KR102670795B1 - Materials for the manufacture of ammonia decomposition catalyst - Google Patents

Materials for the manufacture of ammonia decomposition catalyst Download PDF

Info

Publication number
KR102670795B1
KR102670795B1 KR1020210136594A KR20210136594A KR102670795B1 KR 102670795 B1 KR102670795 B1 KR 102670795B1 KR 1020210136594 A KR1020210136594 A KR 1020210136594A KR 20210136594 A KR20210136594 A KR 20210136594A KR 102670795 B1 KR102670795 B1 KR 102670795B1
Authority
KR
South Korea
Prior art keywords
ammonia decomposition
decomposition reaction
reaction catalyst
group
metal
Prior art date
Application number
KR1020210136594A
Other languages
Korean (ko)
Other versions
KR20230053770A (en
Inventor
조병옥
김영래
정석용
강민수
쉐비조지
이성훈
박새미
김정호
안치웅
이승용
김한슬
지도성
Original Assignee
(주)원익머트리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)원익머트리얼즈 filed Critical (주)원익머트리얼즈
Priority to KR1020210136594A priority Critical patent/KR102670795B1/en
Priority to PCT/KR2022/014876 priority patent/WO2023063640A1/en
Publication of KR20230053770A publication Critical patent/KR20230053770A/en
Application granted granted Critical
Publication of KR102670795B1 publication Critical patent/KR102670795B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0081Preparation by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 암모니아 분해반응 촉매 제조용 물질에 관한 것으로, 특히, 활성이 우수한 암모니아 분해반응 촉매의 제조를 위한 암모니아 분해반응 촉매 제조용 물질로서의 금속 전구체 화합물인 금속 착체 화합물, 및 이를 이용한 암모니아 분해반응 촉매의 제조방법에 관한 것이다. The present invention relates to a material for producing an ammonia decomposition reaction catalyst, and in particular, a metal complex compound that is a metal precursor compound as a material for producing an ammonia decomposition reaction catalyst for producing an ammonia decomposition reaction catalyst with excellent activity, and the production of an ammonia decomposition reaction catalyst using the same. It's about method.

Description

암모니아 분해반응 촉매 제조용 물질{Materials for the manufacture of ammonia decomposition catalyst}Materials for the manufacture of ammonia decomposition catalyst}

본 발명은 암모니아 분해반응 촉매 제조용 물질에 관한 것으로, 특히, 활성이 우수한 암모니아 분해반응 촉매의 제조를 위한 암모니아 분해반응 촉매 제조용 물질로서의 금속 전구체 화합물인 금속 착체 화합물, 및 이를 이용한 암모니아 분해반응 촉매의 제조방법에 관한 것이다. The present invention relates to a material for producing an ammonia decomposition reaction catalyst, and in particular, a metal complex compound that is a metal precursor compound as a material for producing an ammonia decomposition reaction catalyst for producing an ammonia decomposition reaction catalyst with excellent activity, and the production of an ammonia decomposition reaction catalyst using the same. It's about method.

지구 온난화에 따른 기후 변화 이슈가 전 세계적으로 대두되고 있으며, 이는 이산화탄소(이하 CO2)로 대표되는 온실가스의 대기 중 농도가 증가하는 것과 관련이 있다. Climate change issues due to global warming are emerging around the world, and this is related to the increase in the atmospheric concentration of greenhouse gases represented by carbon dioxide (hereinafter CO 2 ).

세계 온실가스 배출량을 기준으로 에너지(86.9 %), 산업공정(7.8 %), 농업(2.9 %), 기타(2.3 %)의 비율로 온실가스가 배출되며, 이 중 에너지 부문 발생 온실가스의 90 %는 CO2가 차지하고 있다.Based on global greenhouse gas emissions, greenhouse gases are emitted in the proportions of energy (86.9%), industrial processes (7.8%), agriculture (2.9%), and other (2.3%), of which 90% of greenhouse gases are generated from the energy sector. is occupied by CO2 .

에너지 부문에서 가장 많이 사용되는 원료는 화석연료로서, 석유, 석탄과 같은 연료의 사용을 대체하기 위한 청정에너지원의 개발이 요구되는 상황이다.The most commonly used raw materials in the energy sector are fossil fuels, and the development of clean energy sources to replace the use of fuels such as oil and coal is required.

수소는 대표적인 청정에너지원으로 주목받고 있으며, 다양한 수소 생산 기술이 상용화를 위해 연구되고 있다. Hydrogen is attracting attention as a representative clean energy source, and various hydrogen production technologies are being researched for commercialization.

기존의 대표적인 수소 생산 방법으로는 천연가스 개질, 수전해, 석유화학공정 부생 수소가 있다.Existing representative hydrogen production methods include natural gas reforming, water electrolysis, and by-product hydrogen from petrochemical processes.

천연가스 개질 방식은 화석연료인 CH4와 H2O의 반응을 기반으로 H2, CO, CO2가 생성물로 전환되기에, CO2 발생에 따른 CCUS(Carbon capture, utilization and storage) 기술이 추가적으로 필요하다는 문제점이 있다.The natural gas reforming method converts H 2 , CO, and CO 2 into products based on the reaction between fossil fuel CH 4 and H 2 O, so CCUS (Carbon capture, utilization and storage) technology is additionally used according to CO 2 generation. There is a problem that it is necessary.

수전해를 통한 수소 생산은 신재생에너지를 통해 생산된 전기를 활용할 수 있다는 가정하에, 궁극적인 그린 수소 생산방식으로 논의되고 있으나, 태양광, 풍력발전을 통해 생산된 대량의 전기에너지원이 요구된다는 점에서 지정학적인 한계점이 존재한다.Hydrogen production through water electrolysis is being discussed as the ultimate green hydrogen production method, under the assumption that electricity produced through new and renewable energy can be utilized, but it requires a large amount of electrical energy source produced through solar and wind power generation. In this respect, there is a geopolitical limitation.

석유화학공정에서 발생하는 부생 수소의 경우, 제한된 석유화학 단지 내에서만 생산 가능하다는 점 (대한민국 기준, 5만 톤/년)에서 향후 수소 경제사회로의 전환 시에 요구되는 수소 수요량을 감당하기에는 한계가 존재하며, 대량 수소 저장 운송 기술인 액화 수소도 현재 증발 문제(Boil-off gas)와 같은 기술적 해결과제들이 존재한다.In the case of by-product hydrogen generated in the petrochemical process, there is a limit to meeting the hydrogen demand required in the future transition to a hydrogen economic society because it can only be produced within a limited petrochemical complex (50,000 tons/year in Korea). Liquid hydrogen, a large-scale hydrogen storage and transportation technology, currently has technical challenges such as boil-off gas.

위와 같은 수소 생산방식들과 별개로 최근 암모니아 기반 수소 추출 공정이 주목받고 있으며, 암모니아 기반 수소 추출 공정은 아래와 같은 반응식으로 나타낼 수 있다.Apart from the above hydrogen production methods, the ammonia-based hydrogen extraction process has recently been attracting attention, and the ammonia-based hydrogen extraction process can be expressed in the reaction equation below.

2NH3 ↔ 3H2 + N2, △H = 46 kJ/mol2NH 3 ↔ 3H 2 + N 2 , △H = 46 kJ/mol

암모니아 기반 수소 추출 방식은 최종 생성물이 수소와 질소라는 점에서 그린 수소 생산방식에 가장 근접한 기술이라고 볼 수 있으며, 암모니아 기반 수소 추출 방식에서 가장 중요한 요소는 촉매이다. The ammonia-based hydrogen extraction method can be considered the closest technology to a green hydrogen production method in that the final products are hydrogen and nitrogen, and the most important element in the ammonia-based hydrogen extraction method is a catalyst.

촉매를 이용하여 암모니아를 분리하여 수소를 추출하는 기술과 관련하여 일본등록특허 제5778309호는 암모니아 분해반응용 촉매로서 코발트 또는 니켈, 및 금속화합물을 포함하는 촉매를 기재하고 있으며, 한국등록특허 제1938333호는 암모니아 산화반응용 촉매로서 정방형 백금 나노입자를 개시하고 있다. 또한, 한국등록특허 제1924952호는 루테늄 등의 금속을 포함하는 촉매를 개시하고 있다. Regarding technology for extracting hydrogen by separating ammonia using a catalyst, Japanese Patent No. 5778309 describes a catalyst containing cobalt or nickel and a metal compound as a catalyst for ammonia decomposition reaction, and Korean Patent No. 1938333 Ho discloses tetragonal platinum nanoparticles as a catalyst for ammonia oxidation reaction. Additionally, Korean Patent No. 1924952 discloses a catalyst containing a metal such as ruthenium.

상기와 같은 금속 함유 촉매는 암모니아 분해반응용 촉매로서 당업계에 널리 사용되고 있는 촉매이다. 그러나 이러한 금속 함유 촉매를 제조하는 데에 있어 필수적인 금속 전구체 화합물에 대한 연구는 미흡한 실정이다.The above metal-containing catalyst is a catalyst for ammonia decomposition reaction and is widely used in the art. However, research on metal precursor compounds essential for producing these metal-containing catalysts is insufficient.

일본등록특허 제5778309호 (2015.07.17 등록)Japanese Registered Patent No. 5778309 (registered on July 17, 2015) 한국등록특허 제1938333호 (2019.01.08 등록)Korean Patent No. 1938333 (registered on January 8, 2019) 한국등록특허 제1924952호 (2018.11.28 등록)Korean Patent No. 1924952 (registered on November 28, 2018)

본 발명은, 상기와 같은 문제점을 해결하기 위한 것으로서 암모니아 분해반응 촉매의 제조에 이용되는 암모니아 분해반응 촉매 제조용 물질로서 금속 전구체 화합물, 특히 특정한 리간드를 포함하는 금속 착체 화합물의 금속 전구체 화합물을 제공하고자 하는 것을 목적으로 한다. The present invention is intended to solve the above problems and to provide a metal precursor compound, particularly a metal precursor compound of a metal complex compound containing a specific ligand, as a material for preparing an ammonia decomposition reaction catalyst used in the production of an ammonia decomposition reaction catalyst. The purpose is to

또한, 상기 암모니아 분해반응 촉매 제조용 물질로서의 금속 전구체 화합물로부터 제조된 암모니아 분해반응 촉매, 및 이의 제조방법의 제공을 목적으로 한다. Additionally, the object is to provide an ammonia decomposition reaction catalyst prepared from a metal precursor compound as a material for producing the ammonia decomposition reaction catalyst, and a method for producing the same.

본 발명은 또한, 상기한 명확한 목적 이외에 이러한 목적 및 본 명세The present invention also provides, in addition to the above-described explicit purposes, these purposes and the present specification.

서의 전반적인 기술로부터 이 분야의 통상인에 의해 용이하게 도출될 수 있는 다른 목적을 달성함을 그 목적으로 할 수 있다The purpose may be to achieve other purposes that can be easily derived by a person skilled in the art from the overall technology in the book.

본 발명의 암모니아 분해반응 촉매용 제조물질로서의 금속 전구체 화합물을 이용하여 제조되는 암모니아 분해반응 촉매는 암모니아 분해반응 촉매 지지체에 상기 금속 전구체 화합물의 금속이 제공되어 생성되는 촉매이다.The ammonia decomposition reaction catalyst manufactured using the metal precursor compound as a manufacturing material for the ammonia decomposition reaction catalyst of the present invention is a catalyst produced by providing the metal of the metal precursor compound to an ammonia decomposition catalyst support.

이러한 금속 전구체 화합물은 하나 이상의 특정 리간드를 포함하는 금속 착체 화합물이고, 상기 특정 리간드는 아세틸아세토네이트기이다. This metal precursor compound is a metal complex compound containing one or more specific ligands, and the specific ligand is an acetylacetonate group.

상기 금속 착체 화합물의 나머지 리간드는 카르보닐기, 카르복실레이트기, 옥살레이트기, 카보네이트기, 나이트릴기, 니트로기, 아민기, 술포네이트기, 케토이미네이트(ketoiminate), 디케티미네이트(diketiminate), 아미디네이트(amidinate), 및 상기 작용기들을 포함한 유기기로 구성된 군으로부터 선택되는 하나 이상이다. The remaining ligands of the metal complex compound include carbonyl group, carboxylate group, oxalate group, carbonate group, nitrile group, nitro group, amine group, sulfonate group, ketoiminate, diketiminate, and It is one or more selected from the group consisting of amidinate, and organic groups containing the above functional groups.

상기 금속 착체 화합물의 금속은 암모니아 분해반응 촉매의 구성성분으로 사용될 수 있는 귀금속, 비귀금속,, 또는 이들의 혼합물이며, 바람직하게는 Ir, Pt, Pd, Ru, Rh, Ni, Fe, Cu, V, Co, Cr, Au, Re, W, Zr, Mo, 또는 이들의 혼합물일 수 있다.The metal of the metal complex compound is a noble metal, a non-noble metal, or a mixture thereof that can be used as a component of the ammonia decomposition reaction catalyst, and is preferably Ir, Pt, Pd, Ru, Rh, Ni, Fe, Cu, V , Co, Cr, Au, Re, W, Zr, Mo, or a mixture thereof.

또한, 본 발명의 금속 전구체 화합물의 금속이 제공되는 암모니아 분해반응 촉매 지지체는 란타넘족 원소, 알칼리금속, 알칼리토금속, 또는 전이금속이 도핑된 지지체를 포함하는 것일 수 있다. Additionally, the ammonia decomposition catalyst support to which the metal of the metal precursor compound of the present invention is provided may include a support doped with a lanthanide element, an alkali metal, an alkaline earth metal, or a transition metal.

상기 란타넘족 원소는 란타늄, 세륨, 및 이들의 혼합물로 이루어진 군에서 선택되는 하나 이상일 수 있다.The lanthanum group element may be one or more selected from the group consisting of lanthanum, cerium, and mixtures thereof.

상기 지지체는 SiO2, CeO2, ZrO2, TiO2, MgO, Al2O3, V2O5, Fe2O3, Co3O4, Ce-ZrOx, MgO-Al2O3, 및 이들의 혼합물로 이루어진 군에서 선택되는 하나 이상일 수 있다.The support is SiO 2 , CeO 2 , ZrO 2 , TiO 2 , MgO, Al 2 O 3 , V 2 O 5 , Fe 2 O 3 , Co 3 O 4 , Ce-ZrO x , MgO-Al 2 O 3 , and It may be one or more selected from the group consisting of mixtures thereof.

본 발명의 금속 전구체 화합물을 이용하여 제조된 암모니아 분해반응 촉매는, 상기 암모니아 분해반응 촉매 100중량부에 대하여 상기 금속 0.01 내지 5중량부, 바람직하게는 0.02 내지 3중량부, 더욱 바람직하게는 0.1 내지 2중량부;를 포함할 수 있다. The ammonia decomposition reaction catalyst prepared using the metal precursor compound of the present invention contains 0.01 to 5 parts by weight of the metal, preferably 0.02 to 3 parts by weight, more preferably 0.1 to 0.1 to 5 parts by weight, based on 100 parts by weight of the ammonia decomposition catalyst. It may include 2 parts by weight.

또한, 암모니아 분해반응 촉매 100몰부에 대하여 란타넘족 원소, 알칼리금속, 알칼리토금속, 전이금속 중 하나 이상의 원소 또는 금속을 0.1 내지 100몰부, 바람직하게는 2 내지 60몰부, 더욱 바람직하게는 5 내지 30몰부;를 포함할 수 있다.In addition, 0.1 to 100 mol parts, preferably 2 to 60 mol parts, more preferably 5 to 30 mol parts of one or more elements or metals of lanthanide elements, alkali metals, alkaline earth metals, and transition metals per 100 mol parts of ammonia decomposition reaction catalyst. May include ;.

한편, 상기 본 발명의 암모니아 분해반응 촉매의 제조방법은,Meanwhile, the method for producing the ammonia decomposition reaction catalyst of the present invention is,

(A) 아세틸아세토네이트기의 리간드 및 다른 리간드를 포함하는 금속 착체 화합물인 금속 전구체 화합물을 용매에 녹여 금속 전구체 용액을 제조하는 단계; 및(A) preparing a metal precursor solution by dissolving a metal precursor compound, which is a metal complex compound containing an acetylacetonate group ligand and another ligand, in a solvent; and

(B) 암모니아 분해반응 촉매 지지체와 상기 금속 전구체 용액을 혼합하여 암모니아 분해반응 촉매 지지체에 금속을 제공하는 단계;를 포함하는 것을 특징으로 한다.(B) mixing the ammonia decomposition reaction catalyst support and the metal precursor solution to provide metal to the ammonia decomposition reaction catalyst support.

