KR102671325B1 - RABA nanoparticles for preventing and treating reperfusion injury and pharmaceutical compositions comprising the same - Google Patents
RABA nanoparticles for preventing and treating reperfusion injury and pharmaceutical compositions comprising the same Download PDFInfo
- Publication number
- KR102671325B1 KR102671325B1 KR1020220011927A KR20220011927A KR102671325B1 KR 102671325 B1 KR102671325 B1 KR 102671325B1 KR 1020220011927 A KR1020220011927 A KR 1020220011927A KR 20220011927 A KR20220011927 A KR 20220011927A KR 102671325 B1 KR102671325 B1 KR 102671325B1
- Authority
- KR
- South Korea
- Prior art keywords
- raba
- nanoparticles
- damage
- reperfusion
- preventing
- Prior art date
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 105
- 241000116710 Ferula foetidissima Species 0.000 title abstract 2
- 206010063837 Reperfusion injury Diseases 0.000 title description 8
- 239000008194 pharmaceutical composition Substances 0.000 title 1
- 230000006378 damage Effects 0.000 claims abstract description 57
- 229940002612 prodrug Drugs 0.000 claims abstract description 25
- 239000000651 prodrug Substances 0.000 claims abstract description 25
- 208000028867 ischemia Diseases 0.000 claims abstract description 23
- 230000010410 reperfusion Effects 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000004480 active ingredient Substances 0.000 claims abstract description 5
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 claims description 56
- 229930002330 retinoic acid Natural products 0.000 claims description 56
- 210000004185 liver Anatomy 0.000 claims description 46
- CQRYARSYNCAZFO-UHFFFAOYSA-N o-hydroxybenzyl alcohol Natural products OCC1=CC=CC=C1O CQRYARSYNCAZFO-UHFFFAOYSA-N 0.000 claims description 43
- BVJSUAQZOZWCKN-UHFFFAOYSA-N p-hydroxybenzyl alcohol Chemical compound OCC1=CC=C(O)C=C1 BVJSUAQZOZWCKN-UHFFFAOYSA-N 0.000 claims description 43
- 239000003642 reactive oxygen metabolite Substances 0.000 claims description 23
- 102100037907 High mobility group protein B1 Human genes 0.000 claims description 21
- 230000001225 therapeutic effect Effects 0.000 claims description 17
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 11
- 230000000770 proinflammatory effect Effects 0.000 claims description 11
- 238000001338 self-assembly Methods 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 8
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical group OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 claims description 5
- -1 IL-1β Proteins 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 101100339431 Arabidopsis thaliana HMGB2 gene Proteins 0.000 claims 1
- 108700010013 HMGB1 Proteins 0.000 claims 1
- 101150021904 HMGB1 gene Proteins 0.000 claims 1
- 108090001005 Interleukin-6 Proteins 0.000 claims 1
- 102100040247 Tumor necrosis factor Human genes 0.000 claims 1
- 238000011282 treatment Methods 0.000 abstract description 9
- 230000002265 prevention Effects 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 33
- 239000003814 drug Substances 0.000 description 23
- 229940079593 drug Drugs 0.000 description 22
- 101001025337 Homo sapiens High mobility group protein B1 Proteins 0.000 description 20
- 208000027418 Wounds and injury Diseases 0.000 description 16
- 208000014674 injury Diseases 0.000 description 16
- 210000002540 macrophage Anatomy 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- 210000000056 organ Anatomy 0.000 description 13
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 230000003078 antioxidant effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 8
- 238000002073 fluorescence micrograph Methods 0.000 description 8
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 7
- 108010082126 Alanine transaminase Proteins 0.000 description 7
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 7
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 7
- 102000004127 Cytokines Human genes 0.000 description 7
- 108090000695 Cytokines Proteins 0.000 description 7
- 210000005228 liver tissue Anatomy 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 6
- 230000008595 infiltration Effects 0.000 description 6
- 238000001764 infiltration Methods 0.000 description 6
- 102000003952 Caspase 3 Human genes 0.000 description 5
- 108090000397 Caspase 3 Proteins 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 108010064218 Poly (ADP-Ribose) Polymerase-1 Proteins 0.000 description 5
- 102100023712 Poly [ADP-ribose] polymerase 1 Human genes 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000002757 inflammatory effect Effects 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 208000012947 ischemia reperfusion injury Diseases 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 4
- XYJODUBPWNZLML-UHFFFAOYSA-N 5-ethyl-6-phenyl-6h-phenanthridine-3,8-diamine Chemical compound C12=CC(N)=CC=C2C2=CC=C(N)C=C2N(CC)C1C1=CC=CC=C1 XYJODUBPWNZLML-UHFFFAOYSA-N 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 210000001616 monocyte Anatomy 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 206010067125 Liver injury Diseases 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- PDNOURKEZJZJNZ-UHFFFAOYSA-N [4-(bromomethyl)phenyl]boronic acid Chemical compound OB(O)C1=CC=C(CBr)C=C1 PDNOURKEZJZJNZ-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000002424 anti-apoptotic effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000001120 cytoprotective effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 231100000234 hepatic damage Toxicity 0.000 description 2
- 230000002440 hepatic effect Effects 0.000 description 2
- 230000002443 hepatoprotective effect Effects 0.000 description 2
- 238000012744 immunostaining Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 230000008818 liver damage Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 230000004792 oxidative damage Effects 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- 229960001727 tretinoin Drugs 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010019837 Hepatocellular injury Diseases 0.000 description 1
- 238000000134 MTT assay Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 102000004722 NADPH Oxidases Human genes 0.000 description 1
- 108010002998 NADPH Oxidases Proteins 0.000 description 1
- 102000007999 Nuclear Proteins Human genes 0.000 description 1
- 108010089610 Nuclear Proteins Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 1
- 206010061481 Renal injury Diseases 0.000 description 1
- 206010038540 Renal tubular necrosis Diseases 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 239000012296 anti-solvent Substances 0.000 description 1
- 238000011394 anticancer treatment Methods 0.000 description 1
- 125000001743 benzylic group Chemical group 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- 239000010415 colloidal nanoparticle Substances 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229940124645 emergency medicine Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 1
- 231100000753 hepatic injury Toxicity 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 210000001865 kupffer cell Anatomy 0.000 description 1
- 238000002350 laparotomy Methods 0.000 description 1
- 231100000849 liver cell damage Toxicity 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 230000008376 long-term health Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- LGRLWUINFJPLSH-UHFFFAOYSA-N methanide Chemical compound [CH3-] LGRLWUINFJPLSH-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000005232 molecular self-assembly Methods 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 239000008196 pharmacological composition Substances 0.000 description 1
- 210000003240 portal vein Anatomy 0.000 description 1
- 230000002633 protecting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012349 terminal deoxynucleotidyl transferase dUTP nick-end labeling Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 150000002266 vitamin A derivatives Chemical class 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/69—Boron compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/025—Boronic and borinic acid compounds
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
본 발명은 하기 화학식 1과 같은 구조를 갖는 허혈/재관류(IR) 손상 예방 및 치료를 위한 atRA 기반의 하이브리드 전구약물(RABA) 및 이의 나노입자를 유효성분으로 포함하는 IR 손상 예방 및 치료용 조성물을 제공한다:
[화학식 1]
The present invention provides a composition for preventing and treating IR damage containing an atRA-based hybrid prodrug (RABA) and nanoparticles thereof as active ingredients for the prevention and treatment of ischemia/reperfusion (IR) damage having the structure shown in Formula 1 below. to provide:
[Formula 1]
Description
본 발명은 자기조립 전구약물로서 허혈/재관류(IR) 손상 예방 및 치료를 위한 RABA에 대한 것으로, 효과적인 IR 손상 예방 및 치료용 수단을 제시하는 것이다. The present invention relates to RABA as a self-assembling prodrug for the prevention and treatment of ischemia/reperfusion (IR) damage, and provides an effective means for preventing and treating IR damage.
장기이식 및 혈관이 포함된 조직을 이식하는 각종 수술과정에서는 혈액의 손실을 막기 위해 혈관을 장시간 결찰한 후 수술이 종료되면 결찰을 제거하여 혈액을 다시 공급하는 과정이 필요하다. 이러한 과정에서 장기는 피할 수 없는 허혈/재관류 손상(ischemia/reperfusion(IR) injury)을 겪게 되는데, 활성산소종(reactive oxygen species (ROS))이 급격히 생성되어 장기의 산화적 손상을 유도하고 이에 따른 염증반응으로 장기의 손상이 발생하는 것으로 알려져 있다. In various surgical procedures such as organ transplantation and transplantation of tissues containing blood vessels, it is necessary to ligate the blood vessels for a long time to prevent blood loss, and then remove the ligation at the end of the surgery to re-supply blood. In this process, organs experience unavoidable ischemia/reperfusion (IR) injury. Reactive oxygen species (ROS) are rapidly generated, leading to oxidative damage to organs, resulting in oxidative damage to organs. It is known that damage to organs occurs due to inflammatory reactions.
특히 간의 IR 손상은 ROS의 생성, 염증반응 경로 활성화 및 림포사이트 및/또는 모노사이트의 침투 및 활성화로 특징지어진다(Y. Zhai, H. Petrowsky, J.C. Hong, R.W. Busuttil, J.W. Kupiec-Weglinski, Ischaemia-reperfusion injury, in liver transplantation-from bench to bedside, Nature Reviews Gastroenterology & Hepatology 10 (2013) 79-89). 초기 단계에서, 손상된 세포는 ROS를 생성하고 이것은 다음으로 레지던트 대식세포(resident macrophage (Kupffer cells))를 활성화하여 더 많은 ROS와 사이토카인을 생성하게 된다. 허혈 조직의 재관류 후 곧 간 세포내의 NADPH 옥시데이즈가 H2O2, 히드록실 라디칼 및 과산화물 음이온을 포함하는 다량의 ROS를 생성한다고 알려져 있다. 과량의 ROS가 산화 스트레스를 유발하고, 이것은 신경세포사(apoptotic cell death) 및 간 손상의 악화를 유도하기 때문에, ROS는 간의 IR 손상의 발병의 주요 원인인 것으로 여겨진다(D. Lee, S. Park, S. Bae, D. Jeong, M. Park, C. Kang, W. Yoo, M.A. Samad, Q. Ke, G. Khang, P.M. Kang, Hydrogen peroxide-activatable antioxidant prodrug as a targeted therapeutic agent for ischemia-reperfusion injury, Scientific Reports 5 (2015) 16592외). In particular, liver IR damage is characterized by the generation of ROS, activation of inflammatory pathways, and infiltration and activation of lymphocytes and/or monocytes (Y. Zhai, H. Petrowsky, JC Hong, RW Busuttil, JW Kupiec-Weglinski, Ischaemia -reperfusion injury, in liver transplantation-from bench to bedside, Nature Reviews Gastroenterology & Hepatology 10 (2013) 79-89). In the initial stage, damaged cells produce ROS, which then activates resident macrophages (Kupffer cells) to produce more ROS and cytokines. It is known that NADPH oxidase in liver cells generates a large amount of ROS, including H 2 O 2 , hydroxyl radicals, and superoxide anions, soon after reperfusion of ischemic tissue. ROS are believed to be the main cause of the development of liver IR damage because excess ROS causes oxidative stress, which leads to apoptotic cell death and worsening liver damage (D. Lee, S. Park, S. Bae, D. Jeong, M. Park, C. Kang, W. Yoo, MA Samad, Q. Ke, G. Khang, PM Kang, Hydrogen peroxide-activatable antioxidant prodrug as a targeted therapeutic agent for ischemia-reperfusion injury , Scientific Reports 5 (2015) 16592 et al.).
IR 손상 과정에서, 종양 괴사 인자-알파(tumor necrosis factor-alpha(TNF-a)), 인터루킨-6(interlukine-6 (IL-6)) 및 IL-1b과 같은 전염증성 사이토카인 시리즈가 생성되며, 이들은 백혈구를 활성화하고 또한 간 세포를 자극하여 전염증성 사이토카인을 분비하게 하여, 심각한 간 손상을 일으킨다. ROS는 또한 전사에 관여하는 핵단백질인 고이동성 그룹 박스-1(high mobility group box-1(HMGB1))의 분비를 자극한다(D.L. Tang, Y.Z. Shi, R. Kang, T. Li, W.M. Xiao, H.C. Wang, X.Z. Xiao, Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1, Journal of Leukocyte Biology 81 (2007) 741-747). HMGB1은 이르면 간의 IR 손상 1 시간 후에 심각하게 상승화 조절되어 간, 심장 및 신장에서 염증에 따른 IR의 초기 매개체로서의 역할을 한다(H. Wang, Z.F. Xi, L. Deng, Y.X. Pan, K. He, Q. Xia, Macrophage Polarization and Liver Ischemia-Reperfusion Injury, International Journal of Medical Sciences 18 (2021) 1104-1113외). 수많은 증거들이 HMGB1의 억제가 간 손상을 완화하고 전염증성 사이토카인의 하강화 조절한다는 것을 제안한다(H. Wang, Z.F. Xi, L. Deng, Y.X. Pan, K. He, Q. Xia, Macrophage Polarization and Liver Ischemia-Reperfusion Injury, International Journal of Medical Sciences 18 (2021) 1104-1113외). 따라서, ROS를 고갈시키는 항산화제로 HMGB1을 타겟팅하는 것이 간의 IR 손상과 같은 염증 관련성 질환에 대한 효과적인 전략임을 알 수 있다(G.Y. Zhao, C. Fu, L. Wang, L. Zhu, Y.T. Yan, Y. Xiang, F. Zheng, F.L. Gong, S. Chen, G. Chen, Down-regulation of nuclear HMGB1 reduces ischemia-induced HMGB1 translocation and release and protects against liver ischemia-reperfusion injury, Scientific Reports 7 (2017) 46272외).During IR injury, a series of pro-inflammatory cytokines are produced, such as tumor necrosis factor-alpha (TNF-a), interleukine-6 (IL-6), and IL-1b. , they activate white blood cells and also stimulate liver cells to secrete pro-inflammatory cytokines, causing serious liver damage. ROS also stimulate the secretion of high mobility group box-1 (HMGB1), a nuclear protein involved in transcription (DL Tang, YZ Shi, R. Kang, T. Li, WM Xiao, HC Wang, XZ Xiao, Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1, Journal of Leukocyte Biology 81 (2007) 741-747). HMGB1 is severely up-regulated as early as 1 hour after liver IR injury, serving as an early mediator of inflammation-dependent IR in the liver, heart, and kidney (H. Wang, ZF Xi, L. Deng, YX Pan, K. He , Q. Xia, Macrophage Polarization and Liver Ischemia-Reperfusion Injury, International Journal of Medical Sciences 18 (2021) 1104-1113 et al. Numerous evidences suggest that inhibition of HMGB1 alleviates liver injury and regulates downregulation of proinflammatory cytokines (H. Wang, ZF Xi, L. Deng, YX Pan, K. He, Q. Xia, Macrophage Polarization and Liver Ischemia-Reperfusion Injury, International Journal of Medical Sciences 18 (2021) 1104-1113 et al. Therefore, targeting HMGB1 with an antioxidant that depletes ROS is an effective strategy for inflammation-related diseases such as liver IR damage (GY Zhao, C. Fu, L. Wang, L. Zhu, YT Yan, Y. Xiang, F. Zheng, FL Gong, S. Chen, G. Chen, Down-regulation of nuclear HMGB1 reduces ischemia-induced HMGB1 translocation and release and protects against liver ischemia-reperfusion injury, Scientific Reports 7 (2017) 46272 et al.
현재까지 IR 손상을 효과적으로 예방하거나 치료할 수 있는 약물은 전무하다. 따라서 IR 손상을 효과적으로 예방하기 위해서는 고농도의 활성산소종을 제거하면서 염증반응을 억제하는 것이 요구된다. To date, there are no drugs that can effectively prevent or treat IR damage. Therefore, in order to effectively prevent IR damage, it is necessary to suppress the inflammatory response while removing high concentrations of reactive oxygen species.
atRA(all-trans retinoic acid)는 비타민 A의 활성대사물질의 일종으로서 세포의 성장과 분화에 중요한 역할을 하며, 급성 전골수구 백혈병 치료에 이용되고 있다. 또한, 항산화 효과를 발휘하는 것으로 보고되어 그 응용에 대한 관심이 증가하고 있다. atRA (all -trans retinoic acid) is a type of active metabolite of vitamin A that plays an important role in cell growth and differentiation and is used to treat acute promyelocytic leukemia. Additionally, it has been reported to exert antioxidant effects, and interest in its application is increasing.
그러나, atRA는 높은 용량으로 투여 시 정상세포에 대한 독성을 유발한다. 또한 타겟 사이트에 대한 선택성이 낮고, 용해도가 낮아 효과적인 약물전달 기술의 개발이 필요하다. 나아가, atRA는 IR 손상에서의 가장 많은 ROS이며, 간의 IR 손상의 병리학적 과정에서 두번째 신호전달 분자로 작용하는 H2O2를 제거하는 능력이 없다. 따라서, atRA를 정확하게 타겟 사이트에 전달하고 그것의 치료적 효과를 최대화하기 위한 전략을 개발하는 것이 요구되고 있다. However, atRA causes toxicity to normal cells when administered at high doses. In addition, the development of effective drug delivery technology is necessary due to low selectivity for the target site and low solubility. Furthermore, atRA is the most abundant ROS in IR injury and has no ability to scavenge H 2 O 2 , which acts as a second signaling molecule in the pathological process of IR injury in the liver. Therefore, there is a need to develop strategies to accurately deliver atRA to the target site and maximize its therapeutic effect.
하이브리드 전구약물은 다른 생물학적 기능 및 복합적인 활성을 갖는 두개 이상의 구조적 조각을 포함하는 화학적 화합물로서, 둘 이상의 구분되는 약물분자구조를 생성하고 복합적인 활성 모드를 제공하는 것으로서 효과적인 약물로 제시되고 있다. Hybrid prodrugs are chemical compounds containing two or more structural fragments with different biological functions and complex activities, and are proposed to be effective drugs by creating two or more distinct drug molecular structures and providing complex modes of activity.
최근 20년 동안 수많은 나노 전달자가 약물 캐리어로 개발되었다. 그러나, 약물 캐리어가 매개된 약물 전달은 낮은 약물 로딩 능력, 이른 약물 방출 및 스케일-업의 복잡성 등의 단점을 지니고 있다. 또한 대부분의 약물 캐리어는 부형제로 작용하거나 어떠한 치료적 역할도 수행하지 못하는 것들이며, 분해 및 대사 과정에서의 독성 및 면역원성을 유도할 수 있다. In the last 20 years, numerous nanocarriers have been developed as drug carriers. However, drug carrier-mediated drug delivery has disadvantages such as low drug loading capacity, early drug release, and complexity of scale-up. Additionally, most drug carriers act as excipients or do not play any therapeutic role, and may induce toxicity and immunogenicity during degradation and metabolism.
자기조립 전구약물 기반의 약물 자가전달(self-assembling prodrug-based drug self-delivery)은 고효율의 항암치료를 위한 조절된 약물 전달 분야에서의 새로운 패러다임으로 각광받고 있다. 약물 자가전달에서는, 약물이 나노 크기를 가지며, 추가적인 부형제 혼입의 캐리어 없이도 스스로 세포 내 전달을 실현한다. Self-assembling prodrug-based drug self-delivery is attracting attention as a new paradigm in the field of controlled drug delivery for highly efficient anticancer treatment. In drug self-delivery, the drug has a nano size and achieves intracellular delivery on its own without the need for additional excipients.
자기조립은 소수성 상호작용, 반데르발스 상호작용 및 파이-파이 스택킹과 같은 여러 나노 공유 상호작용에 의해 작은 분자들이 스스로 잘 조합하여 나노구조를 형성하는 것이다.Self-assembly is the formation of nanostructures by self-assembly of small molecules through various nano-covalent interactions such as hydrophobic interactions, van der Waals interactions, and pi-pi stacking.
전구약물은 투여에 따라 활성 약물로 전환되어 독성의 부작용 없이 그 치료적 활성을 나타내는 생물 가역적인 비활성 화합물로 정의된다. A prodrug is defined as a bioreversible inactive compound that is converted to an active drug upon administration and exhibits its therapeutic activity without toxic side effects.
자기조립 전구약물 기반의 약물 자가전달(self-assembling prodrug-based drug self-delivery)은 전구약물과 분자 자기조립의 결합으로서 전구약물의 분자 구조를 정확하게 조절함으로써 실현되어 왔다. 자기조립 전구약물의 핵심이 되는 디자인 특징은 양쪽 친매성 균형(amphiphilic balance)이다. 이들은 소수성과 친수성 부위를 모두 가지고 있으며 물속 환경에서 자발적으로 조립할 수 있다. 결과적으로 전구약물 자기조립은 빠른 소진으로부터 약물을 보호할 수 있고, 약물의 이른 방출을 억제할 수 있다. 또한 자기조립 전구약물은 100%의 높은 약물 로딩 효율 및 단순한 제조 공정에서 그 고유의 역할을 한다. Self-assembling prodrug-based drug self-delivery is a combination of prodrug and molecular self-assembly and has been realized by accurately controlling the molecular structure of the prodrug. A key design feature of self-assembled prodrugs is amphiphilic balance. They have both hydrophobic and hydrophilic regions and can spontaneously assemble in an aquatic environment. As a result, prodrug self-assembly can protect the drug from rapid exhaustion and inhibit the early release of the drug. Additionally, self-assembling prodrugs play a unique role in high drug loading efficiency of 100% and simple manufacturing process.
약물 자가전달을 위한 자기조립 전구약물의 예로는 친수성의 이리노테칸(irinotecan)을 소수성의 클로램부실(chlorambucil)에 결합하여 자기조립으로 나노구조를 만드는 전구약물 양친매성 물질이 있으며, 이것은 어떠한 캐리어 없이도 약물 자가전달을 실현하였다. (Huang, P. et. al., Combination of Small Molecule Prodrug and Nanodrug Delivery: Amphiphilic Drug-Drug Conjugate for Cancer Therapy. Journal of the American Chemical Society 2014, 136, 11748-11756.)An example of a self-assembling prodrug for drug self-delivery is a prodrug amphiphile that binds hydrophilic irinotecan to hydrophobic chlorambucil to form a nanostructure through self-assembly, which is a prodrug amphiphile that creates a nanostructure without any carrier. Self-delivery was realized. (Huang, P. et. al., Combination of Small Molecule Prodrug and Nanodrug Delivery: Amphiphilic Drug-Drug Conjugate for Cancer Therapy. Journal of the American Chemical Society 2014, 136, 11748-11756.)
본 출원의 발명자들은 atRA를 이용하여 효과적인 IR 손상 억제용 물질을 개발하기 위해 노력하였고, 본 발명에 이르렀다. The inventors of the present application made efforts to develop an effective material for suppressing IR damage using atRA and arrived at the present invention.
본 발명은 atRA의 치료적 효과를 최대한으로 향상시키기 위한 수단으로서, atRA 및 하이드록시벤질알코올(hydroxybenzyl alcohol, HBA)의 하이브리드 전구약물인 atRA 기반의 하이브리드 전구 약물(atRA-based hybrid prodrug) RABA 및 이의 나노입자를 제공하는 것을 목적으로 한다. The present invention is a means for maximally improving the therapeutic effect of atRA, atRA-based hybrid prodrug RABA, which is a hybrid prodrug of atRA and hydroxybenzyl alcohol (HBA), and its The purpose is to provide nanoparticles.
본 발명은 하기 화학식 1과 같은 구조를 갖는 허혈/재관류(IR) 손상 예방 및 치료용 atRA(all-trans retinoic acid) 기반의 하이브리드 전구약물(RABA)을 제공한다:The present invention provides an all- trans retinoic acid (atRA)-based hybrid prodrug (RABA) for preventing and treating ischemia/reperfusion (IR) damage, having the structure shown in Formula 1 below:
[화학식 1][Formula 1]
상기 RABA는 자기조립에 의해 나노입자를 형성할 수 있다.The RABA can form nanoparticles through self-assembly.
상기 RABA 나노입자는 RABA를 용매 상에서 나노침전시킴으로써 형성되는 것이다.The RABA nanoparticles are formed by nano-precipitating RABA in a solvent.
상기 나노입자는 다른 부형제 또는 보조제의 존재없이 100중량%의 RABA로 이루어질 수 있다.The nanoparticles may be composed of 100% RABA by weight without the presence of other excipients or auxiliaries.
상기 RABA는 H2O2의 존재 하에 atRA 및 하이드록시벤질알코올(hydroxybenzyl alcohol, HBA)을 생성한다. The RABA produces atRA and hydroxybenzyl alcohol (HBA) in the presence of H 2 O 2 .
상기 RABA는 활성산소종(ROS)의 제거능력을 갖는 것이다.The RABA has the ability to remove reactive oxygen species (ROS).
상기 RABA는 간에 우선적으로 축적된다.The RABA preferentially accumulates in the liver.
상기 RABA는 IR 손상된 간에 우선적으로 축적된다. The RABA preferentially accumulates in IR-damaged liver.
상기 RABA는 전염증성 물질의 생성을 억제한다. The RABA inhibits the production of pro-inflammatory substances.
상기 전염증성 물질은 TNF-α, IL-1β, IL-6 또는 HMGB1이다.The pro-inflammatory substances are TNF-α, IL-1β, IL-6 or HMGB1.
상기 RABA는 치료적 효과를 위한 사용 범위에서 적합한 생체 안정성을 갖는 것이다. The RABA has suitable biostability within the range of use for therapeutic effect.
본 발명은 atRA 기반의 하이브리드 전구약물(RABA) 나노입자를 유효성분으로 포함하는 허혈/재관류(IR) 손상 예방 및 치료를 위한 조성물을 제공한다.The present invention provides a composition for preventing and treating ischemia/reperfusion (IR) damage containing atRA-based hybrid prodrug (RABA) nanoparticles as an active ingredient.
본 발명에 의하면 허혈/재관류(IR) 손상 예방 및 치료를 위해 atRA(all-trans retinoic acid) 기반의 하이브리드 전구약물(RABA)을 제공함으로써 효율적이고 우수한 효과를 달성할 수 있다. 즉, 상기 RABA는 부형제 또는 보조제 등의 부가적 물질을 사용하지 않고 자기조립 방법으로 순수한 RABA로 이루어진 나노입자로 제조될 수 있어 약물 로딩 효율이 매우 우수하다. 상기 RABA 나노입자는 간에 우선적으로 축적되며, 활성산소종의 제거 및 전염증성 물질의 생성 억제 등을 통하여 IR 손상의 예방 또는 치료적 효과를 달성할 수 있을 것으로 기재된다. According to the present invention, efficient and excellent effects can be achieved by providing an all- trans retinoic acid (atRA)-based hybrid prodrug (RABA) for the prevention and treatment of ischemia/reperfusion (IR) damage. In other words, the RABA can be manufactured into nanoparticles made of pure RABA through a self-assembly method without using additional substances such as excipients or auxiliaries, so the drug loading efficiency is very excellent. It is reported that the RABA nanoparticles preferentially accumulate in the liver and can achieve a preventive or therapeutic effect on IR damage through removal of reactive oxygen species and inhibition of production of pro-inflammatory substances.
그러므로, 본 발명에 의하면 IR 손상 예방 및 치료를 위한 유효성분으로 상기 RABA를 사용함으로써 효과적인 약리학적 조성물을 제공할 수 있다. Therefore, according to the present invention, an effective pharmacological composition can be provided by using RABA as an active ingredient for preventing and treating IR damage.
도 1은 본 발명 RABA 나노입자의 제조, 분해 과정 및 허혈/재관류 손상 억제 모식도이다.
도 2a는 실시예에서 제조된 RABA의 제조과정 및 제조된 RABA의 1H NMR 데이터이다.
도 2b는 H2O2에 의해 유발된 RABA의 분해 과정 및 그로부터 생성된 HBA의 1H NMR 데이터이다.
도 3은 RABA의 질량 분광기 측정 결과이다.
도 4는 RABA 나노입자의 입자크기 분석기 데이터이다.
도 5a는 RABA 나노입자의 SEM 사진이다.
도 5b는 atRA 침전물의 SEM 사진이다.
도 5c는 H2O2와 인큐베이션한 후 RABA 나노입자의 SEM 사진이다.
도 6은 H2O2의 존재 및 비존재 하의 RABA 나노입자로부터의 HBA 방출속도를 측정한 것이다.
도 7은 RABA 나노입자의 H2O2의 제거능을 atRA 및 HBA와 비교하여 나타낸 것이다.
도 8은 Nile red로 라벨링된 RABA 나노입자로 처리된 RAW 264.7 세포의 형광 이미지이다.
도 9a는 RAW 264.7 세포에 대한 RABA 나노입자의 세포 독성 평가 결과이다.
도 9b는 H2O2로 자극된 RAW 264.7 세포에서 RABA 나노입자의 세포 보호 효과를 평가한 결과이다.
도 10은 H2O2로 자극된 세포에서 세포 내 ROS의 생성 및 RABA 나노입자의 항산화 효과를 보여주는 데이터이다.
도 11a 내지 11c는 H2O2 자극된 RAW 264.7 세포에서 염증성 사이토카인(TNF-α, IL-1β, IL-6)의 양을 측정한 결과이다.
도 12a는 H2O2 자극된 RAW 264.7 세포에서의 HMGB1의 이동을 관찰하기 위한 confocal laser scanning microscope 이미지이고, 도 12b는 이를 정량적으로 나타낸 것이다.
도 13은 생쥐의 간 IR 손상 모델에서 (a) ALT 분석 (b) AST 분석 (c) 적출된 간의 사진 및 H&E 염색을 통한 조직학적 분석 결과이다.
도 14는 간 IR 손상 모델에서 (a)TUNEL로 염색된 간의 조직학적 분석 결과, (b)정량화된 TUNEL 강도, (c)caspase-3 항체 및 PARP-1 항체로 염색된 간 조직의 조직학적 분석 결과 및 (d) caspase-3 및 PARP-1의 수준을 정량화한 것이다.
도 15는 간 IR 손상에서 (a) TNF-a, (b) IL-1b 및 (c) IL-6의 발현에 대한 RABA 나노입자의 억제 효과를 나타낸 것이다.
도 16은 IR 손상에서 간 조직 내 HMGB1 수준을 정량화한 것이다.
도 17은 IR 손상에서 간 조직 내 F4/80 수준을 정량화한 것이다.
도 18은 IR 손상에서 간 조직 내 DHE 강도의 수준을 정량화한 것이다.
도 19는 IR780 라벨링된 RABA 나노입자의 정맥주사 투여 24시간 후 주요 장기의 체외 형광 이미지이다.
도 20은 RABA 나노입자 투여로 인한 혈청 내 ALT/AST 수준 변화 및 주요 장기의 조직학적 데이터이다. Figure 1 is a schematic diagram of the production, decomposition process, and ischemia/reperfusion damage inhibition of the RABA nanoparticles of the present invention.
Figure 2a shows the manufacturing process of RABA prepared in Examples and 1 H NMR data of the prepared RABA.
Figure 2b shows the decomposition process of RABA induced by H 2 O 2 and 1 H NMR data of HBA produced therefrom.
Figure 3 shows the mass spectrometry measurement results of RABA.
Figure 4 is particle size analyzer data of RABA nanoparticles.
Figure 5a is an SEM photo of RABA nanoparticles.
Figure 5b is an SEM image of atRA deposits.
Figure 5c is an SEM image of RABA nanoparticles after incubation with H 2 O 2 .
Figure 6 shows the measured HBA release rate from RABA nanoparticles in the presence and absence of H 2 O 2 .
Figure 7 shows the H 2 O 2 removal ability of RABA nanoparticles compared to atRA and HBA.
Figure 8 is a fluorescence image of RAW 264.7 cells treated with RABA nanoparticles labeled with Nile red.
Figure 9a shows the cytotoxicity evaluation results of RABA nanoparticles on RAW 264.7 cells.
Figure 9b shows the results of evaluating the cytoprotective effect of RABA nanoparticles in RAW 264.7 cells stimulated with H 2 O 2 .
Figure 10 is data showing the generation of intracellular ROS and the antioxidant effect of RABA nanoparticles in cells stimulated with H 2 O 2 .
Figures 11a to 11c show the results of measuring the amount of inflammatory cytokines (TNF-α, IL-1β, IL-6) in H 2 O 2 stimulated RAW 264.7 cells.
Figure 12a is a confocal laser scanning microscope image for observing the movement of HMGB1 in H 2 O 2 stimulated RAW 264.7 cells, and Figure 12b shows this quantitatively.
Figure 13 shows the results of (a) ALT analysis (b) AST analysis (c) histological analysis through photographs and H&E staining of the extracted liver in a mouse liver IR injury model.
Figure 14 shows (a) histological analysis results of liver stained with TUNEL, (b) quantified TUNEL intensity, and (c) histological analysis of liver tissue stained with caspase-3 antibody and PARP-1 antibody in the liver IR injury model. Results and (d) quantification of the levels of caspase-3 and PARP-1.
Figure 15 shows the inhibitory effect of RABA nanoparticles on the expression of (a) TNF-a, (b) IL-1b, and (c) IL-6 in liver IR damage.
Figure 16 quantifies HMGB1 levels in liver tissue in IR injury.
Figure 17 quantifies F4/80 levels in liver tissue in IR injury.
Figure 18 quantifies the level of DHE intensity in liver tissue in IR injury.
Figure 19 is an in vitro fluorescence image of major organs 24 hours after intravenous administration of IR780-labeled RABA nanoparticles.
Figure 20 shows changes in ALT/AST levels in serum and histological data of major organs due to administration of RABA nanoparticles.
본 발명은 하기 화학식 1과 같은 구조를 갖는 허혈/재관류(IR) 손상 예방 및 치료를 위한 atRA 기반의 하이브리드 전구약물(RABA)을 제공한다:The present invention provides an atRA-based hybrid prodrug (RABA) for the prevention and treatment of ischemia/reperfusion (IR) injury, which has the structure shown in Formula 1 below:
[화학식 1][Formula 1]
상기 RABA는 자기조립 가능한 H2O2-활성화가능한 전구약물로서 일 실시예로서 atRA와 4-(브로모메틸)페닐보론산(4-(bromomethyl) phenylboronic acid)의 원스텝 반응으로부터 합성될 수 있다. The RABA is a self-assembling H 2 O 2 -activatable prodrug and, as an example, can be synthesized from a one-step reaction of atRA and 4-(bromomethyl)phenylboronic acid.
보로네이트/보론산(보론 작용기)은 빠른 H2O2 유발의 산화를 겪으므로 이를 atRA와 결합시킨 형태에 의해 atRA가 H2O2 제거 능력을 갖도록 한 것이다. Boronate/boronic acid (boron functional group) undergoes rapid H 2 O 2 -induced oxidation, so by combining it with atRA, atRA has the ability to remove H 2 O 2 .
RABA에서 보론 작용기는 약한 극성의 친수성을 띠므로, 보론 작용기와의 결합에 의해 RABA는 양친매성을 갖게 된다. 양친매성의 RABA는 수용액 중에서 자기조립하여 나노입자를 형성한다. 더욱이 RABA는 구조적으로 유연성(flexibility)을 갖고 있다. 따라서 RABA는 안티솔벤트(antisolvent), 대표적으로 물 속에서 자기조립하여 안정된 콜로이드 형태의 나노입자를 형성한다. 그러므로 본 발명은 RABA의 자기조립에 의해 형성되는 나노입자를 제공한다. 상기 나노입자는 좁은 사이즈 분포도를 가지며 안정적인 구형의 나노구조로 형성된다. Since the boron functional group in RABA is weakly polar and hydrophilic, RABA becomes amphipathic when combined with the boron functional group. Amphipathic RABA self-assembles in aqueous solution to form nanoparticles. Moreover, RABA has structural flexibility. Therefore, RABA is an antisolvent, typically self-assembling in water to form stable colloidal nanoparticles. Therefore, the present invention provides nanoparticles formed by self-assembly of RABA. The nanoparticles have a narrow size distribution and are formed into a stable spherical nanostructure.
상기 화학식 1에서 보여지는 바와 같이, RABA는 분해가 용이한 에스터 링크를 포함하고 있다. 이는 H2O2의 존재 하에 레티놀산(retinoic acid, atRA)와 하이드록시벤질알코올(hydroxybenzyl alcohol, HBA)을 생성한다. 따라서, RABA는 IR 손상에서 고농도로 생성되는 H2O2를 효과적으로 제거할 수 있을 뿐만 아니라 분해 후 레티놀산(atRA)과 하이드록시벤질알코올(HBA)를 생성하여 항산화 및 항염증 작용을 발휘하여 장기의 손상을 억제할 수 있다. As shown in Chemical Formula 1, RABA contains an ester link that is easy to decompose. This produces retinoic acid (atRA) and hydroxybenzyl alcohol (HBA) in the presence of H 2 O 2 . Therefore, RABA can not only effectively remove H 2 O 2 generated at high concentrations in IR damage, but also generates retinoic acid (atRA) and hydroxybenzyl alcohol (HBA) after decomposition to exert antioxidant and anti-inflammatory effects, thereby protecting the long-term health. Damage can be prevented.
RABA는 양친매성으로 인하여 수용액 상에서 자기조립의 방법으로 나노입자를 형성하므로, 본 발명의 RABA 나노입자는 제조방법이 매우 간단하다. 또한, RABA로부터 나노입자를 형성하는 데에는 부형제 등 별도의 성분이 추가될 필요가 없다. 그러므로 이때 제조되는 나노입자는 RABA 100중량%로 이루어질 수 있다. 이는 상기 입자 내 부형제 등 다른 성분이 첨가될 필요없이 약물 함량을 100중량%으로 제조할 수 있다는 의미이다. 그러므로 본 발명의 나노입자는 약리학적 효과를 극대화할 수 있다. 즉, 최소한의 사용으로 최대한의 효과를 발휘할 수 있는 것이다. 일 실시예로서 본 발명의 RABA 나노입자는 동물 실험에서 5.0 mg/kg의 양으로 투여되는 경우에서 치료적 효과를 발휘하는데, 이는 종래 atRA가 15 mg/kg의 양으로 투여되던 것에 비해 훨씬 적은 양의 사용이다. 본 발명의 RABA 나노입자가 종래 약물과 비교할 때 더 적은 용량에서 충분한 치료적 효과를 발휘하는 것은 상기 RABA 나노입자가 'H2O2-활성화가능한 전구약물 자기조립체'로서 고함량의 약물 로딩 (~100%), 타겟팅된 약학적으로 활성화된 약물의 동시적 방출 및 그들의 협조적인 치료 작용으로부터 가능한 것이다. 나아가, 본 발명의 RABA 나노입자는 재관류 전에 정맥주사로 투여되는데, 이는 간의 IR 손상된 환자에 대한 예방적 효과를 실현하는데 있어서 임상적으로 적용가능한 것이다. RABA forms nanoparticles through self-assembly in an aqueous solution due to its amphiphilic nature, so the preparation method for the RABA nanoparticles of the present invention is very simple. Additionally, there is no need to add additional ingredients such as excipients to form nanoparticles from RABA. Therefore, the nanoparticles produced at this time may be composed of 100% by weight of RABA. This means that the drug content can be manufactured at 100% by weight without the need to add other ingredients such as excipients in the particles. Therefore, the nanoparticles of the present invention can maximize pharmacological effects. In other words, maximum effect can be achieved with minimal use. As an example, the RABA nanoparticles of the present invention exert therapeutic effects when administered in an amount of 5.0 mg/kg in animal experiments, which is a much smaller amount than the conventional atRA administered in an amount of 15 mg/kg. is the use of The reason that the RABA nanoparticles of the present invention exert sufficient therapeutic effect at a lower dose compared to conventional drugs is that the RABA nanoparticles are 'H 2 O 2 -activatable prodrug self-assembly' and have a high drug loading (~ 100%), possible from the simultaneous release of targeted pharmaceutically active drugs and their coordinated therapeutic action. Furthermore, the RABA nanoparticles of the present invention are administered intravenously before reperfusion, which is clinically applicable in realizing a preventive effect in patients with liver IR damage.
도 1은 본 발명의 나노입자가 제조 및 분해되는 과정을 간략하게 도시한 것이다. 먼저 RABA의 자기조립으로 나노입자가 제조되고, RABA는 H2O2 및 물의 존재 하에 분해되어 허혈/재관류 손상된 간에 작용하여 손상을 억제한다.Figure 1 briefly shows the process of manufacturing and decomposing the nanoparticles of the present invention. First, nanoparticles are manufactured through self-assembly of RABA, and RABA decomposes in the presence of H 2 O 2 and water and acts on ischemia/reperfusion damaged liver to suppress damage.
RABA 나노입자는 IR 손상된 간에서 전염증성 TNF-a, IL-1b, IL-6, 및 HMGB1의 발현을 억제하고, 대식세포의 침투를 저해함으로써 간을 효과적으로 보호한다. 따라서 간 세포 손상 및 사멸은 RABA 나노입자에 의해 현저하게 억제된다. RABA는 atRA 또는 HBA에 비해 높은 H2O2 제거능을 갖는다. 이는 RABA 나노입자가 atRA 또는 HBA에 비해 IR 손상에서 훨씬 높은 간 보호 효과를 갖도록 하는 것이다. RABA 나노입자는 IR 손상된 사이트에 도달하여 H2O2 유발된 분해를 겪으면서 atRA 및 HBA를 동시에 동일한 사이트에 방출함으로써 협조적인 치료 효과를 가져온다. RABA nanoparticles effectively protect the liver by inhibiting the expression of pro-inflammatory TNF-a, IL-1b, IL-6, and HMGB1 in IR-damaged liver and inhibiting the infiltration of macrophages. Therefore, liver cell damage and death are significantly inhibited by RABA nanoparticles. RABA has a higher H 2 O 2 removal capacity compared to atRA or HBA. This makes RABA nanoparticles have a much higher hepatoprotective effect against IR damage compared to atRA or HBA. RABA nanoparticles reach the IR damaged site and undergo H 2 O 2 -induced degradation, simultaneously releasing atRA and HBA to the same site, resulting in a cooperative therapeutic effect.
간 IR 손상의 특징은 단핵구 침입에 의한 대식세포의 증가 및 단핵구에 의해 유도되는 대식세포의 분화이다. 간은 다량의 대식세포 분포를 가지게 되므로 RABA 나노입자의 우선적인 간에 대한 축적은 잠재적 치료적 작용에 도움이 되는 것이다. 본 발명에서는 RABA 나노입자가 다른 장기와 비교할 때 우선적으로 간에 축적되는 것을 확인하고 이를 제시한다. The hallmark of liver IR injury is an increase in macrophages due to monocyte invasion and differentiation of macrophages induced by monocytes. Since the liver has a large number of macrophages, preferential accumulation of RABA nanoparticles in the liver is helpful for their potential therapeutic action. In the present invention, we confirm and present that RABA nanoparticles preferentially accumulate in the liver compared to other organs.
따라서, 본 발명은 상기 RABA 나노입자를 유효성분으로 포함하는 IR 손상 억제용 조성물을 제공한다. 상기 조성물은 본 발명의 나노입자 이외에 약리학적 효과를 위한 추가적인 약물, 보조제 또는 부형제를 포함할 수 있다. Therefore, the present invention provides a composition for inhibiting IR damage containing the RABA nanoparticles as an active ingredient. The composition may contain additional drugs, adjuvants, or excipients for pharmacological effects in addition to the nanoparticles of the present invention.
이하 실시예를 통해 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명이 이에 한정되는 것이라 여겨져서는 안된다.The present invention will be described in more detail through examples below. However, the present invention should not be considered limited thereto.
실시예Example
1. RABA의 제조 및 관찰1. Preparation and observation of RABA
실온에서 atRA(3.33 mmol, 1.00g)와 4-(브로모메틸)페닐보론산 (4-(bromomethyl)phenylboronic acid)(3.33 mmol, 0.71g)을 세슘 카보네이트(cesium carbonate)(4.99 mmol, 1.60g)과 함께 10 mL THF에 용해시켰다. 75℃에서 24시간의 반응 후, 반응 혼합물을 여과하고 실리카 겔 크로마토그래피(에틸 아세테이트/헥산=1:1)로 정제하였다. RABA는 옅은 노란색 파우더로 얻어졌고, 화학적 구조를 1H NMR로 관찰한 결과를 도 2a에 나타냈다. 또한 질량 분광기로 측정한 결과(도 3) 얻어진 RABA의 분자량은 435.20 m/z[M+H]+ 이었다. atRA (3.33 mmol, 1.00 g) and 4-(bromomethyl)phenylboronic acid (3.33 mmol, 0.71 g) were mixed with cesium carbonate (4.99 mmol, 1.60 g) at room temperature. ) was dissolved in 10 mL THF. After reaction at 75°C for 24 hours, the reaction mixture was filtered and purified by silica gel chromatography (ethyl acetate/hexane=1:1). RABA was obtained as a light yellow powder, and the chemical structure observed using 1 H NMR is shown in Figure 2a. Additionally, as a result of measurement using a mass spectrometer (Figure 3), the obtained molecular weight of RABA was 435.20 m/z[M+H] + .
벤질릭 위치에서 우수한 리빙(leaving) 그룹을 갖는 RABA는 보론산이 도 2b와 같이 H2O2 에 의해 유발되는 빠른 자기희생(self-immolation)을 겪으면서 1,6-elimination에 의해 퀴논 메타이트(quinone methide (QM))를 생성한다. 다음으로 QM은 물과 반응하여 잠재적인 항산화성 및 항 세포사멸 활성을 갖는 HBA를 생성한다. 이렇게 H2O2 에 의해 유발된 RABA의 분해로부터 생성된 HBA의 1H NMR 데이터를 도 2b에 나타냈다. HBA의 프로톤에 대응하는 새로운 피크의 출현은 RABA가 H2O2에 의해 유발되어 atRA 및 HBA가 생성됨을 보여준다. RABA, which has an excellent leaving group at the benzylic position, undergoes rapid self-immolation caused by H 2 O 2 as shown in FIG. 2b while boronic acid is converted to quinone metate by 1,6-elimination. quinone methide (QM)). Next, QM reacts with water to produce HBA, which has potential antioxidant and anti-apoptotic activities. The 1 H NMR data of HBA generated from the decomposition of RABA induced by H 2 O 2 is shown in Figure 2b. The appearance of a new peak corresponding to the proton of HBA shows that RABA is triggered by H 2 O 2 to generate atRA and HBA.
2. RABA 나노입자의 제조 및 H2O2에 대한 반응성2. Preparation of RABA nanoparticles and reactivity to H 2 O 2
RABA(1.00x102 mg)을 1.00 mL의 메탄올에 용해시키고 상기 용액을 계속 저어주면서 20.0 mL의 물에서 침전시켰다. 남은 메탄올을 제거하고 동결건조시켜 노란색 파우더 형태의 RABA 나노입자를 얻었다. 얻어진 나노입자의 형태 및 크기 분포를 SEM(H-7650, Hitachi, Japan) 및 입자크기 분석기(90 Plus, Brookhaven Instrument Corp. Holtsville, NY, USA)를 사용하여 분석하였다. 도 4는 입자크기 분석기로부터 얻어진 결과이고, 도 5a는 RABA 나노입자의 SEM 사진이다. 나노입자가 ~230 nm의 평균수력화직경(mean hydrodynamic diameter)을 가진 구형으로 생성된 것이 확인된다.RABA (1.00x10 2 mg) was dissolved in 1.00 mL of methanol and the solution was precipitated in 20.0 mL of water with constant stirring. The remaining methanol was removed and freeze-dried to obtain RABA nanoparticles in the form of yellow powder. The shape and size distribution of the obtained nanoparticles were analyzed using SEM (H-7650, Hitachi, Japan) and particle size analyzer (90 Plus, Brookhaven Instrument Corp. Holtsville, NY, USA). Figure 4 is a result obtained from a particle size analyzer, and Figure 5a is an SEM photo of RABA nanoparticles. It was confirmed that the nanoparticles were produced in a spherical shape with a mean hydrodynamic diameter of ~230 nm.
한편, 비교를 위해 atRA에 대해 상기 RABA의 나노입자 제조과정과 동일한 방법으로 침전시킨 것의 SEM 사진을 도 5b에 나타냈다. 이는 거대 침전물로 존재하는 것을 알 수 있다. 또한, H2O2와 인큐베이션한 후 RABA 나노입자의 SEM 사진을 도 5c에 나타냈다. 이는 더 이상 구형이 아니었다. 즉, H2O2에 반응하여 RABA 나노입자가 분해되는 것이 입증되었다. Meanwhile, for comparison, an SEM image of atRA precipitated using the same method as the RABA nanoparticle production process is shown in Figure 5b. It can be seen that this exists as a large sediment. Additionally, an SEM image of RABA nanoparticles after incubation with H 2 O 2 is shown in Figure 5c. It was no longer outdated. In other words, it was proven that RABA nanoparticles decompose in response to H 2 O 2 .
한편, RABA 나노입자의 H2O2에 대한 반응성을 평가하기 위하여 H2O2에 의해 유발된 분해과정 동안 HBA의 방출속도를 측정하였다(도 6). H2O2의 존재 하에 12 시간 내에 RABA 나노입자로부터 HBA의 대부분이 방출되었고, ~20%의 HBA가 H2O2가 존재하지 않은 상황에서 72 시간 내에 방출되었다. Meanwhile, in order to evaluate the reactivity of RABA nanoparticles to H 2 O 2 , the release rate of HBA was measured during the decomposition process induced by H 2 O 2 (FIG. 6). Most of the HBA was released from RABA nanoparticles within 12 hours in the presence of H 2 O 2 , and ~20% of HBA was released within 72 hours in the absence of H 2 O 2 .
다음으로, RABA 나노입자의 H2O2 제거능을 농도를 바꿔가며 측정하였다(도 7). 결과, 100 mg/mL의 RABA 나노입자의 존재하에 H2O2의 대부분이 제거되는 것이 확인되었다. 반면, atRA (65 mg/mL) 및 HBA (27 mg/mL)에서는 H2O2가 거의 제거되지 않았다. Next, the H 2 O 2 removal ability of RABA nanoparticles was measured by changing the concentration (FIG. 7). As a result, it was confirmed that most of H 2 O 2 was removed in the presence of 100 mg/mL RABA nanoparticles. On the other hand, H 2 O 2 was hardly removed in atRA (65 mg/mL) and HBA (27 mg/mL).
3. H2O2 자극된 RAW 264.7 세포에서의 RABA 나노입자의 치료적 효과3. Therapeutic effect of RABA nanoparticles in H 2 O 2 stimulated RAW 264.7 cells
형광 RABA 나노입자를 얻기 위해 RABA 나노입자(1.00x102 mg)와 함께 Nile red(2.00 mg)를 1 mL 메탄올에 용해시켰다. RAW 264.7 세포를 상기 Nile red 라벨링된 RABA 나노입자로 처리하여 세포 흡수를 확인하였고, H2O2-매개의 RABA 나노입자 분해를 관찰하였다. 형광 이미지를 confocal laser scanning microscope (LSM 880, Carl Zeiss, Oberkochen, Germany)로 얻었다(도 8). 나노입자 처리 1시간 후 약한 형광 이미지가 얻어졌고, 24 시간 후 형광 이미지는 확실히 강해졌다. 또한 H2O2 첨가에 따라 형광 강도가 더욱 향상되었는데, 이는 H2O2에 의한 RABA의 분해에 따라 Nile red가 빠르게 방출됨으로 인한 것이다. To obtain fluorescent RABA nanoparticles, Nile red (2.00 mg) along with RABA nanoparticles (1.00x10 2 mg) were dissolved in 1 mL methanol. RAW 264.7 cells were treated with the Nile red labeled RABA nanoparticles to confirm cellular uptake, and H 2 O 2 -mediated degradation of RABA nanoparticles was observed. Fluorescence images were obtained with a confocal laser scanning microscope (LSM 880, Carl Zeiss, Oberkochen, Germany) (FIG. 8). After 1 hour of nanoparticle treatment, a weak fluorescence image was obtained, and after 24 hours, the fluorescence image became significantly stronger. Additionally, the fluorescence intensity further improved with the addition of H 2 O 2 , which is due to the rapid release of Nile red following the decomposition of RABA by H 2 O 2 .
RABA 나노입자의 RAW 264.7 세포(3 105 cells/well)에 대한 세포독성을 평가하였다(도 9a). 결과를 보면 atRA, HBA 및 RABA 나노입자에서 동일하게 세포독성이 나타나지 않는 것이 확인된다. The cytotoxicity of RABA nanoparticles on RAW 264.7 cells (3 10 5 cells/well) was evaluated (Figure 9a). The results confirm that atRA, HBA, and RABA nanoparticles do not exhibit the same cytotoxicity.
다음으로, RABA 나노입자의 세포보호 효과를 평가하기 위하여, RAW 264.7 세포(3 105 cells/well)를 atRA, HBA 및 RABA 나노입자로 각각 24 시간 동안 200 mM의 H2O2 자극하에 인큐베이션시켰다. 세포활성을 MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay로 측정하였다(도 9b). atRA, HBA 및 이들의 조합의 존재 하의 세포활성에 비해 RABA 나노입자의 존재 하의 세포활성이 훨씬 증가했음을 확인할 수 있었다. Next, to evaluate the cytoprotective effect of RABA nanoparticles, RAW 264.7 cells (3 10 5 cells/well) were each incubated with atRA, HBA, and RABA nanoparticles for 24 hours under 200 mM H 2 O 2 stimulation. . Cell activity was measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay (Figure 9b). It was confirmed that the cell activity in the presence of RABA nanoparticles was significantly increased compared to the cell activity in the presence of atRA, HBA, and their combination.
RABA 나노입자의 항산화 효과를 DCFH-DA (dichlorofluorescein-diaceatate, Sigma Aldrich, St. Louis, MO, USA)로 세포를 염색하여 평가하였다. 24 웰 플레이트에서 배양된 RAW 264.7 세포(2 105 cells/well)를 200 mM의 H2O2로 자극하고 여기에 즉시 atRA, HBA 및 RABA 나노입자를 투여하였다. 6시간의 인큐베이션 후, 세포를 5 mM의 DCFH-DA로 염색했다. 형광 이미지 및 Image J program을 이용하여 DCF 형광 강도를 얻었다(도 10). 도면에서 그린색의 프로브는 ROS에 의한 것으로 H2O2로 자극된 세포가 다량의 ROS를 생성하고, RABA의 투여에 의해 이것이 사라진 것을 확인할 수 있다. 반면, atRA, HBA 및 이들의 조합을 투여하였을 때는 그린색 프로브가 그대로 존재하였다. 이로부터 RABA 나노입자의 항산화 효과를 확인할 수 있었다.The antioxidant effect of RABA nanoparticles was evaluated by staining cells with DCFH-DA (dichlorofluorescein-diaceatate, Sigma Aldrich, St. Louis, MO, USA). RAW 264.7 cells (2 10 5 cells/well) cultured in a 24 well plate were stimulated with 200 mM H 2 O 2 and atRA, HBA and RABA nanoparticles were immediately administered thereto. After 6 hours of incubation, cells were stained with 5 mM DCFH-DA. DCF fluorescence intensity was obtained using a fluorescence image and Image J program (Figure 10). In the figure, the green probe is caused by ROS. It can be seen that cells stimulated with H 2 O 2 produce a large amount of ROS, and this disappears by administration of RABA. On the other hand, when atRA, HBA, and their combination were administered, the green probe remained. From this, the antioxidant effect of RABA nanoparticles was confirmed.
항염증 효과를 평가하기 위하여 H2O2 자극하기 10분 전에 atRA, HBA 및 RABA 나노입자 처리된 RAW 264.7 세포의 배양 배지를 사용했다. 전염증성 사이토카인(TNF-α, IL-1β, IL-6)의 양을 ELISA 키트로 측정하였다(도 11a 내지 11c). H2O2 자극은 염증성 사이토카인 TNF-α, IL-1β, IL-6의 양을 현저히 증가시켰고, atRA, HBA 및 이들의 조합은 이를 약간 완화시켰을 뿐인 반면, RABA 나노입자 처리된 세포에서는 현저한 감소가 확인되었다. To evaluate the anti-inflammatory effect, culture medium of RAW 264.7 cells treated with atRA, HBA and RABA nanoparticles 10 minutes before H 2 O 2 stimulation was used. The amount of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) was measured using an ELISA kit (FIGS. 11A to 11C). H 2 O 2 stimulation significantly increased the amount of inflammatory cytokines TNF-α, IL-1β, and IL-6, and while atRA, HBA, and their combination only slightly alleviated this, there was a significant increase in RABA nanoparticle-treated cells. A decrease was confirmed.
H2O2 자극된 RAW 264.7 세포에서의 HMGB1의 이동을 관찰하기 위해 atRA, HBA 및 RABA 나노입자 처리 후, RAW 264.7 세포를 200 mM의 H2O2로 자극했다. 세포를 PBS로 세척하고 포르말린으로 고정하였다. 고정된 세포를 래빗-항 HMGB1 폴리클로날 항체(Cusabio, Houston, TX, USA) 및 Alexa Fluor 488로 레이블된 고트 항-래빗 IgG 교차-흡수된 이차 항체와 함께 인큐베이션시켰다. 이미지를 confocal laser scanning microscope로 얻었다(도 12a). H2O2의 자극이 없었던 세포에서는 HMGB1이 핵에서 관찰되었다. H2O2의 자극은 6시간 후 세포질에서의 HMGB1 수준을 급격히 증가시켰고, HBA 및 atRA의 처리는 이를 효과적으로 감소시켰으며, RABA 나노입자는 농도에 비례하여 세포질에서의 HMGB1 수준을 억제하는 것이 확인되었다. 도 12b는 이를 정량적으로 나타낸 것이다. 이를보면, 50 mg/mL의 RABA 나노입자 처리 12 시간 후 배양 배지에서 분비된 HMGB1의 최소량이 측정되었다. 이로부터 RABA 나노입자가 효과적으로 또한 현저하게 H2O2-매개의 HNGB1의 이동 및 방출을 억제함을 보여주는 것이다. To observe the movement of HMGB1 in H 2 O 2 stimulated RAW 264.7 cells, after treatment with atRA, HBA and RABA nanoparticles, RAW 264.7 cells were stimulated with 200 mM H 2 O 2 . Cells were washed with PBS and fixed with formalin. Fixed cells were incubated with rabbit anti-HMGB1 polyclonal antibody (Cusabio, Houston, TX, USA) and goat anti-rabbit IgG cross-absorbed secondary antibody labeled with Alexa Fluor 488. Images were obtained with a confocal laser scanning microscope (FIG. 12a). In cells without H 2 O 2 stimulation, HMGB1 was observed in the nucleus. Stimulation with H 2 O 2 rapidly increased the level of HMGB1 in the cytoplasm after 6 hours, and treatment with HBA and atRA effectively reduced it, and it was confirmed that RABA nanoparticles suppressed the level of HMGB1 in the cytoplasm in proportion to the concentration. It has been done. Figure 12b shows this quantitatively. From this, the minimum amount of HMGB1 secreted in the culture medium was measured 12 hours after treatment with 50 mg/mL RABA nanoparticles. This shows that RABA nanoparticles effectively and significantly inhibit H 2 O 2 -mediated movement and release of HNGB1.
4. 체내에서의 RABA 나노입자의 치료적 효과4. Therapeutic effects of RABA nanoparticles in the body
ICR 마우스(Orient Bio(Seongnam, Korea))를 대조군, 허혈/재관류(IR), IR + atRA (3 mg/kg), IR + HBA (2 mg/kg), IR + atRA (3 mg) + HBA (2 mg/kg), IR + RABA (5 mg/kg)의 6 그룹으로 나누었다. 마취 후, midline laparotomy를 만들고, 노출된 간문맥을 혈관 클립(vascular clip)으로 30분간 결찰하여 간 허혈을 일으켰다. atRA (3 mg/kg), HBA (2 mg/kg) 및 RABA 나노입자 (5 mg/kg)을 꼬리 정맥에 정맥 주사로 투여하였다. 30분 후, 혈관 클립을 제거하여 재관류 시켰다. 재관류 24시간 후 간 조직 및 혈청을 수집하여 치료적 효과를 평가하였다. ICR mice (Orient Bio (Seongnam, Korea)) were used as control group, ischemia/reperfusion (IR), IR + atRA (3 mg/kg), IR + HBA (2 mg/kg), IR + atRA (3 mg) + HBA. (2 mg/kg), IR + RABA (5 mg/kg). After anesthesia, a midline laparotomy was made, and the exposed portal vein was ligated with a vascular clip for 30 minutes to cause liver ischemia. atRA (3 mg/kg), HBA (2 mg/kg), and RABA nanoparticles (5 mg/kg) were administered intravenously into the tail vein. After 30 minutes, the vascular clip was removed and perfusion was performed. Liver tissue and serum were collected 24 hours after reperfusion to evaluate the therapeutic effect.
alanine transaminase (ALT) 및 aspartate transaminase (AST) (Asan Pharma, Seoul, Korea)와 같은 간 효소의 혈청 수준을 측정하는 것으로 간 기능을 확인하였다(도 13(a) 및 (b)). RABA 나노입자를 투여한 군에서 ALT 및 AST 수준이 현저하게 감소하였다. 반면, atRA와 HBA투여 군에서는 효과가 무시할 수 있을 정도로 적었다. Liver function was confirmed by measuring serum levels of liver enzymes such as alanine transaminase (ALT) and aspartate transaminase (AST) (Asan Pharma, Seoul, Korea) (Figures 13(a) and (b)). ALT and AST levels were significantly reduced in the group administered RABA nanoparticles. On the other hand, in the atRA and HBA administration groups, the effect was so small that it could be ignored.
또한, 간의 IR 손상에 대한 RABA 나노입자의 보호적 효과를 확인하기 위해, 간을 절단하여 헤모톡실린 및 에로신(hemotoxylin and eosin (H&E)) 염색하여 조직학적 관찰을 하였다(도 13 (c)). IR 손상이 일어난 간에서 넓은 범위에 걸쳐 괴사(노란색 도트로 표시된 부분)가 발견되었고, RABA 나노입자 투여군에서 atRA 및 HBA 투여군과 비교할 때 괴사 부분이 훨씬 많이 경감된 것을 확인할 수 있었다. In addition, to confirm the protective effect of RABA nanoparticles against liver IR damage, the liver was cut and stained with hemotoxylin and eosin (H&E) for histological observation (Figure 13 (c) ). Necrosis (marked with yellow dots) was found over a wide area in the liver where IR damage occurred, and it was confirmed that the necrosis area was significantly reduced in the RABA nanoparticle-administered group compared to the atRA and HBA-administered groups.
IR 유도된 세포사멸로부터 간 보호 효과를 확인하기 위하여 간 왼쪽 로브를 수집하여 10% 포르말린으로 고정시켰다. 고정된 조직을 OCT 블록에 임베드하고 6 mm 두께 섹션으로 절단했다. 조직 섹션을 TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling, Promega, WI, USA)로 염색했다(도 14(a) 및 (b)). IR 손상 그룹에서 sham(정상군, negative control)에 비해 TUNEL-포지티브 세포가 관찰된 반면, RABA 나노입자로 처리된 그룹에서 atRA 및 HBA 처리 그룹에 비해 현저히 적은 TUNEL-포지티브 세포가 관찰되었다. To confirm the hepatoprotective effect from IR-induced apoptosis, the left lobe of the liver was collected and fixed in 10% formalin. Fixed tissues were embedded in OCT blocks and cut into 6 mm thick sections. Tissue sections were stained with TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling, Promega, WI, USA) (Figures 14(a) and (b)). In the IR injury group, TUNEL-positive cells were observed compared to sham (normal group, negative control), while significantly fewer TUNEL-positive cells were observed in the group treated with RABA nanoparticles compared to the atRA and HBA treated groups.
RABA 나노입자의 항세포사멸 효과를 확인하기 위해 조직을 5% 보빈 세럼 알부민(BSA)로 블록하고 세포 사멸의 중요 매개체인 Caspase-3 및 PARP-1의 수준을 측정하기 위해 면역염색(immunostaining)을 했다(도 14(c) 및 (d)). IR 손상 그룹에서 간에서 Caspase-3 및 PARP-1의 수준이 현저히 증가하였고, RABA 나노입자는 세포사멸과 관련된 Caspase-3 및 PARP-1의 수준을 현격히 감소시켰다. 반면 atRA 및 HBA 처리 그룹에서 무시할 수준의 효과가 나타났다. To confirm the anti-apoptotic effect of RABA nanoparticles, tissues were blocked with 5% bobbin serum albumin (BSA) and immunostaining was performed to measure the levels of Caspase-3 and PARP-1, important mediators of cell death. (Figures 14(c) and (d)). In the IR injury group, the levels of Caspase-3 and PARP-1 in the liver were significantly increased, and RABA nanoparticles significantly reduced the levels of Caspase-3 and PARP-1, which are associated with apoptosis. On the other hand, a negligible effect was observed in the atRA and HBA treatment groups.
항염증 효과를 평가하기 위하여 염증성 사이토카인(TNF-α, IL-1β, IL-6)의 양을 ELISA 키트로 측정하였다(도 15(a) 내지 (c)). IR 손상은 염증성 사이토카인 TNF-α, IL-1β, IL-6의 양을 현저히 증가시켰고, atRA, HBA 및 이들의 조합은 이를 다소 완화시킨 반면, RABA 나노입자 처리된 세포에서는 현저한 감소가 확인되었다. To evaluate the anti-inflammatory effect, the amount of inflammatory cytokines (TNF-α, IL-1β, IL-6) was measured using an ELISA kit (FIGS. 15(a) to (c)). IR damage significantly increased the amount of inflammatory cytokines TNF-α, IL-1β, and IL-6, and while atRA, HBA, and their combination somewhat alleviated this, a significant decrease was observed in cells treated with RABA nanoparticles. .
IR 손상된 간 조직에서 면역 염색을 통하여 HMGB1의 이동을 관찰하였으며 이를 정량화하였다(도 16). 간 조직에서 sham-operated 마우스에서 약간의 HMGB1 염색을 보였던 반면, IR 그룹에서는 현저히 증가된 수의 HMGB1-포지티브 세포가 관찰되었다. 또한 HBA 및 atRA가 약간의 효과를 보인 반면, RABA 나노입자는 IR 유발의 상승 조절된 HMBG1을 현저하게 억제하는 것이 확인되었다. The movement of HMGB1 was observed in IR damaged liver tissue through immunostaining and quantified (FIG. 16). Liver tissue showed slight HMGB1 staining in sham-operated mice, whereas a significantly increased number of HMGB1-positive cells were observed in the IR group. Additionally, while HBA and atRA showed a slight effect, RABA nanoparticles were confirmed to significantly inhibit IR-induced up-regulation of HMBG1.
다음으로, 대식세포 침투에 대한 RABA 나노입자의 효과를 평가하기 위하여 대식세포 특이적 마커인 F4/80 (Santa Cruz Biotechnology, Dallas, TX, USA)를 사용하여 조직학적 관찰을 했다(도 17). IR 손상된 그룹에서는 높은 수준의 대식세포 침투가 관찰되었고, 이는 RABA 나노입자의 전처리에 의해 현저히 감소하였다. 반면, atRA 및 HBA에서는 그 효과가 무시할 만한 수준이었다. 이로부터 RABA 나노입자가 간의 IR 손상에 의해 유도되는 대식세포 침투를 현저하게 감소시키는 것을 확인할 수 있다. Next, to evaluate the effect of RABA nanoparticles on macrophage infiltration, histological observation was made using the macrophage-specific marker F4/80 (Santa Cruz Biotechnology, Dallas, TX, USA) (FIG. 17). A high level of macrophage infiltration was observed in the IR-damaged group, which was significantly reduced by pretreatment with RABA nanoparticles. On the other hand, the effect was negligible in atRA and HBA. From this, it can be seen that RABA nanoparticles significantly reduce macrophage infiltration induced by liver IR damage.
또한, RABA 나노입자의 ROS 생성 억제에 의한 항산화 작용을 평가하기 위하여 디하이드로에티디움(dihydroethidium) (DHE) 염색을 수행하였다(도 18). Sham 그룹에 비해 IR 손상 그룹에서 간 DHE 염색의 현저한 증가가 관찰되었다. 이는 IR 손상이 과도한 ROS의 생성을 유발한다는 것을 의미한다. 반면, RABA 나노입자는 ROS 생성을 현저하게 억제하였고, 이는 atRA 및 HBA에 비해 훨씬 우수한 결과였다.In addition, dihydroethidium (DHE) staining was performed to evaluate the antioxidant effect of RABA nanoparticles by inhibiting ROS generation (FIG. 18). A significant increase in hepatic DHE staining was observed in the IR injury group compared to the Sham group. This means that IR damage causes excessive production of ROS. On the other hand, RABA nanoparticles significantly inhibited ROS generation, which was a much better result than atRA and HBA.
IR780 라벨링된 RABA 나노입자를 건강한 마우스 및 간 IR 손상된 마우스에 정맥주사로 투여하여 24시간 후 절단된 주요 장기의 형광 이미지로부터 간에서의 RABA 나노입자의 체내분포를 관찰하였다(도 19). 양 그룹 모두 다른 장기에서 보다 간에서 높은 RABA 나노입자 분포가 확인되었다. 이는 RABA 나노입자가 자연적으로 간을 타겟팅하며, 간이 외부 물질에 대한 1차적 제거 역할을 하는 혈액과의 접촉에서 대식세포의 가장 큰 분포를 갖는다는 것을 확인하여 주는 것이다. 나아가, IR 손상된 간에서 건강한 마우스의 간에서보다 RABA 나노입자의 분포가 훨씬 높게 나타났는데, 이는 IR 손상 과정에서 더 많은 대식세포가 활성화되어 간으로 유입됨을 보여주는 것이다. IR780-labeled RABA nanoparticles were administered intravenously to healthy mice and liver IR-damaged mice, and the biodistribution of RABA nanoparticles in the liver was observed from fluorescence images of the cut major organs 24 hours later (FIG. 19). In both groups, a higher distribution of RABA nanoparticles was confirmed in the liver than in other organs. This confirms that RABA nanoparticles naturally target the liver and that the liver has the largest distribution of macrophages in contact with the blood, which plays a primary role in removing foreign substances. Furthermore, the distribution of RABA nanoparticles was much higher in the IR-damaged liver than in the liver of healthy mice, showing that more macrophages were activated and entered the liver during the IR damage process.
한편, IR 손상된 그룹의 신장에서 RABA 나노입자의 축적이 높게 나타났는데, 이는 간의 IR 손상된 마우스는 인접 요세관 괴사 및 염증에 의한 신장 손상이 일어나고, IR 손상과정에서 분비된 여러 전염증성 매개체들이 멀리 떨어진 장기에서 염증을 유발하여 여러 장기의 기능 장애를 일으킨다(H. Naito, T. Nojima, N. Fujisaki, K. Tsukahara, H. Yamamoto, T. Yamada, T. Aokage, T. Yumoto, T. Osako, A. Nakao, Therapeutic strategies for ischemia reperfusion injury in emergency medicine, Acute Medicine & Surgery 7 (2020) e5010외)는 것과 관련된다. 따라서, IR 그룹의 신장에서 현저하게 증가된 RABA 나노입자의 축적은 증가된 대식세포의 침투를 동반하는 간 IR 손상 매개의 신장 손상에 의해 설명될 수 있다.Meanwhile, the accumulation of RABA nanoparticles was high in the kidneys of the IR-damaged group, which means that IR-damaged mice in the liver suffer kidney damage due to adjacent tubular necrosis and inflammation, and that various pro-inflammatory mediators secreted during the IR damage process are transported to distant sites. It causes inflammation in organs and causes dysfunction of various organs (H. Naito, T. Nojima, N. Fujisaki, K. Tsukahara, H. Yamamoto, T. Yamada, T. Aokage, T. Yumoto, T. Osako, A. Nakao, Therapeutic strategies for ischemia reperfusion injury in emergency medicine, Acute Medicine & Surgery 7 (2020) e5010 et al.) is related to. Therefore, the significantly increased accumulation of RABA nanoparticles in the kidneys of the IR group could be explained by hepatic IR injury-mediated renal injury accompanied by increased macrophage infiltration.
마지막으로, RABA 나노입자의 생체적합성을 평가하기 위하여, 5 mg/kg의 RABA 나노입자를 7일 동안 마우스에 정맥으로 투여한 후, 혈액 및 간을 수집하였다. RABA 나노입자의 체내 급성 독성을 건강한 마우스와의 혈청 내 ALT/AST 수준 변화로부터 비교하여 평가했다(도 20(a) 및 (b)). RABA 나노입자는 ALT/AST 수준에 심각한 변화를 가져오지 않았다. 또한, 주요 장기의 조직학적 데이터(도 20(c))에서도 RABA 나노입자는 병리학적 병화를 유발하지 않았다. 이러한 결과로부터, RABA 나노입자는 치료적 효과를 위한 사용 범위에서 적합한 생체 안정성을 갖는 것임을 확인할 수 있었다. Finally, to evaluate the biocompatibility of RABA nanoparticles, 5 mg/kg of RABA nanoparticles were administered intravenously to mice for 7 days, and then blood and liver were collected. The acute in vivo toxicity of RABA nanoparticles was evaluated by comparing changes in serum ALT/AST levels with those of healthy mice (Figures 20(a) and (b)). RABA nanoparticles did not cause significant changes in ALT/AST levels. Additionally, RABA nanoparticles did not cause pathological disease in the histological data of major organs (Figure 20(c)). From these results, it was confirmed that RABA nanoparticles have appropriate biostability within the range of use for therapeutic effects.
Claims (11)
[화학식 1]
A composition for preventing or treating ischemia/reperfusion (IR) damage containing as an active ingredient an all- trans retinoic acid (atRA)-based hybrid prodrug (RABA) having the structure shown in Formula 1 below:
[Formula 1]
상기 RABA는 용매 상에서 나노침전시킴으로써 자기조립에 의해 나노입자를 형성하는 것을 특징으로 하는, 허혈/재관류(IR) 손상 예방 또는 치료용 조성물.
In paragraph 1,
A composition for preventing or treating ischemia/reperfusion (IR) damage, wherein the RABA forms nanoparticles by self-assembly by nano-precipitating in a solvent.
상기 RABA는 다른 부형제 또는 보조제의 존재없이 100중량%의 RABA로 이루어지는 나노입자를 형성하는 것을 특징으로 하는, 허혈/재관류(IR) 손상 예방 또는 치료용 조성물.
In paragraph 1,
A composition for preventing or treating ischemia/reperfusion (IR) damage, wherein the RABA forms nanoparticles composed of 100% by weight of RABA without the presence of other excipients or auxiliaries.
상기 RABA는 H2O2의 존재 하에 atRA 및 하이드록시벤질알코올(hydroxybenzyl alcohol, HBA)을 생성하는 것을 특징으로 하는, 허혈/재관류(IR) 손상 예방 또는 치료용 조성물.
In paragraph 1,
The RABA is a composition for preventing or treating ischemia/reperfusion (IR) damage, characterized in that it generates atRA and hydroxybenzyl alcohol (HBA) in the presence of H 2 O 2 .
상기 RABA는 활성산소종(ROS)의 제거능력을 갖는 것을 특징으로 하는, 허혈/재관류(IR) 손상 예방 또는 치료용 조성물.
In paragraph 1,
The RABA is a composition for preventing or treating ischemia/reperfusion (IR) damage, characterized in that it has the ability to remove reactive oxygen species (ROS).
상기 RABA는 간에 우선적으로 축적되는 것을 특징으로 하는, 허혈/재관류(IR) 손상 예방 또는 치료용 조성물.
In paragraph 1,
A composition for preventing or treating ischemia/reperfusion (IR) damage, wherein the RABA preferentially accumulates in the liver.
상기 RABA는 IR 손상된 간에 우선적으로 축적되는 것을 특징으로 하는, 허혈/재관류(IR) 손상 예방 또는 치료용 조성물.
In paragraph 1,
A composition for preventing or treating ischemia/reperfusion (IR) damage, wherein the RABA preferentially accumulates in IR damaged liver.
상기 RABA는 전염증성 물질의 생성을 억제하는 것을 특징으로 하는, 허혈/재관류(IR) 손상 예방 또는 치료용 조성물.
In paragraph 1,
The RABA is a composition for preventing or treating ischemia/reperfusion (IR) damage, characterized in that it inhibits the production of pro-inflammatory substances.
상기 전염증성 물질은 TNF-α, IL-1β, IL-6 또는 HMGB1인 것을 특징으로 하는, 허혈/재관류(IR) 손상 예방 또는 치료용 조성물.
In paragraph 8:
A composition for preventing or treating ischemia/reperfusion (IR) damage, wherein the pro-inflammatory substance is TNF-α, IL-1β, IL-6, or HMGB1.
상기 RABA는 치료적 효과를 위한 사용 범위에서 적합한 생체 안정성을 갖는 것을 특징으로 하는, 허혈/재관류(IR) 손상 예방 또는 치료용 조성물.
In paragraph 1,
A composition for preventing or treating ischemia/reperfusion (IR) damage, wherein the RABA has appropriate biostability within the range of use for therapeutic effects.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220011927A KR102671325B1 (en) | 2022-01-27 | 2022-01-27 | RABA nanoparticles for preventing and treating reperfusion injury and pharmaceutical compositions comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220011927A KR102671325B1 (en) | 2022-01-27 | 2022-01-27 | RABA nanoparticles for preventing and treating reperfusion injury and pharmaceutical compositions comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230116108A KR20230116108A (en) | 2023-08-04 |
KR102671325B1 true KR102671325B1 (en) | 2024-06-03 |
Family
ID=87568486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220011927A KR102671325B1 (en) | 2022-01-27 | 2022-01-27 | RABA nanoparticles for preventing and treating reperfusion injury and pharmaceutical compositions comprising the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102671325B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102553872B1 (en) * | 2021-07-21 | 2023-07-10 | 전북대학교산학협력단 | Precursors of retinoic acid and anti-cancer compositions comprising them |
-
2022
- 2022-01-27 KR KR1020220011927A patent/KR102671325B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102553872B1 (en) * | 2021-07-21 | 2023-07-10 | 전북대학교산학협력단 | Precursors of retinoic acid and anti-cancer compositions comprising them |
Also Published As
Publication number | Publication date |
---|---|
KR20230116108A (en) | 2023-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | Cascade of reactive oxygen species generation by polyprodrug for combinational photodynamic therapy | |
Gao et al. | Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles | |
EP2357166B1 (en) | Auto magnetic metal salen complex compound | |
Liu et al. | Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury | |
TWI480042B (en) | Pharmaceutical compositions of hydrophobic camptothecin derivatives | |
KR20180114517A (en) | Phamaceutical composition for treating cancer | |
Jiang et al. | Combating multidrug resistance and metastasis of breast cancer by endoplasmic reticulum stress and cell-nucleus penetration enhanced immunochemotherapy | |
Fan et al. | Plasma membrane targeted photodynamic O2 economizer for hypoxic tumor therapy | |
TW200936182A (en) | Agent for enhancing anti-tumor effect comprising oxaliplatin liposome preparation, and anti-tumor agent comprising the liposome preparation | |
KR20150014534A (en) | Methods and compositions for treating lung cancer | |
US20240261309A1 (en) | Retinoic acid precursor and anticancer drug composition comprising same | |
KR20160008523A (en) | Targeting corroles for tumor toxicity and mri | |
CN118369308A (en) | Compounds and compositions for delivery of therapeutic agents | |
EP2738158B1 (en) | Metal salen complex compound, local anesthetic, and anti-malignant tumor agent | |
EP2738157B1 (en) | Auto-magnetic metal salen complex compound | |
Lee et al. | Delivery of nitric oxide with a pH-responsive nanocarrier for the treatment of renal fibrosis | |
Zhao et al. | Apigenin-7-glucoside-loaded nanoparticle alleviates intestinal ischemia-reperfusion by ATF3/SLC7A11-mediated ferroptosis | |
CN108853056B (en) | Folic acid targeted modification carried doxorubicin hydrochloride and gambogic acid nano-structure lipid carrier preparation and preparation method thereof | |
KR102671325B1 (en) | RABA nanoparticles for preventing and treating reperfusion injury and pharmaceutical compositions comprising the same | |
CN106913882B (en) | Polyethylene glycol-gambogic acid liposome, preparation method and application thereof in treating malignant tumor | |
Wang et al. | ‘Prodrug-Like’acetylmannosamine modified liposomes loaded with arsenic trioxide for the treatment of orthotopic glioma in mice | |
TWI353248B (en) | A composition for treating retinal ischaemia and g | |
Wang et al. | Chemo-immunotherapy by dual-enzyme responsive peptide self-assembling abolish melanoma | |
US12054503B2 (en) | Amphiphilic material and application thereof in preparation for liposome | |
JP2010526839A (en) | Polymerase inhibitors and their use for the treatment of tumors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |