 암에 의한 골격근 근육관련 질환의 예방 및 치료용 약학조성물, 항암치료 보조제 또는 건강기능식품을 제공한다.In addition, the present invention provides a pharmaceutical composition, anticancer treatment supplement, or health functional food for the prevention and treatment of skeletal muscle-related diseases caused by cancer, which contains a combination of galangal extract or a compound isolated therefrom and a conventional anticancer agent as an active ingredient.

본원에서 정의되는 기존 항암제는 시클로포스파미드(Cyclophosphamide), 메토트랙세이트 (methotrexate), 5-플루오로우라실(fluorouracil), 독소루비신(Doxorubicin), 무스틴(Mustine), 비크리스틴(vincristine), 프로카바진(procarbazine), 프레드니솔론(prednisolone), 블레오마이신(bleomycin), 빈블라스틴(vinblastine), 다카르바진(dacarbazine), 에토포시드 (etoposide), 시스플라틴(cisplatin), 에피루비신(Epirubicin), 시스풀라틴(cisplatin), 카페시타빈(capecitabine), 옥살리플라틴(oxaliplatin) 등을 포함한다.Existing anticancer drugs defined herein include Cyclophosphamide, methotrexate, 5-fluorouracil, Doxorubicin, Mustine, vincristine, and Procarba. Procarbazine, prednisolone, bleomycin, vinblastine, dacarbazine, etoposide, cisplatin, Epirubicin, cisful Includes cisplatin, capecitabine, oxaliplatin, etc.

본원에서 정의되는 암질환는 백혈병, 림프종, 골수종, 골수이형성증후군, 유방암, 두경부암, 식도암, 위암, 대장암(=결장암), 직장암, 항문암, 간세포간암, 담관암, 담낭암, 췌장암, 폐암(비소세포성 폐암, 소세포성 폐암), 흉선암, 신장암, 방광암, 전립선암, 고환암, 난소암, 자궁경부암, 육종, 위장관 기질성 종양(GIST, 기스트), 원발부위불명암, 중피종, 흑색종, 신경내분비 종양, 피부암, 혈액암 등을 포함한다.Cancer diseases defined at this hospital include leukemia, lymphoma, myeloma, myelodysplastic syndrome, breast cancer, head and neck cancer, esophageal cancer, stomach cancer, colon cancer (=colon cancer), rectal cancer, anal cancer, hepatocellular liver cancer, bile duct cancer, gallbladder cancer, pancreatic cancer, and lung cancer (non-small cell cancer). genital lung cancer, small cell lung cancer), thymic cancer, kidney cancer, bladder cancer, prostate cancer, testicular cancer, ovarian cancer, cervical cancer, sarcoma, gastrointestinal stromal tumor (GIST), cancer of unknown primary site, mesothelioma, melanoma, This includes neuroendocrine tumors, skin cancer, and blood cancer.

이하, 본 발명을 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명의 추출물들은 하기와 같은 제조방법으로 수득될 수 있다. The extracts of the present invention can be obtained by the following production method.

예를 들어, 이하, 본 발명을 상세히 설명한다.By way of example, the present invention will be described in detail below.

본 발명의 양강 추출물은 하기와 같이 제조될 수 있다. 건조된 양강을 세척 및 세절 후 정제수를 포함한 물, 메탄올, 에탄올, 부탄올 등의 탄소수 1 내지 4의 저급알코올 또는 이들의 혼합용매로부터 선택된 용매, 바람직하게는 물 또는 물 및 에탄올, 주정과의 혼합용매, 보다 바람직하게는, 물 또는 물 및 주정 또는 에탄올 혼합용매, 보다 바람직하게는 30~100% 에탄올 또는 주정을 수회 섞은 다음에 30℃ 내지 150℃, 바람직하게는 50℃ 내지 100℃의 온도에서 30분 내지 48시간, 바람직하게는 24시간 내지 36시간 동안 초음파 추출법, 열수 추출법, 상온 추출법 또는 환류추출법, 바람직하게는 환류냉각추출법을 약 1 내지 20회, 바람직하게는 2 내지 10회 반복 수행하여 얻은 추출액을 여과, 감압 농축, 및 건조하여 본 발명의 조추출물을 얻을 수 있다. The galangal extract of the present invention can be prepared as follows. After washing and chopping the dried steel, a solvent selected from water including purified water, lower alcohols with 1 to 4 carbon atoms such as methanol, ethanol, butanol, or mixed solvents thereof, preferably water or a mixed solvent with water, ethanol, and alcohol. , more preferably, water or a mixed solvent of water and alcohol or ethanol, more preferably 30 to 100% ethanol or alcohol, mixed several times and then heated to 30° C. at a temperature of 30° C. to 150° C., preferably 50° C. to 100° C. Obtained by repeating ultrasonic extraction, hot water extraction, room temperature extraction, or reflux extraction, preferably reflux cooling extraction, about 1 to 20 times, preferably 2 to 10 times, for minutes to 48 hours, preferably 24 hours to 36 hours. The crude extract of the present invention can be obtained by filtering, concentrating under reduced pressure, and drying the extract.

또한, 본 발명의 극성용매 또는 비극성용매 가용 추출물은 상기에서 얻은 조추출물 중량의 약 0.0005 내지 500배, 바람직하게는 0.05 내지 5배 부피 (v/w%)의 물을 가한 후, n-헥산, 메틸렌 클로라이드, 에틸 아세테이트 및 부탄올을 이용한 통상적인 분획과정을 수행하여 n-헥산, 메틸렌 클로라이드, 에틸 아세테이트 등의 비극성 용매에 가용한 비극성 용매 가용 추출 분획물 및 부탄올, 물 등의 극성용매에 가용한 극성용매 가용 추출 분획물들을 각각 수득할 수 있다.In addition, the polar solvent or non-polar solvent soluble extract of the present invention is prepared by adding water in a volume (v/w%) of about 0.0005 to 500 times the weight of the crude extract obtained above, preferably 0.05 to 5 times the volume (v/w%), then n-hexane, By performing a conventional fractionation process using methylene chloride, ethyl acetate, and butanol, non-polar solvent soluble extract fractions soluble in non-polar solvents such as n-hexane, methylene chloride, and ethyl acetate, and polar solvents soluble in polar solvents such as butanol and water. Usable extract fractions can be obtained separately.

본 발명의 화합물은 하기와 같이 제조될 수 있다. 예를 들어, 상기에서 수득한 양강 조추출물을 물에 분산한 후 헥산 또는 에틸에테르로 비극성물질을 분획한다. 계속하여 물층을 에틸아세테이트로 분획하여 얻은 에틸아세테이트 가용분획물을 가지고 실리카겔 오픈 컬럼크로마토그래피, 플래쉬 컬럼크로마토그래피, RP C18 컬럼크로마토그래피 또는 Diaion HP-20 컬럼크로마토그래피 등의 크로마토그래피를 이용한 정제방법을 선택적으로 수회 반복 수행하여 본 발명의 화합물들을 각각 정제 및 수득할 수 있다. Compounds of the present invention can be prepared as follows. For example, the crude extract of Yanggang obtained above is dispersed in water and the non-polar substances are fractionated with hexane or ethyl ether. Subsequently, the ethyl acetate soluble fraction obtained by fractionating the water layer with ethyl acetate was selectively purified using chromatography such as silica gel open column chromatography, flash column chromatography, RP C18 column chromatography, or Diaion HP-20 column chromatography. This can be repeated several times to purify and obtain each compound of the present invention.

본 발명자들은 상기 제조방법으로 수득되는 양강 추출물 및 화합물을 대상으로 (1) 근원세포 분화(myoblast differentiation) 에 미치는 영향실험 (실험예 1 및 5)을 통하여 시료 처치에 의하여 실린더 형(cylinder-shaped) 다핵성 근관세포(multinucleated myotubes)로 분화가 농도의존적으로 유도되었고, 다핵성 근관세포 (multinucleated myotubes)의 수가 증가함을 확인하였으며, (2) 근원세포 분화 촉진에 대한 p38 MAPK 신호전달 체계 기전연구 실험 (실험예 2); (3) 근육 소실 시험관 내(in vitro) 모델에서의 양강 추출물 및 이로부터 분리된 화합물들의 근육손실 억제 실험 (실험예 3, 4 및 6))을 통하여, 본 발명의 시료들이 근육세포로의 분화를 촉진할 뿐 아니라, 근육손상 모델에서 근육의 소실을 억제함을 확인하여 양강추출물 및 양강 유래화합물들이 골격근 근육 질환 치료제 또는 보조제로 사용 가능함을 확인하여 상기 조성물을 골격근 근육질환의 예방 및 치료용 약학조성물 또는 건강기능식품으로 유용함을 확인하였다 The present inventors conducted an experiment (1) on the effect on myoblast differentiation (Experimental Examples 1 and 5) of the galangal extract and compounds obtained by the above production method to obtain cylinder-shaped cells by treating the samples. Differentiation into multinucleated myotubes was induced in a concentration-dependent manner, and the number of multinucleated myotubes was confirmed to increase. (2) Mechanism study of p38 MAPK signaling system for promoting myoblast differentiation (Experimental Example 2); (3) Through a muscle loss inhibition experiment of the galangal extract and compounds isolated therefrom in an in vitro muscle loss model (Experimental Examples 3, 4, and 6)), the samples of the present invention differentiated into muscle cells. It was confirmed that galangal extract and galangal-derived compounds can be used as a treatment or adjuvant for skeletal muscle disease by confirming that it not only promotes muscle loss in a muscle damage model, but that the composition can be used as a pharmaceutical for the prevention and treatment of skeletal muscle disease. It was confirmed to be useful as a composition or health functional food.

따라서, 본 발명은 상기 제조방법으로 수득된 양강 추출물 또는 이로부터 분리된 화합물을 유효성분으로 함유하는 골격근 근육관련 질환의 예방 및 치료용 약학조성물 또는 건강기능식품을 제공한다.Therefore, the present invention provides a pharmaceutical composition or health functional food for the prevention and treatment of skeletal muscle-related diseases, containing as an active ingredient the galangal extract obtained by the above production method or a compound isolated therefrom.

본 발명의 화합물은 당해 기술분야에서 통상적인 방법에 따라 약학적으로 허용 가능한 염 및 용매화물로 제조될 수 있다. The compounds of the present invention can be prepared into pharmaceutically acceptable salts and solvates according to methods common in the art.

약학적으로 허용 가능한 염으로는 유리산(free acid)에 의해 형성된 산부가염이 유용하다. 산부가염은 통상의 방법, 예를 들면 화합물을 과량의 산 수용액에 용해시키고, 이 염을 메탄올, 에탄올, 아세톤 또는 아세토니트릴과 같은 수혼화성 유기 용매를 사용하여 침전시켜서 제조한다. 동일한 몰량의 화합물 및 물 중의 산 또는 알코올(예, 글리콜 모노메틸에테르)을 가열하고 이어서 상기 혼합물을 증발시켜서 건조시키거나, 또는 석출된 염을 흡인 여과시킬 수 있다.As a pharmaceutically acceptable salt, an acid addition salt formed by a free acid is useful. Acid addition salts are prepared by conventional methods, for example, by dissolving the compound in an excess of aqueous acid and precipitating the salt using a water-miscible organic solvent such as methanol, ethanol, acetone, or acetonitrile. Equimolar amounts of the compound and an acid or alcohol (e.g., glycol monomethyl ether) in water can be heated and the mixture then evaporated to dryness, or the precipitated salt can be filtered off with suction.

이 때, 유리산으로는 유기산과 무기산을 사용할 수 있으며, 무기산으로는 염산, 인산, 황산, 질산, 주석산 등을 사용할 수 있고 유기산으로는 메탄술폰산, p-톨루엔술폰산, 아세트산, 트리플루오로아 세트산, 시트르산, 말레인산(maleic acid), 숙신산, 옥살산, 벤조산, 타르타르산, 푸마르산, 만데르산, 프로피온산(propionic acid), 구연산(citric acid), 젖산(lactic acid), 글리콜산(glycollic acid), 글루콘산(gluconic acid), 갈락투론산, 글루탐산, 글루타르산(glutaric acid), 글루쿠론산(glucuronic acid), 아스파르트산, 아스코르빈산, 카본산, 바닐릭산 및 히드로 아이오딕산 등을 사용할 수 있다.At this time, organic acids and inorganic acids can be used as free acids. Hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, tartaric acid, etc. can be used as inorganic acids, and methanesulfonic acid, p -toluenesulfonic acid, acetic acid, and trifluoroacetic acid can be used as organic acids. , citric acid, maleic acid, succinic acid, oxalic acid, benzoic acid, tartaric acid, fumaric acid, manderic acid, propionic acid, citric acid, lactic acid, glycolic acid, gluconic acid. (gluconic acid), galacturonic acid, glutamic acid, glutaric acid, glucuronic acid, aspartic acid, ascorbic acid, carbonic acid, vanillic acid, and hydroiodic acid can be used.

또한, 염기를 사용하여 약학적으로 허용 가능한 금속염을 만들 수 있다. 알칼리 금속 또는 알칼리토 금속염은, 예를 들면 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리토 금속 수산화물 용액 중에 용해하고, 비 용해 화합물염을 여과한 후 여액을 증발, 건조시켜 얻는다. 이때, 금속염으로서는 특히 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하며, 또한 이에 대응하는 은염은 알칼리 금속 또는 알칼리토 금속염을 적당한 은염(예, 질산은)과 반응시켜 얻는다.Additionally, a pharmaceutically acceptable metal salt can be prepared using a base. The alkali metal or alkaline earth metal salt is obtained, for example, by dissolving the compound in an excess of alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the undissolved compound salt, and then evaporating and drying the filtrate. At this time, it is particularly pharmaceutically suitable to prepare sodium, potassium or calcium salts as metal salts, and the corresponding silver salts are obtained by reacting an alkali metal or alkaline earth metal salt with an appropriate silver salt (eg, silver nitrate).

본 발명의 화합물의 약학적으로 허용 가능한 염은, 달리 지시되지 않는 한, 본 발명의 화합물에 존재할 수 있는 산성 또는 염기성기의 염을 포함한다. 예를 들면, 약학적으로 허용 가능한 염으로는 히드록시기의 나트륨, 칼슘 및 칼륨염이 포함되며, 아미노기의 기타 약학적으로 허용 가능한 염으로는 하이드로브로마이드, 황산염, 수소 황산염, 인산염, 수소 인산염, 이수소 인산염, 아세테이트, 숙시네이트, 시트레이트, 타르트레이트, 락테이트, 만델레이트, 메탄설포 네이트(메실레이트) 및 p-톨루엔설포네이트(토실레이트) 염이 있으며, 당업계에서 알려진 염의 제조 방법이나 제조과정을 통하여 제조될 수 있다. Pharmaceutically acceptable salts of the compounds of the present invention, unless otherwise indicated, include salts of acidic or basic groups that may be present in the compounds of the present invention. For example, pharmaceutically acceptable salts include sodium, calcium and potassium salts of hydroxy groups, and other pharmaceutically acceptable salts of amino groups include hydrobromide, sulfate, hydrogen sulfate, phosphate, hydrogen phosphate and dihydrogen. There are phosphate, acetate, succinate, citrate, tartrate, lactate, mandelate, methanesulfonate (mesylate), and p -toluenesulfonate (tosylate) salts, and methods or processes for producing salts known in the art. It can be manufactured through.

본 발명의 조성물은, 조성물 총 중량에 대하여 상기 추출물 또는 화합물을 0.01 내지 99% 중량으로 포함한다.The composition of the present invention contains the extract or compound in an amount of 0.01 to 99% by weight based on the total weight of the composition.

그러나 상기와 같은 조성은 반드시 이에 한정되는 것은 아니고, 환자의 상태 및 질환의 종류 및 진행 정도에 따라 변할 수 있다.However, the composition as described above is not necessarily limited to this and may vary depending on the patient's condition and the type and progress of the disease.

본 발명의 추출물 또는 화합물을 포함하는 조성물은 약학적 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 및 희석제를 더 포함할 수 있다.A composition containing the extract or compound of the present invention may further include appropriate carriers, excipients and diluents commonly used in the preparation of pharmaceutical compositions.

본 발명에 따른 추출물을 포함하는 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있으며, 이에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 추출물에 적어도 하나 이상의 부형제 적어도 면, 전분, 칼슘카보네이트 (calcium carbonate), 수크로스 (sucrose) 또는 락토오스 (lactose), 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용된다. 경구를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜 (propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔 (witepsol), 마크로골, 트윈 (tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.The composition containing the extract according to the present invention is formulated in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories, and sterile injection solutions according to conventional methods. Carriers, excipients, and diluents that may be included include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia gum, alginate, gelatin, calcium phosphate, and calcium. Silicates, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, magnesium stearate and mineral oil. When formulated, it is prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants. Solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc., and these solid preparations contain at least one excipient in the extract, at least cotton, starch, calcium carbonate, and sucrose. Alternatively, it is prepared by mixing lactose, gelatin, etc. In addition to simple excipients, lubricants such as magnesium styrate talc are also used. Liquid preparations for oral use include suspensions, oral solutions, emulsions, syrups, etc. In addition to the commonly used simple diluents such as water and liquid paraffin, various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included. . Preparations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories. Non-aqueous solvents and suspensions include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable ester such as ethyl oleate. As a base for suppositories, witepsol, macrogol, tween 61, cacao, laurin, glycerogeratin, etc. can be used.

본 발명의 추출물 또는 화합물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나 바람직한 효과를 위해서, 추출물은 1일 0.01 mg/kg 내지 10 g/kg으로, 바람직하게는 1 mg/kg 내지 1 g/kg으로 투여하는 것이 좋다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수 있다. 그러므로 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.The preferred dosage of the extract or compound of the present invention varies depending on the patient's condition and weight, degree of disease, drug form, administration route and period, but can be appropriately selected by a person skilled in the art. However, for a desirable effect, the extract is preferably administered at 0.01 mg/kg to 10 g/kg per day, preferably at 1 mg/kg to 1 g/kg. Administration may be administered once a day, or may be administered in several divided doses. Therefore, the above dosage does not limit the scope of the present invention in any way.

본 발명의 조성물은 마우스, 생마우스, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구 및 직장, 또는 정맥 등의 방법을 통하여 투여할 수 있다. The composition of the present invention can be administered to mammals such as mice, live mice, livestock, and humans through various routes. All modes of administration are contemplated, for example, oral, rectal, or intravenous.

본 발명은 또한 상기 양강 추출물 또는 이로부터 분리된 화합물을 유효성분으로 함유하는 근위축증 또는 악액질 치료제를 제공하며, 이러한 치료제는 근위축증 또는 악액질의 병용요법에서 체중 변화나 식욕 회복의 개선 효과를 위한 것으로서, 악액질 치료에서 항암제 단독투여보다는 본 발명의 조성물을 이용한 병용요법을 제공한다.The present invention also provides a therapeutic agent for muscular dystrophy or cachexia containing the above-mentioned galangal extract or a compound isolated therefrom as an active ingredient, and such therapeutic agent is intended to improve weight change or appetite recovery in combination therapy for muscular dystrophy or cachexia. In treatment, combination therapy using the composition of the present invention is provided rather than single administration of anticancer drugs.

본 발명은 또한 상기 양강 추출물 또는 이로부터 분리된 화합물과 기존 항암제와의 조합을 유효성분으로 하는 암에 의한 근위축증 또는 악액질 치료제를 제공한다.The present invention also provides a treatment for muscular dystrophy or cachexia caused by cancer, which contains the above galangal extract or a compound isolated therefrom in combination with an existing anticancer agent as an active ingredient.

본 발명은 또한 상기 양강 추출물 또는 이로부터 분리된 화합물과 기존 항암제와의 조합을 유효성분으로 하는 암으로 인한 골격근 근육관련 질환의 항암 보조 치료제를 제공한다.The present invention also provides an adjuvant anticancer treatment for skeletal muscle-related diseases caused by cancer, which uses the above galangal extract or a compound isolated therefrom in combination with an existing anticancer agent as an active ingredient.

또한, 본 발명은 양강 추출물 또는 이로부터 분리된 화합물을 유효성분으로 함유하는 골격근 근육관련 질환의 예방 및 개선을 위한 건강기능식품을 제공한다.In addition, the present invention provides a health functional food for the prevention and improvement of skeletal muscle-related diseases, containing galangal extract or a compound isolated therefrom as an active ingredient.

또한, 본 발명은 양강 추출물 또는 이로부터 분리된 화합물과 기존 항암제와의 조합을 유효성분으로 함유하는 골격근 근육관련 질환의 예방 및 개선을 위한 건강기능식품을 제공한다.In addition, the present invention provides a health functional food for the prevention and improvement of skeletal muscle-related diseases containing as an active ingredient a combination of galangal extract or a compound isolated therefrom and a conventional anticancer agent.

본원에서 정의되는 "건강기능식품"은 건강기능식품에 관한 법률 제6727호에 따른 인체에 유용한 기능성을 가진 원료나 성분을 사용하여 제조 및 가공한 식품을 의미하며, "기능성"이라 함은 인체의 구조 및 기능에 대하여 영양소를 조절하거나 생리학적 작용 등과 같은 보건 용도에 유용한 효과를 얻을 목적으로 섭취하는 것을 의미한다.“Health functional food” as defined herein refers to food manufactured and processed using raw materials or ingredients with functionality useful to the human body in accordance with Act No. 6727 on Health Functional Food. “Functional” refers to food that is useful for the human body. It means ingestion for the purpose of controlling nutrients for structure and function or obtaining useful health effects such as physiological effects.

본 발명의 골격근 근육관련 질환의 예방 및 개선을 위한 건강기능식품은, 조성물 총 중량에 대하여 상기 추출물 또는 화합물을 0.01 내지 95%, 바람직하게는 1 내지 80% 중량백분율로 포함한다.The health functional food for preventing and improving skeletal muscle-related diseases of the present invention contains the extract or compound at a weight percentage of 0.01 to 95%, preferably 1 to 80%, based on the total weight of the composition.

더욱이, 본 발명의 조성물은 골격근 근육관련 질환의 치료 및 개선을 목적으로 한 건강기능식품 또는 건강보조식품일 수 있다. Moreover, the composition of the present invention may be a health functional food or health supplement for the purpose of treating and improving skeletal muscle-related diseases.

또한, 골격근 근육관련 질환의 예방 및 개선을 위한 목적으로 산제, 과립제, 정제, 캡슐제, 환제, 현탁액, 에멀젼, 시럽 등의 약학 투여형태 또는 티백제, 침출차, 건강 음료 등의 형태인 건강기능식품으로 제조 및 가공이 가능하다.In addition, for the purpose of preventing and improving skeletal muscle-related diseases, health functional foods in the form of pharmaceutical dosage forms such as powders, granules, tablets, capsules, pills, suspensions, emulsions, and syrups, or in the form of tea bags, leached teas, and health drinks, etc. It can be manufactured and processed.

또한, 본 발명은 양강 추출물 또는 이로부터 분리된 화합물을 유효성분으로 함유하는 골격근 근육관련 질환의 예방 및 개선용 건강보조식품을 제공한다.In addition, the present invention provides a health supplement for preventing and improving skeletal muscle-related diseases, containing galangal extract or a compound isolated therefrom as an active ingredient.

또한, 본 발명은 양강 추출물 또는 이로부터 분리된 화합물과 기존 항암제와의 조합을 유효성분으로 함유하는 골격근 근육관련 질환의 예방 및 개선을 위한 건강보조식품을 제공한다.In addition, the present invention provides a health supplement for the prevention and improvement of skeletal muscle-related diseases containing as an active ingredient a combination of galangal extract or a compound isolated therefrom and a conventional anticancer agent.

본 발명의 건강 기능성 또는 건강보조용 음료 조성물은 지시된 비율로 필수 성분으로서 상기 추출물을 함유하는 외에는 다른 성분에는 특별한 제한이 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스 등; 및 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 상술한 것 이외의 향미제로서 천연 향미제 (타우마틴, 스테비아 추출물 (예를 들어 레바우디오시드 A, 글리시르히진 등)) 및 합성 향미제 (사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 100 ㎖ 당 일반적으로 약 1~20 g, 바람직하게는 약 5~12 g이다.The health functional or health supplement beverage composition of the present invention has no particular restrictions on other ingredients other than containing the above extract as an essential ingredient in the indicated ratio, and contains various flavoring agents or natural carbohydrates as additional ingredients like a conventional beverage. can do. Examples of the above-mentioned natural carbohydrates include monosaccharides such as glucose, fructose, etc.; Disaccharides such as maltose, sucrose, etc.; and polysaccharides, such as common sugars such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol. As flavoring agents other than those mentioned above, natural flavoring agents (thaumatin, stevia extract (e.g. rebaudioside A, glycyrrhizin, etc.)) and synthetic flavoring agents (saccharin, aspartame, etc.) can be advantageously used. there is. The proportion of the natural carbohydrate is generally about 1 to 20 g, preferably about 5 to 12 g, per 100 ml of the composition of the present invention.

또한, 본 발명은 양강 추출물 또는 이로부터 분리된 화합물을 유효성분으로 함유하는 골격근 근육관련 질환의 예방 및 개선용 식품 또는 식품첨가제를 제공한다.In addition, the present invention provides a food or food additive for preventing and improving skeletal muscle-related diseases containing a galangal extract or a compound isolated therefrom as an active ingredient.

또한, 본 발명은 양강 추출물 또는 이로부터 분리된 화합물과 기존 항암제와의 조합을 유효성분으로 함유하는 골격근 근육관련 질환의 예방 및 개선용 식품 또는 식품첨가제를 제공한다.In addition, the present invention provides a food or food additive for preventing and improving skeletal muscle-related diseases, containing as an active ingredient a combination of galangal extract or a compound isolated therefrom and a conventional anticancer agent.

본 발명에 따른 추출물 또는 화합물을 식품첨가물로 사용할 경우, 상기 추출물을 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 상기 물질을 첨가할 수 있는 식품의 예로는 육류, 소세지, 빵, 쵸코렛, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알콜음료 및 비타민 복합제 등이 있으며, 통상적인 의미에서의 건강식품을 모두 포함한다. When using the extract or compound according to the present invention as a food additive, the extract can be added as is or used together with other foods or food ingredients, and can be used appropriately according to conventional methods. Examples of foods to which the above substances can be added include meat, sausages, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gum, dairy products including ice cream, various soups, beverages, tea, drinks, These include alcoholic beverages and vitamin complexes, and include all health foods in the conventional sense.

상기 외에 본 발명의 조성물은 여러 가지 영양제, 비타민, 광물 (전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제 (치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산 음료에 사용되는 탄산화제 등을 함유할 수 있다. 그밖에 본 발명의 조성물들은 천연 과일 쥬스 및 과일 쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 그렇게 중요하진 않지만 본 발명의 조성물 100 중량부 당 0 내지 약 20 중량부의 범위에서 선택되는 것이 일반적이다. In addition to the above, the composition of the present invention contains various nutrients, vitamins, minerals (electrolytes), flavoring agents such as synthetic and natural flavors, colorants and thickening agents (cheese, chocolate, etc.), pectic acid and its salts, alginic acid and its It may contain salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohol, carbonating agents used in carbonated beverages, etc. In addition, the compositions of the present invention may contain pulp for the production of natural fruit juice and fruit juice beverages and vegetable beverages. These ingredients can be used independently or in combination. The proportion of these additives is not critical, but is generally selected in the range of 0 to about 20 parts by weight per 100 parts by weight of the composition of the present invention.

또한, 본 발명의 추출물은 목적 질환이 예방 효과를 목적으로 식품 또는 음료에 첨가될 수 있다. 이 때, 식품 또는 음료 중의 상기 추출물의 양은 전체 식품 중량의 0.01 내지 15 중량%로 가할 수 있으며, 건강 음료 조성물은 100 ㎖을 기준으로 0.02 내지 5 g, 바람직하게는 0.3 내지 1 g의 비율로 가할 수 있다.Additionally, the extract of the present invention can be added to food or beverages for the purpose of preventing the target disease. At this time, the amount of the extract in the food or beverage can be added at 0.01 to 15% by weight of the total weight of the food, and the health drink composition can be added at a rate of 0.02 to 5 g, preferably 0.3 to 1 g, based on 100 ml. You can.

본 발명의 양강 추출물 및 화합물을 대상으로 (1) 근원세포 분화(myoblast differentiation) 에 미치는 영향실험 (실험예 1 및 5)을 통하여 시료 처치에 의하여 실린더 형(cylinder-shaped) 다핵성 근관세포(multinucleated myotubes)로 분화가 농도의존적으로 유도되었고, 다핵성 근관세포 (multinucleated myotubes)의 수가 증가함을 확인하였으며, (2) 근원세포 분화 촉진에 대한 p38 MAPK 신호전달 체계 기전연구 실험(실험예 2); (3) 근육 소실 시험관 내(in vitro) 모델에서의 양강 추출물 및 이로부터 분리된 화합물들의 근육손실 억제 실험 (실험예 3, 4 및 6)을 통하여, 본 발명의 시료들이 근원 세포 분화 촉진, 근관세포 보호 효능을 가짐을 확인하여 긴장감퇴증(atony), 근위축증(muscular atrophy), 근이영양증(muscular dystrophy), 근육 퇴화, 근경직증, 근위축성 축삭경화증, 근무력증, 악액질 (cachexia) 및 노인성근육감소증(sarcopenia) 등의 골격근 근육 질환 치료제 또는 보조제로 사용 가능함을 확인함으로써, 상기 조성물을 근육질환의 예방 및 치료용 약학조성물, 건강기능식품 및 건강보조식품 등으로 유용함을 확인하였다.Through (1) an effect experiment (Experimental Examples 1 and 5) on myoblast differentiation using the galangal extract and compounds of the present invention, cylinder-shaped multinucleated myotube cells (multinucleated) were obtained by treatment of the samples. It was confirmed that differentiation into myotubes was induced in a concentration-dependent manner, and the number of multinucleated myotubes increased. (2) Mechanism study of the p38 MAPK signaling system for promoting myoblast differentiation (Experimental Example 2); (3) Through experiments on the inhibition of muscle loss with the galangal extract and the compounds isolated therefrom in an in vitro model of muscle loss (Experimental Examples 3, 4, and 6), it was found that the samples of the present invention promoted myogenic cell differentiation and myotubes. It has been confirmed to have a cytoprotective effect, preventing atony, muscular atrophy, muscular dystrophy, muscle degeneration, muscle stiffness, amyotrophic axonal sclerosis, myasthenia gravis, cachexia, and sarcopenia. ), etc. By confirming that it can be used as a treatment or supplement for skeletal muscle diseases, it was confirmed that the composition is useful as a pharmaceutical composition for preventing and treating muscle diseases, health functional foods, and health supplements.

도 1은 본 발명의 양강 추출물이 MHC, myoD, 그리고 myogenin 발현에 미치는 영향을 나타낸 도이며;
도 2는 본 발명의 양강 추출물에 의한 MHC 양성-실린더 형(cylinder-shaped) 다핵성 근관세포 수의 변화를 나타낸 도이며;
도 3은 본 발명의 양강 추출물의 p38 MAP 키나제(kinase) 신호전달계 활성화에 미치는 영향을 나타낸 도이며;
도 4는 본 발명의 양강 추출물을 처리하여 분화시킨 근관세포에 덱사메타손을 처리하여 근육 손실을 유도한 모델에서, 본 발명 추출물의 MHC 또는 MuRF1 발현에 미치는 영향을 나타낸 도이며;
도 5는 근육 손실 세포 모델에서 양강 추출물의 MHC-양성 실린더형 다핵성 근관세포 수에 미치는 영향을 나타낸 도이며;
도 6은 본 발명의 양강 추출물 유래 화합물들을 처리하여 분화시킨 근관세포에, 덱사메타손을 처리하여 근육 손실을 유도한 모델에서, 본 발명 추출물 유래 화합물들의 MHC 발현에 미치는 영향을 나타낸 도이며;
도 7은 본 발명의 화합물 2가 MHC, myoD, 그리고 myogenin 발현에 미치는 영향을 나타낸 도이며;
도 8은 본 발명의 화합물 2에 의한 MHC 양성-실린더 형(cylinder-shaped) 다핵성 근관세포 수의 변화를 나타낸 도이며;
도 9는 본 발명의 화합물 2을 처리하여 분화시킨 근관세포에 덱사메타손을 처리하여 근육 손실을 유도한 모델에서, 본 발명 추출물의 MHC 또는 MuRF1 발현에 미치는 영향을 나타낸 도이며;
도 10은 근육 손실 세포 모델에서 화합물 2의 MHC-양성 실린더형 다핵성 근관세포 수에 미치는 영향을 나타낸 도이다.
Figure 1 is a diagram showing the effect of the galangal extract of the present invention on MHC, myoD, and myogenin expression;
Figure 2 is a diagram showing the change in the number of MHC positive-cylinder-shaped multinucleated myotube cells by the galangal extract of the present invention;
Figure 3 is a diagram showing the effect of the galangal extract of the present invention on the activation of the p38 MAP kinase (kinase) signaling system;
Figure 4 is a diagram showing the effect of the extract of the present invention on MHC or MuRF1 expression in a model in which muscle loss was induced by treating myotube cells differentiated by treatment with the galangal extract of the present invention with dexamethasone;
Figure 5 is a diagram showing the effect of galangal extract on the number of MHC-positive cylindrical multinucleated myotube cells in a muscle loss cell model;
Figure 6 is a diagram showing the effect of the compounds derived from the extract of the present invention on MHC expression in a model in which muscle loss was induced by treating dexamethasone in myotube cells differentiated by treatment with the compounds derived from the galangal extract of the present invention;
Figure 7 is a diagram showing the effect of Compound 2 of the present invention on MHC, myoD, and myogenin expression;
Figure 8 is a diagram showing the change in the number of MHC positive-cylinder-shaped multinucleated myotube cells by compound 2 of the present invention;
Figure 9 is a diagram showing the effect of the extract of the present invention on MHC or MuRF1 expression in a model in which muscle loss was induced by treating myotube cells differentiated by treatment with compound 2 of the present invention with dexamethasone;
Figure 10 is a diagram showing the effect of Compound 2 on the number of MHC-positive cylindrical multinucleated myotube cells in a muscle loss cell model.

이하, 본 발명을 하기 참고예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail through the following reference examples and experimental examples.

단, 하기 참고예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 참고예 및 실험예에 의해 한정되는 것은 아니다.However, the following reference examples and experimental examples are merely illustrative of the present invention, and the content of the present invention is not limited by the following reference examples and experimental examples.

실시예 1. 양강 조추출물의 제조Example 1. Preparation of Yangjiang crude extract

건조된 양강(Alpinia officinarum: 근경, 진흥건재약업사) 50 g을 80% 에탄올로 12시간동안 환류냉각하며 3번 추출한 후, 감압 농축하여 양강의 주정 조추출물 (8.60 g, 이하 “AOE”라 함)을 얻었다.50 g of dried Yang Kang (Alpinia officinarum: Rhizome, Jinheung Building Materials Pharmaceutical Co., Ltd.) was extracted three times by refluxing and cooling with 80% ethanol for 12 hours, and then concentrated under reduced pressure to produce the crude alcohol extract of Yang Kang (8.60 g, hereinafter referred to as “AOE”). got it

실시예 2. 양강 분획물의 제조예Example 2. Preparation example of galangal fraction

실시예 1에서 얻은 양강 80% 에탄올 추출물 8g에 정제수 100 mL을 가하여 현탁하고 이 현탁물에 n-헥산 100mL를 가하여 분획하고, 남은 물 현탁물에 에틸아세테이트 100mL을 가하여 분획하고 각각 감압 건조하여 n-헥산 가용분획물(이하, AOH라 함), 에틸아세테이트 가용분획물 (이하, AOEA라 함)을 1.4g 및 2.5g 을 각각 얻어 동결건조하였다. 8 g of the 80% ethanol extract of Yanggang obtained in Example 1 was suspended by adding 100 mL of purified water, and the suspension was fractionated by adding 100 mL of n-hexane. The remaining water suspension was fractionated by adding 100 mL of ethyl acetate, and each was dried under reduced pressure to obtain n- 1.4 g and 2.5 g of the hexane soluble fraction (hereinafter referred to as AOH) and ethyl acetate soluble fraction (hereinafter referred to as AOEA) were obtained and freeze-dried.

실시예 3. 양강 추출물로부터 활성 화합물의 분리Example 3. Isolation of active compounds from galangal extract

양강의 에틸아세테이트 가용분획 (2.50 g)을 Hexane: EtOAc (100:1 → 2:1)의 조건으로 실리카겔 칼럼 크로마토그래피 (70-230 mesh, 190 g)를 행하여 10개의 분획으로 (F1 - F10) 나누고 F4 분획 (56 mg)에 대해 Hexane: EtOAc (30:1) 조건으로 실리카겔 칼럼 크로마토그래피하여 화합물 4 (14 mg)을 분리하고, F7 분획 (29mg)에 대해 CH2Cl2:MeOH (200:1) 의 조건으로 실리카겔 칼럼 크로마토그래피하여 화합물 7 (15 mg)을 분리하였다. F8 분획 (640 mg)에 대해 CH2Cl2:MeOH (100:0 → 200:1)의 조건으로 실리카겔 칼럼 크로마토그래피를 진행하여 화합물 1 (32 mg), 화합물 5 (46 mg), 화합물 8 (8 mg)을 각각 순수하게 분리하였으며, F9 분획 (446 mg)에 대해 CHCl3:MeOH (80:1)의 조건으로 실리카겔 칼럼 크로마토그래피하여 화합물 2 (270 mg), 화합물 3 (5 mg), 화합물 6 (76 mg)을 각각 순수하게 분리하였다.The ethyl acetate soluble fraction (2.50 g) of Yanggang was subjected to silica gel column chromatography (70-230 mesh, 190 g) under the conditions of Hexane: EtOAc (100:1 → 2:1) and divided into 10 fractions (F1 - F10). The F4 fraction (56 mg) was subjected to silica gel column chromatography using Hexane:EtOAc (30:1) to separate compound 4 (14 mg), and the F7 fraction (29 mg) was subjected to CH 2 Cl 2 :MeOH (200:1). Compound 7 (15 mg) was separated by silica gel column chromatography under the conditions of 1). The F8 fraction (640 mg) was subjected to silica gel column chromatography under the conditions of CH 2 Cl 2 :MeOH (100:0 → 200:1) to obtain compound 1 (32 mg), compound 5 (46 mg), and compound 8 ( 8 mg) were each purified, and the F9 fraction (446 mg) was subjected to silica gel column chromatography under the conditions of CHCl 3 :MeOH (80:1) to obtain compound 2 (270 mg), compound 3 (5 mg), and compound 6 (76 mg) were purified from each other.

화합물 1(갈색결정, Chem. Pharm. Bull. 1981, 29: 2383-2385), 화합물 2(갈색결정, Chem. Pharm. Bull. 1981, 29: 2383-2385), 화합물 3(갈색결정, Chem. Pharm. Bull. 1985, 33, 4889-4893), 화합물 4(갈색결정, Arch. Pharmacal Res. 2100, 34: 1289-1296), 화합물 5(갈색오일, Chem. Pharm. Bull. 1985, 33: 4889-4893), 화합물 6(갈색결정, Chem. Pharm. Bull. 1982, 30: 2279-2282), 화합물 7(갈색결정, Planta Med. 2008, 74: 427-431) 화합물 8(황색결정, Magn. Reson. Chem. 2001, 39, 374-380)들의 구조확인 및 동정은 기존에 알려진 참고문헌들에 기재된 물성치를 근거로 비교분석하여 확인하였다. Compound 1 (brown crystal, Chem. Pharm. Bull. 1981, 29: 2383-2385), Compound 2 (brown crystal, Chem. Pharm. Bull. 1981, 29: 2383-2385), Compound 3 (brown crystal, Chem. Pharm. Bull. 1985, 33, 4889-4893), Compound 4 (brown crystal, Arch. Pharmacal Res. 2100, 34: 1289-1296), Compound 5 (brown oil, Chem. Pharm. Bull. 1985, 33: 4889). -4893), Compound 6 (brown crystal, Chem. Pharm. Bull. 1982, 30: 2279-2282), Compound 7 (brown crystal, Planta Med. 2008, 74: 427-431), Compound 8 (yellow crystal, Magn. Reson. Chem. 2001, 39, 374-380) were confirmed through comparative analysis based on the physical properties described in previously known references.

화합물 1: 7-(4-히드록시-3-메톡시페닐)-1-페닐헵트-4-엔-3-온[7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one] HRFABMS m/z 311.1773 (calculated for C20H23O3, 311.1647) 1H-NMR (CDCl3, 400 MHz): δ 2.49 (2H, td, 7.6Hz, H-6), 2.70 (2H, t, 7.6Hz, H-7), 2.84 (2H, m, H-2), 2.93 (2H, t, 8.4Hz, H-1), 3.86 (3H, s, OCH3), 5.49 (1H, s, OH), 6.11 (1H, dt, 16Hz, 1.6Hz, H-4), 6.65 (1H, S, H-2"), 6.67 (1H, dd, 4Hz, 2Hz, H-6"), 6.83 (2H, m, H-5, H-5"), 7.19 (2H, t, 8Hz, H-2', H-6'), 7.20 (2H, t, 8Hz, H-4'), 7.28 (2H, t, 8Hz, H-3', H-5').13C-NMR (CDCl3, 100 MHz): δ 30.39 (C-1), 34.46 (C-7), 34.77 (C-6), 42.06 (C-2), 56.19 (OCH3), 111.19 (C-2"), 114.65 (C-5"), 121.22 (C-6"), 126.39 (C-4'), 128.65 (C-2', 6'), 128.78 (C-3', 5'), 130.98 (C-4), 132.90 (C-1"), 141.54 (C-1'), 144.32 (C-4"), 146.66 (C-5), 146.75 (C-3"), 199.71 (C-3).Compound 1: 7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one [7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en -3-one] HRFABMS m/z 311.1773 (calculated for C 20 H 23 O 3 , 311.1647) 1H-NMR (CDCl 3 , 400 MHz): δ 2.49 (2H, td, 7.6Hz, H-6), 2.70 ( 2H, t, 7.6Hz, H-7), 2.84 (2H, m, H-2), 2.93 (2H, t, 8.4Hz, H-1), 3.86 (3H, s, OCH3), 5.49 (1H, s, OH), 6.11 (1H, dt, 16Hz, 1.6Hz, H-4), 6.65 (1H, S, H-2"), 6.67 (1H, dd, 4Hz, 2Hz, H-6"), 6.83 (2H, m, H-5, H-5"), 7.19 (2H, t, 8Hz, H-2', H-6'), 7.20 (2H, t, 8Hz, H-4'), 7.28 ( 2H, t, 8Hz, H-3', H-5').13C-NMR (CDCl3, 100 MHz): δ 30.39 (C-1), 34.46 (C-7), 34.77 (C-6), 42.06 (C-2), 56.19 (OCH3), 111.19 (C-2"), 114.65 (C-5"), 121.22 (C-6"), 126.39 (C-4'), 128.65 (C-2', 6'), 128.78 (C-3', 5'), 130.98 (C-4), 132.90 (C-1"), 141.54 (C-1'), 144.32 (C-4"), 146.66 (C- 5), 146.75 (C-3"), 199.71 (C-3).

화합물 2: 5-히드록시-7-(4-히드록시-3-메톡시페닐)-1-페닐헵탄-3-온 [5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one] HRFABMS m/z 329.1652 (calculated for C20H25O4, 329.1753)1H-NMR (CDCl3, 400 MHz): δ 1.59~1.82 (2H, m, H-6), 2.55 (2H, m, H-4), 2.40~2.76 (2H, m, H-7), 2.75 (2H, t, 7.6Hz, H-2), 2.90 (2H, t, 7.6Hz, H-1), 3.09 (1H, s, 5-OH), 3.87 (3H, s, 3"- OCH3), 4.04 (1H, m, 4.0Hz, H-5), 5.53 (1H, s, 4"-OH), 6.67 (1H, d, 8.0Hz, H-6"), 6.70 (1H, s, H-2"), 6.83 (1H, d, 8.0 Hz, H-5"), 7.18 (2H, t, 8.0Hz, H-2', H-6'), 7.20 (1H, t, 8.0Hz, H-4'), 7.28 (2H, t, 8Hz, H-3', H-5').13C-NMR (CDCl3, 100 MHz): δ 29.12 (C-1), 31.06 (C-7), 37.98 (C-6), 44.66 (C-2), 48.90 (C-4), 55.50 (3"- OCH3), 66.49 (C-5), 110.70 (C-2"), 113.90 (C-5"), 120.55 (C-6"), 125.87 (C-4'), 127.90 (C-2', 6'), 128.20 (C-3', 5'), 133.34 (C-1"), 140.28 (C-1'), 143.36 (C-4"), 146.04 (C-3"), 210.82 (C-3).Compound 2: 5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one [5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1- phenylheptan-3-one] HRFABMS m/z 329.1652 (calculated for C 20 H 25 O 4 , 329.1753) 1 H-NMR (CDCl 3 , 400 MHz): δ 1.59~1.82 (2H, m, H-6), 2.55 (2H, m, H-4), 2.40~2.76 (2H, m, H-7), 2.75 (2H, t, 7.6Hz, H-2), 2.90 (2H, t, 7.6Hz, H-1) , 3.09 (1H, s, 5-OH), 3.87 (3H, s, 3"-OCH 3 ), 4.04 (1H, m, 4.0Hz, H-5), 5.53 (1H, s, 4"-OH) , 6.67 (1H, d, 8.0Hz, H-6"), 6.70 (1H, s, H-2"), 6.83 (1H, d, 8.0 Hz, H-5"), 7.18 (2H, t, 8.0 Hz, H-2', H-6'), 7.20 (1H, t, 8.0Hz, H-4'), 7.28 (2H, t , 8Hz, H-3', H-5'). NMR (CDCl 3 , 100 MHz): δ 29.12 (C-1), 31.06 (C-7), 37.98 (C-6), 44.66 (C-2), 48.90 (C-4), 55.50 (3"- OCH 3 ), 66.49 (C-5), 110.70 (C-2"), 113.90 (C-5"), 120.55 (C-6"), 125.87 (C-4'), 127.90 (C-2', 6'), 128.20 (C-3', 5'), 133.34 (C-1"), 140.28 (C-1'), 143.36 (C-4"), 146.04 (C-3"), 210.82 (C -3).

화합물 3: 5-히드록시-1,7-비스(4-히드록시-3- 메톡시페닐)헵탄-3-온[5-Hydroxy-1,7-bis(4-hydroxy-3- methoxyphenyl)heptan-3-one] C21H28O6 (m.w. 374.43) 1H-NMR (CDCl3, 400 MHz) : δ 1.80 (2H, m, H-4), 2.52~2.84 (8H, m, H-1, H-2, H-6, H-7), 3.08 (1H, s, 5-OH), 3.90 (3H, s, OCH3), 4.07 (1H, m, H-5), 5.49 (1H, s, 4′-OH), 5.51 (1H, s, 4″-OH), 6.60 (2H, d, H-6′, H-6″), 6.62 (2H, s, H-2′, H-2″), 6.87 (2H, m, H-5′, H-5″).13C-NMR (CDCl3, 100 MHz) : δ 29.26 (C-7), 31.41 (C-1), 38.32 (C-6), 45.40 (C-2), 49.33 (C-4), 55.86 (-OCH3), 66.83 (C-5), 110.91 (C-2′), 111.02 (C-2″), 114.21 (C-5″), 114.35 (C-5′), 120.70 (C-6′, C-6″), 133.68 (C-1', C-1″), 143.70 (C-4′, C-4″), 146.41 (C-3′, C-3″), 211.42 (C-3). Compound 3: 5-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptan-3-one [5-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptan -3-one] C 21 H 28 O 6 (mw 374.43) 1 H-NMR (CDCl 3 , 400 MHz): δ 1.80 (2H, m, H-4), 2.52~2.84 (8H , m, H-1, H-2, H-6, H-7), 3.08 (1H, s, 5-OH), 3.90 (3H, s, OCH 3 ), 4.07 (1H, m, H-5), 5.49 (1H, s, 4′-OH), 5.51 (1H, s, 4″-OH), 6.60 (2H, d, H-6′, H -6″), 6.62 (2H, s, H-2′, H-2″), 6.87 (2H, m, H-5′, H-5″). 13 C-NMR (CDCl 3 , 100 MHz): δ 29.26 (C-7), 31.41 (C-1), 38.32 (C-6), 45.40 (C-2), 49.33 (C-4), 55.86 ( -OCH 3 ), 66.83 (C-5), 110.91 (C-2′), 111.02 (C-2″), 114.21 (C-5″), 114.35 (C-5′), 120.70 (C-6′) , C-6″), 133.68 (C-1’, C-1″), 143.70 (C-4′, C-4″), 146.41 (C-3′, C-3″), 211.42 (C- 3).

화합물 4: 1,7-디페닐헵트-4-엔-3-온 [1,7-diphenylhept-4-en-3-one]Compound 4: 1,7-diphenylhept-4-en-3-one [1,7-diphenylhept-4-en-3-one]

HRFABMS m/z 265.1584 (calculated for C19H21O, 265.1592)1H-NMR (CDCl3, 400 MHz): δ 2.61 (2H, tdd, 8.0Hz, 8.0Hz, 1.6Hz, H-6), 2.85 (2H, t, 8.0Hz, H-7), 2.94 (2H, m, H-2), 3.01 (2H, t, 8.4Hz, H-1), 6.20 (1H, dt, 15.6Hz, 1.6Hz, H-4), 6.92 (1H, dt, 15.6Hz, 8.0Hz, H-5), 7.22~7.32 (6H, m, H-2', H-4', H-6', H-2", H-4", H-6"), 7.34~7.40 (4H, m, H-3', H-5', H-3", H-5").13C-NMR (CDCl3, 100 MHz): δ 30.39 (C-1), 34.42 (C-6), 34.70 (C-7), 42.01 (C-2), 126.37 (C-4'), 126.53 (C-4"), 128.62 (C-2', 6'), 128.65 (C-2", 6"), 128.77 (C-3', 5'), 128.81 (C-3", 5"), 131.01 (C-4), 140.96 (C-1"), 141.53 (C-1'), 146.59 (C-5), 199.71 (C-3).HRFABMS m/z 265.1584 (calculated for C 19 H 21 O, 265.1592) 1 H-NMR (CDCl 3 , 400 MHz): δ 2.61 (2H, tdd, 8.0Hz, 8.0Hz, 1.6Hz, H-6), 2.85 (2H, t, 8.0Hz, H-7), 2.94 (2H, m, H-2), 3.01 (2H, t, 8.4Hz, H-1), 6.20 (1H, dt, 15.6Hz, 1.6Hz, H-4), 6.92 (1H, dt, 15.6Hz, 8.0Hz, H-5), 7.22~7.32 (6H, m, H-2', H-4', H-6', H-2", H-4", H-6"), 7.34~7.40 (4H, m, H-3', H-5', H-3", H-5") 13 C-NMR (CDCl 3 , 100 MHz). ): δ 30.39 (C-1), 34.42 (C-6), 34.70 (C-7), 42.01 (C-2), 126.37 (C-4'), 126.53 (C-4"), 128.62 (C -2', 6'), 128.65 (C-2", 6"), 128.77 (C-3', 5'), 128.81 (C-3", 5"), 131.01 (C-4), 140.96 ( C-1"), 141.53 (C-1'), 146.59 (C-5), 199.71 (C-3).

화합물 5: 1,7-디페닐-5-히드록시-3-헵타논[1,7-diphenyl-5-hydroxy-3-heptanone]Compound 5: 1,7-diphenyl-5-hydroxy-3-heptanone [1,7-diphenyl-5-hydroxy-3-heptanone]

HRFABMS m/z 283.1770 (calculated for C19H23O2, 283.1698) 1H-NMR (CDCl3, 400 MHz): δ 1.60~1.80 (2H, m, H-6), 2.53 (2H, m, H-4), 2.71~2.81 (2H, m, H-7), 2.73 (2H, t, 7.6Hz, H-2), 2.88 (2H, t, 7.6Hz, H-1), 3.03 (1H, s, OH), 4.03 (1H, m, 4Hz, H-5), 7.10~7.28 (10H, m, Ring-H).13C-NMR (CDCl3, 100 MHz): δ 29.47 (C-1), 31.71 (C-7), 37.99 (C-6), 44.99 (C-2), 49.24 (C-4), 66.83 (C-5), 125.86 (C-4'), 126.21 (C-4"), 128.24 (C-2', 6'), 128.39 (C-2", 6"), 128.44 (C-3', 5'), 128.53 (C-3", 5"), 140.63 (C-1'), 141.78 (C-1"), 211.08 (C-3).HRFABMS m/z 283.1770 (calculated for C 19 H 23 O 2 , 283.1698) 1 H-NMR (CDCl 3 , 400 MHz): δ 1.60~1.80 (2H, m, H-6), 2.53 (2H, m, H -4), 2.71~2.81 (2H, m, H-7), 2.73 (2H, t, 7.6Hz, H-2), 2.88 (2H, t, 7.6Hz, H-1), 3.03 (1H, s) , OH), 4.03 (1H, m, 4Hz, H-5), 7.10~7.28 (10H, m, Ring-H). 13 C-NMR (CDCl 3 , 100 MHz): δ 29.47 (C-1), 31.71 (C-7), 37.99 (C-6), 44.99 (C-2), 49.24 (C-4), 66.83 ( C-5), 125.86 (C-4'), 126.21 (C-4"), 128.24 (C-2', 6'), 128.39 (C-2", 6"), 128.44 (C-3', 5'), 128.53 (C-3", 5"), 140.63 (C-1'), 141.78 (C-1"), 211.08 (C-3).

화합물 6: 5-히드록시-7-(4-히드록시페닐)-1-페닐-3-헵타논[5-hydroxy-7-(4-hydroxyphenyl)-1-phenyl-3-heptanone] HRFABMS m/z 299.1720 (calculated for C19H23O3, 299.1647)1H-NMR (CDCl3, 400 MHz): δ 1.56~1.8 (2H, m, H-6), 2.54 (2H, m, H-4), 2.51~2.83 (2H, m, H-7), 2.75 (2H, t, 7.6Hz, H-2), 2.89 (2H, t, 7.6Hz, H-1), 3.05 (1H, s, 5-OH), 4.05 (1H, m, 4Hz, H-5), 5.19 (1H, s, 4"-OH), 6.74 (2H, d, 8.4Hz, H-3", 5"), 7.03 (2H, d, 8.4Hz, H-2", 6"), 7.17 (2H, t, 7.6Hz, H-2', 6), 7.19 (1H, t, 7.6Hz, H-4'), 7.28 (2H, t, 7.6Hz, H-3', H-5').13C-NMR (CDCl3, 100 MHz): δ 29.47 (C-1), 30.75 (C-7), 38.16 (C-6), 44.99 (C-2), 49.20 (C-4), 66.88 (C-5), 115.23 (C-3", 5"), 126.22 (C-4'), 128.24 (C-2", 6"), 128.53 (C-3', 5'), 129.49 (C-2", 6"), 133.70 (C-1"), 140.60 (C-1'), 153.80 (C-4"), 211.08 (C-3).Compound 6: 5-hydroxy-7-(4-hydroxyphenyl)-1-phenyl-3-heptanone [5-hydroxy-7-(4-hydroxyphenyl)-1-phenyl-3-heptanone] HRFABMS m/ z 299.1720 (calculated for C 19 H 23 O 3 , 299.1647) 1 H-NMR (CDCl 3 , 400 MHz): δ 1.56~1.8 (2H, m, H-6), 2.54 (2H, m, H-4) , 2.51~2.83 (2H, m, H-7), 2.75 (2H, t, 7.6Hz, H-2), 2.89 (2H, t, 7.6Hz, H-1), 3.05 (1H, s, 5- OH), 4.05 (1H, m, 4Hz, H-5), 5.19 (1H, s, 4"-OH), 6.74 (2H, d, 8.4Hz, H-3", 5"), 7.03 (2H, d, 8.4Hz, H-2", 6"), 7.17 (2H, t, 7.6Hz, H-2', 6), 7.19 (1H, t, 7.6Hz, H-4'), 7.28 (2H, t, 7.6 Hz, H-3', H-5') 13 C-NMR (CDCl 3 , 100 MHz): δ 29.47 (C-1), 30.75 (C-7), 38.16 (C-6), 44.99 (C-2), 49.20 (C-4), 66.88 (C-5), 115.23 (C-3", 5"), 126.22 (C-4'), 128.24 (C-2", 6") , 128.53 (C-3', 5'), 129.49 (C-2", 6"), 133.70 (C-1"), 140.60 (C-1'), 153.80 (C-4"), 211.08 (C -3).

화합물 7: 1,7-디페닐-5-메톡시-3-헵타논 [1,7-diphenyl-5-methoxy-3-heptanone]Compound 7: 1,7-diphenyl-5-methoxy-3-heptanone [1,7-diphenyl-5-methoxy-3-heptanone]

HRFABMS m/z 297.1809 (calculated for C20H25O2, 297.1855) 1H-NMR (CDCl3, 400 MHz): δ 1.61~1.84 (2H, m, H-6), 2.53 (2H, m, H-4), 2.58~2.82 (2H, m, H-7), 2.73 (2H, t, 7.6Hz, H-2), 2.88 (2H, t, 7.6Hz, H-1), 3.49 (3H, s, OCH3), 4.10 (1H, m, 4Hz, H-5), 7.10~7.28 (10H, m, Ring-H).13C-NMR (CDCl3, 100 MHz): δ 29.45 (C-1), 31.68 (C-7), 37.99 (C-6), 44.97 (C-2), 49.25 (C-4), 50.78 (OCH3), 66.83 (C-5), 125.84 (C-4'), 126.19 (C-4"), 128.23 (C-2', 6'), 128.37 (C-3', 5'), 128.41 (C-2", 6"), 128.51 (C-3", 5"), 140.61 (C-1'), 141.75 (C-1"), 211.11 (C-3).HRFABMS m/z 297.1809 (calculated for C 20 H 25 O 2 , 297.1855) 1 H-NMR (CDCl 3 , 400 MHz): δ 1.61~1.84 (2H, m, H-6), 2.53 (2H, m, H -4), 2.58~2.82 (2H, m, H-7), 2.73 (2H, t, 7.6Hz, H-2), 2.88 (2H, t, 7.6Hz, H-1), 3.49 (3H, s) , OCH 3 ), 4.10 (1H, m, 4Hz, H-5), 7.10~7.28 (10H, m, Ring-H). 13 C-NMR (CDCl 3 , 100 MHz): δ 29.45 (C-1), 31.68 (C-7), 37.99 (C-6), 44.97 (C-2), 49.25 (C-4), 50.78 ( OCH 3 ), 66.83 (C-5), 125.84 (C-4'), 126.19 (C-4"), 128.23 (C-2', 6'), 128.37 (C-3', 5'), 128.41 (C-2", 6"), 128.51 (C-3", 5"), 140.61 (C-1'), 141.75 (C-1"), 211.11 (C-3).

화합물 8: 3,5,7-트리히드록시-2-페닐-크로멘-4-온(갈란긴) 3,5,7-trihydroxy-2-phenyl-chromen-4-one (galangin); C15H10O5 (m.w. 270.05) 1H-NMR (Acetone-d3, 400 MHz) : δ 2.1 (3H, s, -OH), 6.3 (1H, d, H-6), 6.5 (1H, d, H-8), 7.5 (1H, d, H-4′), 7.6 (2H, d, H-3′H-5′), 8.3 (2H, d, H-2′H-6′), 13C-NMR (Acetone-d3, 100 MHz) : δ 94.6(C-8), 99.2 (C-6), 104.3 (C-10), 128.5 (C-2′, C-6′), 129.4 (C-3′, C-5′), 130.9 (d, C-4′), 132.1 (s, C-1′), 137.9 (s, C-3), 146.1 (s, C-2) 158.1 (s, C-9), 162.2 (s, C-5), 165.2 (s, C-7), 176.9 (s, C-4),Compound 8: 3,5,7-trihydroxy-2-phenyl-chromen-4-one (galangin) 3,5,7-trihydroxy-2-phenyl-chromen-4-one (galangin); C 15 H 10 O 5 (mw 270.05) 1 H-NMR (Acetone-d 3 , 400 MHz): δ 2.1 (3H, s, -OH), 6.3 (1H, d, H-6), 6.5 (1H, d, H-8), 7.5 (1H, d, H-4′), 7.6 (2H, d, H-3′H-5′), 8.3 (2H, d, H-2′H-6′) , 13 C-NMR (Acetone-d 3 , 100 MHz): δ 94.6 (C-8), 99.2 (C-6), 104.3 (C-10), 128.5 (C-2′, C-6′), 129.4 (C-3′, C-5′), 130.9 (d, C-4′), 132.1 (s, C-1′), 137.9 (s, C-3), 146.1 (s, C-2) 158.1 (s, C-9), 162.2 (s, C-5), 165.2 (s, C-7), 176.9 (s, C-4),

실험예 1. 양강 추출물의 근원세포 분화 (myoblast differentiation) 촉진 효능 평가Experimental Example 1. Evaluation of the efficacy of galangal extract to promote myoblast differentiation

상기 실시 예의 양강 추출물의 근원세포의 분화(myogenic effect)에 미치는 영향을 확인하기 위하여 하기와 같이, 기존 문헌에 기재된 방법을 응용하여 실험을 수행하였다. ((11. Chem. Biol. Interact. 2016, 248, 60).In order to confirm the effect of the galangal extract of the above example on the differentiation (myogenic effect) of myogenic cells, an experiment was performed by applying the method described in the existing literature as follows. ((11. Chem. Biol. Interact. 2016, 248, 60).

1-1. 실험 과정1-1. experimental process

마우스 유래 근원세포주인 C2C12 세포(CRL-1771, ATCC)에 추출물 1, 10, 100 ng/ml 을 각각 처리하여 근관세포로 분화시켰다. 분화된 세포의 세포 용해물을 획득하여 웨스턴 블롯법을 통해 MHC, myoD 그리고 myogenin의 단백질 발현 수준을 평가하였으며 (도 1), 마우스 항(mouse anti)-MHC 및 형광 물질이 결합된 항-마우스 항체로 (anti-mouse IgG2b Alexa-fluor 568) 면역 염색법을 수행하여 근관세포에서 추출물에 의한 MHC 발현 변화를 평가하였다 (도 2) (Chem. Biol. Interact. 2016, 248, 60).C2C12 cells (CRL-1771, ATCC), a mouse-derived myogenic cell line, were differentiated into myotube cells by treating extracts 1, 10, and 100 ng/ml, respectively. Cell lysates of differentiated cells were obtained and the protein expression levels of MHC, myoD, and myogenin were evaluated through Western blotting (Figure 1), and mouse anti-MHC and fluorescent substance-conjugated anti-mouse antibodies were used. (anti-mouse IgG2b Alexa-fluor 568) immunostaining was performed to evaluate changes in MHC expression in myotube cells due to the extract (Figure 2) ( Chem. Biol. Interact. 2016, 248, 60).

구체적으로, C2C12 근원세포 (CRL-1771, ATCC)에 양강 추출물 (1, 10, 100 ng/mL)을 처리하여, 분화 배지 (differentiation medium, 2% horse serum-containing DMEM, Cat# 11965-084, Gibco)상에서 3일간 처리하면서 분화를 유도하였다. Specifically, C2C12 myogenic cells (CRL-1771, ATCC) were treated with galangal extract (1, 10, 100 ng/mL) and grown in differentiation medium (2% horse serum-containing DMEM, Cat # 11965-084, Differentiation was induced by treatment on Gibco for 3 days.

1-1-1. 웨스턴 블롯 분석(Western blot analysis)1-1-1. Western blot analysis

웨스턴 블롯 분석(Western blot analysis)을 수행하기 위해 약 3 X 104 의 근원세포를 60 mm 플레이트에서 24 시간 배양한 후, 각 시료가 첨가된 분화 배지를 넣어 3 일간 분화시킨 후, 세포 용해 버퍼로 (lysis buffer, 25 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and protease inhibitor cocktail (Cat# 04-906-845-001, Roche) 단백질 추출물을 얻고, 이 중 20 μg의 단백질 추출물로 SDS-polyacrylamide gel electorphoresis (PAGE)를 실시하고, polyvinylidene fluoride (PVDF) membranes로 이동시켰다. 이 블롯에 일차 마우스 항-MHC(sc-376157, Santa Cruz), 항-myoD(sc-32758, Santa Cruz) 또는 항-myogenin(sc-12732, Santa Cruz)를 4℃에서 12 시간 동안 결합시키고, 이어서 Horseradish peroxidase가 연결된 항-마우스(goat anti-mouse IgG-HRP, ADI-SAN-100J, Enzo Life Science) 또는 항-토끼(goat anti-rabbit IgG-HRP, ADI-SAN-300J, Enzo Life Science) 2차 항체를 결합한 후, 화학발광으로 단백질량을 분석하였다. 이 때 적재 대조군(loading control)으로 pan-cadherin(항 pan-cadherin 항체, Cat# 3678, Sigma)을 사용하였다. To perform Western blot analysis, approximately 3 (lysis buffer, 25mM Tris-HCl (pH 7.5), 100mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and protease inhibitor cocktail (Cat# 04-906-845 -001, Roche) protein extract was obtained, and 20 μg of the protein extract was subjected to SDS-polyacrylamide gel electrophoresis (PAGE) and transferred to polyvinylidene fluoride (PVDF) membranes. -376157, Santa Cruz), anti-myoD (sc-32758, Santa Cruz), or anti-myogenin (sc-12732, Santa Cruz) were bound at 4°C for 12 hours, followed by horseradish peroxidase-linked anti-mouse (goat). After binding anti-mouse IgG-HRP, ADI-SAN-100J, Enzo Life Science) or anti-rabbit (goat anti-rabbit IgG-HRP, ADI-SAN-300J, Enzo Life Science) secondary antibody, chemiluminescence The protein amount was analyzed at this time, pan-cadherin (anti-pan-cadherin antibody, Cat# 3678, Sigma) was used as a loading control.

1-1-2. 면역 형광염색 (immunofluorescence staining)1-1-2. Immunofluorescence staining

위와 같은 방법으로 각각의 시료를 첨가한 분화 배지를 처리하여 근원세포를 분화시켜, 면역 형광염색 (immunofluorescence staining)을 실시하였다. Myogenic cells were differentiated by treating differentiation medium with each sample added in the same manner as above, and immunofluorescence staining was performed.

각각의 분화 배지를 제거하고, 인산완충 생리식염수로 2회 세척 후, 4% paraformaldehyde (0141, BBC Biochemical)로 20 분간 고정하였다. 다시 인산완충 생리식염수로 2회 세척하고, 0.1% tritonX-100 (2315025, Sigma)에 20 분간 처리하였다. 인산 완충 생리식염수로 2회 세척하고, 5% 말 혈청 용액 (16050122, Gibco)을 처리하여 블로킹한 후, 마우스 항-MHC (MAB4470, R&D systems)을 넣고 12 시간 동안 4℃에서 반응시켰다. Each differentiation medium was removed, washed twice with phosphate-buffered saline, and fixed with 4% paraformaldehyde (0141, BBC Biochemical) for 20 minutes. It was again washed twice with phosphate-buffered saline and treated with 0.1% tritonX-100 (2315025, Sigma) for 20 minutes. After washing twice with phosphate-buffered saline and blocking with 5% horse serum solution (16050122, Gibco), mouse anti-MHC (MAB4470, R&D systems) was added and reacted at 4°C for 12 hours.

반응 후 3회 이상 인산 완충 생리식염수로 세척한 후 Alexa Flouor 568-결합된 2차 항 마우스 (A-21144, MicoProbes)을 이용하여 MHC를, DAPI (D9542, Sigma)을 이용하여 세포 내 핵을 염색하였다. MHC-양성 근관세포 (positive myotubes)의 면역형광(Immunofluorescence) 결과는 적색으로 MHC 발현을 시각화하고 DAPI-표지된 핵은 청색으로 시각화하였다. After reaction, wash with phosphate-buffered saline at least three times, stain MHC using Alexa Flouor 568-conjugated secondary anti-mouse (A-21144, MicoProbes), and stain intracellular nuclei using DAPI (D9542, Sigma). did. Immunofluorescence results of MHC-positive myotubes visualized MHC expression in red and DAPI-labeled nuclei in blue.

1-2. 실험 결과1-2. Experiment result (표 1-2, 도 1-2)(Table 1-2, Figure 1-2)

도 1에서는 MHC, myoD, 그리고 myogenin 발현에 미치는 양강 추출물의 효과를 측정하였다. 근원세포의 분화 배지에 추출물을 각 1, 10, 100 ng/mL의 농도로 처리하여 근관섬유로 3 일간 분화시키고 세포 용출물을 얻어, 근관섬유로의 분화 마커인 MHC, myoD 및 myogenin의 단백질 발현을 웨스턴 블롯팅 분석법으로 분석하였다. In Figure 1, the effect of galangal extract on MHC, myoD, and myogenin expression was measured. The extract was treated with the myoblast differentiation medium at a concentration of 1, 10, and 100 ng/mL, differentiated into myotube fibers for 3 days, and cell lysates were obtained to determine protein expression of MHC, myoD, and myogenin, which are differentiation markers for myotube fibers. was analyzed by Western blotting analysis.

분석 결과, 대조군 세포에서의 MHC, myoD,그리고 myogenin 발현을 1로 하였을 때, 양강 추출물 처리에 의한 각 마커들의 발현량은 표 1과 같이 증가하였다 (표 1).As a result of the analysis, when the expression of MHC, myoD, and myogenin in the control cells was set to 1, the expression level of each marker increased as shown in Table 1 by treatment with the galangal extract (Table 1).

도 2에서는, 항(anti)-MHC 항체(antibodies) 및 DAPI을 이용한 면역형광 염색법(immunofluorescence staining)으로 추출물의 근육분화 활성을 측정하였다. 증가된 적색형광(red-fluorescence)은 추출물이 C2C12 세포에서의 MHC 발현을 촉진함을 의미하며, DAPI 염색(counter staining)을 통해 핵을 시각화함으로써, 다핵성(multinucleated)이며 MHC가 발현되는 실린더 형(cylinder-shaped) 근관세포 수가 추출물의 농도에 따라 증가함을 확인하였다 (표 2). In Figure 2, the muscle differentiation activity of the extract was measured by immunofluorescence staining using anti-MHC antibodies and DAPI. Increased red-fluorescence indicates that the extract promotes MHC expression in C2C12 cells, and by visualizing the nuclei through DAPI counter staining, they are multinucleated and have a cylindrical shape where MHC is expressed. It was confirmed that the number of (cylinder-shaped) myotube cells increased depending on the concentration of the extract (Table 2).

상기 실험에서 양강 추출물은 농도 의존적으로, 근관세포에서의 근원세포 분화 마커들의 발현과 실린더 형(cylinder-shaped) 다핵성 근관세포(multinucleated myotubes) 수를 증가시킴을 알 수 있었으며 근육 세포 분화를 촉진시킴을 입증하였다 (표 1-2 및 도 1-2 ).In the above experiment, it was found that galangal extract increased the expression of myocyte differentiation markers in myotube cells and the number of cylinder-shaped multinucleated myotubes in a concentration-dependent manner, promoting muscle cell differentiation. was proven (Table 1-2 and Figure 1-2).

양강 추출물 galangal extract [ng/mL][ng/mL] 00 1One 1010 100100 MHCMHC
/pan-cadherin 발현 (배)/pan-cadherin expression (fold)
1.01.0 aa 1.31.3 bb 1.31.3 cc 1.71.7 dd
myoDmyoD
/pan-cadherin 발현 (배)/pan-cadherin expression (fold)
1.01.0 abab 1.11.1 aa 3.93.9 bb 5.25.2 cc
myogeninmyogenin
/pan-cadherin 발현 (배)/pan-cadherin expression (fold)
1.01.0 abab 1.11.1 bb 1.01.0 aa 1.21.2 cc
a,b,c: 서로 다른 문자는 유의성 있음 (p < 0.01) a,b,c : Different letters indicate significance ( p < 0.01)

양강 추출물에 의한 MHC, myoD 및 myogenin 발현 증가 활성 (도 1)Increased activity of MHC, myoD and myogenin expression by galangal extract (Figure 1)

양강 추출물 galangal extract [ng/mL][ng/mL] 00 1One 1010 100100 5개 이상의 핵을 가진 다핵성이며 MHC가 발현된 근관 섬유의 수 (배)Number (fold) of myotube fibers that are multinucleated with five or more nuclei and express MHC 1.01.0 aa 2.02.0 bb 2.02.0 bb 2.22.2 cc a,b,c: 서로 다른 문자는 유의성 있음 (p < 0.01) a,b,c : Different letters indicate significance ( p < 0.01)

양강 추출물에 의한 MHC 양성-실린더 형(cylinder-shaped) 다핵성 근관세포의 수 변화 (도 2)Changes in the number of MHC positive-cylinder-shaped multinucleated myotube cells by galangal extract (Figure 2)

실험예 2. 양강 추출물의 근원세포 분화 촉진에 대한 p38 MAPK 신호전달 체계 기전 연구Experimental Example 2. Study on the mechanism of the p38 MAPK signaling system on the promotion of myogenic cell differentiation by Yangkang extract

상기 실시예의 양강 추출물의 근원세포 분화 동안 p38-미토겐-활성화 프로테인 키나제 (mitogen-activated protein kinase, p38 MAPK) 신호전달 체계 기전에 미치는 영향을 확인하였다. The effect of the galangal extract of the above example on the p38-mitogen-activated protein kinase (p38 MAPK) signaling system mechanism during myogenic cell differentiation was confirmed.

p38 MAPK 신호전달계는 근원세포 분화(myoblast differentiation)의 중심 기전으로 알려져 있으며, p38 MAPK은 전사 인자인 MyoD의 이량화(dimerization)를 촉진하여 근원세포 분화인자(myogenic factors)들의 발현을 유도한다. (Trends Cell Biol. 2006, 16, 36). 그러므로 양강 추출물에 의한 p38 MAPK의 활성화를 측정하기 위하여 하기와 같이, 기존 문헌에 기재된 방법을 응용하여 실험을 수행하였다. (Mol. Biol. Cell. 2010, 21, 2399; Trends Cell Biol. 2006, 16, 36).The p38 MAPK signaling system is known to be a central mechanism of myoblast differentiation, and p38 MAPK induces the expression of myogenic factors by promoting dimerization of the transcription factor MyoD. ( Trends Cell Biol . 2006 , 16 , 36). Therefore, to measure the activation of p38 MAPK by galangal extract, an experiment was performed by applying the method described in the existing literature as follows. ( Mol. Biol. Cell. 2010 , 21, 2399; Trends Cell Biol . 2006 , 16 , 36).

2-1. 실험 과정2-1. experimental process

본 발명자들은 근원세포에 추출물(1, 10, 100 ng/mL)을 처리하여 분화 3일 째에 근관세포(differentiated myotubes)에서 용해물을 얻어, p38 MAPK의 활성화된 형태인 인산화된 p38 MAPK 단백질 발현 수준을 웨스턴 블롯팅 분석법으로 분석하였다. The present inventors treated myoblasts with extracts (1, 10, and 100 ng/mL), obtained lysates from differentiated myotubes on day 3 of differentiation, and analyzed the expression of phosphorylated p38 MAPK protein, which is the activated form of p38 MAPK. Levels were analyzed by Western blotting analysis.

이를 위해 일차 토끼-항 인산화 p38 MAPK(Cat# 9211, Cell Signaling Technology)와 이에 대한 항 토끼 2차 항체(goat anti-rabbit IgG-HRP, sc-2004, SantaCruz)을 이용하여 인산화된 p38 MAPK 발현을 측정하였고, 이 때 적재 대조군(loading control)은 총 p38 MAPK의 발현량으로 하였으며 이를 분석하기 위해 일차 토끼-항 p38 MAPK(Cat# 9212, Cell Signaling Technology)을 사용하였다. For this purpose, the expression of phosphorylated p38 MAPK was measured using a primary rabbit-anti-phosphorylated p38 MAPK (Cat# 9211, Cell Signaling Technology) and an anti-rabbit secondary antibody (goat anti-rabbit IgG-HRP, sc-2004, SantaCruz). At this time, the loading control was the total expression level of p38 MAPK, and primary rabbit-anti-p38 MAPK (Cat# 9212, Cell Signaling Technology) was used to analyze this.

2-2. 실험 결과 (표 3 및 도 3 )2-2. Experimental results (Table 3 and Figure 3)

추출물의 p38 MAPK 활성화에 대한 효과를 웨스턴 분석법으로 확인한 결과, 근원 세포 분화에 중요한 p38 MAPK 신호 전달계가 추출물에 의해 분화기간 동안 더욱 활성화되었으며, 이는 추출물의 처리 농도에 비례하였다 (표 3).As a result of confirming the effect of the extract on p38 MAPK activation by Western analysis, the p38 MAPK signaling system, which is important for myogenic cell differentiation, was further activated by the extract during the differentiation period, and this was proportional to the treatment concentration of the extract (Table 3).

상기 실험 결과는 양강 추출물에 의해 근원세포 분화(myoblast differentiation)가 촉진될 때 p38 MAPK 활성화가 일어남을 나타낸다. The above experimental results indicate that p38 MAPK activation occurs when myoblast differentiation is promoted by the galangal extract.

양강 추출물 galangal extract [ng/mL][ng/mL] 00 1One 1010 100100 인산화-p38Phosphorylation-p38
/p38 발현량 (배)/p38 expression level (fold)
1.01.0 aa 1.91.9 bb 2.42.4 cc 2.82.8 dd
a,b,c,d: 서로 다른 문자는 유의성 있음 (p < 0.01) a,b,c,d : Different letters indicate significance ( p < 0.01)

양강추출물의 p38 MAPK 활성 (도 3)p38 MAPK activity of galangal extract (Figure 3)

실험예 3.Experimental Example 3. 근육 소실 시험관 모델(in vitro)에서, 양강 추출물의 근육 소실 억제 효능Inhibitory muscle loss efficacy of galangal extract in an in vitro muscle loss model

상기 실시예의 양강 추출물의 근육 소실 억제 효과를 확인하기 위하여 하기와 같이, 기존 문헌에 기재된 방법을 응용하여 실험을 수행하였다. (Int. J. Mol. Med. 2015, 36, 29-42; Biomed. Pharm. 2017, 95, 1486 ) In order to confirm the muscle loss inhibition effect of the galangal extract of the above example, an experiment was performed by applying the method described in the existing literature as follows. ( Int. J. Mol. Med. 2015, 36 , 29-42; Biomed. Pharm. 2017 , 95 , 1486)

상기 실시예의 추출물을 처리하여 3 일간 분화된 근관세포에, 합성 글루티코이드인 덱사메타손 (dexamethasone, 200 μM)을 첨가하여 근육 소실의 in vitro 모델을 유도하였다 ( Int. J. Mol. Med. 2015, 36, 29-42). An in vitro model of muscle loss was induced by adding dexamethasone (200 μM), a synthetic glutinoid, to myotube cells differentiated for 3 days by treating the extract of the above example ( Int. J. Mol. Med. 2015, 36 , 29-42).

추출물이 근 단백질 소실을 억제하는지 알아보기 위해, 웨스턴 블롯팅 분석을 통해 근관세포 마커 단백질인 MHC 발현과 근육 손실을 유도하는 근육 단백질 분해 효소인 MuRF1의 단백질 발현에 어떤 영향을 주는지 알아보았고(도 4), 덱사메타손에 의한 근관세포의 MHC 단백질 소실이 추출물에 의해 억제되는지 면역형광 염색법(immunofluorescence staining)을 사용하여 재확인하였다(도 5). To determine whether the extract inhibits muscle protein loss, we used Western blotting analysis to determine how it affects the expression of MHC, a myotube cell marker protein, and the protein expression of MuRF1, a muscle protein degrading enzyme that induces muscle loss (Figure 4 ), it was re-confirmed using immunofluorescence staining whether the loss of MHC protein in myotube cells caused by dexamethasone was inhibited by the extract (Figure 5).

3-1. 실험 과정3-1. experimental process

3-1-1. 웨스턴 블롯 분석(Western blot analysis)3-1-1. Western blot analysis

웨스턴 블롯 분석(Western blot analysis)을 위해 약 3 X 104 의 근원세포를 60 mm 플레이트에서 24 시간 배양한 후, 분화 배지에 추출물을 (0, 1, 10, 100 ng/mL)을 첨가하여 3 일간 분화시켰다. 분화된 근관세포에 200 μM의 덱사메타손 (dexamethasone, D4902, Sigma)을 24 시간 처리하였다. For Western blot analysis, approximately 3 Differentiated daily. Differentiated myotube cells were treated with 200 μM dexamethasone (D4902, Sigma) for 24 hours.

처리가 끝난 세포에 세포 용해 버퍼(lysis buffer, 25 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and protease inhibitor cocktail (Calbiochem, Darmstadt, Germany)를 처리하여 단백질 추출물을 얻고 20 μg의 단백질 추출물로 SDS-polyacrylamide gel electorphoresis (PAGE)를 실시 후, polyvinylidene fluoride (PVDF) membranes로 이동시켰다. 이 블롯에 일차 마우스 항-MHC(sc-376157, Santa Cruz), 또는 일차 마우스 항-MuRF1(sc-398608, Santa Cruz) 을 4℃에서 12 시간 동안 결합시키고, 이어서 Horseradish peroxidase가 연결된 항-마우스(goat anti-mouse IgG-HRP, ADI-SAN-100J, Enzo Life Science) 2차 항체를 결합한 후, 화학발광으로 MHC와 MuRF1 단백질량을 분석하였다. 이 때 적재 대조군(loading control)으로 pan-cadherin(Cat# 3678, Sigma)을 사용하였다. Cell lysis buffer (25mM Tris-HCl (pH 7.5), 100mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and protease inhibitor cocktail was added to the treated cells. (Calbiochem, Darmstadt, Germany) to obtain a protein extract, and 20 μg of the protein extract was subjected to SDS-polyacrylamide gel electrophoresis (PAGE) and transferred to polyvinylidene fluoride (PVDF) membranes. (sc-376157, Santa Cruz), or primary mouse anti-MuRF1 (sc-398608, Santa Cruz) was bound at 4°C for 12 hours, followed by horseradish peroxidase-linked anti-mouse (goat anti-mouse IgG-HRP, After binding the secondary antibody (ADI-SAN-100J, Enzo Life Science), the MHC and MuRF1 protein amounts were analyzed by chemiluminescence, using pan-cadherin (Cat# 3678, Sigma) as a loading control. did.

3-1-2. 면역 형광염색 (immunofluorescence staining)3-1-2. Immunofluorescence staining

위와 같은 방법으로 각 추출물 농도로 분화시킨 근관세포에 덱사메타손으로 손상을 준 시험관 모델 세포에서, 면역 형광염색 (immunofluorescence staining)을 실시하였다. Immunofluorescence staining was performed on in vitro model cells in which myotube cells differentiated at each extract concentration were damaged with dexamethasone in the same manner as above.

각각의 배지를 제거하고, 인산완충 생리식염수로 2회 세척 후, 4% paraformaldehyde (0141, BBC Biochemical)로 20 분간 고정하였다. 다시 인산완충 생리식염수로 2회 세척하고, 0.1% tritonX-100 (2315025, Sigma)에 20 분간 처리하였다. 인산 완충 생리식염수로 2회 세척하고, 5% 말 혈청 용액 (16050122, Gibco)에서 블로킹한 후, 마우스 항-MHC (MAB4470, R&D systems)을 넣고 12 시간 동안 4℃에서 반응시켰다. Each medium was removed, washed twice with phosphate-buffered saline, and fixed with 4% paraformaldehyde (0141, BBC Biochemical) for 20 minutes. It was again washed twice with phosphate-buffered saline and treated with 0.1% tritonX-100 (2315025, Sigma) for 20 minutes. After washing twice with phosphate-buffered saline and blocking with 5% horse serum solution (16050122, Gibco), mouse anti-MHC (MAB4470, R&D systems) was added and reacted at 4°C for 12 hours.

반응 후 3회 이상 인산 완충 생리식염수로 세척한 후 Alexa Flouor 568-결합된 2차 항 마우스 (A-21144, MicoProbes)와 DAPI (D9542, Sigma)을 이용하여 MHC 발현을 분석하였다. MHC-양성 근관세포 (positive myotubes)의 면역형광(Immunofluorescence) 결과는 적색으로 시각화하고 DAPI-표지된 핵은 청색으로 시각화하였다. After the reaction, the cells were washed with phosphate-buffered saline at least three times, and MHC expression was analyzed using Alexa Flouor 568-conjugated secondary anti-mouse (A-21144, MicoProbes) and DAPI (D9542, Sigma). Immunofluorescence results of MHC-positive myotubes were visualized in red, and DAPI-labeled nuclei were visualized in blue.

3-2. 실험 결과 (표 4-5, 도 4-5 )3-2. Experiment results (Table 4-5, Figure 4-5)

각 세포군에서 MHC 단백질 발현을 웨스턴 블롯팅 분석법을 통해 분석한 결과, 덱사메타손을 처리하지 않은 대조군 (NC) 근관세포에서의 MHC 발현을 1로 하였을 때, 덱사메타손을 처리하여 근육 손실을 유도한 근관세포군에서의 MHC 발현은 0.3배로 감소하였다. 근육 소실 근관세포군에 비해 추출물을 처리한 세포군에서는 추출물의 농도에 따라 대조군 수준으로 MHC 발현이 회복됨이 관찰되었다.As a result of analyzing MHC protein expression in each cell group using Western blotting analysis, when MHC expression in control (NC) myotube cells not treated with dexamethasone was set to 1, in the myotube cell group treated with dexamethasone to induce muscle loss, MHC expression was decreased by 0.3-fold. Compared to the muscle-loss myotube cell group, it was observed that in the cell group treated with the extract, MHC expression was restored to the control level depending on the concentration of the extract.

또한 덱사메타손을 처리하지 않은 대조군 (NC) 근관세포의 MuRF1 발현을 1로 하였을 때에 비해 덱사메타손을 처리한 근 소실 세포군에서의 MuRF1 발현은 1.7배로 증가하였고, 추출물을 100 nM 처리한 근관세포군에서는 덱사메타손 처리된 근육 손실 모델인 근관세포군에서의 MuRF1 발현과 비교하여 거의 발현되지 않았다(표 4, 도 4).In addition, compared to the MuRF1 expression in the control (NC) myotube cells that were not treated with dexamethasone at 1, the expression of MuRF1 in the muscle loss cell group treated with dexamethasone increased 1.7-fold, and in the myotube cell group treated with 100 nM of the extract, the Compared to MuRF1 expression in the myotube cell population, a muscle loss model, it was barely expressed (Table 4, Figure 4).

도 5에 나타난 바와 같이, 덱사메타손에 의해 감소한 근 단백질 분해 억제능을 확인하기 위하여, 추출물과 덱사메타손을 첨가한 근관세포에서 적색형광의 수준으로 MHC 발현을 평가하였고, DAPI 염색으로는 실린더 형(cylinder-shaped) 다핵성 근관세포(multinucleated myotubes) 형성을 평가하였다. 분화된 근관세포에 덱사메타손을 처리하면 근관세포의 손실이 증가하였으나, 이와 반대로 분화 동안 추출물을 처리하여 얻어진 근관세포는 덱사메타손에 의한 다핵성 (multinucleated) MHC-양성 세포(positive cells) 손실을 억제하였다 (표 5및 도 5). 본 발명의 시료에 의한 근육 보호가 효과적으로 일어났으며, 근육 단백질 분해 효소 발현 억제를 통해 근육 단백질이 보호됨을 입증한 것이다. As shown in Figure 5, in order to confirm the ability to inhibit muscle protein degradation reduced by dexamethasone, MHC expression was evaluated at the level of red fluorescence in the extract and dexamethasone-added myotube cells, and DAPI staining showed cylinder-shaped cells. ) The formation of multinucleated myotubes was evaluated. Treating differentiated myotube cells with dexamethasone increased the loss of myotube cells, but on the contrary, myotube cells obtained by treating the extract during differentiation suppressed the loss of multinucleated MHC-positive cells caused by dexamethasone ( Table 5 and Figure 5). It was demonstrated that muscle protection by the sample of the present invention occurred effectively and that muscle proteins were protected through inhibition of muscle proteolytic enzyme expression.

양강추출물에 의한 근관세포 보호 활성(도 4)Myotube cell protective activity by galangal extract (Figure 4)

덱사메타손으로 유도된 근관세포 손실에서, 양강추출물에 의한 MHC 양성-실린더 형(cylinder-shaped) 다핵성 근관세포의 수 변화(도 5)In dexamethasone-induced myotube cell loss, changes in the number of MHC positive-cylinder-shaped multinucleated myotube cells by galangal extract (Figure 5)

실험예 4.Experimental Example 4. 근육 소실 시험관(in vitro) 모델에서, 추출물 유래 화합물들의 근육 소실 억제 효능 Inhibitory muscle loss efficacy of extract-derived compounds in an in vitro model of muscle loss

상기 실시예의 양강 추출물에서 유래한 화합물들의 근육 소실에 대한 억제 효과를 확인하기 위하여 하기와 같이, 기존 문헌에 기재된 방법을 응용하여 실험을 수행하였다. ( Int. J. Mol. Med. 2015, 36, 29-42; Biomed. Pharm. 2017, 95, 1486 ) Compounds derived from the galangal extract of the above example In order to confirm the inhibitory effect on muscle loss, an experiment was performed by applying the method described in the existing literature as follows. ( Int. J. Mol. Med. 2015, 36 , 29-42; Biomed. Pharm. 2017 , 95 , 1486)

상기 실시예의 화합물들을 10 nM의 농도로 처리한 근관세포에 덱사메타손 (dexamethasone)을 처리하여 근육소실의 in vitro 모델을 만들어 (Int. J. Mol. Med. 2015, 36, 29-42) 하기와 같이 실험을 진행하였다.Myotube cells treated with the compounds of the above example at a concentration of 10 nM were treated with dexamethasone to create an in vitro model of muscle loss ( Int. J. Mol. Med. 2015, 36 , 29-42) as follows. An experiment was conducted.

화합물들이 근육 단백질 소실 억제 효능 분석을 위해, 근관세포에서 MHC 발현에 어떤 영향을 주는지 웨스턴 블롯팅 분석을 통해 알아보았다 (도 6). To analyze the effectiveness of compounds in suppressing muscle protein loss, Western blotting analysis was used to determine how the compounds affected MHC expression in myotubes (FIG. 6).

4-1. 실험 과정4-1. experimental process

약 3 x 104 의 근원세포(C2C12; CRL-1772, American Type Culture Collection)를 60 mm 플레이트에 분주하고 24 시간 후 2% 말 혈청을 함유한 DMEM 분화 배지 (0273, Gibco)에 추출물 유래 화합물 (0, 10 nM)들을 첨가하여, 3 일 동안 배양하여 분화시켰다.Approximately 3 0, 10 nM) were added and cultured for 3 days to differentiate.

근육 소실(in vitro)을 유도하기 위해, 위와 같이 분화된 근관세포에 각각 200 μM의 덱사메타손 (dexamethasone, D4902, Sigma)을 24 시간 처리하였다. 세포를 인산 완충 생리 식염수로 세척하여 준비한 후, 세포에 세포 용해 버퍼(lysis buffer, 25 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and protease inhibitor cocktail (Calbiochem, Darmstadt, Germany)를 처리하여 단백질 추출물을 얻고 20 μg의 단백질 추출물로 SDS-polyacrylamide gel electorphoresis (PAGE)를 실시 후, polyvinylidene fluoride (PVDF) membranes로 이동시켰다. 이 블롯에 일차 마우스 항-MHC(sc-376157, Santa Cruz)을 4 °C에서 12 시간 동안 결합시키고, 이어서 Horseradish peroxidase가 연결된 항-마우스(goat anti-mouse IgG-HRP, ADI-SAN-100J, Enzo Life Science) 2차 항체를 결합한 후, 화학발광으로 MHC 단백질량을 분석하였다. 이 때 적재 대조군(loading control)으로 pan-cadherin(Cat# 3678, Sigma)을 사용하였다. To induce muscle loss ( in vitro) , myotube cells differentiated as above were treated with 200 μM dexamethasone (D4902, Sigma) for 24 hours. After preparing the cells by washing them with phosphate-buffered saline, the cells were added with lysis buffer (25mM Tris-HCl (pH 7.5), 100mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl). Protein extracts were obtained by treatment with sulfate (SDS), and protease inhibitor cocktail (Calbiochem, Darmstadt, Germany), and 20 μg of protein extracts were subjected to SDS-polyacrylamide gel electrophoresis (PAGE) and then transferred to polyvinylidene fluoride (PVDF) membranes. Primary mouse anti-MHC (sc-376157, Santa Cruz) was bound to this blot for 12 hours at 4 °C, followed by horseradish peroxidase-linked anti-mouse (goat anti-mouse IgG-HRP, ADI-SAN-100J). , Enzo Life Science), the MHC protein amount was analyzed by chemiluminescence. At this time, pan-cadherin (Cat# 3678, Sigma) was used as a loading control.

4-2. 실험 결과(표 6, 도 6)4-2. Experimental results (Table 6, Figure 6)

각 세포군에서 MHC 단백질 발현을 웨스턴 블롯팅 분석법을 통해 분석한 결과, 덱사메타손을 처리하지 않은 대조군 (NC) 근관세포에서의 MHC 발현을 1로 하였을 때, 덱사메타손을 처리하여 근육 손실을 유도한 근관세포군에서의 MHC 발현은 0.3배로 감소하였다. 양강 유래 화합물들 처리한 경우, MHC 발현이 근육 소실 근관세포 대조군 수준으로 회복되었으며, 특히 화합물 1, 2, 3은 대조군에 비해 각각 1.5배, 2.8배, 2.0배로 각각 증가됨을 관찰하였다 (표 6, 도 6). As a result of analyzing MHC protein expression in each cell group using Western blotting analysis, when MHC expression in control (NC) myotube cells not treated with dexamethasone was set to 1, in the myotube cell group treated with dexamethasone to induce muscle loss, MHC expression was decreased by 0.3-fold. When treated with Yanggang-derived compounds, MHC expression was restored to the control level of muscle-losing myotube cells, and in particular, compounds 1, 2, and 3 were observed to increase by 1.5-fold, 2.8-fold, and 2.0-fold, respectively, compared to the control group (Table 6, Figure 6).

본 발명의 양강 추출물 유래 화합물들은 근육 소실을 강력하게 억제하는 것으로 확하였다. It was confirmed that the compounds derived from the galangal extract of the present invention strongly inhibit muscle loss.

추출물 유래 화합물들에 의한 근관세포 보호 활성(도 6)Myotube cell protective activity by extract-derived compounds (Figure 6)

실험예 5 양강 추출물에서 분리된 화합물 2의 근원세포 분화 (myoblast differentiation) 촉진 효능 평가 Experimental Example 5 Evaluation of the efficacy of Compound 2 isolated from Yanggang extract to promote myoblast differentiation

상기 실시예의 양강 추출물에서 분리된 화합물 2의 세포 분화 (myoblast differentiation) 촉진 효능을 확인하기 위하여 하기와 같이, 기존 문헌에 기재된 방법을 응용하여 실험을 수행하였다. (Chem. Biol. Interact. 2016, 248, 60).).In order to confirm the efficacy of Compound 2 isolated from the galangal extract of the above example in promoting cell differentiation (myoblast differentiation), an experiment was performed by applying the method described in the existing literature as follows. ( Chem. Biol. Interact. 2016, 248, 60).).

5-1. 실험 과정5-1. experimental process

상기 실시예의 양강 추출물에서 분리된 화합물 2가 근원세포의 분화(myogenic effect)를 촉진시키는지 알아보기 위하여, 마우스 근원세포주인 C2C12 세포에 화합물 2를 1, 10, 100 nM 농도로 3 일간 처리 후 분화된 근관세포의 용해물을 획득하여 웨스턴 블롯팅 분석법을 통해 MHC의 단백질 발현 수준을 평가하였으며 (도 7), 마우스 항-MHC 및 형광 물질에 결합된 항-마우스 항체로 (anti-mouse IgG2b Alexa-fluor 568) 면역 염색법을 수행하여 실린더 형(cylinder-shaped) 다핵성 근관세포(multinucleated myotubes)의 증가를 평가하였다 (도 8) (Chem. Biol. Interact. 2016, 248, 60).In order to determine whether Compound 2 isolated from the galangal extract of the above example promotes myogenic effect, C2C12 cells, a mouse myogenic cell line, were treated with Compound 2 at concentrations of 1, 10, and 100 nM for 3 days and then differentiated. The lysate of the myotube cells was obtained and the protein expression level of MHC was evaluated through Western blotting analysis (Figure 7), and the protein expression level of MHC was assessed using mouse anti-MHC and anti-mouse antibody conjugated to a fluorescent substance (anti-mouse IgG2b Alexa- fluor 568) immunostaining was performed to evaluate the increase in cylinder-shaped multinucleated myotubes (FIG. 8) ( Chem. Biol. Interact. 2016, 248, 60).

C2C12 근원세포 (Cat# CRL-1771, ATCC)에 양강 추출물에서 분리한 화합물 2 (1, 10, 100 nM)이 첨가된 분화 배지 (differentiation medium, 2% horse serum-containing DMEM, Cat# 11965-084, Gibco)상에서 3일간 처리하면서 분화를 유도하였다. Differentiation medium (2% horse serum-containing DMEM, Cat # 11965-084) supplemented with Compound 2 (1, 10, 100 nM) isolated from horsetail extract to C2C12 myogenic cells (Cat # CRL-1771, ATCC) , Gibco) for 3 days to induce differentiation.

5-1-1. 웨스턴 블롯 분석(Western blot analysis)5-1-1. Western blot analysis

웨스턴 블롯 분석(Western blot analysis)을 위해 약 3 X 104 의 근원세포를 60 mm 플레이트에서 24 시간 배양한 후, 분화 배지에 화합물 2를 농도별로 첨가하여 3 일간 분화시킨 후, 세포 용해 버퍼로 (lysis buffer, 25 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and protease inhibitor cocktail (Calbiochem, Darmstadt, Germany) 단백질 추출물을 얻고 20 μg의 단백질 추출물로 SDS-polyacrylamide gel electorphoresis (PAGE)를 실시하고, polyvinylidene fluoride (PVDF) membranes로 이동시켰다. 일차 마우스 항-MHC(sc-376157, Santa Cruz)를 4℃에서 12 시간 동안 결합시키고, 이어서 Horseradish peroxidase가 연결된 항 마우스 2차 항체 (goat anti-mouse IgG-HRP, ADI-SAN-100J, Enzo Life Science)를 반응시킨 후, 화학발광으로 단백질량을 분석하였다. 이 때 적재 대조군(loading control)으로 pan-cadherin(항-pancadherin, Cat# 3678, Sigma)을 사용하였다. For Western blot analysis, approximately 3 lysis buffer, 25 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and protease inhibitor cocktail (Calbiochem, Darmstadt, Germany) protein extract 20 μg of protein extract was subjected to SDS-polyacrylamide gel electrophoresis (PAGE) and transferred to polyvinylidene fluoride (PVDF) membranes with primary mouse anti-MHC (sc-376157, Santa Cruz) at 4°C for 12 hours. After binding, the horseradish peroxidase-linked anti-mouse secondary antibody (goat anti-mouse IgG-HRP, ADI-SAN-100J, Enzo Life Science) was reacted, and the protein amount was analyzed by chemiluminescence. Pan-cadherin (anti-pancadherin, Cat# 3678, Sigma) was used as a loading control.

5-1-2. 면역 형광염색 (immunofluorescence staining)5-1-2. Immunofluorescence staining

위와 같은 방법으로 각 농도의 화합물 2를 첨가한 분화 배지에서 근원세포를 분화시켜, 면역 형광염색 (immunofluorescence staining)을 실시하였다. 각각의 분화 배지를 제거하고, 인산완충 생리식염수로 2회 세척 후, 4% paraformaldehyde (0141, BBC Biochemical)로 20 분간 고정하였다. 다시 인산완충 생리식염수로 2회 세척하고, 0.1% tritonX-100(2315025, Sigma)에 20 분간 처리하였다. 인산 완충 생리식염수로 2회 세척하고, 5% 말 혈청 용액(16050122, Gibco)에서 블로킹한 후, 마우스 항-MHC (MAB4470, R&D systems)을 넣고 12 시간 동안 4℃에서 반응시켰다. 반응 후 3회 이상 인산 완충 생리식염수로 세척한 후 Alexa Flouor 568-결합된 2차 항-마우스 (A-21144, MicoProbes)와 DAPI (D9542, Sigma)을 이용하여 MHC 발현을 분석하였다. MHC-양성 근관세포 (positive myotubes)의 면역형광(Immunofluorescence) 결과는 적색으로 시각화하고 DAPI-표지된 핵은 청색으로 시각화하였다. Myoblasts were differentiated in differentiation medium containing each concentration of Compound 2 in the same manner as above, and immunofluorescence staining was performed. Each differentiation medium was removed, washed twice with phosphate-buffered saline, and fixed with 4% paraformaldehyde (0141, BBC Biochemical) for 20 minutes. It was again washed twice with phosphate-buffered saline and treated with 0.1% tritonX-100 (2315025, Sigma) for 20 minutes. After washing twice with phosphate-buffered saline and blocking with 5% horse serum solution (16050122, Gibco), mouse anti-MHC (MAB4470, R&D systems) was added and reacted at 4°C for 12 hours. After the reaction, the cells were washed with phosphate-buffered saline at least three times, and MHC expression was analyzed using Alexa Flouor 568-conjugated secondary anti-mouse (A-21144, MicoProbes) and DAPI (D9542, Sigma). Immunofluorescence results of MHC-positive myotubes were visualized in red, and DAPI-labeled nuclei were visualized in blue.

5-2. 실험 결과5-2. Experiment result (표 7-8, 도 7-8 ) (Table 7-8, Figure 7-8)

도 7에서는 화합물 2에 의한 MHC 발현에 대한 효과를 측정하였다. 근원세포의 분화 배지에 화합물 2을 1, 10, 100 nM의 농도로 처리하여 근관섬유로 3 일간 분화시키고 세포를 수확하여, 근원세포 분화 마커인 MHC의 단백질 발현을 웨스턴 블롯팅 분석법으로 분석하였다. In Figure 7, the effect of compound 2 on MHC expression was measured. Myoblast differentiation medium was treated with Compound 2 at concentrations of 1, 10, and 100 nM to differentiate into myotube fibers for 3 days. The cells were harvested, and the protein expression of MHC, a myoblast differentiation marker, was analyzed by Western blotting analysis.

분석 결과, 대조군 세포에서의 MHC 발현보다 화합물 2를 처리한 세포에서 MHC의 발현이 증가하였고, 화합물 2의 1 nM 농도에서 최고치를 나타내었다 (표 7). As a result of the analysis, MHC expression increased in cells treated with Compound 2 compared to MHC expression in control cells, and peaked at a concentration of 1 nM of Compound 2 (Table 7).

도 8에서는, 항-MHC 항체 및 DAPI을 이용한 면역형광 염색법(immunofluorescence staining)으로 화합물 2에 의한 근원세포 분화 활성을 측정하였다. 증가된 적색형광(red-fluorescence)은 화합물 2가 C2C12 세포에서의 MHC 발현을 촉진함을 의미하며, DAPI 염색(counter staining)을 통해서는 MHC가 발현되는 실린더 형(cylinder-shaped) 근관세포가 다핵성(multinucleated)임을 확인할 수 있었다. In Figure 8, myoblast differentiation activity by compound 2 was measured by immunofluorescence staining using an anti-MHC antibody and DAPI. Increased red-fluorescence indicates that Compound 2 promotes MHC expression in C2C12 cells, and DAPI counter staining showed that cylinder-shaped myotube cells expressing MHC were multinucleated. It was confirmed that it was multinucleated.

상기 실험에서 양강 추출물에서 분리된 화합물 2에 의해, 근관세포에서 MHC 발현과 실린더 형(cylinder-shaped) 다핵성 근관세포(multinucleated myotubes) 수가 증가됨을 알 수 있었으며 근육 세포 분화를 촉진시킴을 입증하였다 (표 7-8 및 도 7-8).In the above experiment, it was found that Compound 2 isolated from the galangal extract increased MHC expression and the number of cylinder-shaped multinucleated myotubes in myotube cells, demonstrating that it promoted muscle cell differentiation ( Table 7-8 and Figure 7-8).

화합물 2 compound 2 [nM][nM] 00 1One 1010 100100 MHC/pan-cadherin 발현 (배)MHC/pan-cadherin expression (fold) 1.01.0 aa 3.63.6 bb 2.62.6 cc 2.62.6 cc a,b,c: 서로 다른 문자는 유의성 있음 (p < 0.01) a,b,c : Different letters indicate significance ( p < 0.01)

화합물 2에 의한 MHC 발현 증가 활성 (도 7) MHC expression increasing activity by compound 2 (Figure 7)

화합물 2compound 2 [10 nM] [10 nM] 00 1One 1010 100100 5개 이상의 핵을 가진 다핵성이며 MHC가 발현된 근관 섬유의 수Number of myotube fibers that are multinucleated with five or more nuclei and express MHC. 1.01.0 aa 2.22.2 bb 1.61.6 cc 1.51.5 cc a,b,c: 서로 다른 문자는 유의성 있음 (p < 0.01) a,b,c : Different letters indicate significance ( p < 0.01)

화합물 2에 의한 MHC 양성- 실린더 형(cylinder-shaped) 다핵성 근관세포의 수 변화 (도 8)Change in the number of MHC positive-cylinder-shaped multinucleated myotube cells caused by compound 2 (Figure 8)

실험예 6.Experimental Example 6. 근육 소실 시험관(in vitro) 모델에서, 화합물 2의 근육 소실 억제 효능Inhibitory muscle loss efficacy of compound 2 in an in vitro model of muscle loss

상기 실시예의 양강 추출물에서 유래한 화합물 2의 근육 소실에 대한 억제 효과를 확인하기 위하여 하기와 같이, 기존 문헌에 기재된 방법을 응용하여 실험을 수행하였다. (Int. J. Mol. Med. 2015, 36, 29-42; Biomed. Pharm. 2017, 95, 1486 ) Compound 2 derived from the galangal extract of the above example In order to confirm the inhibitory effect on muscle loss, an experiment was performed by applying the method described in the existing literature as follows. ( Int. J. Mol. Med. 2015, 36 , 29-42; Biomed. Pharm. 2017 , 95 , 1486)

상기 실시예의 화합물 2을 농도별로 처리한 근관세포에 덱사메타손 (dexamethasone)을 처리하여 근육소실의 in vitro 모델을 만들어 (Int. J. Mol. Med. 2015, 36, 29-42) 하기와 같이 실험을 진행하였다.Myotube cells treated with Compound 2 of the above example at different concentrations were treated with dexamethasone to create an in vitro model of muscle loss ( Int. J. Mol. Med. 2015, 36 , 29-42) and conducted as follows. proceeded.

화합물 2이 근육 단백질 소실 억제 효능 분석을 위해, 근관세포에서 MHC 발현과 근육 손실을 유도하는 근육 단백질 분해 효소인 MuRF1의 단백질 발현에 어떤 영향을 주는지 웨스턴 블롯팅 분석을 통해 알아보았고(도 9), 덱사메타손에 의한 근관세포의 MHC 단백질 소실이 화합물 2에 의해 억제되는지 재확인하기 위해 면역형광 염색법(immunofluorescence staining)으을 사용하였다(도 10). To analyze the efficacy of Compound 2 in suppressing muscle protein loss, Western blotting analysis was used to determine the effect on MHC expression in myotubes and the protein expression of MuRF1, a muscle protein degrading enzyme that induces muscle loss (Figure 9). Immunofluorescence staining was used to reconfirm whether the loss of MHC proteins in myotube cells caused by dexamethasone is inhibited by Compound 2 (FIG. 10).

6-1. 실험 과정6-1. experimental process

약 3 x 104 의 근원세포(C2C12; CRL-1772, American Type Culture Collection)를 60 mm 플레이트에 분주하고 24 시간 후 2% 말 혈청을 함유한 DMEM 분화 배지 (0273, Gibco)에 화합물 2 (0, 1, 10, 100 nM)을 첨가하여, 3 일 동안 배양하여 분화시켰다.Approximately 3 , 1, 10, 100 nM) was added and cultured for 3 days to differentiate.

근육 소실(in vitro)을 유도하기 위해, 위와 같이 분화된 근관세포에 각각 200 μM의 덱사메타손 (dexamethasone, D4902, Sigma)을 24 시간 처리하였다. To induce muscle loss ( in vitro) , myotube cells differentiated as above were treated with 200 μM dexamethasone (D4902, Sigma) for 24 hours.

화합물 2 처리가 완료된 세포를 인산 완충 생리 식염수로 세척하여 준비한 후, MHC 발현 확인을 위한 면역 형광 염색(도 10)을 수행하였다.Cells treated with Compound 2 were prepared by washing with phosphate-buffered saline, and immunofluorescence staining was performed to confirm MHC expression (FIG. 10).

6-1-1. 웨스턴 블롯 분석(Western blot analysis)6-1-1. Western blot analysis

웨스턴 블롯 분석(Western blot analysis)을 위해 약 3 X 104 의 근원세포를 60 mm 플레이트에서 24 시간 배양한 후, 분화 배지에 화합물 2 (0, 1, 10, 100 nM)을 첨가하여 3 일간 분화시켰다. 분화된 근관세포에 200 μM의 덱사메타손 (dexamethasone, D4902, Sigma)을 24 시간 처리 후, 세포에 세포 용해 버퍼(lysis buffer, 25 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and protease inhibitor cocktail (Calbiochem, Darmstadt, Germany)를 처리하여 단백질 추출물을 얻고 20 μg의 단백질 추출물로 SDS-polyacrylamide gel electorphoresis (PAGE)를 실시 후, polyvinylidene fluoride (PVDF) membranes로 이동시켰다. 이 블롯에 일차 마우스 항-MHC(sc-376157, Santa Cruz), 또는 일차 마우스 항-MuRF1(sc-398608, Santa Cruz) 을 4℃에서 12 시간 동안 결합시키고, 이어서 Horseradish peroxidase가 연결된 항-마우스(goat anti-mouse IgG-HRP, ADI-SAN-100J, Enzo Life Science) 2차 항체를 결합한 후, 화학발광으로 MHC와 MuRF1 단백질량을 분석하였다. 이 때 적재 대조군(loading control)으로 pan-cadherin(Cat# 3678, Sigma)을 사용하였다. For Western blot analysis, approximately 3 I ordered it. After treating differentiated myotube cells with 200 μM dexamethasone (D4902, Sigma) for 24 hours, the cells were incubated with lysis buffer (25 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1% NP-40). , 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and protease inhibitor cocktail (Calbiochem, Darmstadt, Germany) were used to obtain protein extracts, and 20 μg of protein extract was subjected to SDS-polyacrylamide gel electorphoresis (PAGE). , and transferred to polyvinylidene fluoride (PVDF) membranes. Primary mouse anti-MHC (sc-376157, Santa Cruz) or primary mouse anti-MuRF1 (sc-398608, Santa Cruz) was bound to this blot at 4°C for 12 hours. Then, horseradish peroxidase-linked anti-mouse (goat anti-mouse IgG-HRP, ADI-SAN-100J, Enzo Life Science) secondary antibody was coupled, and the amount of MHC and MuRF1 proteins was analyzed by chemiluminescence. pan-cadherin (Cat# 3678, Sigma) was used as a loading control.

6-1-2. 면역 형광염색 (immunofluorescence staining)6-1-2. Immunofluorescence staining

위와 같은 방법으로 각 시료를 첨가한 분화 배지에서 근원세포를 분화시켜, 면역 형광염색 (immunofluorescence staining)을 실시하였다. Myoblasts were differentiated in differentiation medium containing each sample in the same manner as above, and immunofluorescence staining was performed.

각각의 분화 배지를 제거하고, 인산완충 생리식염수로 2회 세척 후, 4% paraformaldehyde (0141, BBC Biochemical)로 20 분간 고정하였다. 다시 인산완충 생리식염수로 2회 세척하고, 0.1% tritonX-100 (2315025, Sigma)에 20 분간 처리하였다. 인산 완충 생리식염수로 2회 세척하고, 5% 말 혈청 용액 (16050122, Gibco)에서 블로킹한 후, 마우스 항-MHC (MAB4470, R&D systems)을 넣고 12 시간 동안 4℃에서 반응시켰다. Each differentiation medium was removed, washed twice with phosphate-buffered saline, and fixed with 4% paraformaldehyde (0141, BBC Biochemical) for 20 minutes. It was again washed twice with phosphate-buffered saline and treated with 0.1% tritonX-100 (2315025, Sigma) for 20 minutes. After washing twice with phosphate-buffered saline and blocking with 5% horse serum solution (16050122, Gibco), mouse anti-MHC (MAB4470, R&D systems) was added and reacted at 4°C for 12 hours.

반응 후 3회 이상 인산 완충 생리식염수로 세척한 후 Alexa Flouor 568-결합된 2차 항 마우스 (A-21144, MicoProbes)와 DAPI (D9542, Sigma)을 이용하여 MHC 발현을 분석하였다. MHC-양성 근관세포 (positive myotubes)의 면역형광(Immunofluorescence) 결과는 적색으로 시각화하고 DAPI-표지된 핵은 청색으로 시각화하였다. After the reaction, the cells were washed with phosphate-buffered saline at least three times, and MHC expression was analyzed using Alexa Flouor 568-conjugated secondary anti-mouse (A-21144, MicoProbes) and DAPI (D9542, Sigma). Immunofluorescence results of MHC-positive myotubes were visualized in red, and DAPI-labeled nuclei were visualized in blue.

6-2. 실험 결과(표 9-10, 도 9-10)6-2. Experiment results (Table 9-10, Figure 9-10)

각 세포군에서 MHC 단백질 발현을 웨스턴 블롯팅 분석법을 통해 분석한 결과, 덱사메타손을 처리하지 않은 대조군 (NC) 근관세포에서의 MHC 발현을 1로 하였을 때, 덱사메타손을 처리하여 근육 손실을 유도한 근관세포군에서의 MHC 발현은 0.8배로 감소하였다. 근육 소실 근관세포군에 비해 화합물 2을 처리한 세포군에서는 대조군 수준의 2배까지 MHC 발현이 회복됨이 관찰되었다.As a result of analyzing MHC protein expression in each cell group using Western blotting analysis, when MHC expression in control (NC) myotube cells not treated with dexamethasone was set to 1, in the myotube cell group treated with dexamethasone to induce muscle loss, MHC expression was decreased by 0.8-fold. Compared to the muscle-loss myotube cell group, it was observed that MHC expression was restored to twice the control level in the cell group treated with Compound 2.

또한 덱사메타손을 처리하지 않은 대조군 (NC) 근관세포의 MuRF1 발현을 1로 하였을 때에 비해 덱사메타손을 처리한 근 소실 세포군에서의 MuRF1 발현은 7배로 증가하였고, 화합물 2을 처리한 근관세포군에서는 덱사메타손 처리된 근육 손실 모델인 근관세포군에서의 MuRF1 발현과 비교하여 감소하였다(표 9, 도 9).In addition, compared to MuRF1 expression in the control (NC) myotube cells not treated with dexamethasone, MuRF1 expression in the muscle wasting cell group treated with dexamethasone increased 7-fold, and in the myotube cell group treated with compound 2, it increased 7-fold in the dexamethasone-treated muscle. It decreased compared to MuRF1 expression in the myotube cell population, which is a loss model (Table 9, Figure 9).

도 10에 나타난 바와 같이, 덱사메타손에 의해 감소한 근 단백질 분해 억제능을 확인하기 위하여, 화합물 2과 덱사메타손을 첨가한 근관세포에서 적색형광의 수준으로 MHC 발현을 평가하였고, DAPI 판독 염색으로는 화합물 2 처리에 의하여 실린더 형(cylinder-shaped) 다핵성 근관세포(multinucleated myotubes) 형성을 평가하였다. 분화된 근관세포에 덱사메타손을 처리하면 근관세포의 손실이 증가하였으나, 이와 반대로 분화 동안 화합물 2를 처리하여 얻어진 근관세포는 덱사메타손에 의한 다핵성 (multinucleated) MHC-양성 세포(positive cells) 손실을 억제하였다 (표 10 및 도 10). 본 발명의 화합물 2에 의한 근육 보호가 효과적으로 일어났으며, 근육 단백질 분해 효소 발현 억제를 통해 근육 단백질이 보호됨을 입증하였다. As shown in Figure 10, in order to confirm the ability to inhibit muscle protein degradation reduced by dexamethasone, MHC expression was evaluated at the level of red fluorescence in myotube cells to which compound 2 and dexamethasone were added, and DAPI readout staining was performed on compound 2 treatment. The formation of cylinder-shaped multinucleated myotubes was evaluated. Treating differentiated myotube cells with dexamethasone increased the loss of myotube cells, but on the contrary, myotube cells obtained by treating compound 2 during differentiation suppressed the loss of multinucleated MHC-positive cells caused by dexamethasone. (Table 10 and Figure 10). It was demonstrated that muscle protection by Compound 2 of the present invention occurred effectively and that muscle proteins were protected through inhibition of muscle proteolytic enzyme expression.

화합물 2 에 의한 근관세포 보호 활성(도 9)Myotube cell protective activity by compound 2 (Figure 9)

덱사메타손으로 유도된 근관세포 손실에서, 화합물2에 의한 MHC 양성-실린더 형(cylinder-shaped) 다핵성 근관세포의 수 변화(도 10)In dexamethasone-induced myotube cell loss, change in the number of MHC positive-cylinder-shaped multinucleated myotube cells by compound 2 (FIG. 10)

하기에 본 발명의 시료 추출물을 포함하는 조성물의 제제예를 설명하나, 본 발명은 이를 한정하고자 함이 아닌 단지 구체적으로 설명하고자 함이다.Below, a preparation example of a composition containing the sample extract of the present invention is described, but the present invention is not intended to be limited, but merely explained in detail.

제제예 1. 산제의 제조Formulation Example 1. Preparation of powder

추출물 (AOE) ----------------------------------------- 20 mgExtract (AOE) ----------------------------------------- 20 mg

유당 --------------------------------------------------- 100 mgLactose ------------------------------------------------- --100 mg

탈크 ---------------------------------------------------- 10 mgTalc ------------------------------------------------- --- 10mg

상기의 성분들을 혼합하고 기밀포에 충진하여 산제를 제조한다.The above ingredients are mixed and filled into an airtight bubble to prepare a powder.

제제예 2. 정제의 제조Formulation Example 2. Preparation of tablets

화합물 2 --------------------------------------------- 10 mgCompound 2 ------------------------------- 10 mg

옥수수전분 -------------------------------------------- 100 mgCorn starch -------------------------------------------- 100 mg

유당 -------------------------------------------------- 100 mgLactose ------------------------------------------------- - 100 mg

스테아린산 마그네슘 ------------------------------------- 2 mgMagnesium stearate ------------------------------------- 2 mg

상기의 성분들을 혼합한 후 통상의 정제의 제조방법에 따라서 타정하여 정제를 제조한다.After mixing the above ingredients, tablets are manufactured by compressing them according to a typical tablet manufacturing method.

제제예 3. 캅셀제의 제조 Formulation Example 3. Preparation of capsules

분획물 (AOEA) ----------------------------------------- 10 mg Fraction (AOEA) ----------------------------------------- 10 mg

결정성 셀룰로오스 --------------------------------------- 3 mgCrystalline cellulose --------------------------------------- 3 mg

락토오스 --------------------------------------------- 14.8 mgLactose ------------------------------- 14.8 mg

마그네슘 스테아레이트 --------------------------------- 0.2 mgMagnesium stearate --------------------------------- 0.2 mg

통상의 캡슐제 제조방법에 따라 상기의 성분을 혼합하고 젤라틴 캡슐에 충전하여 캡슐제를 제조한다.Capsules are prepared by mixing the above ingredients and filling them into gelatin capsules according to a typical capsule manufacturing method.

제제예 4. 주사제의 제조Formulation Example 4. Preparation of injections

추출물(AOE) -------------------------------------------- 10 mgExtract (AOE) ----------------------------------------------------------- 10 mg

만니톨 ------------------------------------------------ 180 mgMannitol ------------------------------------------------ 180 mg

주사용 멸균 증류수 ----------------------------------- 2974 mgSterile distilled water for injection -------------------- 2974 mg

Na2HPO4,12H2O ------------------------------------------- 26 mgNa 2 HPO 4 ,12H2O ---------------------------- 26 mg

통상의 주사제의 제조방법에 따라 1 앰플당(2 ㎖) 상기의 성분 함량으로 제조한다.It is prepared with the above ingredients per ampoule (2 ml) according to the usual manufacturing method for injections.

제제예 5. 액제의 제조Formulation Example 5. Preparation of liquid formulation

화합물 2 ------------------------------------------------ 20 mgCompound 2 ------------------------------------------------ 20 mg

이성화당 ------------------------------------------------- 10 gIseonghwadang ------------------------------------------------ - 10g

만니톨 ---------------------------------------------------- 5 gMannitol ------------------------------------------------- ---5g

정제수 --------------------------------------------------- 적량Purified water ------------------------------------------------- -- Appropriate amount

통상의 액제의 제조방법에 따라 정제수에 각각의 성분을 가하여 용해시키고 레몬향을 적량 가한 다음 상기의 성분을 혼합한 다음 정제수를 가하여 전체를 정제수를 가하여 전체 100 ㎖으로 조절한 후 갈색병에 충진하여 멸균시켜 액제를 제조한다.According to the usual liquid preparation method, add and dissolve each ingredient in purified water, add an appropriate amount of lemon flavor, mix the above ingredients, add purified water, adjust the total to 100 ml by adding purified water, and fill it in a brown bottle. Sterilize to prepare a liquid.

제제예 6. 건강 식품의 제조Formulation Example 6. Preparation of health food

추출물 (AOE) ------------------------------------------1000 ㎎ Extract (AOE) ------------------------------------------1000 mg

비타민 혼합물 -------------------------------------------- 적량Vitamin mixture -------------------------------------------- Appropriate amount

비타민 A 아세테이트 ------------------------------------- 70 ㎍ Vitamin A Acetate ------------------------------------- 70 ㎍

비타민 E ----------------------------------------------- 1.0 ㎎Vitamin E ----------------------------------------------- 1.0 ㎎

비타민 B1 --------------------------------------------- 0.13 ㎎Vitamin B1 ---------------------------------------------- 0.13 mg

비타민 B2 --------------------------------------------- 0.15 ㎎ Vitamin B2 ------------------------------ 0.15 mg

비타민 B6 ---------------------------------------------- 0.5 ㎎Vitamin B6 ----------------------------------------------- 0.5 mg

비타민 B12 --------------------------------------------- 0.2 ㎍Vitamin B12 ------------------------------- 0.2 ㎍

비타민 C ------------------------------------------------ 10 ㎎ Vitamin C ------------------------------------------------ 10 mg

비오틴 -------------------------------------------------- 10 ㎍Biotin ------------------------------------------------- - 10 ㎍

니코틴산아미드 ----------------------------------------- 1.7 ㎎ Nicotinamide ------------------------------------------ 1.7 mg

엽산 ---------------------------------------------------- 50 ㎍Folic acid ------------------------------------------------- --- 50 ㎍

판토텐산 칼슘 ------------------------------------------ 0.5 ㎎ Calcium pantothenate ------------------------------------------ 0.5 mg

무기질 혼합물 -------------------------------------------- 적량Mineral mixture -------------------------------------------- Appropriate amount

황산제1철 --------------------------------------------- 1.75 ㎎ Ferrous sulfate ------------------------------- 1.75 ㎎

산화아연 ---------------------------------------------- 0.82 ㎎ Zinc oxide ----------------------------------------------- 0.82 mg

탄산마그네슘 ------------------------------------------ 25.3 ㎎ Magnesium carbonate ------------------------------------------ 25.3 mg

제1인산칼륨 --------------------------------------------- 15 ㎎ Potassium Phosphate Monobasic ---------------------------------------------- 15 ㎎

제2인산칼슘 --------------------------------------------- 55 ㎎ Dibasic Calcium Phosphate --------------------------------------------- 55 ㎎

구연산칼륨 ---------------------------------------------- 90 ㎎ Potassium citrate ---------------------------------------------- 90 mg

탄산칼슘 ----------------------------------------------- 100 ㎎ Calcium carbonate ----------------------------------------------- 100 ㎎

염화마그네슘 ------------------------------------------ 24.8 ㎎ Magnesium chloride ------------------------------------------ 24.8 mg

상기의 비타민 및 미네랄 혼합물의 조성비는 비교적 건강식품에 적합한 성분을 바람직한 실시예로 혼합 조성하였지만, 그 배합비를 임의로 변형 실시하여도 무방하며, 통상의 건강식품 제조방법에 따라 상기의 성분을 혼합한 다음, 과립을 제조하고, 통상의 방법에 따라 건강식품 조성물 제조에 사용할 수 있다.The composition ratio of the above vitamin and mineral mixture is a mixture of components relatively suitable for health food in a preferred embodiment, but the mixing ratio may be modified arbitrarily. The above ingredients are mixed according to a typical health food manufacturing method, and then , granules can be manufactured and used to manufacture health food compositions according to conventional methods.

제제예 7. 건강 음료의 제조Formulation example 7. Preparation of health drink

화합물 2 ----------------------------------------------- 1000㎎Compound 2 ----------------------------------------------- 1000 ㎎

구연산 ------------------------------------------------- 1000 ㎎ Citric acid ------------------------------------------------- 1000 mg

올리고당 ------------------------------------------------- 100 goligosaccharide ------------------------------------------------- 100g

매실농축액 ------------------------------------------------- 2 gPlum concentrate ------------------------------------------------ - 2g

타우린 ----------------------------------------------------- 1 gTaurine ------------------------------------------------- ----1g

정제수를 가하여 ------------------------------------ 전체 900 ㎖Add purified water ------------------------------------ total 900 ml

통상의 건강음료 제조방법에 따라 상기의 성분을 혼합한 다음, 약 1시간 동안 85℃에서 교반 가열한 후, 만들어진 용액을 여과하여 멸균된 2ℓ 용기에 취득하여 밀봉 멸균한 뒤 냉장 보관한 다음 본 발명의 건강음료 조성물 제조에 사용한다. After mixing the above ingredients according to a typical health drink manufacturing method, stirring and heating at 85° C. for about 1 hour, the resulting solution was filtered, obtained in a sterilized 2-liter container, sealed, sterilized, and refrigerated, followed by the present invention. It is used in the production of health drink compositions.

상기 조성비는 비교적 기호음료에 적합한 성분을 바람직한 실시예로 혼합 조성하였지만, 수요계층, 수요국가, 사용용도 등 지역적, 민족적 기호도에 따라서 그 배합비를 임의로 변형 실시하여도 무방하다.The composition ratio is a preferred embodiment of mixing ingredients that are relatively suitable for beverages of preference, but the mixing ratio may be arbitrarily modified according to regional and ethnic preferences such as demand class, demand country, and intended use.

Claims (27)

양강 (Alpinia officinarum) 근경의 물 및 주정 또는 에탄올의 혼합용매에 가용한 추출물을 유효성분으로 함유하는 노인성근위축 또는 암으로 인한 근위축증(muscular atrophy), 근이영양증(muscular dystrophy), 근육 퇴화, 근경직증, 근위축성 축삭경화증, 근무력증, 악액질 (cachexia), 노인성근육감소증(sarcopenia) 및 근육소실증으로 이루어진 군에서 선택되는 골격근 근육관련 질환의 예방 및 치료용 약학 조성물.
It contains as an active ingredient an extract of Alpinia officinarum rhizome soluble in a mixed solvent of water and alcohol or ethanol, and is used to treat diseases such as senile muscular atrophy or cancer-related muscular atrophy, muscular dystrophy, muscle degeneration, muscle rigidity, selected from the group consisting of amyotrophic axonal sclerosis, myasthenia gravis, cachexia, sarcopenia, and muscle loss. Pharmaceutical composition for preventing and treating skeletal muscle-related diseases.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 양강 (Alpinia officinarum) 근경의 물 및 주정 또는 에탄올의 혼합용매에 가용한 추출물을 유효성분으로 함유하는 암으로 인한 근위축증(muscular atrophy), 근이영양증(muscular dystrophy), 근육 퇴화, 근경직증, 근위축성 축삭경화증, 근무력증, 악액질 (cachexia), 노인성근육감소증(sarcopenia) 및 근육소실증으로 이루어진 군에서 선택되는 골격근 근육관련 질환의 항암 보조 치료제.
Muscular atrophy, muscular dystrophy, muscle degeneration, muscular rigidity, and amyotrophic axonal sclerosis caused by cancer, containing as an active ingredient an extract of Alpinia officinarum rhizome soluble in a mixed solvent of water and alcohol or ethanol. , an adjuvant anti-cancer treatment for skeletal muscle-related diseases selected from the group consisting of myasthenia gravis, cachexia, sarcopenia, and muscle loss.
삭제delete 삭제delete 양강 (Alpinia officinarum) 근경의 물 및 주정 또는 에탄올의 혼합용매에 가용한 추출물을 유효성분으로 함유하는 노인성근위축 또는 암으로 인한 근위축증(muscular atrophy), 근이영양증(muscular dystrophy), 근육 퇴화, 근경직증, 근위축성 축삭경화증, 근무력증, 악액질 (cachexia), 노인성근육감소증(sarcopenia) 및 근육소실증으로 이루어진 군에서 선택되는 골격근 근육관련 질환의 예방 또는 개선용 건강기능식품.It contains as an active ingredient an extract of Alpinia officinarum rhizome soluble in a mixed solvent of water and alcohol or ethanol, and is used to treat diseases such as senile muscular atrophy or cancer-related muscular atrophy, muscular dystrophy, muscle degeneration, and muscular rigidity. A health functional food for preventing or improving skeletal muscle-related diseases selected from the group consisting of amyotrophic axonal sclerosis, myasthenia gravis, cachexia, senile sarcopenia, and muscle loss. 제 18항에 있어서, 상기 건강기능식품은 산제, 과립제, 정제, 캡슐제, 환제, 현탁액, 에멀젼, 시럽제, 티백제, 침출차, 또는 건강 음료 형태인 건강기능식품.The health functional food according to claim 18, wherein the health functional food is in the form of powder, granule, tablet, capsule, pill, suspension, emulsion, syrup, tea bag, leached tea, or health drink. 삭제delete 삭제delete 양강 (Alpinia officinarum) 근경의 물 및 주정 또는 에탄올의 혼합용매에 가용한 추출물을 유효성분으로 함유하는 노인성근위축 또는 암으로 인한 근위축증(muscular atrophy), 근이영양증(muscular dystrophy), 근육 퇴화, 근경직증, 근위축성 축삭경화증, 근무력증, 악액질 (cachexia), 노인성근육감소증(sarcopenia) 및 근육소실증으로 이루어진 군에서 선택되는 골격근 근육관련 질환의 예방 또는 개선용 건강보조식품.
It contains as an active ingredient an extract of Alpinia officinarum rhizome soluble in a mixed solvent of water and alcohol or ethanol, and is used to treat diseases such as senile muscular atrophy or cancer-related muscular atrophy, muscular dystrophy, muscle degeneration, muscle rigidity, A health supplement for preventing or improving skeletal muscle-related diseases selected from the group consisting of amyotrophic axonal sclerosis, myasthenia gravis, cachexia, senile sarcopenia, and muscle loss.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020210129274A 2021-09-29 A composition comprising an extract of Alpinia officinarum for treating and preventing skeleton muscle-related disorder KR102677572B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210129274A KR102677572B1 (en) 2021-09-29 A composition comprising an extract of Alpinia officinarum for treating and preventing skeleton muscle-related disorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210129274A KR102677572B1 (en) 2021-09-29 A composition comprising an extract of Alpinia officinarum for treating and preventing skeleton muscle-related disorder

Publications (2)

Publication Number Publication Date
KR20230046149A KR20230046149A (en) 2023-04-05
KR102677572B1 true KR102677572B1 (en) 2024-06-25

Family

ID=

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Liu et al., Phytochem. Anal. 16, 252-256 (2005)*

Similar Documents

Publication Publication Date Title
KR101416149B1 (en) Composition comprising an extract of Curcuma longa L. or Curcuma aromatica L. isolated therefrom having IL-6 induced STAT3 inhibitory activity
KR102432797B1 (en) A composition comprising the isolated compounds 3-5 from an extract of alder tree for treating and preventing skeleton muscle-related disorder
KR101075742B1 (en) Composition comprising the compounds isolated from the extract of Anemarrhena asphodeloides Bunge for preventing and treating lipid metabolism disorder
WO2009096655A1 (en) Composition comprising the compound isolated from the flower extract of daphne genkwa for preventing and treating cancer disease and the use thereof
KR101585074B1 (en) Composition comprising roasted Cucumis melo L. var makuwa Makino seed extract for treating or preventing cancer
KR101281710B1 (en) Composition comprising an extact of cirsium japonicum and the compounds isolated thereform for the treatment and preventation of obesity
KR102022279B1 (en) A composition comprising an extract of Angelica keiskei for treating and preventing muscle-related disorder
KR20120112137A (en) Composition containing ethylacetate fraction of schisandra chinensis baillon or wuweizisu c isolated from the same for treating or preventing obesity
KR102002260B1 (en) A composition comprising the compounds isolated from an extract of Allium sativum L. for treating and preventing muscle-related disorder
KR102677572B1 (en) A composition comprising an extract of Alpinia officinarum for treating and preventing skeleton muscle-related disorder
KR100542587B1 (en) Composition containing an extract of Zingiber cassumunar or the compound isolated therefrom for preventing and treating cancer disease
AU2016273886B2 (en) A novel compound (KS 513) isolated from pseudolysimachion rotundum var. subintegrum, the composition comprising the same as an active ingredient for preventing or treating allergy disease, inflammatory disease, asthma or chronic obstructive pulmonary disease and the use thereof
KR102566433B1 (en) Composition for muscle diseases, preventing or treating Sarcopenia comprising silver skin of coffee extract or fractions thereof or compounds isolated from therefrom
KR101027573B1 (en) A new compound ponciol isolated from the mixed herbal extract and the use thereof
KR102040119B1 (en) A composition comprising the isolated compounds from an extract of Angelica keiskei for treating and preventing muscle-related disorder
KR20230046149A (en) A composition comprising an extract of Alpinia officinarum or the isolated compound therefrom for treating and preventing skeleton muscle-related disorder
KR20050047208A (en) Composition containing the compound isolated from an extract of zingiber cassumunar for preventing and treating cancer disease
KR101406126B1 (en) Composition containing Hedyotis diffusa extract for treating or preventing obesity
KR102132126B1 (en) A composition comprising 4-hydroxyderricin or xanthoangelol isolated from an extract of Angelica keiskei for treating and preventing cachexia or sarcopenia
KR101996184B1 (en) Adjuvant of anti-cancer agent comprising and an extract of Allium sativum L. for treating and preventing cachexia
KR101965699B1 (en) A composition comprising and an extract of Allium sativum L. for treating and preventing muscle-related disorder
KR101470613B1 (en) Composition comprising latifolin for preventing or treating inflammatory diseases
KR100773133B1 (en) Composition comprising 2&#39;,4&#39;,5,7-tetrahydroxy-5&#39;,6-diprenyl flavanone compound showing potent inhibiting activity of tumor cell propagation for the prevention and treatment of cancer disease
KR20200023234A (en) Composition for preventing or treating cancer comprising compound represented by formula 1
WO2005039562A1 (en) A use of lancifolide derivatives and the composition comprising the same