상기 (A) 단계의 다른 리간드는 카르보닐기, 카르복실레이트기, 옥살레이트기, 카보네이트기, 나이트릴기, 니트로기, 아민기, 술포네이트기, 케토이미네이트(ketoiminate), 디케티미네이트(diketiminate), 아미디네이트(amidinate), 및 상기 작용기들을 포함한 유기기로 구성된 군으로부터 선택되는 하나 이상이다. Other ligands in step (A) include carbonyl group, carboxylate group, oxalate group, carbonate group, nitrile group, nitro group, amine group, sulfonate group, ketoiminate, diketiminate, It is one or more selected from the group consisting of amidinate, and organic groups containing the above functional groups.

상기 금속 착체 화합물의 금속은 암모니아 분해반응 촉매의 구성성분으로 사용될 수 있는 귀금속, 비귀금속,, 또는 이들의 혼합물이며, 바람직하게는 Ir, Pt, Pd, Ru, Rh, Ni, Fe, Cu, V, Co, Cr, Au, Re, W, Zr, Mo, 또는 이들의 혼합물일 수 있다.The metal of the metal complex compound is a noble metal, a non-noble metal, or a mixture thereof that can be used as a component of the ammonia decomposition reaction catalyst, and is preferably Ir, Pt, Pd, Ru, Rh, Ni, Fe, Cu, V , Co, Cr, Au, Re, W, Zr, Mo, or a mixture thereof.

상기 용매는 물, 헥세인, 톨루엔, Dichloromethane, 및 이들의 혼합물로 이루어진 군에서 선택될 수 있다.The solvent may be selected from the group consisting of water, hexane, toluene, dichloromethane, and mixtures thereof.

상기 (B) 단계의 암모니아 분해반응 촉매 지지체는 란타넘족 원소, 알칼리금속, 알칼리토금속, 또는 전이금속이 도핑된 지지체를 포함하는 것일 수 있다. The catalyst support for the ammonia decomposition reaction in step (B) may include a support doped with a lanthanide element, an alkali metal, an alkaline earth metal, or a transition metal.

상기 란타넘족 원소는 란타늄, 세륨, 및 이들의 혼합물로 이루어진 군에서 선택되는 하나 이상일 수 있다.The lanthanum group element may be one or more selected from the group consisting of lanthanum, cerium, and mixtures thereof.

상기 지지체는 SiO2, CeO2, ZrO2, TiO2, MgO, Al2O3, V2O5, Fe2O3, Co3O4, Ce-ZrOx, MgO-Al2O3, 및 이들의 혼합물로 이루어진 군에서 선택되는 하나 이상일 수 있다.The support is SiO 2 , CeO 2 , ZrO 2 , TiO 2 , MgO, Al 2 O 3 , V 2 O 5 , Fe 2 O 3 , Co 3 O 4 , Ce-ZrO x , MgO-Al 2 O 3 , and It may be one or more selected from the group consisting of mixtures thereof.

상기 암모니아 분해반응 촉매 지지체는 파우더 타입, 펠렛 타입, 또는 모노리스 타입일 수 있다.The ammonia decomposition reaction catalyst support may be a powder type, pellet type, or monolith type.

또한, 상기 단계 (B) 이후, (C) 중탕하여 액상성분을 제거하는 단계;를 더 포함할 수 있다.In addition, after step (B), (C) boiling to remove the liquid component may be further included.

상기 단계 (C)는 10 내지 150 ℃, 바람직하게는 30 내지 90 ℃, 더욱 바람직하게는 40 내지 80 ℃의 조건에서 수행될 수 있다.Step (C) may be performed under conditions of 10 to 150°C, preferably 30 to 90°C, and more preferably 40 to 80°C.

또한, 상기 단계 (C) 이후, (D) 건조하는 단계;를 더 포함할 수 있다.In addition, after step (C), (D) drying may be further included.

상기 단계 (D)는 50 내지 150 ℃, 바람직하게는 70 내지 130 ℃, 더욱 바람직하게는 90 내지 110 ℃의 조건에서 수행될 수 있다.Step (D) may be performed under conditions of 50 to 150°C, preferably 70 to 130°C, and more preferably 90 to 110°C.

상기 단계 (A) 및 (B)를 포함하거나, 단계 (A) 내지 (D)를 포함하는 제조방법으로 제조된 암모니아 분해반응 촉매는 암모니아 전환율이 촉매층 온도 450 ℃ 이상에서 75% 이상의 효과를 나타내며, 특히 600 ℃ 이상에서는 100%의 전환율을 보이고 있다. 또한, Ru(t-BuDAD)(acac)2 상기 단계 (A)의 금속 전구체 화합물로 사용하여 제조된 암모니아 분해반응 촉매는 암모니아 전환율이 촉매층 온도 450 ℃에서 이미 99.5%를 나타내고 있다(표 1, 및 도 1 참조).The ammonia decomposition reaction catalyst comprising steps (A) and (B) or prepared by a method comprising steps (A) to (D) exhibits an ammonia conversion rate of 75% or more at a catalyst bed temperature of 450° C. or higher, In particular, at temperatures above 600°C, a conversion rate of 100% is shown. Additionally, Ru( t -BuDAD)(acac) 2 The ammonia decomposition reaction catalyst prepared using the metal precursor compound in step (A) already shows an ammonia conversion rate of 99.5% at a catalyst bed temperature of 450° C. (see Table 1 and FIG. 1).

이와 같이 본 발명의 암모니아 분해반응 촉매의 제조용 물질은 암모니아 분해반응 촉매 제조에 사용되어 비교적 낮은 온도에서도 암모니아로부터 우수한 수소 전환율을 나타내므로, 암모니아로부터 수소를 생산하는 수소제조방법에 이용할 수 있는 장점이 있다. As such, the material for producing the ammonia decomposition reaction catalyst of the present invention is used in the production of the ammonia decomposition reaction catalyst and exhibits an excellent hydrogen conversion rate from ammonia even at a relatively low temperature, so it has the advantage of being used in a hydrogen production method that produces hydrogen from ammonia. .

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해할 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호 범위를 제한하고자 하는 것은 아니다. The present invention can be better understood by the following examples, which are for illustrative purposes only and are not intended to limit the scope of protection defined by the appended claims.

또한, 본 발명은 하기의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어나지 않는 범위에서 다양한 변형실시가 가능하다. In addition, the present invention is not limited to the following examples, and various modifications can be made without departing from the gist of the present invention as claimed in the claims.

<암모니아 분해반응 촉매의 제조><Manufacture of ammonia decomposition reaction catalyst>

하기는 본 발명의 암모니아 분해반응 촉매의 제조에 관한 것으로, 우선 제조예 1 내지 5에서 암모니아 분해반응 촉매의 제조에 사용되는 암모니아 분해반응 촉매 지지체 및 금속 전구체 화합물의 제조에 관하여 기재하고, 다음으로 실시예 1 내지 3에서는 이들을 이용하는 본 발명의 암모니아 분해반응 촉매 제조, 및 본 발명의 암모니아 분해반응 촉매와 대비를 위한 비교예 1를 기재하였다. The following relates to the production of the ammonia decomposition reaction catalyst of the present invention. First, the preparation of the ammonia decomposition reaction catalyst support and metal precursor compound used in the production of the ammonia decomposition reaction catalyst in Preparation Examples 1 to 5 is described, and then the implementation Examples 1 to 3 describe the preparation of the ammonia decomposition reaction catalyst of the present invention using these catalysts, and Comparative Example 1 for comparison with the ammonia decomposition reaction catalyst of the present invention.

제조예 1: 암모니아 분해반응 촉매 지지체인 란타늄 알루미네이트의 제조Preparation Example 1: Preparation of lanthanum aluminate as a catalyst support for ammonia decomposition reaction

질산 란타늄(III) 수화물(Lanthanum(III) nitrate hydrate) 98.0% (SAMCHUN) 63.72 g을 순수(D.I. water) 200 mL와 혼합하여 용액을 제조한 후, 60 ℃에서 중탕하였다. 그 후 펠렛 타입의 감마 알루미나(Al2O3) 지지체(Alfa Aesar) 60 g을 상기 용액에 투입하고, 80 ℃에서 2시간 동안 증발기(evaporator)를 이용하여 교반하면서 용액의 액상 성분을 제거하였다. 액상 성분의 제거 후 남은 성분을 회수하고 이를 100 ℃에서 12시간 건조시킨 다음, 900 ℃에서 5시간 소성하여 란타늄 알루미네이트(LaAlO3)를 제조하였다.A solution was prepared by mixing 63.72 g of lanthanum(III) nitrate hydrate (Lanthanum(III) nitrate hydrate) 98.0% (SAMCHUN) with 200 mL of pure water (DI water), followed by boiling in a bath at 60°C. Afterwards, 60 g of pellet-type gamma alumina (Al 2 O 3 ) support (Alfa Aesar) was added to the solution, and the liquid component of the solution was removed while stirring using an evaporator at 80°C for 2 hours. After removal of the liquid component, the remaining components were recovered, dried at 100°C for 12 hours, and then calcined at 900°C for 5 hours to prepare lanthanum aluminate (LaAlO 3 ).

제조예 2: 금속 전구체 화합물로서 루테늄 착체 화합물인 Ru(Preparation Example 2: Ru (Ru, a ruthenium complex compound) as a metal precursor compound t-t- BuDAD)(acac)BuDAD)(acac) 22 의 제조manufacture of

상기 Ru(t-BuDAD)(acac)2는 하기 단계 1 내지 3으로부터 얻어진다. The Ru( t- BuDAD)(acac) 2 is obtained from steps 1 to 3 below.

(1) 단계 1 : Ru(acac)3의 제조(1) Step 1: Preparation of Ru(acac) 3

글로브 박스 내에서 RuCl3 (25 g, 120 mmol)와 KHCO3 (46 g, 458 mmol)를 플라스크에 넣은 후, acetylacetone (600 mL)를 넣어 용해시킨다. 글로브 박스 내에서 플라스크를 꺼내어 N2 기체하에 12시간 동안 환류 가열을 한다. 실온으로 냉각 후 진공을 이용하여 acetylacetone을 제거한다. 잔여물을 Dichloromethane에 녹인 후 celite 필터를 진행한다. DCM 일부를 제거하고 hexane을 첨가한 후 -25 oC에서 재결정을 통해 고체의 표제화합물 Ru(acac)3 (25 g, 66 %)를 수득하였다. RuCl 3 (25 g, 120 mmol) and KHCO 3 (46 g, 458 mmol) were placed in a flask in a glove box, and then acetylacetone (600 mL) was added to dissolve them. The flask was taken out from the glove box and heated to reflux for 12 hours under N 2 gas. After cooling to room temperature, acetylacetone is removed using vacuum. Dissolve the residue in dichloromethane and proceed with celite filter. After removing some of the DCM and adding hexane, the solid title compound Ru(acac) 3 (25 g, 66 %) was obtained through recrystallization at -25 o C.

(2) 단계 2 : Ru(acac)2(MeCN)2의 제조(2) Step 2: Preparation of Ru(acac) 2 (MeCN) 2

글로브 박스 내에서 Ru(acac)3 (25 g, 63 mmol)와 Zn (123 g, 1883 mmol)를 플라스크에 넣은 후, acetonitrile (900 mL)를 넣어 용해시킨다. 글로브 박스 내에서 플라스크를 꺼내어 N2 기체하에 12시간 동안 환류 가열을 한다. 용매가 뜨거운 상태에서 celite 필터를 하여 남아있는 Zn을 제거하고, 회전농축기를 통해 용매를 제거하여 고체 화합물을 얻는다. 얻은 고체 화합물을 diethyl ether를 이용하여 세척하여 불순물을 제거하고, 건조를 통해 고체의 표제화합물 Ru(acac)2(MeCN)2 (22 g, 90 %)를 수득하였다.In a glove box, Ru(acac) 3 (25 g, 63 mmol) and Zn (123 g, 1883 mmol) were placed in a flask, and then acetonitrile (900 mL) was added to dissolve them. The flask was taken out from the glove box and heated to reflux for 12 hours under N 2 gas. While the solvent is hot, the remaining Zn is removed through a celite filter, and the solvent is removed through a rotary concentrator to obtain a solid compound. The obtained solid compound was washed with diethyl ether to remove impurities, and dried to obtain the solid title compound Ru(acac) 2 (MeCN) 2 (22 g, 90%).

(3) 단계 3 : Ru(acac)2(t-BuDAD)의 제조(3) Step 3 : Preparation of Ru(acac) 2 ( t- BuDAD)

글로브 박스 내에서 Ru(acac)2(MeCN)2 (14 g, 37 mmol)와 t-BuDAD(1,4-di-tert-butyl- 1,3-diazabutadiene)(6.2 g, 37 mmol)를 플라스크에 넣은 후, DCM/Toluene (3:1 v/v, 600 mL)를 넣어 용해시킨다. 글로브 박스 내에서 플라스크를 꺼내어 N2 기체 하에서 12시간 동안 환류 가열을 한다. 회전농축기를 사용하여 용매를 제거한다. 실리카 컬럼 크로마토그래피를 통한 정제(DCM 100 %에서 DCM/aceteon 20:1)를 진행하여 고체의 표제화합물 Ru(t-BuDAD)(acac)2 (5 g, 29 %)를 수득하였다. In a glove box, add Ru(acac) 2 (MeCN) 2 (14 g, 37 mmol) and t- BuDAD (1,4-di-tert-butyl-1,3-diazabutadiene) (6.2 g, 37 mmol) to the flask. After adding it, add DCM/Toluene (3:1 v/v, 600 mL) to dissolve it. The flask is taken out from the glove box and heated to reflux for 12 hours under N 2 gas. Remove the solvent using a rotary evaporator. Purification through silica column chromatography (DCM/aceteon 20:1 in DCM 100%) was performed to obtain the title compound Ru( t- BuDAD)(acac) 2 (5 g, 29%) as a solid.

제조예 3: 금속 전구체 화합물로서 루테늄 착체 화합물인 Ru(TMEDA)(acac)Preparation Example 3: Ru(TMEDA)(acac), a ruthenium complex compound, as a metal precursor compound 22 의 제조manufacture of

상기 Ru(TMEDA)(acac)2는 하기 단계 1 내지 3으로부터 얻어진다.The Ru(TMEDA)(acac) 2 is obtained from steps 1 to 3 below.

(1) 단계 1: [Ru(CHT)Cl2]2의 제조(1) Step 1: Preparation of [Ru(CHT)Cl 2 ] 2

글로브 박스 내에서 RuCl3·3H2O (20 g, 76.5 mmol) 플라스크에 넣은 후, ethanol (300 mL)를 넣어 용해시킨다. Cycloheptatriene (14 g, 153 mmol)을 첨가 후 글로브 박스에서 플라스크를 꺼내어 N2 기체 하에서 12시간 동안 환류 가열한다. 실온으로 냉각 후 methanol과 diethyl ether를 사용하여 celite 필터를 진행한다. 진공 하에서 용매를 제거한 후 건조를 통하여 고체의 표제화합물 [Ru(CHT)Cl2]2 (37 g, 96 %)를 수득하였다.Place RuCl 3 ·3H 2 O (20 g, 76.5 mmol) in a flask in a glove box, and then dissolve by adding ethanol (300 mL). After adding cycloheptatriene (14 g, 153 mmol), the flask was removed from the glove box and heated to reflux for 12 hours under N 2 gas. After cooling to room temperature, celite filter is performed using methanol and diethyl ether. After removing the solvent under vacuum, the title compound [Ru(CHT)Cl 2 ] 2 (37 g, 96 %) was obtained as a solid through drying.

(2) 단계 2: Ru(TMEDA)2Cl2의 제조(2) Step 2: Preparation of Ru(TMEDA) 2 Cl 2

글로브 박스 내에서 [Ru(CHT)Cl2]2 (10 g, 19 mmol) 플라스크에 넣은 후, toluene (200 mL)를 넣어 용해시킨다. TMEDA (TetraMethylEthyleneDiamine) (22 g, 190 mmol)을 첨가 후 글로브 박스 내에서 플라스크를 꺼내어 N2 기체 하에서 2일 동안 환류 가열한다. 실온으로 냉각 후 ethanol을 사용하여 celite 필터를 진행한다. 여과액을 증류를 통해 농축한 다음 액체 상태의 생성물을 -20 oC에 하루동안 보관한다. 재결정으로 생성된 고체를 필터를 통해 거른 후 ethanol로 씻어준다. 이렇게 획득한 고체를 건조하여 고체의 표제화합물 Ru(TMEDA)2Cl2 (4.6 g, 30 %)를 수득하였다.Place [Ru(CHT)Cl 2 ] 2 (10 g, 19 mmol) in a flask in a glove box, then add toluene (200 mL) to dissolve it. After adding TMEDA (TetraMethylEthyleneDiamine) (22 g, 190 mmol), the flask was taken out of the glove box and heated to reflux for 2 days under N 2 gas. After cooling to room temperature, celite filter is performed using ethanol. The filtrate is concentrated through distillation, and the liquid product is stored at -20 o C for one day. The solid produced by recrystallization is filtered through a filter and washed with ethanol. The solid thus obtained was dried to obtain the solid title compound Ru(TMEDA) 2 Cl 2 (4.6 g, 30%).

(3) 단계 3: Ru(TMEDA)(acac)2의 제조(3) Step 3: Preparation of Ru(TMEDA)(acac) 2

글로브 박스 내에서 Ru(TMEDA)2Cl2 (21 g, 52 mmol) 플라스크에 넣은 후, toluene (700 mL)를 넣어 용해시킨다. 글로브 박스 내에서 플라스크를 꺼내어 trimethylamine (157 g, 1558 mmol)과 acetylacetone (52 g, 519 mmol)을 첨가 후 N2 기체 하에서 12시간 동안 환류 가열한다. 실온으로 냉각 후 필터를 진행한다. 얻은 여과액을 농축하여 생성된 고체에서 pentane으로 추출한 후 진공을 통해 pentane을 제거한다. -20 oC에서 재결정을 통해 고체의 표제화합물 Ru(TMEDA)(acac)2 (13 g, 50 %)를 수득하였다.Put Ru(TMEDA) 2 Cl 2 (21 g, 52 mmol) in a flask in a glove box, and then dissolve it by adding toluene (700 mL). Take the flask out of the glove box, add trimethylamine (157 g, 1558 mmol) and acetylacetone (52 g, 519 mmol), and heat to reflux for 12 hours under N 2 gas. After cooling to room temperature, filtering is performed. The obtained filtrate is concentrated, the resulting solid is extracted with pentane, and the pentane is removed through vacuum. The solid title compound Ru(TMEDA)(acac) 2 (13 g, 50%) was obtained through recrystallization at -20 o C.

제조예 4: 금속 전구체 화합물로서 루테늄 착체 화합물인 Ru(CO)Preparation Example 4: Ru(CO), a ruthenium complex compound, as a metal precursor compound 22 (acac)(acac) 22 의 제조manufacture of

글로브 박스 내에서 dodecacarbonyl triruthenium (20 g, 31.3 mmol)와 acetylacteone (22.5 g, 225 mmol)를 플라스크에 넣은 후, 용매 decane (700 mL) 를 넣어 용해시킨다. 글로브 박스에서 꺼내고 질소 기체 하에서 48시간 동안 환류 가열한다. 실온으로 냉각 후 진공을 이용하여 decane을 제거한다. 최소한의 methanol만 사용하여 잔여물을 녹인 후 0 ℃ 하에서 재결정을 통하여 고체의 표제 화합물 Ru(CO)2(acac)2 (25 g, 75 %)를 수득하였다. In a glove box, dodecacarbonyl triruthenium (20 g, 31.3 mmol) and acetylacteone (22.5 g, 225 mmol) were added to the flask, and then dissolved in the solvent decane (700 mL). Remove from the glove box and heat to reflux for 48 hours under nitrogen gas. After cooling to room temperature, remove the decane using vacuum. After dissolving the residue using a minimum amount of methanol, the solid title compound Ru(CO) 2 (acac) 2 (25 g, 75 %) was obtained through recrystallization at 0°C.

제조예 5: 금속 전구체 화합물로서 루테늄 착체 화합물인 Ru(acac)Preparation Example 5: Ru(acac), a ruthenium complex compound, as a metal precursor compound 33 의 제조manufacture of

글로브 박스 내에서 RuCl3 (25 g, 120 mmol)와 KHCO3 (46 g, 458 mmol)를 플라스크에 넣은 후, acetylacetone (600 mL)를 넣어 용해시킨다. 글로브 박스 내에서 플라스크를 꺼내어 N2 기체 하에서 12시간 동안 환류 가열을 한다. 실온으로 냉각 후 진공을 이용하여 acetylacetone을 제거한다. 잔여물을 DCM에 녹인 후 celite 필터를 진행한다. DCM 일부를 제거하고 hexane을 첨가한 후 -25 oC에서 재결정을 통해 고체의 표제화합물 Ru(acac)3 (25 g, 66 %)를 수득하였다. RuCl 3 (25 g, 120 mmol) and KHCO 3 (46 g, 458 mmol) were placed in a flask in a glove box, and then acetylacetone (600 mL) was added to dissolve them. The flask is taken out from the glove box and heated to reflux for 12 hours under N 2 gas. After cooling to room temperature, acetylacetone is removed using vacuum. Dissolve the residue in DCM and proceed with celite filter. After removing some of the DCM and adding hexane, the solid title compound Ru(acac) 3 (25 g, 66 %) was obtained through recrystallization at -25 o C.

실시예 1: Ru(Example 1: Ru( tt -BuDAD)(acac)-BuDAD)(acac) 22 를 이용한 암모니아 분해반응 촉매인 Ru/LaAlORu/LaAlO, an ammonia decomposition reaction catalyst using 33 의 제조manufacture of

금속 전구체 화합물로서, 상기 제조예 2에서 제조한 루테늄 전구체 화합물인 Ru(t-BuDAD)(acac)2 1.578 g을 200 mL hexane에 충분히 녹인 다음, 상기 제조예 1에서 제조한 펠렛 타입의 란타늄 알루미네이트 15.88 g을 투입하였다. 그 후 중탕 온도 60 ℃에서 증발기(evaporator)를 이용하여 1시간 동안 교반하면서 용액 내 액상성분을 제거하였다. 액상 성분의 제거 후 남은 상기 목적물을 회수하고 112 ℃에서 12시간 건조시켜 목적물인 암모니아 분해반응 촉매인 Ru/LaAlO3를 제조하였다.As a metal precursor compound, 1.578 g of Ru( t -BuDAD)(acac) 2 , the ruthenium precursor compound prepared in Preparation Example 2, was sufficiently dissolved in 200 mL hexane, and then the pellet-type lanthanum aluminate prepared in Preparation Example 1 was added. 15.88 g was added. Afterwards, the liquid components in the solution were removed while stirring for 1 hour using an evaporator at a bath temperature of 60°C. The target product remaining after removal of the liquid component was recovered and dried at 112° C. for 12 hours to prepare the target product, Ru/LaAlO 3 , an ammonia decomposition reaction catalyst.

상기 실시예 1에 의한 암모니아 분해반응 촉매인 “Ru/LaAlO3”는 편의상 “Ru/LaAlO3 (Ru(t-BuDAD)(acac)2)”로 기재한다. “Ru/LaAlO 3 ”, the ammonia decomposition reaction catalyst according to Example 1, For convenience, it is written as “Ru/LaAlO 3 (Ru( t -BuDAD)(acac) 2 )”.

실시예 2: Ru(TMEDA)(acac)Example 2: Ru(TMEDA)(acac) 22 를 이용한 암모니아 분해반응 촉매의 제조Preparation of ammonia decomposition reaction catalyst using

금속 전구체 화합물로서, 상기 제조예 3에서 제조한 루테늄 전구체 화합물인 Ru(TMEDA)(acac)2 1.332 g을 200 mL hexane에 충분히 녹인 다음, 상기 제조예 1에서 제조한 펠렛 타입의 란타늄 알루미네이트 15.88 g을 투입하였다. 이 후에는 상기 실시예 1과 동일한 방법으로 암모니아 분해반응 촉매를 제조하였다.As a metal precursor compound, 1.332 g of Ru(TMEDA)(acac) 2 , the ruthenium precursor compound prepared in Preparation Example 3, was sufficiently dissolved in 200 mL hexane, and then 15.88 g of pellet-type lanthanum aluminate prepared in Preparation Example 1. was invested. After this, an ammonia decomposition reaction catalyst was prepared in the same manner as in Example 1.

상기 실시예 2에 의한 암모니아 분해반응 촉매인 “Ru/LaAlO3”는 편의상 “Ru/LaAlO3 (Ru(TMEDA)(acac)2)”로 기재한다. “Ru/LaAlO 3 ”, the ammonia decomposition reaction catalyst according to Example 2, For convenience, it is written as “Ru/LaAlO 3 (Ru(TMEDA)(acac) 2 )”.

실시예 3: Ru(CO)Example 3: Ru(CO) 22 (acac)(acac) 22 를 이용한 암모니아 분해반응 촉매의 제조Preparation of ammonia decomposition reaction catalyst using

금속 전구체 화합물로서, 상기 제조예 4에서 제조한 루테늄 전구체 화합물인 Ru(CO)2(acac)2 1.199 g을 200 mL hexane에 충분히 녹인 다음, 상기 제조예 1에서 제조한 펠렛 타입의 란타늄 알루미네이트 15.88 g을 투입하였다. 이 후에는 상기 실시예 1과 동일한 방법으로 암모니아 분해반응 촉매를 제조하였다.As a metal precursor compound, 1.199 g of Ru(CO) 2 (acac) 2 , the ruthenium precursor compound prepared in Preparation Example 4, was sufficiently dissolved in 200 mL hexane, and then pellet-type lanthanum aluminate 15.88 prepared in Preparation Example 1. g was added. After this, an ammonia decomposition reaction catalyst was prepared in the same manner as in Example 1.

상기 실시예 3에 의한 암모니아 분해반응 촉매인 “Ru/LaAlO3”는 편의상 “Ru/LaAlO3 (Ru(CO)2(acac)2)”로 기재한다. “Ru/LaAlO 3 ”, the ammonia decomposition reaction catalyst according to Example 3, For convenience, it is written as “Ru/LaAlO 3 (Ru(CO) 2 (acac) 2 )”.

비교예 1: Ru(acac)Comparative Example 1: Ru(acac) 33 를 이용한 암모니아 분해반응 촉매의 제조Preparation of ammonia decomposition reaction catalyst using

금속 전구체 화합물로서, 상기 제조예 5에서 제조한 루테늄 전구체 화합물인 Ru(acac)3 0.650 g을 200 mL hexane에 충분히 녹인 다음, 상기 제조예 1에서 제조한 펠렛 타입의 란타늄 알루미네이트 15.88 g을 투입하였다. 이 후에는 상기 실시예 1과 동일한 방법으로 암모니아 분해반응 촉매를 제조하였다.As a metal precursor compound, 0.650 g of Ru(acac) 3, the ruthenium precursor compound prepared in Preparation Example 5, was sufficiently dissolved in 200 mL hexane, and then 15.88 g of pellet-type lanthanum aluminate prepared in Preparation Example 1 was added. . After this, an ammonia decomposition reaction catalyst was prepared in the same manner as in Example 1.

상기 비교예 1에 의한 암모니아 분해반응 촉매인 “Ru/LaAlO3”는 편의상 “Ru/LaAlO3 (Ru(acac)3)”로 기재한다. “Ru/LaAlO 3 ”, the ammonia decomposition reaction catalyst according to Comparative Example 1, For convenience, it is written as “Ru/LaAlO 3 (Ru(acac) 3 )”.

<암모니아 전환율 평가><Ammonia conversion rate evaluation>

하기에는 본 발명의 암모니아 분해반응 촉매인 상기 실시예 1 내지 3, 및 비교예 1의 암모니아 분해반응 촉매에 의한 암모니아 전환율 평가를 실시한 것이다. The following is an evaluation of the ammonia conversion rate by the ammonia decomposition reaction catalyst of Examples 1 to 3 and Comparative Example 1, which are the ammonia decomposition reaction catalysts of the present invention.

실시예 1 내지 3, 및 비교예 1에서 제조된 각각의 펠렛 타입의 암모니아 분해반응 촉매 5 g (volume 8 mL)을 관형 반응기에 충진한 후에 전체 H2/N2 가스 중 4 내지 50 vol.%의 H2 가스를 공급하면서 반응기의 촉매층 온도 600 내지 800 ℃ 범위 내에서 4시간 동안 환원하여 촉매의 전처리 과정을 수행하였다. After charging 5 g (volume 8 mL) of each pellet-type ammonia decomposition reaction catalyst prepared in Examples 1 to 3 and Comparative Example 1 into a tubular reactor, 4 to 50 vol.% of the total H 2 /N 2 gas was added. A pretreatment process for the catalyst was performed by reducing the catalyst layer in the reactor at a temperature of 600 to 800° C. for 4 hours while supplying H 2 gas.

이 후 상기 4 내지 50 vol.%의 H2 가스를 공급하면서 상기 관형 반응기의 촉매 층의 온도를 350 ℃로 떨어뜨리고 이를 유지시켜 이후 진행될 암모니아 분해반응을 준비하였다.Afterwards, while supplying 4 to 50 vol.% of H 2 gas, the temperature of the catalyst layer of the tubular reactor was lowered to 350° C. and maintained at this temperature to prepare for the ammonia decomposition reaction to proceed later.

여기에 암모니아 가스를 유량 420 sccm으로 공급하고, GHSV 5,000 ml/h·gcat 의 조건으로 반응기의 촉매층 온도 350 내지 650 ℃ 범위에서의 암모니아 전환율을 측정하였다.Ammonia gas was supplied at a flow rate of 420 sccm, and the ammonia conversion rate was measured in the catalyst bed temperature range of 350 to 650 °C in the reactor under the condition of GHSV of 5,000 ml/h·g cat .

실시예 1 내지 3, 및 비교예 1의 암모니아 전환율 측정 결과는 아래 표 1와 같다. The ammonia conversion rate measurement results of Examples 1 to 3 and Comparative Example 1 are shown in Table 1 below.

비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 Catalyst bed temp.
(℃)
Catalyst bed temperature.
(℃)
금속 전구체 화합물
Ru(acac)3
metal precursor compounds
Ru(acac) 3
금속 전구체 화합물
Ru(t-BuDAD)(acac)2
metal precursor compounds
Ru( t -BuDAD)(acac) 2
금속 전구체 화합물
Ru(TMEDA)(acac)2
metal precursor compounds
Ru(TMEDA)(acac) 2
금속 전구체 화합물
Ru(CO)2(acac)2
metal precursor compounds
Ru(CO) 2 (acac) 2
350350 0.8%0.8% 37.8%37.8% 13.6%13.6% 7.8%7.8% 375375 1.5%1.5% 65.4%65.4% 25.6%25.6% 15.5%15.5% 400400 3.6%3.6% 87.9%87.9% 44.5%44.5% 28.3%28.3% 450450 14.9%14.9% 99.5% 99.5 % 84.7%84.7% 73.6%73.6% 500500 41.9%41.9% 99.8%99.8% 97.4%97.4% 99.5% 99.5 % 550550 74.6%74.6% 100.0%100.0% 99.6% 99.6 % 99.8%99.8% 600600 95.9%95.9% 100.0%100.0% 100.0%100.0% 100.0%100.0% 650650 99.6%99.6% 100.0%100.0% 100.0%100.0% 100.0%100.0%

상기 표 1로부터, 본 발명의 실시예 1 내지 3에 의한 암모니아 분해반응 촉매, 즉, ‘하나 이상의 아세틸아세토네이트기 리간드 및 다른 리간드기를 갖는 금속 착체 화합물의 금속 전구체 화합물’에 해당하는 “Ru(t-BuDAD)(acac)2”, “Ru(TMEDA)(acac)2”, 및 “Ru(CO)2(acac)2”을 이용하여 제조된 암모니아 분해반응 촉매에 의한 전환율이 비교예 1의 ‘아세틸아세토네이트기 리간드만을 갖는 금속 착체 화합물의 금속 전구체 화합물’에 해당하는 “Ru(acac)3”을 이용하여 제조된 암모니아 분해반응 촉매에 의한 전환율 보다 우수한 것을 알 수 있다. From Table 1, the ammonia decomposition reaction catalyst according to Examples 1 to 3 of the present invention, that is, “Ru( t The conversion rate by the ammonia decomposition reaction catalyst prepared using -BuDAD)(acac) 2 ”, “Ru(TMEDA)(acac) 2 ”, and “Ru(CO) 2 (acac) 2 ” was that of Comparative Example 1. It can be seen that the conversion rate is superior to that achieved by the ammonia decomposition reaction catalyst prepared using “Ru(acac) 3 ”, which is a ‘metal precursor compound of a metal complex compound having only an acetylacetonate group ligand.

특히 실시예 1의 경우는 촉매층 온도 450 ℃ 조건에서 하기 표 2의 문헌상에 보고된 바 있는 이론적인 암모니아 전환율의 최댓값인 99.5%의 우수한 성능을 보였다. In particular, in the case of Example 1, the catalyst bed temperature At 450°C, it showed excellent performance of 99.5%, which is the maximum theoretical ammonia conversion rate reported in the literature in Table 2 below.

촉매층 온도 (℃)Catalyst bed temperature (℃) 250250 300300 350350 400400 450450 500500 600600 700700 NH3 conversion (%)NH 3 conversion (%) 89.289.2 95.795.7 98.198.1 99.199.1 99.599.5 99.799.7 99.999.9 99.9599.95

* Equilibrium NH3 conversion (at 1 bar pressure) as a function of reaction temp. (Ref. Int. J. Hydrog. Energy 38 (2013) 14968-14991)* Equilibrium NH 3 conversion (at 1 bar pressure) as a function of reaction temp. (Ref. Int. J. Hydrog. Energy 38 (2013) 14968-14991)

이러한 실시예 1의 결과는 비교예 1에 비하여 200 ℃가량 낮은 촉매층의 온도에서 동일한 암모니아 전환율을 보이는 결과로, 보다 적은 열량 공급만으로도 암모니아를 전환할 수 있는 촉매 성능을 보여준다. The results of Example 1 show the same ammonia conversion rate at a catalyst layer temperature of about 200° C. lower than those of Comparative Example 1, showing catalyst performance that can convert ammonia even with less heat supply.

또한, 실시예 2 내지 3의 경우도 촉매층 온도 450 ℃ 조건에서 각각 84.7, 73.6%의 암모니아 전환율을 보이므로, 비교예 1의 암모니아 전환율 14.9% 대비 우수한 저온 활성을 나타내었다.In addition, Examples 2 and 3 also showed ammonia conversion rates of 84.7 and 73.6%, respectively, at a catalyst bed temperature of 450°C, showing excellent low-temperature activity compared to the ammonia conversion rate of 14.9% in Comparative Example 1.

상기와 같이 본 발명의 ‘하나 이상의 아세틸아세토네이트기 리간드 및 다른 리간드기를 갖는 금속 착체 화합물의 금속 전구체 화합물’을 암모니아 분해반응 촉매용 제조물질로 이용하여 제조되는 암모니아 분해반응 촉매는 암모니아 분해반응 촉매 지지체에 상기 금속 전구체 화합물의 금속이 제공되어 생성되는 촉매이며, 이러한 본 발명의 금속 전구체 화합물을 이용한 암모니아 분해반응 촉매는 암모니아 분해능에 있어서 우수한 효과를 나타낸다. As described above, the ammonia decomposition reaction catalyst prepared by using the 'metal precursor compound of a metal complex compound having one or more acetylacetonate group ligands and other ligand groups' of the present invention as a manufacturing material for an ammonia decomposition reaction catalyst is an ammonia decomposition reaction catalyst support. It is a catalyst produced by providing the metal of the metal precursor compound, and the ammonia decomposition reaction catalyst using the metal precursor compound of the present invention shows excellent effects in ammonia decomposition ability.

따라서 본 발명의 금속 전구체 화합물을 이용한 암모니아 분해반응 촉매는 암모니아로부터의 수소제조방법에 관한 공정의 효율 증대에 기여할 수 있어 산업상 이용가능성이 높다.Therefore, the ammonia decomposition reaction catalyst using the metal precursor compound of the present invention has high industrial applicability because it can contribute to increasing the efficiency of the process for producing hydrogen from ammonia.

Claims (15)

암모니아 분해반응 촉매의 제조에 이용되는 암모니아 분해반응 촉매 제조용 물질로서,
상기 암모니아 분해반응 촉매 제조용 물질은, 하나 이상의 아세틸아세토네이트기(acac) 리간드 및 다른 리간드기를 갖는 금속 착체 화합물 형태인 금속 전구체 화합물인 것이고,
상기 다른 리간드기는, t-BuDAD(1,4-di-tert-butyl-1,3-diaza butadiene)기, TMEDA(TetraMethyl EthyleneDiamine)기, 및 CO(carbonyl)기로 이루어진 그룹”에서 선택되는 하나 이상이며,
상기 금속 착체 화합물 형태인 금속 전구체 화합물의 금속은 Ru(루테늄)인 것을 특징으로 하는, 암모니아 분해반응 촉매 제조용 물질
A material for producing an ammonia decomposition reaction catalyst used in the production of an ammonia decomposition reaction catalyst,
The material for preparing the ammonia decomposition reaction catalyst is a metal precursor compound in the form of a metal complex compound having one or more acetylacetonate group (acac) ligands and other ligand groups,
The other ligand group is at least one selected from the group consisting of a t-BuDAD (1,4-di-tert-butyl-1,3-diaza butadiene) group, a TMEDA (TetraMethyl EthyleneDiamine) group, and a CO (carbonyl) group. ,
A material for producing an ammonia decomposition reaction catalyst, characterized in that the metal of the metal precursor compound in the form of a metal complex compound is Ru (ruthenium).
삭제delete 제1항에 있어서,
상기 암모니아 분해반응 촉매는 암모니아 분해반응 촉매 지지체에 상기 금속 전구체 화합물의 금속이 제공되어 생성되는 촉매인 것을 특징으로 하는, 암모니아 분해반응 촉매 제조용 물질
According to paragraph 1,
The ammonia decomposition reaction catalyst is a material for producing an ammonia decomposition reaction catalyst, characterized in that it is a catalyst produced by providing the metal of the metal precursor compound to an ammonia decomposition catalyst support.
삭제delete 삭제delete 제3항에 있어서,
상기 암모니아 분해반응 촉매 지지체는 란타넘족 원소, 알칼리금속, 알칼리토금속, 또는 전이금속이 도핑된 지지체인 것을 특징으로 하는, 암모니아 분해반응 촉매 제조용 물질
According to paragraph 3,
The ammonia decomposition catalyst support is a material for producing an ammonia decomposition reaction catalyst, characterized in that it is a support doped with a lanthanide element, an alkali metal, an alkaline earth metal, or a transition metal.
제6항에 있어서,
상기 란타넘족 원소는 란타늄, 세륨, 및 이들의 혼합물로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는, 암모니아 분해반응 촉매 제조용 물질
According to clause 6,
A material for producing an ammonia decomposition reaction catalyst, characterized in that the lanthanum group element is at least one selected from the group consisting of lanthanum, cerium, and mixtures thereof.
제6항에 있어서,
상기 지지체는 SiO2, CeO2, ZrO2, TiO2, MgO, Al2O3, V2O5, Fe2O3, Co3O4, Ce-ZrOx, MgO-Al2O3, 및 이들의 혼합물로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는, 암모니아 분해반응 촉매 제조용 물질
According to clause 6,
The support is SiO 2 , CeO 2 , ZrO 2 , TiO 2 , MgO, Al 2 O 3 , V 2 O 5 , Fe 2 O 3 , Co 3 O 4 , Ce-ZrO x , MgO-Al 2 O 3 , and A material for producing an ammonia decomposition reaction catalyst, characterized in that it is at least one selected from the group consisting of mixtures thereof.
제1항, 제3항, 제6항 내지 제8항 중 어느 한 항의 암모니아 분해반응 촉매 제조용 물질을 이용하여 제조된 것을 특징으로 하는, 암모니아 분해반응 촉매An ammonia decomposition reaction catalyst, characterized in that it is manufactured using the material for producing the ammonia decomposition catalyst according to any one of claims 1, 3, and 6 to 8. 제9항에 있어서,
상기 암모니아 분해반응 촉매는 상기 암모니아 분해반응 촉매 100중량부에 대하여 상기 금속 전구체 화합물의 금속이 0.01 내지 5중량부로 포함하는 것을 특징으로 하는, 암모니아 분해반응 촉매
According to clause 9,
The ammonia decomposition reaction catalyst is characterized in that the metal of the metal precursor compound is contained in an amount of 0.01 to 5 parts by weight based on 100 parts by weight of the ammonia decomposition reaction catalyst.
제9항에 있어서,
상기 암모니아 분해반응 촉매는 암모니아 분해반응 촉매 100몰부에 대하여 란타넘족 원소, 알칼리금속, 알칼리토금속, 전이금속 중 하나 이상의 원소 또는 금속을 0.1 내지 100몰부로 포함하는 것을 특징으로 하는, 암모니아 분해반응 촉매
According to clause 9,
The ammonia decomposition reaction catalyst is characterized in that it contains 0.1 to 100 mole parts of one or more elements or metals of lanthanide elements, alkali metals, alkaline earth metals, and transition metals based on 100 mole parts of the ammonia decomposition reaction catalyst.
(A) 아세틸아세토네이트기의 리간드 및 다른 리간드를 포함하는 금속 착체 화합물인 금속 전구체 화합물을 용매에 녹여 금속 전구체 용액을 제조하는 단계; 및
(B) 암모니아 분해반응 촉매 지지체와 상기 금속 전구체 용액을 혼합하여 암모니아 분해반응 촉매 지지체에 금속을 제공하는 단계;를 포함하며,
상기 (A) 단계의 상기 다른 리간드기는, t-BuDAD(1,4-di-tert-butyl-1,3-diazabutadiene)기, TMEDA(TetraMethylEthyleneDiamine)기, 및 CO(carbonyl)기로 이루어진 그룹에서 선택되는 하나 이상이고,
상기 금속 착체 화합물 형태인 금속 전구체 화합물의 금속은 Ru(루테늄)인 것을 특징으로 하는, 암모니아 분해반응 촉매의 제조방법
(A) preparing a metal precursor solution by dissolving a metal precursor compound, which is a metal complex compound containing an acetylacetonate group ligand and another ligand, in a solvent; and
(B) mixing the ammonia decomposition reaction catalyst support and the metal precursor solution to provide metal to the ammonia decomposition reaction catalyst support,
The other ligand group in step (A) is selected from the group consisting of t-BuDAD (1,4-di-tert-butyl-1,3-diazabutadiene) group, TMEDA (TetraMethylEthyleneDiamine) group, and CO (carbonyl) group. There is more than one,
Method for producing an ammonia decomposition reaction catalyst, characterized in that the metal of the metal precursor compound in the form of a metal complex compound is Ru (ruthenium).
제9항의 암모니아 분해반응 촉매를 이용하여 암모니아로부터 수소를 생산하는 것을 특징으로 하는, 수소생산방법 A hydrogen production method, characterized in that hydrogen is produced from ammonia using the ammonia decomposition reaction catalyst of claim 9. 제10항의 암모니아 분해반응 촉매를 이용하여 암모니아로부터 수소를 생산하는 것을 특징으로 하는, 수소생산방법 A hydrogen production method, characterized in that hydrogen is produced from ammonia using the ammonia decomposition reaction catalyst of claim 10. 제11항의 암모니아 분해반응 촉매를 이용하여 암모니아로부터 수소를 생산하는 것을 특징으로 하는, 수소생산방법

A hydrogen production method, characterized in that hydrogen is produced from ammonia using the ammonia decomposition reaction catalyst of claim 11.

KR1020210136594A 2021-10-14 2021-10-14 Materials for the manufacture of ammonia decomposition catalyst KR102670795B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210136594A KR102670795B1 (en) 2021-10-14 2021-10-14 Materials for the manufacture of ammonia decomposition catalyst
PCT/KR2022/014876 WO2023063640A1 (en) 2021-10-14 2022-10-04 Material for preparing ammonia decomposition catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210136594A KR102670795B1 (en) 2021-10-14 2021-10-14 Materials for the manufacture of ammonia decomposition catalyst

Publications (2)

Publication Number Publication Date
KR20230053770A KR20230053770A (en) 2023-04-24
KR102670795B1 true KR102670795B1 (en) 2024-06-03

Family

ID=85988420

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210136594A KR102670795B1 (en) 2021-10-14 2021-10-14 Materials for the manufacture of ammonia decomposition catalyst

Country Status (2)

Country Link
KR (1) KR102670795B1 (en)
WO (1) WO2023063640A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778309U (en) 1980-10-31 1982-05-14
EP2158154A4 (en) * 2007-05-18 2012-06-13 Kanata Chemical Technologies Inc Method for the production of hydrogen from ammonia borane
GB201307334D0 (en) * 2013-04-23 2013-05-29 Novaucd Process
KR101938333B1 (en) 2016-10-07 2019-01-14 한국과학기술연구원 Preparation method of cubic platinum nanoparticles for ammonia oxidtion
KR101924952B1 (en) 2016-11-04 2018-12-04 이화여자대학교 산학협력단 Hollow composite, catalyst for producing hydrogen from ammonia, and fuel cell including the catalyst
KR102304406B1 (en) * 2019-11-01 2021-09-23 (주)원익머트리얼즈 Ruthenium-based ammonia decomposition catalyst and preparation method thereof

Also Published As

Publication number Publication date
WO2023063640A1 (en) 2023-04-20
KR20230053770A (en) 2023-04-24

Similar Documents

Publication Publication Date Title
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
EP2818240B1 (en) Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and use of titanium oxide-based composition
US10017385B2 (en) Catalyst composition and method for producing hydrogen and preparation method thereof
KR101437072B1 (en) Catalyst for efficient co2 conversion and method for preparing thereof
KR20140040539A (en) Preparation method for dimethyl carbonate by using greenhouse gases
Sancho-Sanz et al. Catalytic valorization of CO2 by hydrogenation: Current status and future trends
CN113145113A (en) Carbon dioxide hydrogenation catalyst, preparation method and application thereof
KR101227447B1 (en) Novel Metal Modified Hydrotalcite Catalyst for Reforming of Alcohols and Method for Producing Hydrogen Using The Same
KR102670795B1 (en) Materials for the manufacture of ammonia decomposition catalyst
KR100976789B1 (en) Catalyst for water gas shift reaction, method for production thereof, and method of water gas shift by using same
KR101105683B1 (en) Method For Preparing Fischer-Tropsch Catalysts, The Fischer-Tropsch Catalysts Thereof, And Method For Preparing Synthesis Gas For Liquefaction Process With High Yield Using The Same
KR101988370B1 (en) Catalysts for methanation of carbon dioxide and the manufacturing method of the same
KR20190067146A (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
KR102465831B1 (en) Ruthenium precursor, ammonia reaction catalyst using same, and manufacturing method thereof
JP7418849B2 (en) Oxynitrogen hydride, metal support containing oxynitrogen hydride, and catalyst for ammonia synthesis
KR101783647B1 (en) Ni-Based catalysts for combined steam and carbon dioxide reforming with methane
KR101578538B1 (en) Process for preparing hydrotalcite catalyst for aqueous phase reforming of alcohols
KR102584042B1 (en) HETEROGENEOUS CATALYST FOR THE PRODUCTION OF C2-oxygenates
CN112237917B (en) Low-carbon alkane dry reforming catalyst carrier and catalyst thereof
KR101372871B1 (en) The platinum catalyst impregnated on Hydrotalcite structure of 8B transition metal-magnesium-aluminum oxide as a carrier and preparation method thereof
CN115970742B (en) Low-temperature oxidation CH4Coupling CO2Catalyst for directly preparing oxide and preparation method and application thereof
US9623400B2 (en) Catalyst for producing hydrogen and preparing method thereof
KR20230156189A (en) Method for producing a non-noble metal-based catalyst for decomposition of ammonia, and a non-noble metal-based catalyst for decomposition of ammonia prepared by the method
KR101533537B1 (en) Catalyst platinum loaded in the mixed oxide support comprising ceria-zirconia for aqueous phase reforming
KR101308546B1 (en) Copper based catalyst for methane reformation using CO2, and the fabrication method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant