KR102661415B1 - Biomarker composition for diagnosis of ferumoxytol magnetic nanoparticles toxicity in endocrine system - Google Patents

Biomarker composition for diagnosis of ferumoxytol magnetic nanoparticles toxicity in endocrine system Download PDF

Info

Publication number
KR102661415B1
KR102661415B1 KR1020230085763A KR20230085763A KR102661415B1 KR 102661415 B1 KR102661415 B1 KR 102661415B1 KR 1020230085763 A KR1020230085763 A KR 1020230085763A KR 20230085763 A KR20230085763 A KR 20230085763A KR 102661415 B1 KR102661415 B1 KR 102661415B1
Authority
KR
South Korea
Prior art keywords
genebank
registration number
gene registration
mus musculus
solute carrier
Prior art date
Application number
KR1020230085763A
Other languages
Korean (ko)
Inventor
심우영
이지윤
이한신
Original Assignee
주식회사 셀스토머
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 셀스토머 filed Critical 주식회사 셀스토머
Priority to KR1020230085763A priority Critical patent/KR102661415B1/en
Application granted granted Critical
Publication of KR102661415B1 publication Critical patent/KR102661415B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 인슐린 수용체 물질(Insulin receptor substrate, IRS), 포도당 운반체(Glucose transporter, GLUT; Solute carrier family) 및 글리코겐 합성효소 인산화효소(Glycogen synthetase kinase, GSK)로 구성된 군으로부터 선택된 하나 이상의 유전자 및 단백질을 포함하거나, 발린(Valine, Val), 메티오닌(Methionine, Met), 페닐알라닌(Phenylalanine, Phe), 류신(Leucine, Leu) 및 라이신(Lysine, Lys)으로 구성된 군으로부터 선택된 하나 이상의 아미노산을 포함하여 페루목시톨 자성체 나노입자의 노출에 의해 발현의 변화를 일으키는 것을 특징으로 하는 페루목시톨 자성체 나노입자의 내분비계 독성 여부 진단용 바이오 마커 조성물 및 이를 분석하기 위한 분석 방법에 관한 것이다.
본 발명에 따른 바이오 마커는 나노 입자의 독성과 연관성이 높은 유전자, 단백질 및 아미노산 마커로서, 이를 이용하면 자성체 나노 입자에 의한 내분비계 독성 여부를 우수한 검출 감도와 정확성으로 진단할 수 있으며, 이를 통해 자성체 나노입자의 내분비계 유해성을 모니터링 하거나 평가하는데 유용하게 활용되어 자성체 나노입자 노출로 유발되는 내분비계 질병이나 건강에 대한 영향 등을 규명하는 도구로 유용하게 이용될 수 있다.
The present invention relates to one or more genes and proteins selected from the group consisting of insulin receptor substrate (IRS), glucose transporter (GLUT; Solute carrier family), and glycogen synthetase kinase (GSK). Peruvian order, including one or more amino acids selected from the group consisting of valine (Val), methionine (Met), phenylalanine (Phe), leucine (Leu) and lysine (Lys). The present invention relates to a biomarker composition for diagnosing the endocrine toxicity of ferumoxitol magnetic nanoparticles, which causes changes in expression upon exposure to sitol magnetic nanoparticles, and an analysis method for analyzing the same.
Biomarkers according to the present invention are gene, protein, and amino acid markers that are highly correlated with the toxicity of nanoparticles. Using these, endocrine toxicity caused by magnetic nanoparticles can be diagnosed with excellent detection sensitivity and accuracy, through which magnetic nanoparticles can be diagnosed with endocrine toxicity. It is useful in monitoring or evaluating the endocrine hazards of nanoparticles and can be useful as a tool to identify endocrine diseases or health effects caused by exposure to magnetic nanoparticles.

Description

페루목시톨 자성체 나노입자의 내분비계 독성 여부 진단용 바이오마커 조성물{Biomarker composition for diagnosis of ferumoxytol magnetic nanoparticles toxicity in endocrine system}Biomarker composition for diagnosis of ferumoxytol magnetic nanoparticles toxicity in endocrine system}

본 발명은 페루목시톨 자성체 나노입자의 내분비계 독성 여부 진단용 바이오마커 조성물 및 이를 이용한 진단 방법에서의 그 용도에 관한 것으로, 보다 자세하게는 인슐린 수용체 기질(Insulin receptor substrate, IRS), 포도당 수송체(Glucose transporter, GLUT; Solute carrier family) 및 글리코겐 합성효소 인산화효소(Glycogen synthetase kinase, GSK) 계열의 유전자 및 단백질의 발현과 발린(Valine, Val), 메티오닌(Methionine, Met), 페닐알라닌(Phenylalanine, Phe), 류신(Leucine, Leu) 및 라이신(Lysine, Lys)등을 포함하는 대사체의 변화를 조합하여 위음성 없이 높은 정확도로 자성체 나노 물질에 의한 내분비계 독성 여부를 진단하기 위한 바이오 마커 조성물 및 이를 이용한 진단 방법에서의 그 용도에 관한 것이다.The present invention relates to a biomarker composition for diagnosing endocrine toxicity of ferumoxitol magnetic nanoparticles and its use in a diagnostic method using the same. More specifically, it relates to insulin receptor substrate (IRS), glucose transporter ( Expression of genes and proteins of the glucose transporter, GLUT; Solute carrier family) and glycogen synthetase kinase (GSK) families, as well as valine (Val), methionine (Meth), and phenylalanine (Phe). , Biomarker composition for diagnosing endocrine toxicity caused by magnetic nanomaterials with high accuracy without false negatives by combining changes in metabolites including Leucine (Leu) and Lysine (Lys), and diagnosis using the same It is about its use in the method.

나노 기술이 발달함에 따라 나노 물질의 이용은 산업적 분야 뿐만 아니라, 의료와 연구 목적을 포함하여 일상 생활을 영위하기 위한 부분까지 다양하게 활용되고 있다. 특히, 자성체 나노 물질은 자기공명영상(Magnetic Resonance Image, MRI) 등에 의약품 분야를 포함하여 실생활에 다양하게 활용됨에 따라, 현대 사회에서는 나노 물질에 대한 접촉이 관련 분야의 종사자들을 비롯하여 일반인들에게도 일상적으로 빈번하게 일어나고 있다고 볼 수 있다.As nanotechnology develops, nanomaterials are being used in a variety of ways, not only in industrial fields but also in everyday life, including medical and research purposes. In particular, as magnetic nanomaterials are used in a variety of ways in daily life, including in the pharmaceutical field, such as magnetic resonance imaging (MRI), contact with nanomaterials is a common occurrence in modern society, not only for workers in related fields but also for the general public. It can be seen that this happens frequently.

산업 분야 및 일상 생활에 대한 나노 물질의 많은 유용성이 주목받고 있는 반면에 나노 물질의 특성에 기인하는 잠재적인 위험성을 지니고 있는 것 또한 주지의 사실이다. 작은 크기의 입자일수록 비표면적비가 증가하게 되고 이는 생체 조직 내에서 강력한 화학적 반응 활성이 나타나게 되는데, 기존의 문헌적 자료와 학술적 실험을 통해 이산화티타늄과 탄소나노물질 등의 일부 나노 입자는 크기가 작아짐에 따라 반응 활성이 증가하여 활성 산소의 증가, 염증 반응의 유발등 생체에 미치는 독성이 강해지고 있음이 증명되었다. 이와 더불어, 일부 미세 나노 물질은 기도 점막이나 피부 등의 1차 생체 방어벽은 물론 혈액뇌장벽(Blood-Brain Barrier, BBB)까지 통과하여 폐를 비롯한 생체 장기를 포함한 뇌까지 이동될 수 있으며, 이들 물질이 생체 내 축척됨에 따라 여러 질병 유발 및 중추 신경에 악영향을 유발할 수 있다는 주장들이 이론적 해석과 실험적 결과에 근거하여 학계에서 제기되고 있다.While the many useful uses of nanomaterials in industrial fields and daily life are attracting attention, it is also well known that nanomaterials have potential risks due to their properties. The smaller the particle size, the higher the specific surface area ratio, which results in strong chemical reaction activity within biological tissues. Existing literature data and academic experiments show that some nanoparticles, such as titanium dioxide and carbon nanomaterials, become smaller in size. Accordingly, it has been proven that the reaction activity increases and the toxicity to the living body, such as the increase in oxygen radicals and the induction of inflammatory reactions, becomes stronger. In addition, some fine nanomaterials can pass through the primary biological defenses such as airway mucosa and skin as well as the blood-brain barrier (BBB) and be transported to the brain, including the lungs and other biological organs. Claims that this accumulation in the body can cause various diseases and adverse effects on the central nervous system are being raised in academia based on theoretical interpretations and experimental results.

나노 물질에 대한 잠재적인 위험성이 학계에서 제시되고 있는 추세에도 불구하고, 이를 평가하기 위한 생물학적인 지표나 실험적인 방법은 일부 생체 조직 혹은 단편적인 실험법에 의존하고 있기 때문에 각 생체 조직에 따른 특수한 영향을 반영하지 못하는 한계가 있었으며, 이에 본 발명자 등은 나노물질의 안전성 평가에 있어 시스템즈 생물학 분석 방법을 이용한 접근 방식으로 대사체와 세포의 기능적 변화에 대한 생물학적 지표를 제시하기 위한 방법으로, 대한민국 특허 등록번호 제10-1470692호(특허문헌 1)의 발명을 출원하여 등록받은 바 있는데, 상기 특허문헌 1에서는 "유전자 등록번호(Genebank) NM_001161504.1(ALDH4H1, aldehyde dehydrogenase 4 family member A1), 유전자 등록번호(Genebank) NM_133443.2(GPT2, glutamic-pyruvate transaminase 2), 유전자 등록번호(Genebank) NM_005271.3(GLUD1, glutamate dehydrogenase 1), 유전자 등록번호(Genebank) NM_002080.2(GOT2, glutamic oxaloacetic transaminase 2), 유전자 등록번호(Genebank) NM_013445.3(GAD1, glutamic acid decarboxylase 1) 및 유전자 등록번호(Genebank) NM_002065.5(GLUL, glutamate ammonia ligase) 유전자를 검출할 수 있는 폴리뉴클레오티드를 코팅하는 핵산 서열을 포함하는, 나노입자의 노출에 의해 발현 변화를 일으키는 것을 특징으로 하는 나노입자의 독성 여부 진단용 바이오마커 조성물"을 개시하고 있다. 그러나, 상기와 같이 가장 발전한 공지된 종래의 기술에서는 단지 특정한 유전자를 검출할 수 있는 핵산 서열을 포함한 나노입자의 독성 여부 진단용 바이오마커 조성물에 대한 것으로, 특히 질병의 진단을 위한 조영제 및 치료를 목적으로 하는 약물 전달체 등에 활용도가 높을 것으로 제시되는 자성체 나노 물질에 의한 생체 내분비계 영향에 대한 정립된 생물학적 바이오마커는 규격화되어 있지 않은 실정이다.Despite the trend in academia suggesting the potential risks of nanomaterials, biological indicators and experimental methods to evaluate them depend on some biological tissues or fragmented experimental methods, so they do not have special effects depending on each biological tissue. There were limitations that could not be reflected, so the present inventors and others developed a method to present biological indicators for functional changes in metabolites and cells using an approach using the Systems biological analysis method in evaluating the safety of nanomaterials, Korean Patent Registration No. The invention of No. 10-1470692 (Patent Document 1) has been applied for and registered, and in Patent Document 1, "Gene Bank (Genebank) NM_001161504.1 (ALDH4H1, aldehyde dehydrogenase 4 family member A1), Gene Registration Number ( Genebank) NM_133443.2 (GPT2, glutamic-pyruvate transaminase 2), gene registration number (Genebank) NM_005271.3 (GLUD1, glutamate dehydrogenase 1), gene registration number (Genebank) NM_002080.2 (GOT2, glutamic oxaloacetic transaminase 2), Containing a nucleic acid sequence coating a polynucleotide capable of detecting gene registration number (Genebank) NM_013445.3 (GAD1, glutamic acid decarboxylase 1) and gene registration number (Genebank) NM_002065.5 (GLUL, glutamate ammonia ligase). , discloses a “biomarker composition for diagnosing the toxicity of nanoparticles, which is characterized by causing expression changes due to exposure to nanoparticles.” However, the most advanced known conventional technology as described above is only about a biomarker composition for diagnosing the toxicity of nanoparticles containing a nucleic acid sequence capable of detecting a specific gene, especially as a contrast agent for diagnosing diseases and for the purpose of treatment. Established biological biomarkers for the effects on the biological endocrine system by magnetic nanomaterials, which are suggested to have high utility in drug delivery systems, have not been standardized.

특허문헌 1: 대한민국 특허 등록번호 제10-1470692호Patent Document 1: Republic of Korea Patent Registration No. 10-1470692

따라서, 본 발명은 상기한 종래 기술에 있어서의 기술적 문제점을 감안하여 된 것으로, 본 발명의 주요 목적은 자성체 나노입자의 생체 내분비계에 대한 안전성 평가의 접근 방식으로 시스템즈 생물학 분석 방법과 이로 인해 도출되는 유전자, 단백질 및 대사체를 내분비계 세포의 기능적 변화를 판단하기 위한 생물학적 지표로 제시하고자 한다.Therefore, the present invention was made in consideration of the technical problems in the prior art, and the main purpose of the present invention is to approach the safety evaluation of magnetic nanoparticles on the biological endocrine system, including the systems biological analysis method and the results derived therefrom. We aim to present genes, proteins, and metabolites as biological indicators to determine functional changes in endocrine cells.

본 발명의 다른 목적은 상기와 같은 특정한 목적을 달성하는 내분비계 세포의 기능적 변화를 판단하는 바이오마커 조성물을 이용한 진단 방법에서의 그 용도를 제공하기 위한 것이다.Another object of the present invention is to provide its use in a diagnostic method using a biomarker composition for determining functional changes in endocrine cells that achieves the above-mentioned specific purpose.

상기 목적을 달성하기 위한 본 발명의 페루목시톨 자성체 나노입자의 내분비계 독성 여부 진단용 바이오마커 조성물은:The biomarker composition for diagnosing endocrine toxicity of ferumoxitol magnetic nanoparticles of the present invention to achieve the above object is:

유전자 등록번호(GeneBank) NM_005544.3(IRS1, Homo sapiens Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_003749.3(IRS2, Homo sapiens Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_003604.2(Homo sapiens Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_010570.4(Irs1, Mus musculus Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_001081212.2(Irs2, Mus musculus Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_010571.3(Irs3, Mus musculus Insulin receptor substrate 3), 유전자 등록번호(GeneBank) NM_010572.2(Irs4, Mus musculus Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_006516.4(SLC2A1, Homo sapiens solute carrier family 2 member 1), 유전자 등록번호(GeneBank) NM_006931.3(SLC2A3, Homo sapiens solute carrier family 2 member 3), 유전자 등록번호(GeneBank) NM_001042.3(SLC2A4, Homo sapiens solute carrier family 2 member 4), 유전자 등록번호(GeneBank) NM_030777.4(SLC2A10, Homo sapiens solute carrier family 2 member 10), 유전자 등록번호(GeneBank) NM_145176.3(SLC2A12, Homo sapiens solute carrier family 2 member 12), 유전자 등록번호(GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), 유전자 등록번호(GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2), 유전자 등록번호(GeneBank) NM_011401.4(Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), 유전자 등록번호(GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1), 유전자 등록번호(GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), 유전자 등록번호(GeneBank) NM_019741.3(Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), 유전자 등록번호(GeneBank) NM_130451.3(Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), 유전자 등록번호(GeneBank) NM_178934.4(Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), 유전자 등록번호(GeneBank) NM_001033633.3(Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), 유전자 등록번호(GeneBank) NM_019884.3(GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_002093.4(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), 유전자 등록번호(GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), 유전자 등록번호(GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3), 유전자 등록번호(GeneBank) NM_001031667.1(Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_019827.7(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1), 유전자 등록번호(GeneBank) NM_001347232.1(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2)로 구성된 군으로부터 선택된 하나 이상의 유전자를 포함하는, 페루목시톨 자성체 나노입자의 노출에 의해 발현 변화를 일으키는 것을 특징으로 한다.Gene registration number (GeneBank) NM_005544.3 (IRS1, Homo sapiens Insulin receptor substrate 1), Gene registration number (GeneBank) NM_003749.3 (IRS2, Homo sapiens Insulin receptor substrate 2), Gene registration number (GeneBank) NM_003604.2 ( Homo sapiens Insulin receptor substrate 4), gene registration number (GeneBank) NM_010570.4 (Irs1, Mus musculus Insulin receptor substrate 1), gene registration number (GeneBank) NM_001081212.2 (Irs2, Mus musculus Insulin receptor substrate 2), gene registration Number (GeneBank) NM_010571.3 (Irs3, Mus musculus Insulin receptor substrate 3), Gene registration number (GeneBank) NM_010572.2 (Irs4, Mus musculus Insulin receptor substrate 4), Gene registration number (GeneBank) NM_006516.4 (SLC2A1, Homo sapiens solute carrier family 2 member 1), gene registration number (GeneBank) NM_006931.3 (SLC2A3, Homo sapiens solute carrier family 2 member 3), gene registration number (GeneBank) NM_001042.3 (SLC2A4, Homo sapiens solute carrier family 2 member 4), gene registration number (GeneBank) NM_030777.4 (SLC2A10, Homo sapiens solute carrier family 2 member 10), gene registration number (GeneBank) NM_145176.3 (SLC2A12, Homo sapiens solute carrier family 2 member 12), gene registration Number (GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), Gene registration number (GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2 ), gene registration number (GeneBank) NM_011401.4 (Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), gene registration number (GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose) transporter) member 4, transcript variant 1), gene registration number (GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), gene registration number (GeneBank) NM_019741.3 (Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), gene registration number (GeneBank) NM_130451.3 (Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), gene registration number (GeneBank) ) NM_178934.4 (Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), gene registration number (GeneBank) NM_001033633.3 (Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), gene Registration number (GeneBank) NM_019884.3 (GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), Gene registration number (GeneBank) NM_002093.4 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), Gene registration number (GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), Gene registration number (GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3) , Gene registration number (GeneBank) NM_001031667.1 (Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), Gene registration number (GeneBank) NM_019827.7 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1), Gene registration number (GeneBank) NM_001347232.1 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2), which contains one or more genes selected from the group consisting of feumoxitol magnetic nanoparticles, causing expression changes. Do this.

상기 다른 목적을 달성하기 위한 본 발명의 페루목시톨 자성체 나노입자의 내분비계 독성 여부 진단용 마이크로어레이(Microarray) 칩은 자성체 나노입자에 의한 내분비계 독성 여부 진단을 위해 상기 바이오마커로부터 선택된 하나 이상의 유전자 핵산 서열의 전부; 상기 바이오마커의 유전자 핵산 서열의 단편 올리고뉴클레오티드; 또는 상기 바이오마커의 상보적인 유전자 서열의 전체 또는 일부의 서열이 집적된 것임을 특징으로 한다.The microarray chip for diagnosing the endocrine toxicity of ferumoxitol magnetic nanoparticles of the present invention to achieve the above other objectives includes one or more genes selected from the biomarkers to diagnose endocrine toxicity caused by the magnetic nanoparticles. the entire nucleic acid sequence; Fragment oligonucleotides of the gene nucleic acid sequence of the biomarker; Alternatively, it is characterized in that all or part of the complementary gene sequence of the biomarker is integrated.

또한, 상기 다른 목적을 달성하기 위한 본 발명은 상기 마이크로어레이 칩을 포함하는 페루목시톨 자성체 나노입자의 내분비계 독성 여부 진단용 키트를 제공함을 특징으로 한다.In addition, the present invention for achieving the above other object is characterized by providing a kit for diagnosing endocrine toxicity of ferumoxitol magnetic nanoparticles including the microarray chip.

본 발명의 또 다른 구성에 따르면, 본 발명의 페루목시톨 자성체 나노입자의 내분비계 독성 여부 평가 방법은:According to another configuration of the present invention, the method for evaluating whether the endocrine toxicity of the ferumoxitol magnetic nanoparticles of the present invention is:

페루목시톨 자성체 나노입자에 노출된 인간을 제외한 포유 동물의 조직 및 세포 샘플을 얻는 단계; 유전자 등록번호(GeneBank) NM_005544.3(IRS1, Homo sapiens Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_003749.3(IRS2, Homo sapiens Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_003604.2(Homo sapiens Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_010570.4(Irs1, Mus musculus Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_001081212.2(Irs2, Mus musculus Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_010571.3(Irs3, Mus musculus Insulin receptor substrate 3), 유전자 등록번호(GeneBank) NM_010572.2(Irs4, Mus musculus Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_006516.4(SLC2A1, Homo sapiens solute carrier family 2 member 1), 유전자 등록번호(GeneBank) NM_006931.3(SLC2A3, Homo sapiens solute carrier family 2 member 3), 유전자 등록번호(GeneBank) NM_001042.3(SLC2A4, Homo sapiens solute carrier family 2 member 4), 유전자 등록번호(GeneBank) NM_030777.4(SLC2A10, Homo sapiens solute carrier family 2 member 10), 유전자 등록번호(GeneBank) NM_145176.3(SLC2A12, Homo sapiens solute carrier family 2 member 12), 유전자 등록번호(GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), 유전자 등록번호(GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2), 유전자 등록번호(GeneBank) NM_011401.4(Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), 유전자 등록번호(GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1), 유전자 등록번호(GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), 유전자 등록번호(GeneBank) NM_019741.3(Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), 유전자 등록번호(GeneBank) NM_130451.3(Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), 유전자 등록번호(GeneBank) NM_178934.4(Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), 유전자 등록번호(GeneBank) NM_001033633.3(Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), 유전자 등록번호(GeneBank) NM_019884.3(GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_002093.4(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), 유전자 등록번호(GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), 유전자 등록번호(GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3), 유전자 등록번호(GeneBank) NM_001031667.1(Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_019827.7(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1), 유전자 등록번호(GeneBank) NM_001347232.1(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2)로 이루어진 군에서 하나 이상의 유전자 발현을 조사하는 단계; 및 상기 유전자의 발현 정도를 대조군과 비교하는 단계를 포함함을 특징으로 한다.Obtaining tissue and cell samples from non-human mammals exposed to ferumoxitol magnetic nanoparticles; Gene registration number (GeneBank) NM_005544.3 (IRS1, Homo sapiens Insulin receptor substrate 1), Gene registration number (GeneBank) NM_003749.3 (IRS2, Homo sapiens Insulin receptor substrate 2), Gene registration number (GeneBank) NM_003604.2 ( Homo sapiens Insulin receptor substrate 4), gene registration number (GeneBank) NM_010570.4 (Irs1, Mus musculus Insulin receptor substrate 1), gene registration number (GeneBank) NM_001081212.2 (Irs2, Mus musculus Insulin receptor substrate 2), gene registration Number (GeneBank) NM_010571.3 (Irs3, Mus musculus Insulin receptor substrate 3), Gene registration number (GeneBank) NM_010572.2 (Irs4, Mus musculus Insulin receptor substrate 4), Gene registration number (GeneBank) NM_006516.4 (SLC2A1, Homo sapiens solute carrier family 2 member 1), gene registration number (GeneBank) NM_006931.3 (SLC2A3, Homo sapiens solute carrier family 2 member 3), gene registration number (GeneBank) NM_001042.3 (SLC2A4, Homo sapiens solute carrier family 2 member 4), gene registration number (GeneBank) NM_030777.4 (SLC2A10, Homo sapiens solute carrier family 2 member 10), gene registration number (GeneBank) NM_145176.3 (SLC2A12, Homo sapiens solute carrier family 2 member 12), gene registration Number (GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), Gene registration number (GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2 ), gene registration number (GeneBank) NM_011401.4 (Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), gene registration number (GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose) transporter) member 4, transcript variant 1), gene registration number (GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), gene registration number (GeneBank) NM_019741.3 (Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), gene registration number (GeneBank) NM_130451.3 (Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), gene registration number (GeneBank) ) NM_178934.4 (Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), gene registration number (GeneBank) NM_001033633.3 (Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), gene Registration number (GeneBank) NM_019884.3 (GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), Gene registration number (GeneBank) NM_002093.4 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), Gene registration number (GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), Gene registration number (GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3) , Gene registration number (GeneBank) NM_001031667.1 (Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), Gene registration number (GeneBank) NM_019827.7 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1), Gene registration number (GeneBank) NM_001347232.1 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2): examining the expression of one or more genes in the group; and comparing the expression level of the gene with the control group.

또한, 본 발명의 또 다른 구성에 따르면, 본 발명의 페루목시톨 자성체 나노입자의 내분비계 독성 여부 평가 방법은:In addition, according to another configuration of the present invention, the method for evaluating whether the endocrine toxicity of the ferumoxitol magnetic nanoparticles of the present invention is:

페루목시톨 자성체 나노입자에 노출된 인간을 제외한 포유 동물의 조직 및 세포 샘플을 얻는 단계; 유전자 등록번호(GeneBank) NM_005544.3(IRS1, Homo sapiens Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_003749.3(IRS2, Homo sapiens Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_003604.2(Homo sapiens Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_010570.4(Irs1, Mus musculus Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_001081212.2(Irs2, Mus musculus Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_010571.3(Irs3, Mus musculus Insulin receptor substrate 3), 유전자 등록번호(GeneBank) NM_010572.2(Irs4, Mus musculus Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_006516.4(SLC2A1, Homo sapiens solute carrier family 2 member 1), 유전자 등록번호(GeneBank) NM_006931.3(SLC2A3, Homo sapiens solute carrier family 2 member 3), 유전자 등록번호(GeneBank) NM_001042.3(SLC2A4, Homo sapiens solute carrier family 2 member 4), 유전자 등록번호(GeneBank) NM_030777.4(SLC2A10, Homo sapiens solute carrier family 2 member 10), 유전자 등록번호(GeneBank) NM_145176.3(SLC2A12, Homo sapiens solute carrier family 2 member 12), 유전자 등록번호(GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), 유전자 등록번호(GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2), 유전자 등록번호(GeneBank) NM_011401.4(Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), 유전자 등록번호(GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1), 유전자 등록번호(GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), 유전자 등록번호(GeneBank) NM_019741.3(Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), 유전자 등록번호(GeneBank) NM_130451.3(Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), 유전자 등록번호(GeneBank) NM_178934.4(Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), 유전자 등록번호(GeneBank) NM_001033633.3(Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), 유전자 등록번호(GeneBank) NM_019884.3(GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_002093.4(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), 유전자 등록번호(GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), 유전자 등록번호(GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3), 유전자 등록번호(GeneBank) NM_001031667.1(Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_019827.7(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1), 유전자 등록번호(GeneBank) NM_001347232.1(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2)로 이루어진 유전자군에서 코딩(coding)되는 하나 이상의 단백질 발현을 조사하는 단계; 및 상기 단백질의 발현 정도를 대조군과 비교하는 단계를 포함함을 특징으로 한다.Obtaining tissue and cell samples from non-human mammals exposed to ferumoxitol magnetic nanoparticles; Gene registration number (GeneBank) NM_005544.3 (IRS1, Homo sapiens Insulin receptor substrate 1), Gene registration number (GeneBank) NM_003749.3 (IRS2, Homo sapiens Insulin receptor substrate 2), Gene registration number (GeneBank) NM_003604.2 ( Homo sapiens Insulin receptor substrate 4), gene registration number (GeneBank) NM_010570.4 (Irs1, Mus musculus Insulin receptor substrate 1), gene registration number (GeneBank) NM_001081212.2 (Irs2, Mus musculus Insulin receptor substrate 2), gene registration Number (GeneBank) NM_010571.3 (Irs3, Mus musculus Insulin receptor substrate 3), Gene registration number (GeneBank) NM_010572.2 (Irs4, Mus musculus Insulin receptor substrate 4), Gene registration number (GeneBank) NM_006516.4 (SLC2A1, Homo sapiens solute carrier family 2 member 1), gene registration number (GeneBank) NM_006931.3 (SLC2A3, Homo sapiens solute carrier family 2 member 3), gene registration number (GeneBank) NM_001042.3 (SLC2A4, Homo sapiens solute carrier family 2 member 4), gene registration number (GeneBank) NM_030777.4 (SLC2A10, Homo sapiens solute carrier family 2 member 10), gene registration number (GeneBank) NM_145176.3 (SLC2A12, Homo sapiens solute carrier family 2 member 12), gene registration Number (GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), Gene registration number (GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2 ), gene registration number (GeneBank) NM_011401.4 (Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), gene registration number (GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose) transporter) member 4, transcript variant 1), gene registration number (GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), gene registration number (GeneBank) NM_019741.3 (Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), gene registration number (GeneBank) NM_130451.3 (Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), gene registration number (GeneBank) ) NM_178934.4 (Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), gene registration number (GeneBank) NM_001033633.3 (Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), gene Registration number (GeneBank) NM_019884.3 (GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), Gene registration number (GeneBank) NM_002093.4 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), Gene registration number (GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), Gene registration number (GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3) , Gene registration number (GeneBank) NM_001031667.1 (Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), Gene registration number (GeneBank) NM_019827.7 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1), Gene registration number (GeneBank) Investigating the expression of one or more proteins encoded in the gene group consisting of NM_001347232.1 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2); and comparing the expression level of the protein with a control group.

본 발명의 다른 구성에 따르면, 상기 독성 여부 평가 방법은; (a) 발린(Valine, Val), 메티오닌(Methionine, Met), 페닐알라닌(Phenylalanine, Phe), 류신(Leucine, Leu) 및 라이신(Lysine, Lys)의 대사체 중 하나 이상의 함량을 분석하는 단계; (b) 당 자극에 의한 인슐린 분비 변화를 분석하는 단계; 및 (c) 세포내 인슐린 소낭(Insulin vesicle)의 분석으로 이루어진 군에서 하나 이상을 선택하여 조사하는 단계; 및 (d) 대조군과 비교하는 단계를 추가로 포함함을 특징으로 한다.According to another configuration of the present invention, the toxicity evaluation method includes; (a) analyzing the content of one or more of the metabolites of valine (Val), methionine (Methionine, Met), phenylalanine (Phe), leucine (Leu), and lysine (Lysine); (b) analyzing changes in insulin secretion due to glucose stimulation; and (c) analyzing intracellular insulin vesicles by selecting one or more from the group; and (d) comparing to a control group.

상기와 같이 구성되는 본 발명의 생물학적 지표들은 자성체 나노입자에 의한 내분비계 독성과 높은 연관성을 갖는 바이오마커로서, 이를 이용하면 우수한 검출 감도와 낮은 위음성으로 자성체 나노입자에 의한 내분비계 독성을 정확하게 확인할 수 있으며, 이를 통해 자성체 나노입자에 유해성의 모니터링 및 평가, 자성체 나노입자에 노출 시 유발되는 생체 및 환경적인 영향 등을 규명하는 도구로 유용하게 이용될 수 있으므로 상기한 종래의 기술에서 요구되는 문제점을 모두 해결하는 유용한 작용효과를 또한 제공한다.The biological indicators of the present invention comprised as described above are biomarkers that have a high correlation with endocrine toxicity caused by magnetic nanoparticles. Using them, endocrine toxicity caused by magnetic nanoparticles can be accurately confirmed with excellent detection sensitivity and low false negatives. Through this, it can be usefully used as a tool to monitor and evaluate the harmfulness of magnetic nanoparticles and to identify biological and environmental effects caused by exposure to magnetic nanoparticles, thereby eliminating all the problems required in the above-mentioned conventional technology. It also provides useful effects that solve the problem.

도 1은 자성체 나노입자에 세포 섭식 효율 및 세포 독성 검토 결과로서, 도 1a: 자성체 나노입자 농도에 따른 내분비계 세포주에서 섭식 효율 관찰; 도 1b: 자성체 나노입자의 처리 시간 및 농도에 따른 내분비계 세포주의 증식률 관찰; 및 도 1c: 자성체 나노입자의 처리 시간 및 농도에 따른 내분비계 세포주의 생존율 관찰이다.
도 2는 자성체 나노입자가 처리된 내분비계 세포주의 유전자 발현 분석 결과로서, 도 2a: 마이크로어레이 실험을 통한 유전자 발현 변화 분석 결과; 및 도 2b: 자성체 나노입자 처리 농도에 따른 유전자 발현 분포의 도식화이다.
도 3은 마이크로어레이 실험에서 도출된 결과를 분자생물학적 기법으로 검증한 결과로서, 도 3a: PCR 및 전기 영동 실험을 이용한 인슐린, IRS, GSK 및 GLUT 유전자 발현의 정성적 평가 결과; 및 도 3b: Realtime-PCR 실험 기법을 이용한 인슐린, IRS, GSK 및 GLUT 유전자 발현의 정량적 평가 결과이다.
도 4는 자성체 나노입자가 처리된 내분비계 세포주의 단백질 발현 분석 결과로서, 도 4a: 단백질 칩을 이용한 단백질의 발현 변화 분석 결과; 및 도 4b: 자성체 나노입자 처리 농도에 따른 단백질 발현 분포의 도식화이다.
도 5는 단백질 칩을 이용한 실험에서 도출된 결과를 분자생물학적 기법으로 검증한 결과로서, 도 5a: 단백질흡입법을 이용한 인슐린, IRS, GSK 및 GLUT 단백질 발현의 정성적 평가 결과; 및 도 5b: 인슐린, IRS, GSK 및 GLUT 단백질 발현의 정량적 평가 결과이다.
도 6은 마이크로어레이와 단백질 칩 분석 자료를 KEGG(Kyoto Encyclopedia of Genes and Genomes) 데이터베이스에 적용하여 공통으로 변화된 유전자 및 단백질을 분석한 결과이다.
도 7은 GC-MS(Gas Chromatography and Mass Spectrometry)를 이용하여 자성체 나노입자가 처리된 내분비계 세포주의 아미노산 함량 변화를 분석한 결과이다.
도 8은 포도당 자극 인슐린 분비능(Glucose-Stimulated Insulin Secretion, GSIS) 분석 방법을 이용하여 자성체 나노입자가 처리된 내분비계 세포주에서 당 자극에 의한 인슐린 분비 변화를 분석한 결과이다.
도 9는 자성체 나노입자가 처리된 내분비계 세포주의 인슐린 소낭을 분석한 전자현미경 사진 결과이다.
도 10은 본 발명에 따라 내분비계 세포주에서 자성체 나노입자의 처리로 인해 변화되는 총 기작을 나타낸 모식도이다.
Figure 1 shows the results of examining cell feeding efficiency and cytotoxicity of magnetic nanoparticles. Figure 1a: Observation of feeding efficiency in endocrine cell lines according to magnetic nanoparticle concentration; Figure 1b: Observation of proliferation rate of endocrine cell lines according to treatment time and concentration of magnetic nanoparticles; and Figure 1c: Observation of survival rate of endocrine cell lines according to treatment time and concentration of magnetic nanoparticles.
Figure 2 shows the results of gene expression analysis of an endocrine cell line treated with magnetic nanoparticles. Figure 2a: Results of analysis of gene expression changes through microarray experiment; and Figure 2b: Schematic illustration of gene expression distribution according to magnetic nanoparticle treatment concentration.
Figure 3 shows the results of verifying the results derived from the microarray experiment using molecular biological techniques. Figure 3a: Qualitative evaluation results of insulin, IRS, GSK, and GLUT gene expression using PCR and electrophoresis experiments; and Figure 3b: Quantitative evaluation results of insulin, IRS, GSK, and GLUT gene expression using Realtime-PCR experimental technique.
Figure 4 shows the results of protein expression analysis of endocrine cell lines treated with magnetic nanoparticles. Figure 4a: Results of analysis of protein expression changes using a protein chip; and Figure 4b: Schematic illustration of protein expression distribution according to magnetic nanoparticle treatment concentration.
Figure 5 shows the results of verifying the results derived from an experiment using a protein chip using molecular biological techniques. Figure 5a: Qualitative evaluation results of insulin, IRS, GSK, and GLUT protein expression using protein inhalation method; and Figure 5b: Quantitative evaluation results of insulin, IRS, GSK and GLUT protein expression.
Figure 6 shows the results of analyzing commonly changed genes and proteins by applying microarray and protein chip analysis data to the KEGG (Kyoto Encyclopedia of Genes and Genomes) database.
Figure 7 shows the results of analyzing changes in amino acid content of endocrine cell lines treated with magnetic nanoparticles using GC-MS (Gas Chromatography and Mass Spectrometry).
Figure 8 shows the results of analyzing changes in insulin secretion due to glucose stimulation in an endocrine cell line treated with magnetic nanoparticles using the glucose-stimulated insulin secretion (GSIS) analysis method.
Figure 9 shows the results of electron microscopy analysis of insulin vesicles from an endocrine cell line treated with magnetic nanoparticles.
Figure 10 is a schematic diagram showing the overall mechanism of change due to treatment of magnetic nanoparticles in an endocrine cell line according to the present invention.

이하, 본 발명을 바람직한 실시형태에 의해 보다 상세히 설명하기로 한다. 하지만, 본 발명의 범주가 여기에 한정되는 것이 아님은 물론이다.Hereinafter, the present invention will be described in more detail through preferred embodiments. However, it goes without saying that the scope of the present invention is not limited thereto.

본 명세서에서, 실시형태는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것으로서, 본 발명의 범주는 단지 청구항에 의해 정의될 뿐이다. 따라서, 몇몇 실시형태들에서, 잘 알려진 구성 요소, 잘 알려진 동작 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적으로 설명하지 않는다. In this specification, the embodiments are provided to ensure that the disclosure of the present invention is complete and to fully convey the scope of the invention to those skilled in the art to which the present invention pertains, and that the scope of the present invention is defined only by the claims. It is only defined by . Accordingly, in some embodiments, well-known components, well-known operations and well-known techniques are not specifically described in order to avoid ambiguous interpretation of the present invention.

본 명세서에서 사용된 용어들은 실시형태를 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 결코 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않은 한 복수형도 포함한다. 또한, '포함(또는, 구비)한다'로 언급된 구성 요소 및 동작은 하나 이상의 다른 구성요소 및 동작의 존재 또는 추가를 배제하지 않는다. The terms used herein are for describing embodiments and are in no way intended to limit the invention. As used herein, singular forms also include plural forms unless specifically stated otherwise in the context. Additionally, components and operations referred to as 'including (or, including)' do not exclude the presence or addition of one or more other components and operations.

청구범위 및 명세서에 사용된 용어들은 달리 명시되지 않는 한, 하기에 기술된 바와 같이 정의된다. 또한, 본 명세서에서 사용되는 임의의 용어 또는 기호가 아래에 제시된 바와 같이 정의되지 않는 경우, 이것은 당해 기술분야에서 그것의 일반적인 의미를 가질 것이다.Terms used in the claims and specification are defined as set forth below, unless otherwise specified. Additionally, if any term or symbol used in this specification is not defined as set forth below, it will have its ordinary meaning in the art.

본 발명의 실시는 당업계의 기술 내에 있는 유기 화학, 분자 생물학 (재조합 기술을 포함함), 미생물학, 세포 생물학, 생화학 및 면역학의 통상적인 기술의 사용을 포함한다.The practice of the invention involves the use of routine techniques in organic chemistry, molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry and immunology that are within the skill of the art.

본 명세서 및 첨부된 청구항들에서 사용된 바와 같이, 요소를 설명하는 맥락에서, 특히 청구범위의 맥락에서, 단수 및 유사한 지시대상은 본 명세서에 달리 나타내지 않는 한 또는 문맥상 분명히 반대로 되지 않는 한 단수 및 복수 양자를 포함하는 것으로 해석되어야 한다. 본 명세서에서 값의 범위의 언급은 단지 본 명세서에서 다르게 지시되지 않는 한, 범위의 상한 및 하한을 포함하여, 범위 내에 속하는 각각의 개별 값을 개별적으로 지칭하는 속기 방법으로서 기능을 하기 위한 것이며, 각각의 개별 값은 본 명세서에서 개별적으로 인용된 것처럼 본 명세서에 포함된다. 본 명세서에서 기재된 모든 방법은 본 명세서에서 달리 지시되거나 문맥상 명백하게 반대되지 않는 한 임의의 적합한 순서로 수행될 수 있다.As used in this specification and the appended claims, in the context of describing elements, and especially in the context of the claims, the singular and the like refer to the singular and the singular unless otherwise indicated herein or the context clearly contradicts. It should be interpreted as including plural protons. References to ranges of values herein are merely intended to serve as shorthand for individually referring to each individual value falling within the range, including the upper and lower limits of the range, unless otherwise indicated herein. Individual values of are incorporated into this specification as if individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.

본 발명은 인슐린 수용체 기질(Insulin receptor substrate, IRS), 포도당 수송체(glucose transporter, GLUT; Solute carrier family) 및 글리코겐 합성효소 인산화효소(glycogen synthetase kinase, GSK)로 구성된 군으로부터 선택된 하나 이상의 유전자를 포함하는, 나노입자의 노출에 의해 발현 변화를 일으키는 것을 특징으로 하는 나노입자의 독성 여부 진단용 바이오마커 조성물을 제공한다.The present invention includes one or more genes selected from the group consisting of insulin receptor substrate (IRS), glucose transporter (GLUT; Solute carrier family), and glycogen synthetase kinase (GSK). Provides a biomarker composition for diagnosing the toxicity of nanoparticles, which is characterized in that it causes expression changes due to exposure to nanoparticles.

본 발명의 자성체 나노입자는 자력에 반응이 가능하거나 독자적인 자력을 가지는 나노 입자는 모두 해당될 수 있으며, 사용 목적에 따라 의약 조성물에 포함된 나노입자, 화학적 산물의 재료로 포함된 나노입자, 생물학적 실험을 목적으로 하는 조성물에 포함된 나노입자 등이 이에 해당될 수 있으나 이에 제한되는 것이 아니며, 구성 형태나 구성 성분 및 재료에 제한을 두는 것이 아님은 물론이다.The magnetic nanoparticles of the present invention may be any nanoparticle that can respond to magnetism or has its own magnetic force. Depending on the purpose of use, it may be used as nanoparticles included in pharmaceutical compositions, nanoparticles included as a material for chemical products, or biological experiments. This may include nanoparticles, etc. included in the composition for the purpose, but is not limited thereto, and of course, there are no restrictions on the composition form, components, or materials.

상기 인슐린 수용체 물질로는 유전자 등록번호(GeneBank) NM_005544.3(IRS1, Homo sapiens Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_003749.3(IRS2, Homo sapiens Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_003604.2(Homo sapiens Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_010570.4(Irs1, Mus musculus Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_001081212.2(Irs2, Mus musculus Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_010571.3(Irs3, Mus musculus Insulin receptor substrate 3), 유전자 등록번호(GeneBank) NM_010572.2(Irs4, Mus musculus Insulin receptor substrate 4), 포도당 운반체(glucose transporter, GLUT)로는 유전자 등록번호(GeneBank) NM_006516.4(SLC2A1, Homo sapiens solute carrier family 2 member 1), 유전자 등록번호(GeneBank) NM_006931.3(SLC2A3, Homo sapiens solute carrier family 2 member 3), 유전자 등록번호(GeneBank) NM_001042.3(SLC2A4, Homo sapiens solute carrier family 2 member 4), 유전자 등록번호(GeneBank) NM_030777.4(SLC2A10, Homo sapiens solute carrier family 2 member 10), 유전자 등록번호(GeneBank) NM_145176.3(SLC2A12, Homo sapiens solute carrier family 2 member 12), 유전자 등록번호(GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), 유전자 등록번호(GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2), 유전자 등록번호(GeneBank) NM_011401.4(Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), 유전자 등록번호(GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1), 유전자 등록번호(GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), 유전자 등록번호(GeneBank) NM_019741.3(Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), 유전자 등록번호(GeneBank) NM_130451.3(Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), 유전자 등록번호(GeneBank) NM_178934.4(Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), 유전자 등록번호(GeneBank) NM_001033633.3(Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), 글리코겐 합성효소 인산화효소(glycogen synthetase kinase, GSK)로는 유전자 등록번호(GeneBank) NM_019884.3(GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_002093.4(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), 유전자 등록번호(GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), 유전자 등록번호(GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3), 유전자 등록번호(GeneBank) NM_001031667.1(Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_019827.7(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1) 및 유전자 등록번호(GeneBank) NM_001347232.1(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2)로 구성된 군으로부터 선택되는 어느 하나의 것이 바람직하나 이에 한정하지 않는다.The insulin receptor material includes Gene Bank (GeneBank) NM_005544.3 (IRS1, Homo sapiens Insulin receptor substrate 1), Gene Bank (GeneBank) NM_003749.3 (IRS2, Homo sapiens Insulin receptor substrate 2), Gene Registration Number ( GeneBank) NM_003604.2 (Homo sapiens Insulin receptor substrate 4), gene registration number (GeneBank) NM_010570.4 (Irs1, Mus musculus Insulin receptor substrate 1), gene registration number (GeneBank) NM_001081212.2 (Irs2, Mus musculus Insulin receptor substrate 2), gene registration number (GeneBank) NM_010571.3 (Irs3, Mus musculus Insulin receptor substrate 3), gene registration number (GeneBank) NM_010572.2 (Irs4, Mus musculus Insulin receptor substrate 4), glucose transporter, GLUT) include gene registration number (GeneBank) NM_006516.4 (SLC2A1, Homo sapiens solute carrier family 2 member 1), gene registration number (GeneBank) NM_006931.3 (SLC2A3, Homo sapiens solute carrier family 2 member 3), gene registration number (GeneBank) NM_001042.3 (SLC2A4, Homo sapiens solute carrier family 2 member 4), Gene registration number (GeneBank) NM_030777.4 (SLC2A10, Homo sapiens solute carrier family 2 member 10), Gene registration number (GeneBank) NM_145176.3 (SLC2A12, Homo sapiens solute carrier family 2 member 12), Gene registration number (GeneBank) NM_011400.3 (Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), Gene registration number (GeneBank) NM_031197.2 ( Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2), gene registration number (GeneBank) NM_011401.4 (Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), gene registration number (GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1), gene registration number (GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4 , transcript variant 2), gene registration number (GeneBank) NM_019741.3 (Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), gene registration number (GeneBank) NM_130451.3 (Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), gene registration number (GeneBank) NM_178934.4 (Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), gene registration number (GeneBank) NM_001033633.3 (Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), glycogen synthetase kinase (GSK), gene registration number (GeneBank) NM_019884.3 (GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), gene registration Number (GeneBank) NM_002093.4 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), Gene registration number (GeneBank) NM_001146156.2 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2 ), gene registration number (GeneBank) NM_001354596.2 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3), gene registration number (GeneBank) NM_001031667.1 (Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), With gene registration number (GeneBank) NM_019827.7 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1) and gene registration number (GeneBank) NM_001347232.1 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2). Any one selected from the group consisting of is preferred, but is not limited thereto.

본 발명의 일 실시형태에서, 상기 바이오마커 조성물에서 제시된 유전자 등록번호(GeneBank) NM_010570.4(Irs1, Mus musculus Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1) 및 유전자 등록번호(GeneBank) NM_001031667.1(Gsk3a, Mus musculus glycogen synthase kinase 3 alpha)를 필수적으로 하나 이상 포함하는 유전자 군에서 자성체 나노입자에 의한 내분비계 세포주의 유전자 변화가 확인되었으나, 제시된 바이오마커 조성물로 한정되지는 않는다.In one embodiment of the present invention, the gene registration number (GeneBank) NM_010570.4 (Irs1, Mus musculus Insulin receptor substrate 1) and the gene registration number (GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier) shown in the biomarker composition by magnetic nanoparticles in a gene group that essentially includes at least one family 2 (facilitated glucose transporter) member 4, transcript variant 1) and gene registration number (GeneBank) NM_001031667.1 (Gsk3a, Mus musculus glycogen synthase kinase 3 alpha). Genetic changes in endocrine cell lines were confirmed, but are not limited to the presented biomarker composition.

본 발명의 일 실시형태에서, 고농도의 자성체 나노입자를 처리한 실험군에서 124개의 발현이 증가한 유전자와 152개의 발현이 감소한 유전자를 포함하는 총 276개 유전자를 분류하였고, 상기 변화된 유전자 군을 데이터베이스에 적용하여 내분비계 생체 기작과 연관된 인슐린수용체 물질(Insulin receptor substrate, IRS), 포도당 운반체(glucose transporter, GLUT; Solute carrier family) 및 글리코겐 합성효소 인산화효소(glycogen synthetase kinase, GSK)의 발현 변화를 도출하였다. 상기 발현 변화는 통상적으로 발현량의 1.5배 이상이거나 0.5배 이하의 발현 변화 상태를 의미하며, 대조군과 비교하여 상기 유전자들의 발현 변화가 관찰될 경우 자성체 나노입자는 내분비계에 독성을 유발할 수 있다고 평가한다.In one embodiment of the present invention, a total of 276 genes, including 124 genes with increased expression and 152 genes with decreased expression, were classified in the experimental group treated with high concentration of magnetic nanoparticles, and the changed gene group was applied to the database. Thus, changes in the expression of insulin receptor substrate (IRS), glucose transporter (GLUT; Solute carrier family), and glycogen synthetase kinase (GSK), which are related to the biological mechanism of the endocrine system, were derived. The expression change usually refers to an expression change state of 1.5 times or more or 0.5 times or less of the expression amount, and when expression changes of the genes are observed compared to the control group, it is evaluated that magnetic nanoparticles may cause toxicity to the endocrine system. do.

보다 구체적으로 자성체 나노입자로 인해 발현이 감소하는 인슐린수용체 물질(Insulin receptor substrate, IRS) 유전자로는 유전자 등록번호(GeneBank) NM_005544.3(IRS1, Homo sapiens Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_003749.3(IRS2, Homo sapiens Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_003604.2(Homo sapiens Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_010570.4(Irs1, Mus musculus Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_001081212.2(Irs2, Mus musculus Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_010571.3(Irs3, Mus musculus Insulin receptor substrate 3) 및 유전자 등록번호(GeneBank) NM_010572.2(Irs4, Mus musculus Insulin receptor substrate 4) 유전자가 이에 해당될 수 있으며, 자성체 나노입자로 인해 발현이 증가하는 포도당 운반체(glucose transporter, GLUT) 및 글리코겐 합성효소 인산화효소(glycogen synthetase kinase, GSK) 유전자로는 유전자 등록번호(GeneBank) NM_006516.4(SLC2A1, Homo sapiens solute carrier family 2 member 1), 유전자 등록번호(GeneBank) NM_006931.3(SLC2A3, Homo sapiens solute carrier family 2 member 3), 유전자 등록번호(GeneBank) NM_001042.3(SLC2A4, Homo sapiens solute carrier family 2 member 4), 유전자 등록번호(GeneBank) NM_030777.4(SLC2A10, Homo sapiens solute carrier family 2 member 10), 유전자 등록번호(GeneBank) NM_145176.3(SLC2A12, Homo sapiens solute carrier family 2 member 12), 유전자 등록번호(GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), 유전자 등록번호(GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2), 유전자 등록번호(GeneBank) NM_011401.4(Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), 유전자 등록번호(GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1), 유전자 등록번호(GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), 유전자 등록번호(GeneBank) NM_019741.3(Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), 유전자 등록번호(GeneBank) NM_130451.3(Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), 유전자 등록번호(GeneBank) NM_178934.4(Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), 유전자 등록번호(GeneBank) NM_001033633.3(Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), 유전자 등록번호(GeneBank) NM_019884.3(GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_002093.4(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), 유전자 등록번호(GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), 유전자 등록번호(GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3), 유전자 등록번호(GeneBank) NM_001031667.1(Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_019827.7(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1) 및 유전자 등록번호(GeneBank) NM_001347232.1(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2) 유전자가 이에 해당될 수 있다.More specifically, the insulin receptor substrate (IRS) gene whose expression is reduced due to magnetic nanoparticles is gene registration number (GeneBank) NM_005544.3 (IRS1, Homo sapiens insulin receptor substrate 1), gene registration number (GeneBank) ) NM_003749.3 (IRS2, Homo sapiens Insulin receptor substrate 2), gene registration number (GeneBank) NM_003604.2 (Homo sapiens Insulin receptor substrate 4), gene registration number (GeneBank) NM_010570.4 (Irs1, Mus musculus Insulin receptor substrate 1), gene registration number (GeneBank) NM_001081212.2 (Irs2, Mus musculus Insulin receptor substrate 2), gene registration number (GeneBank) NM_010571.3 (Irs3, Mus musculus Insulin receptor substrate 3) and gene registration number (GeneBank) NM_010572 This may include the .2 (Irs4, Mus musculus Insulin receptor substrate 4) gene, and the glucose transporter (GLUT) and glycogen synthetase kinase (GSK) whose expression increases due to magnetic nanoparticles. Genes include gene registration number (GeneBank) NM_006516.4 (SLC2A1, Homo sapiens solute carrier family 2 member 1), gene registration number (GeneBank) NM_006931.3 (SLC2A3, Homo sapiens solute carrier family 2 member 3), gene registration number (GeneBank) NM_001042.3 (SLC2A4, Homo sapiens solute carrier family 2 member 4), Gene registration number (GeneBank) NM_030777.4 (SLC2A10, Homo sapiens solute carrier family 2 member 10), Gene registration number (GeneBank) NM_145176.3 (SLC2A12, Homo sapiens solute carrier family 2 member 12), Gene registration number (GeneBank) NM_011400.3 (Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), Gene registration number (GeneBank) NM_031197.2 ( Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2), gene registration number (GeneBank) NM_011401.4 (Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), gene registration number (GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1), gene registration number (GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4 , transcript variant 2), gene registration number (GeneBank) NM_019741.3 (Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), gene registration number (GeneBank) NM_130451.3 (Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), gene registration number (GeneBank) NM_178934.4 (Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), gene registration number (GeneBank) NM_001033633.3 (Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), gene registration number (GeneBank) NM_019884.3 (GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), gene registration number (GeneBank) NM_002093.4 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), gene registration number (GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), gene registration number (GeneBank) NM_001354596.2(GSK3B , Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3), gene registration number (GeneBank) NM_001031667.1 (Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), gene registration number (GeneBank) NM_019827.7 (Gsk3b, Mus This may include the musculus glycogen synthase kinase 3 beta, transcript variant 1) and gene registration number (GeneBank) NM_001347232.1 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2) genes.

또한, 본 발명은 상기 바이오마커로 구성된 군으로부터 선택된 어느 하나 이상의 유전자 핵산 서열의 전부; 상기 바이오마커의 유전자 핵산 서열의 단편 올리고뉴클레오티드; 상기 바이오마커의 상보적인 유전자 서열의 전체 또는 일부의 서열이 집적된 진단용 마이크로어레이 칩을 제공한다.In addition, the present invention relates to the entire nucleic acid sequence of one or more genes selected from the group consisting of the above biomarkers; Fragment oligonucleotides of the gene nucleic acid sequence of the biomarker; Provided is a diagnostic microarray chip in which all or part of the complementary gene sequence of the biomarker is integrated.

상기 올리고뉴클레오티드; 또는 이의 상보가닥 분자는 상기 바이오마커 유전자의 15 내지 50개; 바람직하게는 15 내지 30개; 더욱 바람직하게는 18 내지 25개의 핵산을 포함한다.The oligonucleotide; Or its complementary strand molecule is 15 to 50 of the biomarker genes; preferably 15 to 30; More preferably, it contains 18 to 25 nucleic acids.

본 발명에 따른 자성체 나노입자의 내분비계 독성 여부 진단용 마이크로어레이 칩은 당업자에게 알려진 방법으로 제작할 수 있다. 예를 들면, 상기 탐색된 유전자 마커를 탐침 DNA 분자로 이용하여 DNA 칩의 기판상에 고정화시키기 위해 파이조일렉트릭(piezoelectric) 방식을 이용한 마이크로파이펫팅(micropipetting)법 또는 핀(pin) 형태의 스폿터(spotter)를 이용한 방법 등을 사용하는 것이 바람직하나 이에 한정되는 것은 아니다. 상기 마이크로어레이 칩의 기판은 아미노-실란(amino-silane), 폴리-L-라이신(poly-L-lysine) 및 알데히드(aldehyde)로 이루어진 군에서 선택되는 하나의 활성기가 코팅된 것이 바람직하나 이에 한정되는 것은 아니다. 또한, 상기 기판은 슬라이드 글래스, 플라스틱, 금속, 실리콘, 나일론 막, 및 니트로셀룰로스 막으로 이루어진 군에서 선택될 수 있으나 이에 한정되는 것은 아니다.The microarray chip for diagnosing endocrine toxicity of magnetic nanoparticles according to the present invention can be manufactured by methods known to those skilled in the art. For example, in order to immobilize the searched genetic marker on the substrate of a DNA chip using a probe DNA molecule, a micropipetting method using a piezoelectric method or a pin-type spotter ( It is desirable to use a method using a spotter, but it is not limited to this. The substrate of the microarray chip is preferably coated with one active group selected from the group consisting of amino-silane, poly-L-lysine, and aldehyde, but is limited thereto. It doesn't work. Additionally, the substrate may be selected from the group consisting of slide glass, plastic, metal, silicon, nylon film, and nitrocellulose film, but is not limited thereto.

또한, 본 발명은 상기 마이크로어레이 칩을 포함하는 자성체 나노입자의 내분비계 독성 여부 진단용 키트를 제공한다.Additionally, the present invention provides a kit for diagnosing endocrine toxicity of magnetic nanoparticles including the microarray chip.

또한, 상기 키트는 추가적인 형광 물질을 포함할 수 있으며, 예를 들면 스트렙아비딘-알칼리 탈인화효소 접합물질(strepavidin-like phosphatease conjugate), 화학형광물질(chemiflurorensce) 및 화학발광물질(chemiluminescent)로 이루어진 군으로부터 선택되는 것이 바람직하나 이에 한정되는 것은 아니다.In addition, the kit may contain additional fluorescent substances, such as a group consisting of strepavidin-alkaline dephosphatase conjugate, chemifluorescence, and chemiluminescent. It is preferable to be selected from, but is not limited to.

또한, 상기 키트는 추가적인 반응 시약을 포함할 수 있으며, 반응 시약은 혼성화에 사용되는 완충용액, RNA로부터 cDNA를 합성하기 위한 역전사효소, cNTPs 및 rNTP(사전 혼합형 또는 분리 공급형), 형광염색제의 화학적 유도제와 같은 표식시약, 세척 완충용액 등으로 구성될 수 있으나 이에 한정된 것은 아니며 당업자에게 알려진 마이크로어레이 칩의 혼성화 반응에 필요한 반응 시약은 모두 포함할 수 있다.In addition, the kit may include additional reaction reagents, which include a buffer solution used for hybridization, reverse transcriptase for synthesizing cDNA from RNA, cNTPs and rNTPs (premixed or separately supplied), and chemical fluorescent dye. It may consist of a labeling reagent such as an inducer, a washing buffer solution, etc., but is not limited thereto, and may include all reaction reagents required for the hybridization reaction of a microarray chip known to those skilled in the art.

본 발명은 상기 바이오마커 유전자를 증폭할 수 있는 상보적인 프라이머 쌍을 포함하는 자성체 나노입자의 내분비계 독성 여부 진단용 키트를 제공한다. 여기서 '상보적'이란 프라이머 염기서열에서 80% 이상의 상동성; 바람직하게는 100% 상동성이 있는 것을 의미하는 개념이다. 상기 프라이머 쌍은 바이오마커 유전자 증폭 산물이 100 내지 300bp; 바람직하게는 100 내지 200bp가 되도록 설계된 15 내지 50mer 길이의 정방향 및 역방향 프라이머 쌍을 의미한다.The present invention provides a kit for diagnosing endocrine toxicity of magnetic nanoparticles containing a complementary primer pair capable of amplifying the biomarker gene. Here, ‘complementary’ means more than 80% homology in the primer base sequence; Preferably, it is a concept that means there is 100% homology. The primer pair has a biomarker gene amplification product of 100 to 300 bp; Preferably, it refers to a pair of forward and reverse primers with a length of 15 to 50 mer designed to be 100 to 200 bp.

또한, 상기 키트는 추가적인 반응 시약을 포함할 수 있으며, 반응 시약은 RNA로부터 cDNA를 합성하기 위한 역전사효소, cNTPs 및 rNTP(사전 혼합형 또는 분리 공급형), 형광염색제의 화학적 유도제와 같은 표식시약, 세척 완충용액 등으로 구성될 수 있으나 이에 한정된 것은 아니며, 당업자에게 알려진 RT-PCR 반응에 필요한 반응 시약은 모두 포함할 수 있다.In addition, the kit may contain additional reaction reagents, which include reverse transcriptase for synthesizing cDNA from RNA, cNTPs and rNTPs (premixed or separately supplied), labeling reagents such as chemical inducers of fluorescent dyes, and washing. It may consist of a buffer solution, etc., but is not limited thereto, and may include all reaction reagents necessary for RT-PCR reaction known to those skilled in the art.

본 발명의 일 실시형태에서, 상기 바이오마커 조성물에서 제시된 유전자 등록번호(GeneBank) NM_010570.4(Irs1, Mus musculus Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1) 및 유전자 등록번호(GeneBank) NM_001031667.1(Gsk3a, Mus musculus glycogen synthase kinase 3 alpha)를 필수적으로 하나 이상 포함하는 유전자 발현 단백질 군에서 자성체 나노입자에 의한 내분비계 세포주의 단백질의 발현 변화가 확인되었으나, 제시된 바이오마커 조성물로 한정되지는 않는다.In one embodiment of the present invention, the gene registration number (GeneBank) NM_010570.4 (Irs1, Mus musculus Insulin receptor substrate 1) and the gene registration number (GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier) shown in the biomarker composition Magnetic nanoparticles from a group of gene expression proteins that essentially contain at least one family 2 (facilitated glucose transporter) member 4, transcript variant 1) and gene registration number (GeneBank) NM_001031667.1 (Gsk3a, Mus musculus glycogen synthase kinase 3 alpha) Changes in the expression of proteins in endocrine cell lines were confirmed, but are not limited to the presented biomarker composition.

본 발명의 일 실시형태에서, 고농도의 자성체 나노입자를 처리한 실험군에서 79개의 발현이 증가한 단백질과 46개의 발현이 감소한 단백질을 포함하는 총 125개 단백질을 분류하였고, 상기 변화된 단백질 군을 데이터베이스에 적용하여 내분비계 생체 기작과 연관된 인슐린수용체 물질(Insulin receptor substrate, IRS), 포도당 운반체(glucose transporter, GLUT) 및 글리코겐 합성효소 인산화효소(glycogen synthetase kinase, GSK)의 발현 변화를 도출하였다. 상기 발현 변화는 통상적으로 발현량의 1.5배 이상이거나 0.5배 이하의 발현 변화 상태를 의미하며, 대조군과 비교하여 상기 단백질 전체 혹은 폴리펩티드의 발현 변화가 관찰될 경우 자성체 나노입자는 내분비계에 독성을 유발할 수 있다고 평가한다.In one embodiment of the present invention, a total of 125 proteins, including 79 proteins with increased expression and 46 proteins with decreased expression, were classified in the experimental group treated with high concentration of magnetic nanoparticles, and the changed protein group was applied to the database. Thus, changes in the expression of insulin receptor substrate (IRS), glucose transporter (GLUT), and glycogen synthetase kinase (GSK), which are related to the biological mechanisms of the endocrine system, were derived. The expression change usually refers to an expression change of 1.5 times or more or 0.5 times or less than the expression amount, and if a change in the expression of the entire protein or polypeptide is observed compared to the control group, the magnetic nanoparticles may cause toxicity to the endocrine system. Evaluate that you can.

보다 구체적으로 자성체 나노입자로 인해 발현이 감소하는 인슐린수용체 물질(Insulin receptor substrate, IRS) 단백질로는 유전자 등록번호(GeneBank) NM_005544.3(IRS1, Homo sapiens Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_003749.3(IRS2, Homo sapiens Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_003604.2(Homo sapiens Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_010570.4(Irs1, Mus musculus Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_001081212.2(Irs2, Mus musculus Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_010571.3(Irs3, Mus musculus Insulin receptor substrate 3) 및 유전자 등록번호(GeneBank) NM_010572.2(Irs4, Mus musculus Insulin receptor substrate 4)에서 유래되어 발현되는 단백질 혹은 폴리펩티드가 이에 해당될 수 있으며, 자성체 나노입자로 인해 발현이 증가하는 포도당 운반체(glucose transporter, GLUT) 및 글리코겐 합성효소 인산화효소(glycogen synthetase kinase, GSK) 단백질로는 유전자 등록번호(GeneBank) NM_006516.4(SLC2A1, Homo sapiens solute carrier family 2 member 1), 유전자 등록번호(GeneBank) NM_006931.3(SLC2A3, Homo sapiens solute carrier family 2 member 3), 유전자 등록번호(GeneBank) NM_001042.3(SLC2A4, Homo sapiens solute carrier family 2 member 4), 유전자 등록번호(GeneBank) NM_030777.4(SLC2A10, Homo sapiens solute carrier family 2 member 10), 유전자 등록번호(GeneBank) NM_145176.3(SLC2A12, Homo sapiens solute carrier family 2 member 12), 유전자 등록번호(GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), 유전자 등록번호(GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2), 유전자 등록번호(GeneBank) NM_011401.4(Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), 유전자 등록번호(GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1), 유전자 등록번호(GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), 유전자 등록번호(GeneBank) NM_019741.3(Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), 유전자 등록번호(GeneBank) NM_130451.3(Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), 유전자 등록번호(GeneBank) NM_178934.4(Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), 유전자 등록번호(GeneBank) NM_001033633.3(Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), 유전자 등록번호(GeneBank) NM_019884.3(GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_002093.4(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), 유전자 등록번호(GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), 유전자 등록번호(GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3), 유전자 등록번호(GeneBank) NM_001031667.1(Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_019827.7(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1) 및 유전자 등록번호(GeneBank) NM_001347232.1(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2)에서 유래되어 발현되는 단백질 전체 혹은 폴리펩티드가 이에 해당될 수 있다.More specifically, the insulin receptor substrate (IRS) protein whose expression is reduced due to magnetic nanoparticles is gene registration number (GeneBank) NM_005544.3 (IRS1, Homo sapiens insulin receptor substrate 1), gene registration number (GeneBank) ) NM_003749.3 (IRS2, Homo sapiens Insulin receptor substrate 2), gene registration number (GeneBank) NM_003604.2 (Homo sapiens Insulin receptor substrate 4), gene registration number (GeneBank) NM_010570.4 (Irs1, Mus musculus Insulin receptor substrate 1), gene registration number (GeneBank) NM_001081212.2 (Irs2, Mus musculus Insulin receptor substrate 2), gene registration number (GeneBank) NM_010571.3 (Irs3, Mus musculus Insulin receptor substrate 3) and gene registration number (GeneBank) NM_010572 This may include proteins or polypeptides derived from and expressed in .2 (Irs4, Mus musculus Insulin receptor substrate 4), and glucose transporter (GLUT) and glycogen synthase phosphatase whose expression increases due to magnetic nanoparticles. (glycogen synthetase kinase, GSK) proteins include gene registration number (GeneBank) NM_006516.4 (SLC2A1, Homo sapiens solute carrier family 2 member 1), gene registration number (GeneBank) NM_006931.3 (SLC2A3, Homo sapiens solute carrier family 2) member 3), gene registration number (GeneBank) NM_001042.3 (SLC2A4, Homo sapiens solute carrier family 2 member 4), gene registration number (GeneBank) NM_030777.4 (SLC2A10, Homo sapiens solute carrier family 2 member 10), gene registration Number (GeneBank) NM_145176.3 (SLC2A12, Homo sapiens solute carrier family 2 member 12), Gene registration number (GeneBank) NM_011400.3 (Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), Gene registration number (GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2), Gene registration number (GeneBank) NM_011401.4(Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3) , Gene registration number (GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1), Gene registration number (GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), gene registration number (GeneBank) NM_019741.3(Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), gene registration number (GeneBank) NM_130451.3( Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), gene registration number (GeneBank) NM_178934.4 (Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), gene registration number (GeneBank) NM_001033633.3 (Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), gene registration number (GeneBank) NM_019884.3 (GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), gene registration number (GeneBank) NM_002093. 4 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), gene registration number (GeneBank) NM_001146156.2 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), gene registration number ( GeneBank) NM_001354596.2 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3), gene registration number (GeneBank) NM_001031667.1 (Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), gene registration number (GeneBank) All proteins derived from and expressed in NM_019827.7 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1) and gene registration number (GeneBank) NM_001347232.1 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2) Or, polypeptides may fall into this category.

또한, 본 발명은 상기 바이오마커로 구성된 군으로부터 선택된 어느 하나 이상의 단백질 전체 혹은 폴리펩티드와 특이적으로 반응할 수 있는 항체 구조 전체; 또는 항체 구조 일부가 집적된 진단용 단백질 칩을 제공한다. 상기 특이적 반응 항체는 단일클론 항체; 다클론 항체; 및 인간화 항체등의 특수항체가 본 발명에 포함되며, 당업자의 통상적인 제작방법을 통해 제작되거나 시판되는 기성품을 사용할 수 있다. 예를 들면 통상적인 항혈청 제작 방법; 및 상기 유전자의 코팅 전체나 일부를 발현벡터에 클로닝하여 얻어진 단백질을 이용하여 통상적인 항체를 제조하는 방법으로 제작할 수 있으나 이에 한정되는 것은 아니다.In addition, the present invention provides an entire antibody structure capable of specifically reacting with one or more proteins or polypeptides selected from the group consisting of the above biomarkers; Alternatively, a diagnostic protein chip on which part of the antibody structure is integrated is provided. The specific reactive antibody may be a monoclonal antibody; polyclonal antibodies; and special antibodies such as humanized antibodies are included in the present invention, and can be manufactured through a conventional production method by those skilled in the art, or commercially available off-the-shelf products can be used. For example, conventional antiserum production methods; And it can be produced by a conventional method of producing an antibody using a protein obtained by cloning all or part of the coating of the gene into an expression vector, but is not limited to this.

본 발명에 따른 자성체 나노입자의 내분비계 독성 여부 진단용 단백질 칩은 당업자에게 알려진 방법으로 제작하거나 사용자의 고유 기술을 이용하여 자체 제작할 수 있다.The protein chip for diagnosing endocrine toxicity of magnetic nanoparticles according to the present invention can be manufactured by methods known to those skilled in the art or can be manufactured in-house using the user's own technology.

또한, 본 발명은 상기 단백질 칩; 상기 특이적 반응 항체; 및 2차 항체를 포함하는 자성체 나노입자 독성 여부 진단용 키트를 제공한다.In addition, the present invention provides the protein chip; The specific reactive antibody; and a kit for diagnosing the toxicity of magnetic nanoparticles containing a secondary antibody.

또한, 상기 키트에 제공되는 특이적 반응 항체와 2차 항체는 직접 반응기를 포함할 수 있으며, 예를 들면 알칼라인 포스파타아제(alkaline phosphatase, AP) 또는 호스래디쉬 퍼옥시다제(horseradish peroxidase, HRP)등으로 이루어진 군으로부터 선택되는 것이 바람직하나 이에 한정되는 것은 아니다.In addition, the specific reactive antibody and secondary antibody provided in the kit may contain a direct reactive group, for example, alkaline phosphatase (AP) or horseradish peroxidase (HRP). It is preferable to be selected from the group consisting of, but is not limited thereto.

또한, 상기 키트에 추가적인 반응 시약을 포함할 수 있으며, 반응 시약은 항원-항체 반응을 유도하기 위한 혼성화 용액, 비특이적 반응을 저해하기 위한 차폐 용액, 형광염색제의 화학적 유도제와 같은 표식시약, 세척 완충용액 등으로 구성될 수 있으나 이에 한정된 것은 아니며 당업자에게 알려진 단백질 칩과 단백질흡입법(Western-blotting)에서 반응에 필요한 시약은 모두 포함할 수 있다.Additionally, the kit may include additional reaction reagents, which may include a hybridization solution to induce an antigen-antibody reaction, a shielding solution to inhibit non-specific reactions, a labeling reagent such as a chemical inducer of a fluorescent dye, and a washing buffer solution. It may consist of, but is not limited to, all reagents required for reaction in protein chips and protein blotting (Western-blotting) known to those skilled in the art.

또한, 본 발명은 자성체 나노입자에 노출된 포유 동물의 조직 및 세포 샘플을 얻는 단계; 인슐린수용체 물질(Insulin receptor substrate, IRS), 포도당 운반체(Glucose transporter, GLUT; Solute carrier family) 및 글리코겐 합성효소 인산화효소(Glycogen synthetase kinase, GSK)로 이루어진 군에서 하나 이상의 유전자 발현을 조사하는 단계; 및 상기 유전자의 발현 정도를 대조군과 비교하는 단계를 포함하는 자성체 나노입자의 내분비계 독성 여부 평가 방법을 제공한다.Additionally, the present invention includes obtaining tissue and cell samples from mammals exposed to magnetic nanoparticles; Examining the expression of one or more genes in the group consisting of insulin receptor substrate (IRS), glucose transporter (GLUT; Solute carrier family), and glycogen synthetase kinase (GSK); and comparing the expression level of the gene with a control group.

본 발명의 일 실시형태에 따르면, 1) 실험군으로서 자성체 나노입자에 노출된 생체 조직 및 세포에서 RNA를 분리하는 단계; 2) 단계 1)의 실험군 및 대조군에서 분리된 RNA를 이용하여 각기 다른 형광 물질로 표지하면서 cDNA를 합성하는 단계; 3) 단계 2)의 표지된 cDNA를 본 발명의 마이크로어레이 칩과 혼성화시키는 단계; 및 4) 단계 3)에서 반응한 마이크로어레이 칩을 분석하고 유전자 발현 정도를 대조군과 비교하는 단계를 거쳐 자성체 나노입자의 내분비계 독성을 평가할 수 있다. According to one embodiment of the present invention, 1) isolating RNA from biological tissues and cells exposed to magnetic nanoparticles as an experimental group; 2) synthesizing cDNA using RNA isolated from the experimental and control groups in step 1) while labeling them with different fluorescent substances; 3) hybridizing the labeled cDNA of step 2) with the microarray chip of the present invention; and 4) endocrine toxicity of magnetic nanoparticles can be evaluated by analyzing the microarray chip reacted in step 3) and comparing the level of gene expression with the control group.

본 발명의 다른 실시형태에 따르면, 1) 실험군으로서 자성체 나노입자에 노출된 생체 조직 및 세포에서 RNA를 분리하는 단계; 2) 단계 1)의 실험군 및 대조군에서 분리된 RNA를 대상으로 본 발명의 바이오마커 유전자에 상보적인 프라이머 쌍을 이용하여 Real-time RT-PCR(Reverse transcript polymerase chain reaction)을 수행하는 단계; 및 3) 단계 2)의 유전자 산물을 정량적으로 실험군과 대조군에서 비교 분석하는 단계를 거쳐 자성체 나노입자의 내분비계 독성을 평가할 수 있다.According to another embodiment of the present invention, 1) isolating RNA from biological tissues and cells exposed to magnetic nanoparticles as an experimental group; 2) Performing real-time RT-PCR (Reverse transcript polymerase chain reaction) on the RNA isolated from the experimental and control groups in step 1) using a primer pair complementary to the biomarker gene of the present invention; and 3) the endocrine toxicity of magnetic nanoparticles can be evaluated by quantitatively comparing and analyzing the gene products of step 2) in the experimental and control groups.

보다 구체적으로 인슐린수용체 물질(Insulin receptor substrate, IRS) 유전자의 발현이 감소하고, 포도당 운반체(Glucose transporter, GLUT; Solute carrier family) 또는 글리코겐 합성효소 인산화효소(Glycogen synthetase kinase, GSK) 유전자의 발현이 증가하는 경우, 자성체 나노입자는 내분비계에 독성이 존재한다고 평가할 수 있다.More specifically, the expression of the insulin receptor substrate (IRS) gene decreases, and the expression of the glucose transporter (GLUT; Solute carrier family) or glycogen synthetase kinase (GSK) gene increases. In this case, magnetic nanoparticles can be evaluated as toxic to the endocrine system.

본 발명의 또 다른 실시형태에 따르면, 1) 실험군으로서 자성체 나노입자에 노출된 생체 조직 및 세포에서 단백질 혹은 폴리펩티드를 분리하는 단계; 2) 단계 1)의 실험군 및 대조군에서 분리된 단백질 혹은 폴리펩티드를 바이오틴화하는 단계; 3) 단계 2의 단백질 및 폴리펩티드를 본 발명의 단백질 칩과 혼성화시키는 단계; 4) 단계 3)에서 혼성화된 단백질 칩에 탐침 물질을 처리하여 발광 반응시키는 단계; 및 5) 단계 4)에서 반응한 단백질 칩을 분석하고 실험군과 대조군을 비교하는 단계를 거쳐 자성체 나노입자의 내분비계 독성을 평가할 수 있다.According to another embodiment of the present invention, 1) isolating proteins or polypeptides from biological tissues and cells exposed to magnetic nanoparticles as an experimental group; 2) biotinylating the protein or polypeptide isolated from the experimental group and control group in step 1); 3) hybridizing the proteins and polypeptides of step 2 with the protein chip of the present invention; 4) treating the protein chip hybridized in step 3) with a probe material to cause a luminescence reaction; and 5) endocrine toxicity of magnetic nanoparticles can be evaluated by analyzing the protein chip reacted in step 4) and comparing the experimental group and the control group.

본 발명의 또 다른 실시형태에 따르면, 1) 실험군으로서 자성체 나노입자에 노출된 생체 조직 및 세포에서 단백질 혹은 폴리펩티드를 분리하는 단계; 2) 단계 1)의 실험군 및 대조군에서 분리된 단백질 혹은 폴리펩티드를 대상으로 본 발명의 바이오마커에 특이적으로 반응하는 항체를 이용하여 단백질흡입법을 수행하는 단계; 및 3) 단계 2)의 결과를 정량적으로 실험군과 대조군에서 비교 분석하는 단계를 거쳐 자성체 나노입자의 내분비계 독성을 평가할 수 있다.According to another embodiment of the present invention, 1) isolating proteins or polypeptides from biological tissues and cells exposed to magnetic nanoparticles as an experimental group; 2) performing a protein absorption method on the protein or polypeptide isolated from the experimental group and control group in step 1) using an antibody that specifically reacts with the biomarker of the present invention; and 3) the endocrine toxicity of magnetic nanoparticles can be evaluated by quantitatively comparing and analyzing the results of step 2) in the experimental and control groups.

보다 구체적으로 인슐린수용체 물질(Insulin receptor substrate, IRS) 단백질 혹은 폴리펩티드의 발현이 감소하고, 포도당 운반체(Glucose transporter, GLUT; Solute carrier family) 또는 글리코겐 합성효소 인산화효소(Glycogen synthetase kinase, GSK) 단백질 혹은 폴리펩티드의 발현이 증가하는 경우, 자성체 나노입자는 내분비계 독성이 존재한다고 평가할 수 있다.More specifically, the expression of insulin receptor substrate (IRS) protein or polypeptide is decreased, and the expression of glucose transporter (GLUT; Solute carrier family) or glycogen synthetase kinase (GSK) protein or polypeptide is decreased. If the expression of is increased, the magnetic nanoparticles can be assessed as having endocrine toxicity.

본 발명의 또 다른 실시형태에서 상기 자성체 나노입자의 내분비계 독성 평가시에는, 발린, 메티오닌, 페닐알라닌, 류신 및 라이신의 대사체 중 하나 이상의 함량 분석; 당 자극에 의한 인슐린 분비 변화의 분석; 및 세포내 인슐린 소낭(Insulin vesicle)의 분석으로 이루어진 군에서 하나 이상을 선택하여 조사하는 단계; 및 대조군과 비교하는 단계를 추가로 포함할 수 있다.In another embodiment of the present invention, when evaluating the endocrine toxicity of the magnetic nanoparticles, the content of one or more of the metabolites of valine, methionine, phenylalanine, leucine, and lysine is analyzed; Analysis of changes in insulin secretion due to glucose stimulation; and analyzing intracellular insulin vesicles by selecting one or more from the group to investigate; And it may further include a step of comparing with a control group.

보다 구체적으로 발린(Valine, Val), 메티오닌(Methionine, Met), 페닐알라닌(Phenylalanine, Phe), 류신(Leucine, Leu) 및 라이신(Lysine, Lys)의 대사체 중 하나 이상의 함량 분석은 GC-MS 분석을 통해 측정될 수 있으며, 발린, 메티오닌 및 페닐알라닌에서 선택된 하나 이상의 대사체가 감소하거나, 류신 및 라이신에서 선택된 하나 이상의 대사체가 증가하는 경우 자성체 나노입자의 내분비계 독성이 존재한다고 평가할 수 있다.More specifically, the content analysis of one or more of the metabolites of valine (Val), methionine (Methionine, Met), phenylalanine (Phe), leucine (Leu), and lysine (Lysine) was performed using GC-MS analysis. It can be measured through, and if one or more metabolites selected from valine, methionine, and phenylalanine decrease, or one or more metabolites selected from leucine and lysine increase, it can be assessed that endocrine toxicity of magnetic nanoparticles exists.

또한, 보다 구체적으로 당 자극에 의한 인슐린 분비 변화의 분석은 저농도의 포도당과 고농도의 포도당을 순차적으로 처리한 세포 시료에서 나타나는 인슐린의 분비 변화를 인슐린에 특이적으로 반응하는 항체를 이용한 ELISA(Enzyme linked immunoassay) 분석을 통해 측정될 수 있으며, 포도당의 농도 차이에 의한 인슐린의 분비 변화가 대조군에 비해 감소하는 경우 자성체 나노입자는 내분비계 독성이 존재한다고 평가할 수 있다.In addition, more specifically, the change in insulin secretion due to glucose stimulation can be analyzed by measuring the change in insulin secretion in cell samples sequentially treated with low and high concentrations of glucose using ELISA (Enzyme linked) using an antibody that specifically reacts to insulin. It can be measured through immunoassay analysis, and if the change in insulin secretion due to the difference in glucose concentration decreases compared to the control group, the magnetic nanoparticles can be assessed as having endocrine toxicity.

또한, 보다 구체적으로 세포내 인슐린 소낭은 전자현미경을 통해 분석할 수 있으며, 본 발명의 도 9에 나타난 바와 같이 인슐린 소낭 내에 인슐린이 저장되지 않은 경우 자성체 나노입자의 내분비계 독성이 존재한다고 평가할 수 있다.In addition, more specifically, intracellular insulin vesicles can be analyzed through an electron microscope, and as shown in Figure 9 of the present invention, if insulin is not stored in the insulin vesicles, it can be assessed that the endocrine toxicity of the magnetic nanoparticles exists. .

실험예Experiment example

하기의 실험예들은 본 발명에 따른 각 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.The following experimental examples are intended to provide experimental examples commonly applied to each embodiment according to the present invention.

[실험예 1] 세포의 배양 및 자성체 나노입자의 처리[Experimental Example 1] Cell culture and treatment of magnetic nanoparticles

마우스 유래 세포주인 MIN-6는 대표적인 인슐린 분비 세포주로 당의 농도를 포함하여 배양 환경에 따른 내분비세포의 특징을 정교하게 반영할 수 있기 때문에 상기 세포주를 대상으로 자성체 나노입자의 내분비계 독성을 평가하였다. 세포는 10% 우태혈청(Fetal bovine serum, FBS, Gibco, USA), 100 units/ml 페니실린, 100μg/mL 스트렙토마이신(Gibco, USA) 및 100μM의 β멜캅토에탄올(Sigma-Aldrich, USA)이 포함된 RPMI1640(Gibco, USA) 배지를 이용하여 37℃에서 90% 습도 및 5% CO2 대기조건에서 배양되었다. MIN-6 세포는 1×106cells/100mm의 농도로 분주하였고, 혈청 및 항생제가 배제된 배양 조건에서 0.01, 0.1 및 1.0μg/mL의 농도로 자성체 나노입자를 처리하였다. 자성체 나노입자가 처리되지 않은 대조군의 세포와 24시간 동안 자성체 나노입자가 처리된 실험군의 세포는 각각 PBS(phosphate buffered saline)로 2회 세척되었고, 0.25% trypsin/0.1% EDTA (GIBCO, USA)를 사용하여 수거되었다.MIN-6, a mouse-derived cell line, is a representative insulin-secreting cell line and can precisely reflect the characteristics of endocrine cells depending on the culture environment, including sugar concentration. Therefore, the endocrine toxicity of magnetic nanoparticles was evaluated for this cell line. Cells contained 10% fetal bovine serum (FBS, Gibco, USA), 100 units/ml penicillin, 100 μg/mL streptomycin (Gibco, USA), and 100 μM β-mercaptoethanol (Sigma-Aldrich, USA). The cells were cultured using RPMI1640 (Gibco, USA) medium at 37°C under 90% humidity and 5% CO 2 atmospheric conditions. MIN-6 cells were distributed at a concentration of 1×10 6 cells/100mm and treated with magnetic nanoparticles at concentrations of 0.01, 0.1, and 1.0μg/mL under culture conditions that excluded serum and antibiotics. The cells of the control group, which were not treated with magnetic nanoparticles, and the cells of the experimental group, which were treated with magnetic nanoparticles for 24 hours, were each washed twice with PBS (phosphate buffered saline) and washed with 0.25% trypsin/0.1% EDTA (GIBCO, USA). collected after use.

[실험예 2] RNA의 분리 및 정제[Experimental Example 2] Isolation and purification of RNA

대조군의 세포와 자성체 나노입자가 처리된 세포의 RNA는 TRIzol(Sigma-Aldrich, USA)과 RNeasy kit(Qiagen, USA)를 병행 사용하여 분리 및 정제를 진행하였다. 보다 구체적으로, [실험예 1]에서 수거된 세포에 TRIzol을 1mL 용량으로 처리하고, 이후 클로로포름을 추가한 후 4℃에서 5분간 방치하였다. 전체 RNA는 600μL 이소프로판올을 사용하여 침전시켰고, 침전된 RNA 펠렛은 80%과 70% 에탄올로 각 1회 세척한 후, DEPC(Diethyl Pyrocarbonate)가 처리된 RNase-free water를 사용하여 RNA를 용출하였다. NanoDrop(Thermo Science, USA) 및 전기영동을 통해 정량-정성 평가를 실시하였다. 마이크로어레이 및 PCR 실험을 위해 광학밀도(O.D.) 260/230 및 260/280 값이 1.9 내지 2.0의 RNA를 사용하였고, 순도가 낮은 RNA는 RNeasy kit을 이용하여 제조자의 매뉴얼에 따라 정제를 수행하였다.RNA from control cells and cells treated with magnetic nanoparticles was isolated and purified using TRIzol (Sigma-Aldrich, USA) and RNeasy kit (Qiagen, USA) in parallel. More specifically, the cells collected in [Experimental Example 1] were treated with 1 mL of TRIzol, then chloroform was added and left at 4°C for 5 minutes. Total RNA was precipitated using 600 μL isopropanol, and the precipitated RNA pellet was washed once each with 80% and 70% ethanol, and then RNA was eluted using RNase-free water treated with DEPC (Diethyl Pyrocarbonate). Quantitative-qualitative evaluation was performed using NanoDrop (Thermo Science, USA) and electrophoresis. For microarray and PCR experiments, RNA with an optical density (O.D.) of 260/230 and 260/280 of 1.9 to 2.0 was used, and low-purity RNA was purified using an RNeasy kit according to the manufacturer's manual.

[실험예 3] Semi-q 및 real-time RT-PCR[Experimental Example 3] Semi-q and real-time RT-PCR

RNA 샘플은 역전사 키트(Reverse-transcription kit)를 이용하여 cDNA로 역전사를 수행한 후에 각 유전자에 특이적으로 결합할 수 있는 프라이머 쌍으로 증폭하였다. 증폭된 PCR 산물은 1.0% 아가로즈 겔을 이용한 전기영동으로 크기에 따른 분리 작업을 수행하고, 핵산 착색 시약으로 염색한 후 이미지 분석 소프트웨어를 이용하여 정량화 하였다. 보다 정확한 유전자 발현 수준의 정량화를 위해 유전자 특이적 결합이 가능한 프라이머 쌍, SYBR Green Real-time PCR kit 및 DNA Engine(Bio-Rad, USA)를 사용하여 유전자 증폭을 진행하였고, MJ Opticon Monitor Version 3.1(Bio-Rad, USA)을 사용하여 분석하였다.The RNA sample was reverse-transcribed into cDNA using a reverse-transcription kit and then amplified with a primer pair that could specifically bind to each gene. The amplified PCR product was separated according to size by electrophoresis using a 1.0% agarose gel, stained with a nucleic acid staining reagent, and then quantified using image analysis software. For more accurate quantification of gene expression levels, gene amplification was performed using primer pairs capable of gene-specific binding, SYBR Green Real-time PCR kit, and DNA Engine (Bio-Rad, USA), and MJ Opticon Monitor Version 3.1 ( It was analyzed using Bio-Rad, USA).

[실험예 4] 마이크로어레이 및 데이터 분석[Experimental Example 4] Microarray and data analysis

자성체 나노입자 처리에 따른 유전자 발현 프로파일을 구축하기 위해 마이크로어레이 칩에 [실험예 2] 방식으로 분리된 RNA를 혼성화하였다. 보다 구체적으로 표지된 20μg의 RNA를 698,000 유전자 특이 프로브가 포함된 Mouse Gene 2.0 ST Array(Affymetrix, USA) 마이크로어레이 칩에 혼성화를 진행하고, 세척액을 이용하여 다회 세척을 진행하였다. 세척 후 혼성화된 마이크로어레이 칩을 스캐너를 통해 스캔하고, 이를 Transcriptome Analysis Console (TAC) Software(Thermo Fisher Scientific, USA)를 통해 분석하여 유전자 발현의 변화를 검토하였다.In order to construct a gene expression profile according to magnetic nanoparticle treatment, RNA isolated was hybridized to a microarray chip in the manner of [Experimental Example 2]. More specifically, 20 μg of labeled RNA was hybridized to a Mouse Gene 2.0 ST Array (Affymetrix, USA) microarray chip containing 698,000 gene-specific probes, and washed multiple times using a washing solution. After washing, the hybridized microarray chip was scanned through a scanner, and analyzed through Transcriptome Analysis Console (TAC) Software (Thermo Fisher Scientific, USA) to examine changes in gene expression.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것이나, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples illustrate the present invention, but the content of the present invention is not limited to the following examples.

하기 실시예에서는 자성 나노 입자로는 당뇨병을 포함한 다양한 질병의 진단에 임상적으로 적용하기 위해 MR 영상 나노 조영제로 활용되는 페루목시톨(ferumoxytol; Feraheme, AMAG Pharmaceuticals, USA)을 사용하였다.In the following examples, ferumoxytol (Feraheme, AMAG Pharmaceuticals, USA), which is used as an MR imaging nano contrast agent for clinical application in the diagnosis of various diseases including diabetes, was used as the magnetic nanoparticle.

[실시예 1][Example 1]

페루목시톨을 사용하여 췌장 β세포에 미치는 영향을 평가하였다. 다양한 농도의 페루목시톨을 무혈청 배양액에 직접 첨가하고, MIN-6 세포를 페루목시톨이 함유된 배지에서 12시간 동안 배양했다. 그런 다음 세포를 인산 완충 식염수(PBS, GIBCO, USA)로 세척하고 3, 3'-디아미노벤지딘(DAB)으로 보강된 프러시안 블루 염색을 수행하여 페루목시톨의 MIN-6 세포에 대한 세포 표지 효율을 평가했다. 동일한 부피의 염산과 페로시안화칼륨(potassium ferrocyanide) 용액을 혼합하여 제조한 시약을 세포에 처리하고, 적정 농도의 DAB 용액을 처리하여 프러시안 블루 염색을 강하게 발색하였다. 세포 이미지는 콘트라스트 현미경과 이미지 캡처 시스템을 사용하여 촬영했다.Ferumoxitol was used to evaluate its effect on pancreatic β cells. Various concentrations of ferumoxitol were added directly to the serum-free culture medium, and MIN-6 cells were cultured in medium containing ferumoxitol for 12 hours. The cells were then washed with phosphate-buffered saline (PBS, GIBCO, USA) and 3,3'-diaminobenzidine (DAB)-enhanced Prussian blue staining was performed on MIN-6 cells in ferumoxitol. Labeling efficiency was evaluated. The cells were treated with a reagent prepared by mixing equal volumes of hydrochloric acid and potassium ferrocyanide solution, and then treated with a DAB solution of an appropriate concentration to produce strong Prussian blue staining. Cell images were taken using a contrast microscope and an image capture system.

[실시예 2][Example 2]

세포 생존력을 평가하기 위해 제조업체의 프로토콜에 따라 발색 분석 키트를 사용하여 MTS 분석을 수행했다. 간단히 말해서, 96-웰 플레이트에 MIN-6 세포를 배양하고 다양한 농도의 페루목시톨을 12시간, 24시간, 48시간 동안 처리했다. 각 시간 배양 후, 100μL의 배양 배지가 들어있는 플레이트의 각 웰에 20μL의 MTS 용액을 첨가하고 분석 플레이트를 37℃에서 4시간 동안 방치하였다. 그런 다음 490nm에서 GloMax-Multi Plus 검출 시스템을 사용하여 흡광도를 측정하고 신호 값을 배경값으로 정규화했다. 세포의 증식률은 제조사의 프로토콜에 따라 Alamar Blue 염색을 사용하여 평가했다. 세포를 48-웰 플레이트에서 배양하고 페루목시톨을 다양한 농도로 처리했다. 24시간, 48시간, 72시간 후 농축된 Alamar Blue 용액을 각 웰에 직접 첨가한 다음 37℃에서 4시간 동안 광으로부터 차폐하면서 반응이 일어나도록 방치하였다. 형광 강도는 570/585nm(여기/발광)에서 측정하고 신호 값은 배경값으로 정규화했다.To assess cell viability, MTS assay was performed using a chromogenic assay kit according to the manufacturer's protocol. Briefly, MIN-6 cells were cultured in 96-well plates and treated with various concentrations of ferumoxitol for 12, 24, and 48 hours. After each hour of incubation, 20 μL of MTS solution was added to each well of the plate containing 100 μL of culture medium, and the assay plate was left at 37°C for 4 hours. Absorbance was then measured using a GloMax-Multi Plus detection system at 490 nm and signal values were normalized to background. The proliferation rate of cells was assessed using Alamar Blue staining according to the manufacturer's protocol. Cells were cultured in 48-well plates and treated with ferumoxitol at various concentrations. After 24, 48, and 72 hours, the concentrated Alamar Blue solution was added directly to each well and then allowed to react at 37°C for 4 hours while shielded from light. Fluorescence intensity was measured at 570/585 nm (excitation/emission) and signal values were normalized to background.

[실시예 3][Example 3]

투과 전자 현미경(TEM) 및 자기 공명(MR) 이미지 관찰Transmission electron microscopy (TEM) and magnetic resonance (MR) image observation

TEM으로 세포 내 소기관을 관찰하기 위해 0.25% trypsin/0.1% EDTA를 사용하여 세포를 채취하고 PBS로 두 번 세척했다. 그런 다음 세포를 카르노프스키 고정 용액(1% 파라포름알데히드, 2% 글루타르알데히드, 2mM 염화칼슘)으로 24시간 동안 고정하고 카코딜레이트 버퍼로 세척했다. 고정 후 세포를 0.05% 페로시아나이드 칼륨(K4Fe(CN)6)을 함유한 1% 사산화오스뮴(OsO4) 용액에서 90분 동안 반응시켰다. 그 후, Reichert Jung Ultracul S를 사용하여 세포를 절편화 했다. 세포를 우라닐아세테이트와 구연산납으로 염색한 후 TEM(JEM-1400, JEOL Ltd., Japan)으로 관찰하고 사진을 촬영했다. 페르목시톨로 표지된 MIN-6 세포를 7-T MR(Magnetic Resonance) 이미징 시스템(Bruker-Biospin, Swiss)과 ParaVision 소프트웨어(Ver. 5.0, Bruker-Biospin, Swiss)로 관찰했다. MR과 광학 이미지 간의 관계를 관찰하기 위해 세포를 3.0% 아가로스 젤에 1Х5 cells/group으로 설정하고 디지털 카메라를 사용하여 촬영했다.To observe intracellular organelles by TEM, cells were collected using 0.25% trypsin/0.1% EDTA and washed twice with PBS. Cells were then fixed with Karnofsky fixation solution (1% paraformaldehyde, 2% glutaraldehyde, 2mM calcium chloride) for 24 h and washed with cacodylate buffer. After fixation, the cells were reacted for 90 minutes in a 1% osmium tetroxide (OsO 4 ) solution containing 0.05% potassium ferrocyanide (K 4 Fe(CN) 6 ). Afterwards, cells were sectioned using Reichert Jung Ultracul S. Cells were stained with uranyl acetate and lead citrate, observed using TEM (JEM-1400, JEOL Ltd., Japan), and photographs were taken. Permoxitol-labeled MIN-6 cells were observed with a 7-T Magnetic Resonance (MR) imaging system (Bruker-Biospin, Swiss) and ParaVision software (Ver. 5.0, Bruker-Biospin, Swiss). To observe the relationship between MR and optical images, cells were set at 1Х 5 cells/group in 3.0% agarose gel and photographed using a digital camera.

[실시예 4][Example 4]

RNA 추출 및 마이크로어레이 분석RNA extraction and microarray analysis

페루목시톨 처리 및 미처리 MIN-6 세포에서 RNA를 분리하고, 마이크로어레이 및 PCR 실험을 위해 정제했다. 분리된 RNA는 분광광도계(Eppendorf, Germany)와 BioAnalyzer(Agilent, USA)로 정량화했다. 260/230 및 260/280에서 광학 밀도(O.D.)의 비율에 따라 1.9 내지 2.0 범위의 RNA 순도를 마이크로어레이 및 PCR 실험에 사용했다. 마이크로어레이는 전사 프로파일링 구성을 위해 유전자 칩(Mouse Gene 2.0 ST Array)을 사용하여 수행했다. 염료로 표지된 RNA 산물을 하룻밤 동안 혼성화시킨 후 반응칩을 여러 번 세척하고 마이크로어레이 칩 스캐너(Affymetrix, USA)로 이미지를 스캔했다. DEG(Differentiated Expressed Gene) 데이터 세트는 2.0배의 발현 변화를 컷오프로 생성했다.RNA was isolated from ferumoxitol-treated and untreated MIN-6 cells and purified for microarray and PCR experiments. The isolated RNA was quantified by spectrophotometry (Eppendorf, Germany) and BioAnalyzer (Agilent, USA). RNA purities ranging from 1.9 to 2.0 depending on the ratio of optical density (O.D.) at 260/230 and 260/280 were used for microarray and PCR experiments. Microarrays were performed using a gene chip (Mouse Gene 2.0 ST Array) to construct transcriptional profiling. After hybridizing the dye-labeled RNA product overnight, the reaction chip was washed several times and images were scanned with a microarray chip scanner (Affymetrix, USA). Differentiated expressed gene (DEG) data sets were generated with a cutoff of 2.0-fold expression change.

[실시예 5][Example 5]

Semi-qRT 및 Real-time PCR 실험 분석Semi-qRT and Real-time PCR experiment analysis

유전자의 전사 수준을 정량화하기 위해 역전사 시스템(GenDEPOT, USA)을 사용하여 분리된 RNA를 역전사했다. 이러한 cDNA 생성물은 semi-qRT 및 Real-time PCR 분석을 위해 유전자 특이적 프라이머 쌍을 사용하여 증폭되었다. 증폭된 semi-qRT PCR 생성물을 1% 아가로스 겔에서 분리하고 전기영동 밴드의 강도를 Multi Gauge 3.0 소프트웨어(Fujifilm, Japan)로 계산했다. Real-time PCR은 상용 키트(iNtRON Biotechnology, Republic of Korea)와 ABI Prism 7000(Applied Biosystems, USA)을 사용하여 수행했다. 역치 주기(Ct)는 배경 수준보다 현저히 높은 형광 값인 지점으로 결정하였으며, 7000 System SDS 소프트웨어(Applied Biosystems, USA)를 사용하여 용융 곡선을 생성하여 데이터를 분석했다. 전사의 상대적 정량화는 2-ddCt 방법을 사용하여 평가했다.To quantify the transcription level of genes, the isolated RNA was reverse transcribed using a reverse transcription system (GenDEPOT, USA). These cDNA products were amplified using gene-specific primer pairs for semi-qRT and real-time PCR analysis. The amplified semi-qRT PCR products were separated on a 1% agarose gel, and the intensity of the electrophoretic bands was calculated using Multi Gauge 3.0 software (Fujifilm, Japan). Real-time PCR was performed using a commercial kit (iNtRON Biotechnology, Republic of Korea) and ABI Prism 7000 (Applied Biosystems, USA). The threshold cycle (Ct) was determined as the point at which the fluorescence value was significantly higher than the background level, and the data were analyzed by generating a melting curve using 7000 System SDS software (Applied Biosystems, USA). Relative quantification of transcription was assessed using the 2 -ddCt method.

[실시예 6][Example 6]

항체 기반 단백질 칩 및 단백질흡입법 분석Antibody-based protein chip and protein absorption method analysis

단백질 발현 프로파일링을 구축하기 위해, 제조업체의 가이드에 따라 상용 서비스를 사용하여 항체 기반 단백질 어레이를 수행했다. 간단히 말해서, 채취한 세포를 PBS로 세척하고 용해 완충액에서 10분 동안 균질화했다. BCA 분석으로 단백질 농도를 측정한 후, 이들 샘플을 단백질의 비오틴화를 위해 비오틴 표지 시약과 함께 배양하고 사전에 시약이 처리된 어레이에 12시간 동안 혼성화했다. 그런 다음 어레이를 streptavadin-conjugated peroxidase로 반응하고 필름에 현상하기 위해 기질을 어레이 멤브레인에 추가했다. 데이터 스캔 및 분석 후, 각 어레이의 양성 및 음성 대조 스팟을 사용하여 스팟 신호를 정규화했다. 단백질흡입법을 위해 폴리-아크릴아미드 겔을 사용하여 단백질을 분리하고 폴리-비닐리덴 디 플루오라이드(PVDF, Thermo Fisher Scientific, USA) 멤브레인으로 옮겼다. 2% 소 혈청 알부민(BSA) 용액으로 차단한 후, 멤브레인을 각각의 1차 항체와 함께 4℃에서 하룻밤 동안 처리했다. 그 후, 멤브레인을 Tween-20을 함유한 PBS로 세척하고 2차 염소 항-토끼 항체(Santa Cruz Biotechnology, USA)로 배양했다. 멤브레인에 ECL(Enhanced chemiluminescent) 용액을 첨가하고 밴드의 시각화를 위해 필름에 노출시켰다. 강도 데이터는 이미지 분석 소프트웨어로 계산하고 분석했다.To establish protein expression profiling, antibody-based protein arrays were performed using a commercial service following the manufacturer's guide. Briefly, harvested cells were washed with PBS and homogenized in lysis buffer for 10 min. After measuring the protein concentration by BCA analysis, these samples were incubated with biotin labeling reagent for protein biotinylation and hybridized to the array previously treated with the reagent for 12 hours. The array was then reacted with streptavadin-conjugated peroxidase and the substrate was added to the array membrane for development into film. After data scanning and analysis, spot signals were normalized using positive and negative control spots from each array. For protein adsorption, proteins were separated using a poly-acrylamide gel and transferred to a poly-vinylidene difluoride (PVDF, Thermo Fisher Scientific, USA) membrane. After blocking with 2% bovine serum albumin (BSA) solution, the membranes were treated with the respective primary antibodies overnight at 4°C. Afterwards, the membrane was washed with PBS containing Tween-20 and incubated with secondary goat anti-rabbit antibody (Santa Cruz Biotechnology, USA). Enhanced chemiluminescent (ECL) solution was added to the membrane and exposed to film for visualization of the bands. Intensity data were calculated and analyzed with image analysis software.

[실시예 7][Example 7]

아미노산 프로파일링을 위한 가스 크로마토그래피-질량 분석법(GC-MS)Gas chromatography-mass spectrometry (GC-MS) for amino acid profiling

GC-MS를 사용하여 아미노산 프로파일링을 구축하기 위해 샘플을 N-메틸-트리메틸실릴트리플루오로아세타미드(MSTFA)로 유도체화했다. 유도체화 절차 후, 가스 크로마토그래프 및 질량 선택 검출기와 인터페이스된 애질런트 GC-MS 시스템(Agilent, USA)을 사용하여 샘플을 분석했다. 캐리어 가스인 헬륨은 모세관 컬럼의 정지 단계를 통해 시료와 함께 일정한 흐름 모드로 흐르고 오븐 온도는 150℃에서 300℃로 5℃분 증가율로 설정되었다. 내부 표준물질의 체류 시간 및 계수와 비교하여 아미노산의 질량을 확인했다. 페루목시톨로 처리된 세포에서 선택된 아미노산(예를 들어 발린, 메티오닌, 페닐알라닌, 류신 및 라이신)을 대조군의 평균값으로 정규화하고 도표로 설명했다.Samples were derivatized with N-methyl-trimethylsilyltrifluoroacetamide (MSTFA) to establish amino acid profiling using GC-MS. After the derivatization procedure, the samples were analyzed using an Agilent GC-MS system (Agilent, USA) interfaced with a gas chromatograph and mass selective detector. Helium as a carrier gas flowed in constant flow mode with the sample through the stationary stage of the capillary column, and the oven temperature was set at an increment rate of 5°C min from 150°C to 300°C. The mass of the amino acid was confirmed by comparison with the retention time and coefficient of the internal standard. Selected amino acids (e.g. valine, methionine, phenylalanine, leucine, and lysine) in cells treated with ferumoxitol were normalized to the average value of the control and depicted in the diagram.

[실시예 8][Example 8]

포도당 자극 인슐린 분비능(Glucose-Stimulated Insulin Secretion, GSIS) 분석Glucose-Stimulated Insulin Secretion (GSIS) Analysis

MIN-6 세포의 인슐린 분비 기능을 평가하기 위해 60 및 300 mg/dL 포도당 농도를 사용하여 GSIS를 수행했다. 간단히 말해, MIN-6 세포를 웰당 1Х104 세포로 인서트 웰 플레이트(Merck Millipore, USA)에 배양하고, 60 mg/dL 포도당과 함께 37℃에서 90분 동안 크렙스-링거 버퍼(Krebs-Ringer buffer, KRB; 129 mM NaCl, 4.8 mM KCl, 2.5 mM CaCl2, 1.2mM KH2 PO4, 5mM NaHCO3, 10 mM HEPES 및 0.2% BSA)를 사용하여 사전 배양하였다. 사전 배양 및 PBS로 세척한 후, 60 mg/dL 글루코스-KRB로 1시간 동안 추가 배양하고, 300 mg/dL 글루코스-KRB로 1시간 동안 세포를 배양했다. 상층액으로의 인슐린 분비는 상용 ELISA 키트로 측정하였으며, 자극 지수는 300 mg/dL 글루코스-KRB의 자극된 인슐린 방출과 60 mg/dL 글루코스-KRB의 기저 인슐린 방출의 비율로 나타냈다.To evaluate the insulin secretory function of MIN-6 cells, GSIS was performed using glucose concentrations of 60 and 300 mg/dL. Briefly, MIN-6 cells were cultured in insert well plates (Merck Millipore, USA) at 1Х10 4 cells per well and incubated in Krebs-Ringer buffer (KRB) for 90 min at 37°C with 60 mg/dL glucose. ; 129mM NaCl, 4.8mM KCl, 2.5mM CaCl 2 , 1.2mM KH 2 PO 4 , 5mM NaHCO 3 , 10mM HEPES and 0.2% BSA). After pre-incubation and washing with PBS, cells were further incubated with 60 mg/dL glucose-KRB for 1 h, and cells were incubated with 300 mg/dL glucose-KRB for 1 h. Insulin secretion into the supernatant was measured using a commercial ELISA kit, and the stimulation index was expressed as the ratio of stimulated insulin release with 300 mg/dL glucose-KRB and basal insulin release with 60 mg/dL glucose-KRB.

통계 분석statistical analysis

실험 그룹 간의 통계적 차이는 GraphPad Prism 5(GraphPad Software, USA)를 사용하여 일원 분산 분석(ANOVA)과 함께 Tukey HSD(Honestly Significant Difference)으로 사후 검증하였다. 이들 데이터는 독립적인 실험 세트에서 얻었으며 평균 ± 표준편차(SD)로 표시되었다. 그룹 간의 통계적 차이는 p-value ≤ 0.05에서 결정되었다.Statistical differences between experimental groups were post hoc tested with Tukey Honestly Significant Difference (HSD) along with one-way analysis of variance (ANOVA) using GraphPad Prism 5 (GraphPad Software, USA). These data were obtained from an independent set of experiments and are expressed as mean ± standard deviation (SD). Statistical differences between groups were determined at p -value ≤ 0.05.

결과 및 토론Results and Discussion

페루목시톨 처리된 MIN-6 세포의 라벨링 효율 및 MR 영상 검출Labeling efficiency and MR imaging detection of ferumoxitol-treated MIN-6 cells

본 연구에서는 페루목시톨이 빈혈에 대한 철분 보충제로서 기존에 FDA에서 임상 적용을 승인 받은 대표적인 자성체 나노입자이기 때문에 췌장 β세포에 대한 자성체 나노입자의 효과를 평가하기 위한 대표적인 나노입자로 사용했다. 마우스 췌장 β세포주인 MIN-6에 0.01, 0.1, 1.0 mg/mL의 페루목시톨을 12시간 동안 처리한 후, DAB으로 보강된 프러시안 블루 염색법을 통해 세포 표지 효율을 평가했다. 도 1a에서 볼 수 있듯이 페루목시톨의 흡수량은 용량 의존적으로 크게 증가했다. 또한, 1.0 mg/mL 페루목시톨로 처리한 MIN-6 세포에서는 페루목시톨의 세포질 축적이 검출되었지만, 핵에서는 축적이 검출되지 않았다. MRI 민감도를 평가하기 위해 MIN-6 세포에 페루목시톨 용량을 증가시켜 표지하고 세포 펠릿을 아가로스 플레이트에 포획했고, 이미지는 T2* 가중치 조건에서 7-T MR 이미징 시스템을 사용하여 얻었다. 1.0 mg/mL에서 세포는 페루목시톨에 의해 최대로 표지되어 T2* 가중 MR 영상에 따라 선명한 대비를 제공하는 반면, 대조군에서는 대조가 보이지 않았다. 이러한 데이터를 종합하면 고용량 페루목시톨은 MIN-6 세포에서 MR 검출에 대한 표지 효율 증대를 유도하지만, 세포 활동에 영향을 미칠 가능성이 있는 세포질 축적도 나타났다.In this study, ferumoxitol is a representative magnetic nanoparticle that has previously been approved for clinical application by the FDA as an iron supplement for anemia, so it was used as a representative nanoparticle to evaluate the effect of magnetic nanoparticles on pancreatic β cells. MIN-6, a mouse pancreatic β-cell line, was treated with 0.01, 0.1, and 1.0 mg/mL of ferumoxitol for 12 hours, and cell labeling efficiency was evaluated using DAB-enhanced Prussian blue staining. As shown in Figure 1a, the absorption of ferumoxitol increased significantly in a dose-dependent manner. Additionally, cytoplasmic accumulation of ferumoxitol was detected in MIN-6 cells treated with 1.0 mg/mL feumoxitol, but no accumulation was detected in the nucleus. To evaluate MRI sensitivity, MIN-6 cells were labeled with increasing doses of ferumoxitol, cell pellets were captured in agarose plates, and images were acquired using a 7-T MR imaging system under T2 * weighting conditions. At 1.0 mg/mL, cells were maximally labeled by ferumoxitol, providing sharp contrast according to T2 * weighted MR images, whereas no contrast was visible in the control group. Taken together, these data suggest that high-dose ferumoxitol induces increased labeling efficiency for MR detection in MIN-6 cells, but also shows cytoplasmic accumulation, which is likely to affect cellular activity.

페루목시톨 처리된 MIN-6 세포의 증식률 및 생존율 평가 Evaluation of proliferation and survival rates of ferumoxitol-treated MIN-6 cells

β세포주의 세포 증식률과 생존율을 평가하기 위해 다양한 용량의 페루목시톨이 처리된 MIN-6 세포로 MTS 및 Alamar Blue 염색 분석을 수행했다. 세포 증식률을 분석한 결과, 48시간과 72시간이라는 긴 시간 동안 페루목시톨을 1.0과 0.1mg/mL 처리한 실험군에서 유의미한 감소가 나타났다(도 1b). 반대로 0.01 mg/mL의 페루목시톨 처리 세포는 조사된 모든 기간에서 세포 증식률에 감지할 수 있는 변화를 보이지 않았으며 대조군과 비슷했다. 세포 증식을 배제한 세포의 생존율 평가에서, 0.01 mg/mL의 페루목시톨이 처리된 실험군에서는 48시간 배양까지 유의미한 세포 사멸이 감지되지 않았으며, 생존율은 대조군 및 DMSO 처리군과 비슷했다(도 1c). 그러나 0.1 및 1.0 mg/mL의 페루목시톨에 노출된 MIN-6 세포는 48시간 배양 후 세포 생존율이 현저히 감소한 것으로 나타났다. 따라서 페루목시톨로 처리된 MIN-6 세포는 세포 생존율과 처리 용량 및 시간 사이에 직접적인 상관관계가 있는 것으로 나타났다. 이러한 데이터는 24시간 이내에서는 고용량의 페루목시톨이 세포 증식률과 생존율에 영향을 미치지 않고 β세포 표지에 사용될 수 있음을 보여준다. 그러나, β세포를 장시간(예를 들어, 48시간 이상) 페루목시톨로 처리할 경우, 고용량 뿐만 아니라 중간 용량에서도 세포 증식률과 생존율에 페루목시톨이 영향을 줄 수 있음을 보여준다.To evaluate the cell proliferation and survival rates of the β-cell line, MTS and Alamar Blue staining analyzes were performed with MIN-6 cells treated with various doses of ferumoxitol. Analysis of the cell proliferation rate showed a significant decrease in the experimental groups treated with 1.0 and 0.1 mg/mL ferumoxitol for long periods of 48 and 72 hours (Figure 1b). In contrast, cells treated with 0.01 mg/mL ferumoxitol showed no detectable change in cell proliferation rate at any time period examined and were similar to the control group. In the evaluation of cell viability excluding cell proliferation, no significant cell death was detected in the experimental group treated with 0.01 mg/mL ferumoxitol until 48 hours of culture, and the survival rate was similar to that of the control and DMSO-treated groups (Figure 1c) ). However, MIN-6 cells exposed to 0.1 and 1.0 mg/mL ferumoxitol showed a significant decrease in cell viability after 48 hours of culture. Therefore, MIN-6 cells treated with ferumoxitol showed a direct correlation between cell viability and treatment dose and time. These data show that high doses of ferumoxitol can be used for β-cell labeling within 24 hours without affecting cell proliferation and survival rates. However, β cells are stored for long periods of time (e.g. When treated with ferumoxitol (more than 48 hours), it shows that ferumoxitol can affect cell proliferation and survival rates not only at high doses but also at medium doses.

페루목시톨 처리된 MIN-6 세포의 전사체 프로파일링Transcriptome profiling of ferumoxitol-treated MIN-6 cells.

세포 평가 데이터에 따르면 고용량의 페루목시톨을 적절한 배양 시간(예를 들어, 최대 12시간)과 함께 사용하면 세포 생존 및 증식에 부정적인 영향 없이 β세포의 표지 및 MR 영상 탐지에 적용할 수 있는 것으로 나타났다. 그러나, 이러한 세포 평가로는 유전자 전사 수준에서 나노 독성을 확인하기에는 불충분했기 때문에, 본 발명자들은 올리고뉴클레오티드 마이크로어레이 시스템을 사용하여 전사체 프로파일을 구축하여 MIN-6 세포에서 페루목시톨 처리에 의해 유도되는 전사 변화를 조사했다. 저용량, 중용량 및 고용량 페루목시톨 처리 그룹은 각각 0.01, 0.1 및 1.0 mg/mL의 페루목시톨로 12시간 동안 처리된 MIN-6 세포를 나타낸다. 신호 강도를 정규화한 후 Expression Console™Software v1.4 (Thermo Fisher Scientific, USA) 프로그램을 사용하여 DEG 분석을 수행했다. 총 35,240개의 기능성 프로브 중 277개가 페루목시톨 처리된 MIN-6 세포에서 전사 변화를 조사했다(도 2a). 124개와 152개의 기능 프로브가 각각 대조군과 비교하여 1.0 mg/mL 페루목시톨 그룹에서 상향 및 하향 발현되었다. 페루목시톨 처리 그룹과 대조군의 발현 프로파일을 비교하여 페루목시톨 처리에 반응하여 유의미한 변화를 보이는 유전자를 확인했다. 상향 발현과 하향 발현을 구분하기 위한 비교 상관관계 도표는 0.1mg/mL 페루목시톨 그룹과 대조군 세포 모두에 비해 1.0mg/mL 페루목시톨 처리 실험군에서 더 높은 차등발현율을 보였다(도 2b). 차등발현율의 상관관계는 1.0 mg/mL 페루목시톨 투여군에서 0.85의 상관계수를 보였고, 0.01 및 0.1mg/mL 페루목시톨 투여군은 각각 0.94 및 0.93의 상관계수를 나타냈다. 이러한 데이터에서 알 수 있듯이, 페루목시톨을 세포 생존 및 증식에 큰 악영향을 미치지 않는 적정 배양 시간으로 사용하더라도 1.0 mg/mL의 페루목시톨 처리는 β세포주에서 전사체 교란의 원인이 될 수 있음을 확인할 수 있었다.Cellular evaluation data suggest that high doses of ferumoxitol can be administered for appropriate incubation times, e.g. It has been shown that it can be applied for labeling and MR imaging detection of β cells without negative effects on cell survival and proliferation when used in combination with up to 12 hours). However, because these cellular assessments were insufficient to identify nanotoxicity at the gene transcription level, we used an oligonucleotide microarray system to construct a transcriptome profile induced by ferumoxitol treatment in MIN-6 cells. We investigated the transcriptional changes that occur. Low-dose, medium-dose, and high-dose ferumoxitol treatment groups represent MIN-6 cells treated with 0.01, 0.1, and 1.0 mg/mL ferumoxitol for 12 hours, respectively. After normalizing the signal intensity, DEG analysis was performed using the Expression Console™Software v1.4 (Thermo Fisher Scientific, USA) program. Of the total 35,240 functional probes, 277 probed for transcriptional changes in ferumoxitol-treated MIN-6 cells (Figure 2A). 124 and 152 functional probes were up- and down-expressed in the 1.0 mg/mL ferumoxitol group compared to the control group, respectively. By comparing the expression profiles of the feumoxitol-treated group and the control group, genes showing significant changes in response to feumoxitol treatment were identified. A comparative correlation plot to distinguish between up- and down-expression showed a higher differential expression rate in the experimental group treated with 1.0 mg/mL ferumoxitol compared to both the 0.1 mg/mL ferumoxitol group and control cells (Figure 2b). . The correlation of differential expression rates showed a correlation coefficient of 0.85 in the 1.0 mg/mL ferumoxitol administration group, and 0.94 and 0.93 in the 0.01 and 0.1 mg/mL ferumoxitol administration groups, respectively. As can be seen from these data, even when ferumoxitol is used at an appropriate culture time that does not have a significant adverse effect on cell survival and proliferation, treatment with 1.0 mg/mL ferumoxitol can cause transcriptome perturbation in β-cell lines. I was able to confirm that it was there.

마이크로어레이 분석 결과를 바탕으로 1.0 mg/mL 페루목시톨 실험군의 유의미한 변화를 보인 해당 유전자의 특이 프라이머 쌍을 사용하여 semi qRT-PCR을 수행하여 이러한 인슐린 신호 경로 관련 유전자의 전사 수준을 평가했다(도 3a). 1.0 mg/mL 페루목시톨이 처리된 실험군에서 인슐린과 IRS1의 전사 수준은 대조군에 비해 감소한 반면, GSK3와 GLUT4의 전사 수준은 증가했다. 그러나 페루목시톨 0.01 mg/mL 처리군에서는 대조군과 비교했을 때 이들 유전자에서 유의미한 변화가 관찰되지 않았다. 전사 변화의 정확한 계산을 위해 수행한 Real-time PCR 분석은 semi-qRT PCR 및 전사체 프로파일링과 유사한 전사 경향을 보여주었다. 인슐린과 IRS1의 전사 수준은 페루목시톨 1.0 mg/mL 투여군에서 대조군 대비 50% 이하 수준으로 나타났다(도 3b). 반대로 GSK3와 GLUT4는 페루목시톨 1.0 mg/mL 처리 실험군에서 통계적으로 유의미하게 증가한 반면, 페루목시톨 0.01 mg/mL 처리군은 대조군과 비교했을 때 큰 변화가 나타나지 않았다.Based on the microarray analysis results, semi qRT-PCR was performed using specific primer pairs for the genes that showed significant changes in the 1.0 mg/mL ferumoxitol experimental group to evaluate the transcription levels of these insulin signaling pathway-related genes ( Figure 3a). In the experimental group treated with 1.0 mg/mL ferumoxitol, the transcript levels of insulin and IRS1 decreased compared to the control group, while the transcript levels of GSK3 and GLUT4 increased. However, no significant changes were observed in these genes in the ferumoxitol 0.01 mg/mL treatment group compared to the control group. Real-time PCR analysis performed for accurate calculation of transcriptional changes showed similar transcriptional trends as semi-qRT PCR and transcriptome profiling. The transcription levels of insulin and IRS1 in the group administered 1.0 mg/mL ferumoxitol were lower than 50% of those in the control group (Figure 3b). Conversely, GSK3 and GLUT4 increased statistically significantly in the experimental group treated with ferumoxitol 1.0 mg/mL, while the group treated with ferumoxitol 0.01 mg/mL showed no significant change compared to the control group.

다각적인 전사체 분석 결과, 고용량 페루목시톨이 β세포에서 인슐린 신호경로 관련 유전자의 전사체 교란을 유도하는 것으로 나타났다. IRS1은 인슐린에서 세포 내 신호전달에 관여하는 신호전달 단백질로 알려져 있다. 또한, GSK3는 IRS1에서 세린 332의 인산화 경로를 통해 인슐린 신호전달의 음성 피드백 조절에 중요한 역할을 한다. GLUT4는 인슐린 조절 포도당 수송체의 일원으로 세포의 항상성을 위한 포도당 유동 및 해당작용에 기여한다. 또한, 이들 유전자는 인슐린 작용 및 포도당 대사와 밀접한 관련이 있기 때문에 고용량 페루목시톨에 의한 인슐린 자극 및 포도당 항상성 장애는 β세포에서 인슐린 신호 경로의 전사체 교란을 통해 유발될 수 있다. As a result of multifaceted transcriptome analysis, it was found that high-dose ferumoxitol induced transcriptome disruption of genes related to the insulin signaling pathway in β cells. IRS1 is known as a signaling protein involved in intracellular signaling in insulin. Additionally, GSK3 plays an important role in negative feedback regulation of insulin signaling through the phosphorylation pathway of serine 332 in IRS1. GLUT4 is a member of the insulin-regulated glucose transporter and contributes to glucose flow and glycolysis for cellular homeostasis. Additionally, because these genes are closely related to insulin action and glucose metabolism, insulin stimulation and impaired glucose homeostasis by high-dose ferumoxitol may be caused through transcriptome disruption of the insulin signaling pathway in β cells.

페루목시톨 처리된 MIN-6 세포의 단백질체 프로파일링Proteomic profiling of ferumoxitol-treated MIN-6 cells.

전사체 프로파일링 결과를 단백질의 번역 단계와 연관시키기 위해 다양한 용량의 페루목시톨로 처리한 MIN-6 세포에 항체 기반 단백질 칩 분석을 실시하여 단백체 프로파일링을 수행했다(도 4a). 내부 대조군 스팟으로 스팟 신호 강도를 정규화한 결과, 864개의 맞춤형 프로브 중 125개에서 1.0 mg/mL 페루목시톨 처리군에서 대조군에 비해 펩티드의 번역이 유의하게 변화했으며, 각각 79개와 46개의 프로브 스팟이 1.0 mg/mL 페루목시톨 처리군에서 상향 및 하향 조절된 것이 확인되었다. 페루목시톨 처리군과 대조군 간의 차등 단백질 발현의 상관관계 분석 결과, 1.0 mg/mL 페루목시톨 처리군에서 기타 실험군들 및 대조군에 비해 상당한 수의 단백질의 발현이 변경된 것으로 나타냈다(도 4b). 대조군 대비 1.0 mg/mL 페루목시톨 처리 실험군은 0.68의 상관 계수를 보인 반면, 0.01 및 0.1mg/mL 페루목시톨 처리 실험군의 상관 계수는 각각 0.89 및 0.86으로 유지되었다.To correlate the transcriptome profiling results with the translation step of the protein, proteomic profiling was performed by antibody-based protein chip analysis on MIN-6 cells treated with various doses of ferumoxitol (Figure 4a). Normalizing the spot signal intensity to the internal control spot showed that 125 out of 864 custom probes significantly changed the translation of peptides in the 1.0 mg/mL ferumoxitol-treated group compared to the control group, with 79 and 46 probe spots, respectively. Up- and down-regulation was confirmed in this 1.0 mg/mL ferumoxitol-treated group. Correlation analysis of differential protein expression between the ferumoxitol-treated group and the control group showed that the expression of a significant number of proteins was altered in the 1.0 mg/mL ferumoxitol-treated group compared to the other experimental groups and the control group (Figure 4b). . Compared to the control group, the experimental group treated with 1.0 mg/mL ferumoxitol showed a correlation coefficient of 0.68, while the correlation coefficients of the experimental groups treated with 0.01 and 0.1 mg/mL ferumoxitol remained at 0.89 and 0.86, respectively.

단백질체 프로파일링 결과를 검증하기 위해 실험군과 대조군의 세포 용해물을 단백질흡입법 분석에 적용하고 단백질 발현 수준을 Multi Gauge 3.0 소프트웨어로 정량화하여 계산했으며, 그 결과 인슐린과 IRS1 단백질이 용량에 따라 유의하게 감소하는 것으로 나타났다. 인슐린 단백질의 번역은 대조군에 비해 페루목시톨 0.1 mg/mL 및 1.0 mg/mL 그룹에서 각각 68.5 및 73.7%의 극적인 감소를 보였다. 또한, 가장 낮은 용량인 0.01 mg/mL에서도 인슐린은 49.4% 감소했다. 페루목시톨 0.1 및 1.0 mg/mL 투여군에서 IRS1의 번역 수준은 대조군에 비해 각각 62.9%, 80.3% 감소한 반면, 페루목시톨 0.01 mg/mL 투여군에서는 발현에 변화가 관찰되지 않았다. 반대로 페루목시톨 1.0 mg/mL 투여군에서는 대조군에 비해 GSK3와 GLUT4의 번역이 509.9, 51.1%로 크게 증가했다. 그러나 저용량(예를 들어, 0.01 및 0.1mg/mL)에서는 유의미한 변화가 관찰되지 않았다. 상기 프로파일링 결과를 바탕으로 인슐린 신호 경로 변화를 비교하면, 고농도의 페루목시톨은 관련 전사체 및 단백질체에 대한 발현을 유사한 양상으로 교란할 수 있음이 확인된다(표 1).To verify the proteomic profiling results, cell lysates from the experimental and control groups were subjected to protein uptake analysis and protein expression levels were quantified and calculated using Multi Gauge 3.0 software. As a result, insulin and IRS1 proteins were significantly decreased depending on the dose. It was found that Translation of insulin protein showed a dramatic decrease of 68.5 and 73.7% in the ferumoxitol 0.1 mg/mL and 1.0 mg/mL groups, respectively, compared to the control group. Additionally, even at the lowest dose of 0.01 mg/mL, insulin decreased by 49.4%. In the groups administered ferumoxitol 0.1 and 1.0 mg/mL, the translation level of IRS1 decreased by 62.9% and 80.3%, respectively, compared to the control group, whereas no change in expression was observed in the group administered feumoxitol 0.01 mg/mL. On the contrary, in the group administered 1.0 mg/mL ferumoxitol, the translation of GSK3 and GLUT4 significantly increased to 509.9 and 51.1% compared to the control group. However, at low doses (e.g. 0.01 and 0.1 mg/mL), no significant changes were observed. Comparing changes in the insulin signaling pathway based on the above profiling results, it was confirmed that high concentrations of ferumoxitol can disturb the expression of related transcripts and proteomes in a similar manner (Table 1).

마이크로어레이와 단백질 어레이의 전사 및 번역 발현 비교Comparison of transcriptional and translational expression of microarrays and protein arrays. 항목item 전사체 프로파일링Transcriptome profiling aa 단백질체 프로파일링Proteomic profiling
저농도b low concentration b 중농도medium concentration 고농도high concentration 저농도b low concentration b 중농도medium concentration 고농도high concentration 인슐린insulin 0.9810.981 0.8970.897 0.4290.429 0.7170.717 0.3050.305 0.1430.143 IRS1b IRS1 b 1.2371.237 1.0591.059 0.3150.315 1.0691.069 0.5360.536 0.1240.124 GSK3GSK3 1.0361.036 0.9890.989 3.1563.156 1.2031.203 1.1921.192 2.1572.157 GLUT4GLUT4 1.2821.282 1.2341.234 2.0582.058 0.8910.891 1.1821.182 3.1593.159

a대조군과 비교한 상대값. b저농도, 0.01 mg/mL; 중농도, 0.1mg/mL; 고농도, 1.0 mg/mL. cIRS1, 인슐린 수용체 기질 1; GSK3, 글리코겐 합성 효소 인산화효소 3; GLUT4, 포도당 수송체 4형.a Relative values compared to the control group. b low concentration, 0.01 mg/mL; Medium concentration, 0.1 mg/mL; High concentration, 1.0 mg/mL. c IRS1, insulin receptor substrate 1; GSK3, glycogen synthase phosphorylase 3; GLUT4, glucose transporter type 4.

전사체와 단백질체의 프로파일을 통해 도출된 결과를 KEGG 데이터베이스에 대입하였을 때 판별된 바이오마커들이 전반적인 인슐린 신호 경로와 관련된 중요 단계에 배치되어 있는 것을 확인할 수 있었다(도 6).When the results derived from the transcriptome and proteome profiles were entered into the KEGG database, it was confirmed that the identified biomarkers were placed at important steps related to the overall insulin signaling pathway (Figure 6).

이러한 결과는 마이크로어레이 및 단백질 칩 분석이 유사한 경향을 보인다는 연구 결과를 확인했으며, 부가하여 전사체 및 단백질체 프로파일의 조합 결과는 고용량 페루목시톨의 세포 효과가 β세포주에서 인슐린 신호 경로 관련 유전자의 전사 교란뿐만 아니라 이들 단백질의 번역에도 제한을 줄 수 있다는 것을 보여준다.These results confirmed the findings that microarray and protein chip analyzes showed similar trends, and additionally, the combined results of transcriptomic and proteomic profiles showed that the cellular effects of high-dose ferumoxitol were related to insulin signaling pathway-related genes in β-cell lines. This shows that it can not only disrupt transcription but also limit the translation of these proteins.

페루목시톨 처리된 MIN-6 세포의 아미노산 프로파일링 Amino acid profiling of ferumoxitol-treated MIN-6 cells.

아미노산은 세포 활동에서 영양 및 생체 촉매의 주요 구성 요소로 잘 알려져 있으며, 부가하여 전사체 및 단백질체 프로파일링 결과, 고용량 페루목시톨 처리 세포주에서 트랜스아미네이션과 같은 아미노산 대사 경로와 관련된 여러 유전자와 단백질이 변화된 것으로 나타났다.Amino acids are well known to be key components of nutrition and biocatalysis in cellular activities, and additionally, transcriptomic and proteomic profiling results show that several genes and proteins are associated with amino acid metabolic pathways, such as transamination, in high-dose ferumoxitol-treated cell lines. This appears to have changed.

처리된 세포의 아미노산 수준 변화를 확인하기 위해 MIN-6 세포에 페루목시톨을 0.1, 1.0 mg/mL 처리하고 17개 아미노산에 대한 GC-MS 분석을 수행했다. 대조군과 페루목시톨 처리 실험군에서 변화된 아미노산 양은 하기 표 2에 기재되어 있다. 아미노산 프로파일링 결과, 페루목시톨 1.0 mg/mL로 처리한 세포에서 라이신(1.76배)과 류신(2.28배)이 증가한 반면, 아르기닌은 대조군(각각 1.32배 및 1.44배)에 비해 0.1 및 1.0 mg/mL 용량 모두에서 완만한 증가를 나타냈다. 또한, 메티오닌, 페닐알라닌 및 발린은 페루목시톨 1.0 mg/mL로 처리한 세포에서 83.1, 55.3 및 91.4% 감소한 반면, 0.1 mg/mL 페루목시톨 처리 그룹과 대조군 사이에는 큰 변화가 없는 것으로 나타났다. 5가지 아미노산(예를 들어, 발린, 메티오닌, 페닐알라닌, 류신 및 라이신)의 선택된 GC-MS 스펙트럼에서도 이러한 아미노산이 0.1mg/mL 페루목시톨로 처리된 세포에서 유의하게 변화되었음을 알 수 있다(도 7).To confirm changes in amino acid levels in treated cells, MIN-6 cells were treated with 0.1 and 1.0 mg/mL ferumoxitol and GC-MS analysis was performed on 17 amino acids. The amounts of amino acids changed in the control group and ferumoxitol-treated experimental group are listed in Table 2 below. Amino acid profiling results showed that lysine (1.76-fold) and leucine (2.28-fold) increased in cells treated with 1.0 mg/mL ferumoxitol, while arginine increased by 0.1 and 1.0 mg compared to the control group (1.32-fold and 1.44-fold, respectively). There was a gradual increase in all /mL doses. Additionally, methionine, phenylalanine, and valine decreased by 83.1, 55.3, and 91.4% in cells treated with 1.0 mg/mL ferumoxitol, whereas there was no significant change between the 0.1 mg/mL ferumoxitol treatment group and the control group. . Five amino acids (e.g. Selected GC-MS spectra of valine, methionine, phenylalanine, leucine, and lysine) also showed that these amino acids were significantly changed in cells treated with 0.1 mg/mL ferumoxitol ( Figure 7 ).

아미노산amino acid 검출 용량(ng/5Х10Detection capacity (ng/5Х10 77 세포 용해물) cell lysate) 비율ratio aa 대조군control group 중농도b medium concentration b 고농도high concentration 중농도medium concentration 고농도high concentration 류신leucine
212.59 ± 4.25

212.59 ± 4.25

284.32 ± 4.87

284.32 ± 4.87

486.71 ± 5.61

486.71 ± 5.61

1.337

1.337

2.289

2.289
라이신Lysine 1008.18 ± 135.641008.18 ± 135.64 1021.83 ± 77.701021.83 ± 77.70 1777.87 ± 61.281777.87 ± 61.28 1.0141.014 1.7631.763 메티오닌methionine 116.83 ± 3.98116.83 ± 3.98 117.45 ± 5.09117.45 ± 5.09 19.79 ± 2.1819.79 ± 2.18 1.0051.005 0.1690.169 페닐알라닌Phenylalanine 26.27 ± 1.0726.27 ± 1.07 23.95 ± 0.8123.95 ± 0.81 11.74 ± 2.2911.74 ± 2.29 0.9120.912 0.4470.447
발린Valine

130.75 ± 2.73

130.75 ± 2.73

126.86 ± 5.86

126.86 ± 5.86

11.19 ± 2.39

11.19 ± 2.39

0.970

0.970

0.086

0.086

a검출된 값은 대조군으로 정규화했음. b중농도, 0.01 mg/mL; 고농도, 1.0 mg/mL. a Detected values were normalized to the control group. b medium concentration, 0.01 mg/mL; High concentration, 1.0 mg/mL.

아미노산은 아미노산 경로의 이화 작용을 통해 트리카르복실산(Tricarboxylic Acid, TCA) 순환 반응에서 포도당 생성 또는 케톤 생성 전구체를 생성하는 데 중요한 역할을 한다. 이 아미노산 프로파일링에서 증가된 류신과 라이신은 케토제닉 캐스케이드에서 아세토아세트산의 전구체이다. 또한, 이 프로파일링에서 감소한 아미노산인 메티오닌과 발린은 포도당 생성 캐스케이드에서 아세토아세트산의 전구체이다. 페닐알라닌은 이 두 캐스케이드에서 아세토아세트산과 푸마르산염의 전구체이다. 따라서, 이들 아미노산이 TCA 순환 반응의 주요 전구체이므로 아미노산의 교란이 β세포주에서 페루목시톨이 유도한 TCA 순환 반응 장애의 잠재적 원인일 수 있다고 추정한다. 그러나, 페루목시톨이 TCA 순환 반응 기능 및 생체 에너지 대사에 미치는 영향을 명확히 밝히기 위해서는 추가 연구가 필요하다. 최근 연구에서 여러 보고서에 따르면 아미노산 대사 장애가 인슐린 저항성과 제2형 당뇨병(T2DM)을 유발할 수 있다는 사실이 입증되었다. 또한 Lynch 등은 류신, 이소류신 및 발린과 같은 분지 사슬 아미노산(Branched-chain amino acid, BCAA) 대사 장애가 mTORC1의 활성화 및 IRS 계열의 인산화를 통해 인슐린 저항성 비만 및 T2DM과 관련이 있음을 제안했다. 본 연구에서는 페루목시톨을 중용량 및 고용량으로 처리한 β세포주에서 이소류신과 기타 BCAA(예를 들어, 류신 및 발린)의 수준을 각각 변화시켰다. 전사체 및 단백질체 프로파일에서 제시된 바와 같이, 아미노산 프로파일링 결과는 고용량 페루목시톨이 β세포주에서 인슐린 활성화 및 TCA 순환 반응과 같은 포도당 항상성과 관련된 세포 과정의 손상을 유도할 수 있음을 보여준다.Amino acids play an important role in generating glucogenic or ketogenic precursors in the tricarboxylic acid (TCA) cycle reaction through the catabolism of the amino acid pathway. Leucine and lysine, which were increased in this amino acid profiling, are precursors of acetoacetic acid in the ketogenic cascade. Additionally, the amino acids reduced in this profiling, methionine and valine, are precursors of acetoacetic acid in the gluconeogenic cascade. Phenylalanine is the precursor of acetoacetate and fumarate in these two cascades. Therefore, since these amino acids are the main precursors of the TCA cycle reaction, we speculate that perturbation of amino acids may be a potential cause of ferumoxitol-induced TCA cycle reaction impairment in β-cell lines. However, further studies are needed to clearly elucidate the effects of ferumoxitol on TCA cycle response function and bioenergetic metabolism. In recent studies, several reports have demonstrated that impaired amino acid metabolism can lead to insulin resistance and type 2 diabetes mellitus (T2DM). Additionally, Lynch et al. It has been suggested that impaired branched-chain amino acid (BCAA) metabolism, such as leucine, isoleucine, and valine, is associated with insulin-resistant obesity and T2DM through activation of mTORC1 and phosphorylation of the IRS family. In this study, isoleucine and other BCAAs (e.g. leucine and valine) levels were varied, respectively. As presented in the transcriptomic and proteomic profiles, amino acid profiling results show that high-dose ferumoxitol can induce impairment of cellular processes related to glucose homeostasis, such as insulin activation and TCA cycle response, in β-cell lines.

페루목시톨 처리된 MIN-6 세포에서 인슐린 분비 활성 평가 및 작은 세포 기관의 관찰Evaluation of insulin secretion activity and observation of small organelles in ferumoxitol-treated MIN-6 cells

앞서 설명한 결과와 같이 대사 프로파일링 평가를 통해 고용량 페루목시톨을 처리한 β세포주에서 인슐린 신호경로 관련 유전자 및 단백질의 교란, 아미노산의 교란이 전사체 및 단백질체 프로파일링을 통해 관찰되었다(도 2, 3, 4, 5 및 7). 이러한 프로파일링 결과를 바탕으로 β세포가 포도당에 의해 자극을 받았을 때 페루목시톨의 처리가 인슐린 분비에 영향을 미칠 것이라는 가설을 세웠다. 페루목시톨이 β세포의 인슐린 분비에 영향을 미치는지 확인하기 위해 페루목시톨 처리 후 포도당 자극 인슐린 분비능 (GSIS) 검정 분석을 통해 β세포의 인슐린 지수를 측정했다. 대조군과 비교하여 모든 용량에서 용량 의존적으로 인슐린 지수가 유의하게 감소한 것으로 나타났으며, 페루목시톨 1.0 mg/mL에서는 58.9% 감소했다(도 8). 흥미롭게도 고용량 페루목시톨로 처리한 세포에서 인슐린 지수가 급격히 감소할 것으로 가정했지만, 저용량과 중간 용량에서도 프로파일링 결과에서 큰 변화가 없음에도 불구하고 각각 31.3 및 50.8%의 인슐린 지수가 감소한 것으로 관찰되었다. 이러한 현상을 설명하기 위해 페루목시톨을 1.0 mg/mL 처리한 MIN-6 세포에서 전체 세포체와 인슐린 소낭을 투과전자현미경(Transmission Electron Microscope, TEM)으로 관찰했다(도 9). 도 9의 왼쪽 하단 패널에서 볼 수 있듯이, 1.0 mg/mL 페루목시톨로 처리한 MIN-6 세포에서는 세포막이 붕괴된 반면, 대조군 세포는 복잡한 세포막 구조를 유지했다. 세포막 관찰 외에도 1.0 mg/mL 페루목시톨로 처리한 MIN-6 세포에서는 인슐린 소낭이 비워진 반면, 대조군 세포의 소낭은 인슐린으로 포화 상태였다(도 9, 오른쪽 패널). MIN-6 세포에서 페루목시톨의 분포를 측정한 결과, 다양한 크기의 페루목시톨 응집체가 세포질과 인슐린 소낭과 같은 작은 기관에 침투하여 위치하고 있었다.As described above, through metabolic profiling evaluation, disturbances in genes and proteins related to the insulin signaling pathway and amino acids in β-cell lines treated with high-dose ferumoxitol were observed through transcriptome and proteome profiling (Figure 2, 3, 4, 5 and 7). Based on these profiling results, we hypothesized that treatment with ferumoxitol would affect insulin secretion when β cells were stimulated by glucose. To determine whether feumoxitol affects the insulin secretion of β cells, the insulin index of β cells was measured through glucose-stimulated insulin secretory (GSIS) assay analysis after ferumoxitol treatment. Compared to the control group, the insulin index was found to be significantly decreased in a dose-dependent manner at all doses, with a 58.9% decrease at 1.0 mg/mL ferumoxitol (Figure 8). Interestingly, although we assumed that the insulin index would decrease rapidly in cells treated with high-dose ferumoxitol, we observed a decrease in the insulin index of 31.3 and 50.8% at low and medium doses, respectively, despite no significant changes in the profiling results. It has been done. To explain this phenomenon, the entire cell body and insulin vesicles in MIN-6 cells treated with 1.0 mg/mL ferumoxitol were observed using a transmission electron microscope (TEM) (FIG. 9). As can be seen in the lower left panel of Figure 9, the cell membrane was collapsed in MIN-6 cells treated with 1.0 mg/mL ferumoxitol, whereas the control cells maintained the complex cell membrane structure. In addition to the cell membrane observations, insulin vesicles were emptied in MIN-6 cells treated with 1.0 mg/mL ferumoxitol, whereas vesicles in control cells were saturated with insulin (Figure 9, right panel). As a result of measuring the distribution of ferumoxitol in MIN-6 cells, feumoxitol aggregates of various sizes were located in the cytoplasm and small organs such as insulin vesicles.

페루목시톨 처리 β세포주에서 인슐린 지수가 감소하는 현상은 페루목시톨 섭취에 의한 두 가지 가능성으로 설명할 수 있는데, i) β세포 내 인슐린 신호경로 관련 분자 및 아미노산 구성 교란을 통한 간접적 효과, ii) 페루목시톨의 세포 간 분포 및 β세포 소기관(예를 들면, 인슐린 소낭)에 대한 내재화를 통한 직접적인 효과로 설명할 수 있다. 세포 이벤트의 개략적인 과정이 도 10에 설명되어 있다. 이전 보고서에서 인슐린 반응이 유전자의 전사, 단백질의 번역 및 대사 산물과 같은 다양한 생물학적 요인에 의해 조절될 수 있음을 입증되었다. β세포에서 고용량 페루목시톨에 의해 유도되는 인슐린 신호경로 관련 유전자 및 단백질의 전사 및 번역 교란은 인슐린 생합성 및 인슐린의 피드백 반응과 같은 인슐린 반응에 영향을 미칠 수 있다. 이러한 분자생물학적 변화 외에도 고용량 페루목시톨 처리에 따른 아미노산의 구성 변화도 β세포의 인슐린 분비를 교란시키는 요인이 될 수 있다. 본 발명의 프로파일링 결과에 따르면, 고용량 페루목시톨은 이러한 종합적인 변화를 유도하고 생합성, 피드백 반응 및 분비를 포함한 인슐린 반응의 장애로 이어진다는 것을 입증했다. 또한, 본 발명에서 제시된 실험 결과는 페루목시톨의 세포 간 분포와 내재화가 인슐린 반응 장애의 주요 요인이 될 수 있음을 시사한다. 고용량 페루목시톨을 처리한 β세포에서 페루목시톨의 내재화를 TEM으로 관찰한 결과, 인슐린은 인슐린 소낭에서 여러 개의 페루목시톨 응집체로 대체되었다.The phenomenon of decreased insulin index in ferumoxitol-treated β-cell lines can be explained by two possibilities due to ferumoxitol intake: i) an indirect effect through disturbance of the composition of molecules and amino acids related to the insulin signaling pathway in β-cells; ii) This could be explained by the intercellular distribution of ferumoxitol and its direct effects through internalization into β-cell organelles (e.g. insulin vesicles). The schematic course of cellular events is illustrated in Figure 10. Previous reports have demonstrated that insulin response can be regulated by various biological factors, such as transcription of genes, translation of proteins, and metabolites. Disruption of transcription and translation of genes and proteins related to the insulin signaling pathway induced by high-dose ferumoxitol in β cells may affect insulin responses such as insulin biosynthesis and insulin feedback response. In addition to these molecular biological changes, changes in amino acid composition following high-dose ferumoxitol treatment may also be a factor that disrupts insulin secretion from β cells. Our profiling results demonstrate that high-dose ferumoxitol induces these comprehensive changes and leads to impairment of insulin response, including biosynthesis, feedback response, and secretion. Additionally, the experimental results presented in the present invention suggest that intercellular distribution and internalization of ferumoxitol may be a major factor in impaired insulin response. As a result of observing the internalization of ferumoxitol in β cells treated with high dose ferumoxitol by TEM, insulin was replaced by several feumoxitol aggregates in the insulin vesicles.

상기 실시예에서는 페루목시톨이 췌장 β세포주에 미치는 종합적인 영향을 조사하기 위해 전사체, 단백질체 및 대사 프로파일링 분석을 결합하여 사용했으며, 그 결과 페루목시톨은 고용량에서 췌장 β세포주의 인슐린 분비 기능을 통계적으로 유의하게 변화시키고 인슐린 경로 유전자, 단백질 및 대사산물에 심각한 교란을 일으킨다는 것을 밝혀냈다. 고용량 페루목시톨 처리 췌장 β세포주에서 인슐린, IRS1, GSK3, GLUT4 등 인슐린 신호경로 관련 유전자 및 단백질이 차별적으로 발현되는 것을 확인했다. 고용량에서 아미노산 구성에서도 유사한 유의미한 교란이 관찰되었다. 췌장 β세포주에 고용량의 페루목시톨을 처리한 결과, 인슐린 분비 지수가 현저히 감소하고 인슐린 소낭의 인슐린도 페루목시톨로 대체되는 것을 확인하였다. 고용량 페루목시톨의 세포내 발생 과정으로는 i) 페루목시톨의 β세포 내 흡수, ii) 인슐린 신호 관련 경로의 전사 및 번역 변화, iii) 아미노산의 대사 변화, iv) 인슐린 소낭 내 페루목시톨의 내재화, v) 인슐린 분비 교란 및 포도당 항상성 손상 등이 제시되었다. 이러한 실시예의 결과는 나노 입자를 치료에 사용하는 데 생물학적 활성 용량 결정이 중요하다는 것을 시사하며, 상기 실시예의 종합적인 평가 방법과 결합하여 특히 췌장 β세포에 대한 페루목시톨의 독성 효과와 나노 입자 전반에 대한 독성 평가에 대한 이해에 크게 기여할 수 있다.In the above example, a combination of transcriptomic, proteomic, and metabolic profiling analyzes was used to investigate the comprehensive effect of ferumoxitol on pancreatic β-cell lines. The results showed that ferumoxitol was effective in reducing insulin resistance in pancreatic β-cell lines at high doses. It was found that it statistically significantly altered secretory function and caused significant disturbances in insulin pathway genes, proteins, and metabolites. It was confirmed that genes and proteins related to the insulin signaling pathway, such as insulin, IRS1, GSK3, and GLUT4, were differentially expressed in pancreatic β-cell lines treated with high-dose ferumoxitol. Similar significant perturbations were observed in amino acid composition at high doses. As a result of treating pancreatic β-cell lines with a high dose of ferumoxitol, it was confirmed that the insulin secretion index was significantly reduced and the insulin in the insulin vesicles was also replaced with ferumoxitol. The intracellular processes of high-dose ferumoxitol include i) uptake of feumoxitol into β cells, ii) transcriptional and translational changes in insulin signaling-related pathways, iii) changes in amino acid metabolism, and iv) ferrumoxitol in insulin vesicles. Internalization of sitol, v) disturbance of insulin secretion and impaired glucose homeostasis have been suggested. The results of these examples suggest that determining biologically active doses is important for the therapeutic use of nanoparticles, and combined with the comprehensive evaluation methods of the above examples, the toxic effects of ferumoxitol and nanoparticles, particularly on pancreatic β-cells, are important. It can greatly contribute to the understanding of overall toxicity assessment.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. will be. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (7)

유전자 등록번호(GeneBank) NM_005544.3(IRS1, Homo sapiens Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_003749.3(IRS2, Homo sapiens Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_003604.2(Homo sapiens Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_010570.4(Irs1, Mus musculus Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_001081212.2(Irs2, Mus musculus Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_010571.3(Irs3, Mus musculus Insulin receptor substrate 3), 유전자 등록번호(GeneBank) NM_010572.2(Irs4, Mus musculus Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_006516.4(SLC2A1, Homo sapiens solute carrier family 2 member 1), 유전자 등록번호(GeneBank) NM_006931.3(SLC2A3, Homo sapiens solute carrier family 2 member 3), 유전자 등록번호(GeneBank) NM_001042.3(SLC2A4, Homo sapiens solute carrier family 2 member 4), 유전자 등록번호(GeneBank) NM_030777.4(SLC2A10, Homo sapiens solute carrier family 2 member 10), 유전자 등록번호(GeneBank) NM_145176.3(SLC2A12, Homo sapiens solute carrier family 2 member 12), 유전자 등록번호(GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), 유전자 등록번호(GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2), 유전자 등록번호(GeneBank) NM_011401.4(Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), 유전자 등록번호(GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1), 유전자 등록번호(GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), 유전자 등록번호(GeneBank) NM_019741.3(Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), 유전자 등록번호(GeneBank) NM_130451.3(Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), 유전자 등록번호(GeneBank) NM_178934.4(Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), 유전자 등록번호(GeneBank) NM_001033633.3(Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), 유전자 등록번호(GeneBank) NM_019884.3(GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_002093.4(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), 유전자 등록번호(GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), 유전자 등록번호(GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3), 유전자 등록번호(GeneBank) NM_001031667.1(Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_019827.7(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1), 유전자 등록번호(GeneBank) NM_001347232.1(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2)로 구성된 군으로부터 선택된 하나 이상의 유전자를 포함하는, 페루목시톨 자성체 나노입자의 노출에 의해 발현 변화를 일으키는 것을 특징으로 하는 페루목시톨 자성체 나노입자의 내분비계 독성 여부 진단용 바이오마커 조성물.Gene registration number (GeneBank) NM_005544.3 (IRS1, Homo sapiens Insulin receptor substrate 1), Gene registration number (GeneBank) NM_003749.3 (IRS2, Homo sapiens Insulin receptor substrate 2), Gene registration number (GeneBank) NM_003604.2 ( Homo sapiens Insulin receptor substrate 4), gene registration number (GeneBank) NM_010570.4 (Irs1, Mus musculus Insulin receptor substrate 1), gene registration number (GeneBank) NM_001081212.2 (Irs2, Mus musculus Insulin receptor substrate 2), gene registration Number (GeneBank) NM_010571.3 (Irs3, Mus musculus Insulin receptor substrate 3), Gene registration number (GeneBank) NM_010572.2 (Irs4, Mus musculus Insulin receptor substrate 4), Gene registration number (GeneBank) NM_006516.4 (SLC2A1, Homo sapiens solute carrier family 2 member 1), gene registration number (GeneBank) NM_006931.3 (SLC2A3, Homo sapiens solute carrier family 2 member 3), gene registration number (GeneBank) NM_001042.3 (SLC2A4, Homo sapiens solute carrier family 2 member 4), gene registration number (GeneBank) NM_030777.4 (SLC2A10, Homo sapiens solute carrier family 2 member 10), gene registration number (GeneBank) NM_145176.3 (SLC2A12, Homo sapiens solute carrier family 2 member 12), gene registration Number (GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), Gene registration number (GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2 ), gene registration number (GeneBank) NM_011401.4 (Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), gene registration number (GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose) transporter) member 4, transcript variant 1), gene registration number (GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), gene registration number (GeneBank) NM_019741.3 (Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), gene registration number (GeneBank) NM_130451.3 (Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), gene registration number (GeneBank) ) NM_178934.4 (Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), gene registration number (GeneBank) NM_001033633.3 (Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), gene Registration number (GeneBank) NM_019884.3 (GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), Gene registration number (GeneBank) NM_002093.4 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), Gene registration number (GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), Gene registration number (GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3) , Gene registration number (GeneBank) NM_001031667.1 (Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), Gene registration number (GeneBank) NM_019827.7 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1), Gene registration number (GeneBank) NM_001347232.1 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2), which contains one or more genes selected from the group consisting of feumoxitol magnetic nanoparticles and is characterized by causing expression changes by exposure to ferumoxitol magnetic nanoparticles. A biomarker composition for diagnosing endocrine toxicity of ferumoxitol magnetic nanoparticles. 페루목시톨 자성체 나노입자에 의한 내분비계 독성 여부 진단을 위해 청구항 1의 바이오마커로부터 선택된 하나 이상의 유전자 핵산 서열의 전부; 상기 바이오마커의 유전자 핵산 서열의 단편 올리고뉴클레오티드; 또는 상기 바이오마커의 상보적인 유전자 서열의 전체 또는 일부의 서열이 집적된 것임을 특징으로 하는 페루목시톨 자성체 나노입자의 내분비계 독성 여부 진단용 마이크로어레이 칩.All of the nucleic acid sequences of one or more genes selected from the biomarkers of claim 1 for diagnosing endocrine toxicity caused by ferumoxitol magnetic nanoparticles; Fragment oligonucleotides of the gene nucleic acid sequence of the biomarker; Or, a microarray chip for diagnosing endocrine toxicity of ferumoxitol magnetic nanoparticles, characterized in that it integrates all or part of the complementary gene sequence of the biomarker. 청구항 2의 마이크로어레이 칩을 포함함을 특징으로 하는 페루목시톨 자성체 나노입자의 내분비계 독성 여부 진단용 키트.A kit for diagnosing endocrine toxicity of ferumoxitol magnetic nanoparticles, comprising the microarray chip of claim 2. 페루목시톨 자성체 나노입자에 노출된 인간을 제외한 포유 동물의 조직 및 세포 샘플을 얻는 단계; 유전자 등록번호(GeneBank) NM_005544.3(IRS1, Homo sapiens Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_003749.3(IRS2, Homo sapiens Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_003604.2(Homo sapiens Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_010570.4(Irs1, Mus musculus Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_001081212.2(Irs2, Mus musculus Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_010571.3(Irs3, Mus musculus Insulin receptor substrate 3), 유전자 등록번호(GeneBank) NM_010572.2(Irs4, Mus musculus Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_006516.4(SLC2A1, Homo sapiens solute carrier family 2 member 1), 유전자 등록번호(GeneBank) NM_006931.3(SLC2A3, Homo sapiens solute carrier family 2 member 3), 유전자 등록번호(GeneBank) NM_001042.3(SLC2A4, Homo sapiens solute carrier family 2 member 4), 유전자 등록번호(GeneBank) NM_030777.4(SLC2A10, Homo sapiens solute carrier family 2 member 10), 유전자 등록번호(GeneBank) NM_145176.3(SLC2A12, Homo sapiens solute carrier family 2 member 12), 유전자 등록번호(GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), 유전자 등록번호(GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2), 유전자 등록번호(GeneBank) NM_011401.4(Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), 유전자 등록번호(GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1), 유전자 등록번호(GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), 유전자 등록번호(GeneBank) NM_019741.3(Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), 유전자 등록번호(GeneBank) NM_130451.3(Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), 유전자 등록번호(GeneBank) NM_178934.4(Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), 유전자 등록번호(GeneBank) NM_001033633.3(Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), 유전자 등록번호(GeneBank) NM_019884.3(GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_002093.4(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), 유전자 등록번호(GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), 유전자 등록번호(GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3), 유전자 등록번호(GeneBank) NM_001031667.1(Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_019827.7(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1), 유전자 등록번호(GeneBank) NM_001347232.1(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2)로 이루어진 군에서 하나 이상의 유전자 발현을 조사하는 단계; 및 상기 유전자의 발현 정도를 대조군과 비교하는 단계를 포함함을 특징으로 하는 페루목시톨 자성체 나노입자의 내분비계 독성 여부 평가 방법.Obtaining tissue and cell samples from non-human mammals exposed to ferumoxitol magnetic nanoparticles; Gene registration number (GeneBank) NM_005544.3 (IRS1, Homo sapiens Insulin receptor substrate 1), Gene registration number (GeneBank) NM_003749.3 (IRS2, Homo sapiens Insulin receptor substrate 2), Gene registration number (GeneBank) NM_003604.2 ( Homo sapiens Insulin receptor substrate 4), gene registration number (GeneBank) NM_010570.4 (Irs1, Mus musculus Insulin receptor substrate 1), gene registration number (GeneBank) NM_001081212.2 (Irs2, Mus musculus Insulin receptor substrate 2), gene registration Number (GeneBank) NM_010571.3 (Irs3, Mus musculus Insulin receptor substrate 3), Gene registration number (GeneBank) NM_010572.2 (Irs4, Mus musculus Insulin receptor substrate 4), Gene registration number (GeneBank) NM_006516.4 (SLC2A1, Homo sapiens solute carrier family 2 member 1), gene registration number (GeneBank) NM_006931.3 (SLC2A3, Homo sapiens solute carrier family 2 member 3), gene registration number (GeneBank) NM_001042.3 (SLC2A4, Homo sapiens solute carrier family 2 member 4), gene registration number (GeneBank) NM_030777.4 (SLC2A10, Homo sapiens solute carrier family 2 member 10), gene registration number (GeneBank) NM_145176.3 (SLC2A12, Homo sapiens solute carrier family 2 member 12), gene registration Number (GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), Gene registration number (GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2 ), gene registration number (GeneBank) NM_011401.4 (Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), gene registration number (GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose) transporter) member 4, transcript variant 1), gene registration number (GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), gene registration number (GeneBank) NM_019741.3 (Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), gene registration number (GeneBank) NM_130451.3 (Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), gene registration number (GeneBank) ) NM_178934.4 (Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), gene registration number (GeneBank) NM_001033633.3 (Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), gene Registration number (GeneBank) NM_019884.3 (GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), Gene registration number (GeneBank) NM_002093.4 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), Gene registration number (GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), Gene registration number (GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3) , Gene registration number (GeneBank) NM_001031667.1 (Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), Gene registration number (GeneBank) NM_019827.7 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1), Gene registration number (GeneBank) NM_001347232.1 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2): examining the expression of one or more genes in the group; And a method for evaluating the endocrine toxicity of ferumoxitol magnetic nanoparticles, comprising the step of comparing the expression level of the gene with a control group. 페루목시톨 자성체 나노입자에 노출된 인간을 제외한 포유 동물의 조직 및 세포 샘플을 얻는 단계; 유전자 등록번호(GeneBank) NM_005544.3(IRS1, Homo sapiens Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_003749.3(IRS2, Homo sapiens Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_003604.2(Homo sapiens Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_010570.4(Irs1, Mus musculus Insulin receptor substrate 1), 유전자 등록번호(GeneBank) NM_001081212.2(Irs2, Mus musculus Insulin receptor substrate 2), 유전자 등록번호(GeneBank) NM_010571.3(Irs3, Mus musculus Insulin receptor substrate 3), 유전자 등록번호(GeneBank) NM_010572.2(Irs4, Mus musculus Insulin receptor substrate 4), 유전자 등록번호(GeneBank) NM_006516.4(SLC2A1, Homo sapiens solute carrier family 2 member 1), 유전자 등록번호(GeneBank) NM_006931.3(SLC2A3, Homo sapiens solute carrier family 2 member 3), 유전자 등록번호(GeneBank) NM_001042.3(SLC2A4, Homo sapiens solute carrier family 2 member 4), 유전자 등록번호(GeneBank) NM_030777.4(SLC2A10, Homo sapiens solute carrier family 2 member 10), 유전자 등록번호(GeneBank) NM_145176.3(SLC2A12, Homo sapiens solute carrier family 2 member 12), 유전자 등록번호(GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), 유전자 등록번호(GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2), 유전자 등록번호(GeneBank) NM_011401.4(Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), 유전자 등록번호(GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 1), 유전자 등록번호(GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), 유전자 등록번호(GeneBank) NM_019741.3(Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), 유전자 등록번호(GeneBank) NM_130451.3(Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), 유전자 등록번호(GeneBank) NM_178934.4(Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), 유전자 등록번호(GeneBank) NM_001033633.3(Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), 유전자 등록번호(GeneBank) NM_019884.3(GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_002093.4(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), 유전자 등록번호(GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), 유전자 등록번호(GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3), 유전자 등록번호(GeneBank) NM_001031667.1(Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), 유전자 등록번호(GeneBank) NM_019827.7(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1), 유전자 등록번호(GeneBank) NM_001347232.1(Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2)로 이루어진 유전자군에서 코딩(coding)되는 하나 이상의 단백질 발현을 조사하는 단계; 및 상기 단백질의 발현 정도를 대조군과 비교하는 단계를 포함함을 특징으로 하는 페루목시톨 자성체 나노입자의 내분비계 독성 여부 평가 방법.Obtaining tissue and cell samples from non-human mammals exposed to ferumoxitol magnetic nanoparticles; Gene registration number (GeneBank) NM_005544.3 (IRS1, Homo sapiens Insulin receptor substrate 1), Gene registration number (GeneBank) NM_003749.3 (IRS2, Homo sapiens Insulin receptor substrate 2), Gene registration number (GeneBank) NM_003604.2 ( Homo sapiens Insulin receptor substrate 4), gene registration number (GeneBank) NM_010570.4 (Irs1, Mus musculus Insulin receptor substrate 1), gene registration number (GeneBank) NM_001081212.2 (Irs2, Mus musculus Insulin receptor substrate 2), gene registration Number (GeneBank) NM_010571.3 (Irs3, Mus musculus Insulin receptor substrate 3), Gene registration number (GeneBank) NM_010572.2 (Irs4, Mus musculus Insulin receptor substrate 4), Gene registration number (GeneBank) NM_006516.4 (SLC2A1, Homo sapiens solute carrier family 2 member 1), gene registration number (GeneBank) NM_006931.3 (SLC2A3, Homo sapiens solute carrier family 2 member 3), gene registration number (GeneBank) NM_001042.3 (SLC2A4, Homo sapiens solute carrier family 2 member 4), gene registration number (GeneBank) NM_030777.4 (SLC2A10, Homo sapiens solute carrier family 2 member 10), gene registration number (GeneBank) NM_145176.3 (SLC2A12, Homo sapiens solute carrier family 2 member 12), gene registration Number (GeneBank) NM_011400.3(Slc2a1, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 1), Gene registration number (GeneBank) NM_031197.2(Slc2a2, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 2 ), gene registration number (GeneBank) NM_011401.4 (Slc2a3, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 3), gene registration number (GeneBank) NM_009204.2 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose) transporter) member 4, transcript variant 1), gene registration number (GeneBank) NM_001359114.1 (Slc2a4, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 4, transcript variant 2), gene registration number (GeneBank) NM_019741.3 (Slc2a5, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 5), gene registration number (GeneBank) NM_130451.3 (Slc2a10, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 10), gene registration number (GeneBank) ) NM_178934.4 (Slc2a12, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 12), gene registration number (GeneBank) NM_001033633.3 (Slc2a13, Mus musculus solute carrier family 2 (facilitated glucose transporter) member 13), gene Registration number (GeneBank) NM_019884.3 (GSK3A, Homo sapiens glycogen synthase kinase 3 alpha), Gene registration number (GeneBank) NM_002093.4 (GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 1), Gene registration number (GeneBank) NM_001146156.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 2), Gene registration number (GeneBank) NM_001354596.2(GSK3B, Homo sapiens glycogen synthase kinase 3 beta (GSK3B) transcript variant 3) , Gene registration number (GeneBank) NM_001031667.1 (Gsk3a, Mus musculus glycogen synthase kinase 3 alpha), Gene registration number (GeneBank) NM_019827.7 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 1), Gene registration number (GeneBank) Investigating the expression of one or more proteins encoded in the gene group consisting of NM_001347232.1 (Gsk3b, Mus musculus glycogen synthase kinase 3 beta, transcript variant 2); And a method for evaluating endocrine toxicity of ferumoxitol magnetic nanoparticles, comprising the step of comparing the expression level of the protein with a control group. 제5항에 있어서, 상기 독성 여부 평가 방법은; (a) 발린(Valine, Val), 메티오닌(Methionine, Met), 페닐알라닌(Phenylalanine, Phe), 류신(Leucine, Leu) 및 라이신(Lysine, Lys)의 대사체 중 하나 이상의 함량을 분석하는 단계; (b) 당 자극에 의한 인슐린 분비 변화를 분석하는 단계; 및 (c) 세포내 인슐린 소낭(Insulin vesicle)의 분석으로 이루어진 군에서 하나 이상을 선택하여 조사하는 단계를 포함함을 특징으로 하는 페루목시톨 자성체 나노입자의 내분비계 독성 여부 평가 방법.The method of claim 5, wherein the method for evaluating toxicity is; (a) analyzing the content of one or more of the metabolites of valine (Val), methionine (Methionine, Met), phenylalanine (Phe), leucine (Leu), and lysine (Lysine); (b) analyzing changes in insulin secretion due to glucose stimulation; and (c) analyzing intracellular insulin vesicles. 제6항에 있어서, 상기 독성 여부 평가 방법은 (d) 대조군과 비교하는 단계를 추가로 포함함을 특징으로 하는 페루목시톨 자성체 나노입자의 내분비계 독성 여부 평가 방법.
The method of claim 6, wherein the method further includes the step of (d) comparing with a control group.
KR1020230085763A 2023-07-03 2023-07-03 Biomarker composition for diagnosis of ferumoxytol magnetic nanoparticles toxicity in endocrine system KR102661415B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230085763A KR102661415B1 (en) 2023-07-03 2023-07-03 Biomarker composition for diagnosis of ferumoxytol magnetic nanoparticles toxicity in endocrine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230085763A KR102661415B1 (en) 2023-07-03 2023-07-03 Biomarker composition for diagnosis of ferumoxytol magnetic nanoparticles toxicity in endocrine system

Publications (1)

Publication Number Publication Date
KR102661415B1 true KR102661415B1 (en) 2024-04-26

Family

ID=90883076

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230085763A KR102661415B1 (en) 2023-07-03 2023-07-03 Biomarker composition for diagnosis of ferumoxytol magnetic nanoparticles toxicity in endocrine system

Country Status (1)

Country Link
KR (1) KR102661415B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140013389A (en) * 2012-07-23 2014-02-05 아주대학교산학협력단 Biomarker composition for diagnosis of nanoparticles toxicity
KR20160139276A (en) * 2015-05-27 2016-12-07 한국화학연구원 The biomarkers for neurotoxicity induced by nanoparticles and the method for detecting neurotoxicity thereof
KR20170142684A (en) * 2016-06-20 2017-12-28 아주대학교산학협력단 Biomarker Composition for Diagnosing Nanoparticles Neurotoxicity by Increasing Cytoplasmic Inclusion Bodies in vitro

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140013389A (en) * 2012-07-23 2014-02-05 아주대학교산학협력단 Biomarker composition for diagnosis of nanoparticles toxicity
KR101470692B1 (en) 2012-07-23 2014-12-09 아주대학교산학협력단 Biomarker Composition for Diagnosis of Nanoparticles Toxicity
KR20160139276A (en) * 2015-05-27 2016-12-07 한국화학연구원 The biomarkers for neurotoxicity induced by nanoparticles and the method for detecting neurotoxicity thereof
KR20170142684A (en) * 2016-06-20 2017-12-28 아주대학교산학협력단 Biomarker Composition for Diagnosing Nanoparticles Neurotoxicity by Increasing Cytoplasmic Inclusion Bodies in vitro

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NCBI, Mus musculus insulin receptor substrate 2 (Irs2), mRNA. ACCESSION: NM_001081212 (2023.04.17)* *
Oral exposure to silver nanoparticles increases oxidative stress markers in the liver of male rats and deregulates the insulin signalling pathway and p53 and cleaved caspase 3 protein expression, Food* *
Silicon dioxide nanoparticles induce insulin resistance through endoplasmic reticulum stress and generation of reactive oxygen species, Particle and fibre toxicology, 16(1), 41 (2019.11.07)* *

Similar Documents

Publication Publication Date Title
Brás et al. TNF-alpha-induced microglia activation requires miR-342: impact on NF-kB signaling and neurotoxicity
JP6938584B2 (en) Diagnosis of diseases caused by extracellular vesicles
Chmiest et al. Spatiotemporal control of interferon-induced JAK/STAT signalling and gene transcription by the retromer complex
Meng et al. The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2
Ding et al. Secreted IGFBP5 mediates mTORC1-dependent feedback inhibition of IGF-1 signalling
Fujiwara et al. Expression of human solute carrier family transporters in skin: possible contributor to drug-induced skin disorders
Zhang et al. The circulating level of miR-122 is a potential risk factor for endothelial dysfunction in young patients with essential hypertension
Chen et al. hnRNPM induces translation switch under hypoxia to promote colon cancer development
Tang et al. Expression of MTAP inhibits tumor-related phenotypes in HT1080 cells via a mechanism unrelated to its enzymatic function
Yang et al. Metabolic changes during malignant transformation in primary cells of oral lichen planus: Succinate accumulation and tumour suppression
Zhao et al. A self-amplifying USP14-TAZ loop drives the progression and liver metastasis of pancreatic ductal adenocarcinoma
EP2589665A1 (en) Method for predicting therapeutic effect of immunotherapy on cancer patient, and gene set and kit to be used in the method
Januszyk et al. Analysis of the differences in the expression of mRNAs and miRNAs associated with drug resistance in endometrial cancer cells treated with salinomycin
Hosseini-Farahabadi et al. Small molecule Y-320 stimulates ribosome biogenesis, protein synthesis, and aminoglycoside-induced premature termination codon readthrough
Jiang et al. The cGAS-STING-YY1 axis accelerates progression of neurodegeneration in a mouse model of Parkinson’s disease via LCN2-dependent astrocyte senescence
Chidley et al. A CRISPRi/a screening platform to study cellular nutrient transport in diverse microenvironments
Rönn et al. Genes with epigenetic alterations in human pancreatic islets impact mitochondrial function, insulin secretion, and type 2 diabetes
KR102661415B1 (en) Biomarker composition for diagnosis of ferumoxytol magnetic nanoparticles toxicity in endocrine system
Ryder et al. Nitric oxide-induced ribosome collision activates ribosomal surveillance mechanisms
Cappelletti et al. Quantitative proteomics reveals protein dysregulation during T cell activation in multiple sclerosis patients compared to healthy controls
Ling et al. CEP63 upregulates YAP1 to promote colorectal cancer progression through stabilizing RNA binding protein FXR1
Tabata et al. L-2hydroxyglutaric acid rewires amino acid metabolism in colorectal cancer via the mTOR-ATF4 axis
Tamura et al. SHISA2 enhances the aggressive phenotype in prostate cancer through the regulation of WNT5A expression
KR101470692B1 (en) Biomarker Composition for Diagnosis of Nanoparticles Toxicity
EP2307561A2 (en) Interferon epsilon (ifne1) as a marker for targeted cancer therapy

Legal Events

Date Code Title Description
GRNT Written decision to grant