KR102658215B1 - Cclm에 기반한 인트라 예측 방법 및 그 장치 - Google Patents

Cclm에 기반한 인트라 예측 방법 및 그 장치 Download PDF

Info

Publication number
KR102658215B1
KR102658215B1 KR1020237002947A KR20237002947A KR102658215B1 KR 102658215 B1 KR102658215 B1 KR 102658215B1 KR 1020237002947 A KR1020237002947 A KR 1020237002947A KR 20237002947 A KR20237002947 A KR 20237002947A KR 102658215 B1 KR102658215 B1 KR 102658215B1
Authority
KR
South Korea
Prior art keywords
luma
block
reference samples
samples
peripheral
Prior art date
Application number
KR1020237002947A
Other languages
English (en)
Other versions
KR20230018551A (ko
Inventor
최장원
허진
유선미
이령
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020247012189A priority Critical patent/KR20240051331A/ko
Publication of KR20230018551A publication Critical patent/KR20230018551A/ko
Application granted granted Critical
Publication of KR102658215B1 publication Critical patent/KR102658215B1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명에 따른 디코딩 장치에 의하여 수행되는 픽처 디코딩 방법은, 루마 블록의 주변 루마 참조 샘플들을 도출하는 단계, 상기 루마 블록과 대응되는 크로마 블록의 인트라 예측 모드가 CCLM(Cross-Component Linear Model) 모드인 경우, 상기 크로마 블록에 대한 주변 크로마 참조 샘플들을 도출하는 단계, 상기 주변 루마 참조 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들을 도출하는 단계, 상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출하는 단계, 상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 주변 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성하는 단계 및 상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록을 복원하는 단계를 포함하되, 상기 주변 루마 참조 샘플들은 상기 루마 블록의 상측 경계의 상측에 위치한 상측 주변 루마 참조 샘플들과 상기 루마 블록의 좌측 경계의 좌측에 위치한 좌측 주변 루마 참조 샘플들을 포함하고, 상기 루마 블록의 상기 상측 경계가 CTU(Coding Tree Unit)의 경계와 겹치는(overlap) 경우, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적은 것을 특징으로 한다.

Description

CCLM에 기반한 인트라 예측 방법 및 그 장치{CCLM-BASED INTRA-PREDICTION METHOD AND APPARATUS}
본 발명은 영상 코딩 기술에 관한 것으로서 보다 상세하게는 영상 코딩 시스템에서 CCLM(Cross-Component Linear Model)에 기반한 인트라 예측 방법 및 그 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
이에 따라, 고해상도, 고품질 영상의 정보를 효과적으로 전송하거나 저장하고, 재생하기 위해 고효율의 영상 압축 기술이 요구된다.
본 발명의 기술적 과제는 영상 코딩 효율을 높이는 방법 및 장치를 제공함에 있다.
본 발명의 다른 기술적 과제는 인트라 예측에 기반한 영상 코딩의 효율을 높이는 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 CCLM에 기반한 인트라 예측의 효율을 높이는 방법 및 장치를 제공함에 있다.
*본 발명의 또 다른 기술적 과제는 CCLM에 기반한 인트라 예측을 하드웨어에서 구현할 시 파이프 라인 딜레이(pipeline delay)를 개선하기 위한 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 CCLM에 기반한 인트라 예측을 수행할 시 1-샘플 라인(이하 '1-샘플 라인'은 1줄의 샘플들을 의미한다)의 주변 루마 참조 샘플들을 다운 샘플링함으로써 영상 코딩 효율을 높이는 방법 및 장치를 제공함에 있다.
본 발명의 일 실시예에 따르면, 디코딩 장치에 의하여 수행되는 픽처 디코딩 방법이 제공된다. 상기 방법은, 크로마 블록의 인트라 예측 모드가 CCLM(Cross-Component Linear Model) 모드인 경우, 상기 크로마 블록에 대한 주변 크로마 참조 샘플들을 도출하는 단계, 상기 크로마 블록에 대응되는 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출하는 단계, 상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출하는 단계, 상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출하는 단계, 상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성하는 단계 및 상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록을 복원하는 단계를 포함하되, 상기 주변 루마 참조 샘플들은 상기 루마 블록의 상측 경계의 상측에 위치한 상측 주변 루마 참조 샘플들과 상기 루마 블록의 좌측 경계의 좌측에 위치한 좌측 주변 루마 참조 샘플들을 포함하고, 상기 루마 블록의 상기 상측 경계가 CTU(Coding Tree Unit)의 경계와 겹치는(overlap) 경우, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적은 것을 특징으로 한다.
본 발명의 다른 일 실시예에 따르면, 픽처 디코딩을 수행하는 디코딩 장치가 제공된다. 상기 디코딩 장치는, 크로마 블록의 인트라 예측 모드가 CCLM(Cross-Component Linear Model) 모드인 경우, 상기 크로마 블록에 대한 주변 크로마 참조 샘플들을 도출하고, 상기 크로마 블록에 대응되는 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출하는 가산부, 상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출하고, 상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출하고, 상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성하는 예측부를 포함하고, 상기 가산부는 상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록을 복원하되, 상기 주변 루마 참조 샘플들은 상기 루마 블록의 상측 경계의 상측에 위치한 상측 주변 루마 참조 샘플들과 상기 루마 블록의 좌측 경계의 좌측에 위치한 좌측 주변 루마 참조 샘플들을 포함하고, 상기 루마 블록의 상기 상측 경계가 CTU(Coding Tree Unit)의 경계와 겹치는(overlap) 경우, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적은 것을 특징으로 한다.
본 발명의 또 다른 일 실시예에 따르면, 인코딩 장치에 의하여 수행되는 픽처 인코딩 방법이 제공된다. 상기 방법은, 크로마 블록의 인트라 예측 모드가 CCLM 모드인 경우, 상기 크로마 블록에 대한 주변 크로마 참조 샘플들을 도출하는 단계, 상기 크로마 블록에 대응되는 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출하는 단계, 상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출하는 단계, 상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출하는 단계, 상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성하는 단계, 상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록에 대한 레지듀얼 샘플들을 도출하는 단계 및 상기 레지듀얼 샘플들에 대한 정보를 포함하는 픽처 정보를 인코딩하는 단계를 포함하되, 상기 주변 루마 참조 샘플들은 상기 루마 블록의 상측 경계의 상측에 위치한 상측 주변 루마 참조 샘플들과 상기 루마 블록의 좌측 경계의 좌측에 위치한 좌측 주변 루마 참조 샘플들을 포함하고, 상기 루마 블록의 상기 상측 경계가 CTU(Coding Tree Unit)의 경계와 겹치는(overlap) 경우, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적은 것을 특징으로 한다.
본 발명의 또 다른 일 실시예에 따르면, 픽처 인코딩을 수행하는 인코딩 장치가 제공된다. 상기 인코딩 장치는, 크로마 블록의 인트라 예측 모드가 CCLM 모드인 경우, 상기 크로마 블록에 대한 주변 크로마 참조 샘플들을 도출하고, 상기 크로마 블록에 대응되는 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출하는 가산부, 상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출하고, 상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출하고, 상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성하는 예측부, 상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록에 대한 레지듀얼 샘플들을 도출하는 레지듀얼 처리부 및 상기 레지듀얼 샘플들에 대한 정보를 포함하는 픽처 정보를 인코딩하는 엔트로피 인코딩부를 포함하되, 상기 주변 루마 참조 샘플들은 상기 루마 블록의 상측 경계의 상측에 위치한 상측 주변 루마 참조 샘플들과 상기 루마 블록의 좌측 경계의 좌측에 위치한 좌측 주변 루마 참조 샘플들을 포함하고, 상기 루마 블록의 상기 상측 경계가 CTU(Coding Tree Unit)의 경계와 겹치는(overlap) 경우, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적은 것을 특징으로 한다.
본 발명의 또 다른 일 실시예에 따르면, 픽처 인코딩 방법에 의해 생성된 픽처 정보를 저장하는 디코더로 판독 가능한 저장 매체가 제공되며, 상기 픽처 인코딩 방법은, 크로마 블록의 인트라 예측 모드가 CCLM 모드인 경우, 상기 크로마 블록에 대한 주변 크로마 참조 샘플들을 도출하는 단계, 상기 크로마 블록에 대응되는 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출하는 단계, 상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출하는 단계, 상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출하는 단계, 상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성하는 단계, 상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록에 대한 레지듀얼 샘플들을 도출하는 단계 및 상기 레지듀얼 샘플들에 대한 정보를 포함하는 픽처 정보를 인코딩하는 단계를 포함하되, 상기 주변 루마 참조 샘플들은 상기 루마 블록의 상측 경계의 상측에 위치한 상측 주변 루마 참조 샘플들과 상기 루마 블록의 좌측 경계의 좌측에 위치한 좌측 주변 루마 참조 샘플들을 포함하고, 상기 루마 블록의 상기 상측 경계가 CTU(Coding Tree Unit)의 경계와 겹치는(overlap) 경우, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적은 것을 특징으로 한다.
본 발명에 따르면 전반적인 영상/비디오 압축 효율을 높일 수 있다.
본 발명에 따르면 인트라 예측에 기반한 영상 코딩의 효율을 높일 수 있다.
본 발명에 따르면 CCLM에 기반한 인트라 예측의 효율을 높일 수 있다.
본 발명에 따르면 CCLM에 기반한 인트라 예측을 하드웨어에서 구현할 시 파이프 라인 딜레이(pipeline delay)를 개선할 수 있다.
본 발명에 따르면 CCLM에 기반한 인트라 예측을 수행할 시 1-샘플 라인의 주변 루마 참조 샘플들을 다운 샘플링함으로써 영상 코딩 효율을 높일 수 있다.
도 1은 일 실시예에 따른 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 2는 일 실시예에 따른 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 일 실시예에 따른 CCLM에 기반한 인트라 예측을 설명하기 위한 도면이다.
도 4는 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측을 설명하기 위한 도면이다.
도 5는 일 실시예에 따른 CCLM에 기반한 인트라 예측 과정을 도시하는 흐름도이다.
도 6은 일 실시예에 따른 CCLM에 기반한 인트라 예측의 하드웨어 파이프라인의 일 예시를 나타내는 도면이다.
도 7은 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측의 하드웨어 파이프라인의 일 예시를 나타내는 도면이다.
도 8은 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측 과정을 도시하는 흐름도이다.
도 9는 또 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측의 하드웨어 파이프라인의 일 예시를 나타내는 도면이다.
도 10은 또 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측 과정을 도시하는 흐름도이다.
도 11은 또 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측 과정을 설명하기 위한 도면이다.
도 12는 또 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측 과정을 도시하는 흐름도이다.
도 13은 일 실시예에 따른 인코딩 장치의 동작을 도시하는 흐름도이다.
도 14는 일 실시예에 따른 인코딩 장치의 구성을 도시하는 블록도이다.
도 15는 일 실시예에 따른 디코딩 장치의 동작을 도시하는 흐름도이다.
도 16은 일 실시예에 따른 디코딩 장치의 구성을 도시하는 블록도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정 실시예에 한정하려고 하는 것이 아니다. 본 명세서에서 상용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 발명에서 설명되는 도면상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
이하의 설명은 비디오/영상 코딩에 관한 것이다. 예를 들어 이 문서에서 개시된 방법/실시예는 VVC (versatile video coding) 표준, EVC (essential video coding) 표준, AV1 (AOMedia Video 1) 표준, AVS2 (2nd generation of audio video coding standard) 또는 차세대 비디오/영상 코딩 표준(ex. H.267, H.268 등)에 개시되는 방법에 적용될 수 있다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략한다.
본 명세서에서 비디오(video)는 시간의 흐름에 따른 일련의 영상(image)들의 집합을 의미할 수 있다. 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)는 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 하나의 픽처는 복수의 슬라이스로 구성될 수 있으며, 필요에 따라서 픽처 및 슬라이스는 서로 혼용되어 사용될 수 있다.
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낸다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다.
도 1은 본 발명이 적용될 수 있는 인코딩 장치(video encoding apparatus)의 구성을 개략적으로 설명하는 도면이다. 이하 인코딩/디코딩 장치는 비디오 인코딩/디코딩 장치 및/또는 영상 인코딩/디코딩 장치를 포함할 수 있고, 비디오 인코딩/디코딩 장치가 영상 인코딩/디코딩 장치를 포함하는 개념으로 사용되거나, 영상 인코딩/디코딩 장치가 비디오 인코딩/디코딩 장치를 포함하는 개념으로 사용될 수도 있다.
도 1을 참조하면, (비디오) 인코딩 장치(100)는 픽처 분할부(picture partitioning module, 105), 예측부(prediction module, 110), 레지듀얼 처리부(residual processing module, 120), 엔트로피 인코딩부(entropy encoding module, 130), 가산부(adder, 140), 필터부(filtering module, 150) 및 메모리(memory, 160)을 포함할 수 있다. 레지듀얼 처리부(120)는 감산부(substractor, 121), 변환부(transform module, 122), 양자화부(quantization module, 123), 재정렬부(rearrangement module, 124), 역양자화부(dequantization module, 125) 및 역변환부(inverse transform module, 126)를 포함할 수 있다.
픽처 분할부(105)는 입력된 픽처를 적어도 하나의 처리 유닛(processing unit)으로 분할할 수 있다.
일 예로, 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBT (Quad-tree binary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리(ternary) 트리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및 터너리 트리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조/터너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 발명에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다.
다른 예로, 처리 유닛은 코딩 유닛(coding unit, CU) 예측 유닛(prediction unit, PU) 또는 변환 유닛(transform unit, TU)을 포함할 수도 있다. 코딩 유닛은 최대 코딩 유닛(largest coding unit, LCU)으로부터 쿼드 트리 구조를 따라서 하위(deeper) 뎁스의 코딩 유닛들로 분할(split)될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 최소 코딩 유닛(smallest coding unit, SCU)이 설정된 경우 코딩 유닛은 최소 코딩 유닛보다 더 작은 코딩 유닛으로 분할될 수 없다. 여기서 최종 코딩 유닛이라 함은 예측 유닛 또는 변환 유닛으로 파티셔닝 또는 분할되는 기반이 되는 코딩 유닛을 의미한다. 예측 유닛은 코딩 유닛으로부터 파티셔닝(partitioning)되는 유닛으로서, 샘플 예측의 유닛일 수 있다. 이 때, 예측 유닛은 서브 블록(sub block)으로 나뉠 수도 있다. 변환 유닛은 코딩 유닛으로부터 쿼드 트리 구조를 따라서 분할 될 수 있으며, 변환 계수를 유도하는 유닛 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 유닛일 수 있다. 이하, 코딩 유닛은 코딩 블록(coding block, CB), 예측 유닛은 예측 블록(prediction block, PB), 변환 유닛은 변환 블록(transform block, TB) 으로 불릴 수 있다. 예측 블록 또는 예측 유닛은 픽처 내에서 블록 형태의 특정 영역을 의미할 수 있고, 예측 샘플의 어레이(array)를 포함할 수 있다. 또한, 변환 블록 또는 변환 유닛은 픽처 내에서 블록 형태의 특정 영역을 의미할 수 있고, 변환 계수 또는 레지듀얼 샘플의 어레이를 포함할 수 있다.
예측부(110)는 처리 대상 블록(이하, 현재 블록 또는 레지듀얼 블록을 의미할 수도 있다)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부(110)에서 수행되는 예측의 단위는 코딩 블록일 수 있고, 변환 블록일 수도 있고, 예측 블록일 수도 있다.
예측부(110)는 현재 블록에 인트라 예측이 적용되는지 인터 예측이 적용되는지를 결정할 수 있다. 일 예로, 예측부(110)는 CU 단위로 인트라 예측 또는 인터 예측이 적용되는지를 결정할 수 있다.
인트라 예측의 경우에, 예측부(110)는 현재 블록이 속하는 픽처(이하, 현재 픽처) 내의 현재 블록 외부의 참조 샘플을 기반으로 현재 블록에 대한 예측 샘플을 유도할 수 있다. 이 때, 예측부(110)는 (i) 현재 블록의 주변(neighboring) 참조 샘플들의 평균(average) 혹은 인터폴레이션(interpolation)을 기반으로 예측 샘플을 유도할 수 있고, (ii) 현재 블록의 주변 참조 샘플들 중 예측 샘플에 대하여 특정 (예측) 방향에 존재하는 참조 샘플을 기반으로 상기 예측 샘플을 유도할 수도 있다. (i)의 경우는 비방향성 모드 또는 비각도 모드, (ii)의 경우는 방향성(directional) 모드 또는 각도(angular) 모드라고 불릴 수 있다. 인트라 예측에서 예측 모드는 예를 들어 33개의 방향성 예측 모드와 적어도 2개 이상의 비방향성 모드를 가질 수 있다. 비방향성 모드는 DC 예측 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 예측부(110)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측의 경우에, 예측부(110)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 샘플을 기반으로, 현재 블록에 대한 예측 샘플을 유도할 수 있다. 예측부(110)는 스킵(skip) 모드, 머지(merge) 모드, 및 MVP(motion vector prediction) 모드 중 어느 하나를 적용하여 현재 블록에 대한 예측 샘플을 유도할 수 있다. 스킵 모드와 머지 모드의 경우에, 예측부(110)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 예측 샘플과 원본 샘플 사이의 차(레지듀얼)가 전송되지 않는다. MVP 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(Motion Vector Predictor)로 이용하여 현재 블록의 움직임 벡터 예측자로 이용하여 현재 블록의 움직임 벡터를 유도할 수 있다.
인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처(reference picture)에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 움직임 정보(motion information)는 움직임 벡터와 참조 픽처 인덱스를 포함할 수 있다. 예측 모드 정보와 움직임 정보 등의 정보는 (엔트로피) 인코딩되어 비트스트림 형태로 출력될 수 있다.
스킵 모드와 머지 모드에서 시간적 주변 블록의 움직임 정보가 이용되는 경우에, 참조 픽처 리스트(reference picture list) 상의 최상위 픽처가 참조 픽처로서 이용될 수도 있다. 참조 픽처 리스트(Picture Order Count)에 포함되는 참조 픽처들은 현재 픽처와 해당 참조 픽처 간의 POC(Picture order count) 차이 기반으로 정렬될 수 있다. POC는 픽처의 디스플레이 순서에 대응하며, 코딩 순서와 구분될 수 있다.
감산부(121)는 원본 샘플과 예측 샘플 간의 차이인 레지듀얼 샘플을 생성한다. 스킵 모드가 적용되는 경우에는, 상술한 바와 같이 레지듀얼 샘플을 생성하지 않을 수 있다.
변환부(122)는 변환 블록 단위로 레지듀얼 샘플을 변환하여 변환 계수(transform coefficient)를 생성한다. 변환부(122)는 해당 변환 블록의 사이즈와, 해당 변환 블록과 공간적으로 겹치는 코딩 블록 또는 예측 블록에 적용된 예측 모드에 따라서 변환을 수행할 수 있다. 예컨대, 상기 변환 블록과 겹치는 상기 코딩 블록 또는 상기 예측 블록에 인트라 예측이 적용되었고, 상기 변환 블록이 4×4의 레지듀얼 어레이(array)라면, 레지듀얼 샘플은 DST(Discrete Sine Transform) 변환 커널을 이용하여 변환되고, 그 외의 경우라면 레지듀얼 샘플은 DCT(Discrete Cosine Transform) 변환 커널을 이용하여 변환할 수 있다.
양자화부(123)는 변환 계수들을 양자화하여, 양자화된 변환 계수를 생성할 수 있다.
재정렬부(124)는 양자화된 변환 계수를 재정렬한다. 재정렬부(124)는 계수들 스캐닝(scanning) 방법을 통해 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있다. 여기서 재정렬부(124)는 별도의 구성으로 설명하였으나, 재정렬부(124)는 양자화부(123)의 일부일 수 있다.
엔트로피 인코딩부(130)는 양자화된 변환 계수들에 대한 엔트로피 인코딩을 수행할 수 있다. 엔트로피 인코딩은 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 인코딩 방법을 포함할 수 있다. 엔트로피 인코딩부(130)는 양자화된 변환 계수 외 비디오 복원에 필요한 정보들(예컨대 신택스 요소(syntax element)의 값 등)을 함께 또는 별도로 엔트로피 인코딩 또는 기 설정된 방법에 따라 인코딩할 수도 있다. 인코딩된 정보들은 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다.
역양자화부(125)는 양자화부(123)에서 양자화된 값(양자화된 변환 계수)들을 역양자화하고, 역변환부(126)는 역양자화부(125)에서 역양자화된 값들을 역변환하여 레지듀얼 샘플을 생성한다.
가산부(140)는 레지듀얼 샘플과 예측 샘플을 합쳐서 픽처를 복원한다. 레지듀얼 샘플과 예측 샘플은 블록 단위로 더해져서 복원 블록이 생성될 수 있다. 여기서 가산부(140)는 별도의 구성으로 설명하였으나, 가산부(140)는 예측부(110)의 일부일 수 있다. 한편, 가산부(140)는 복원부(reconstruction module) 또는 복원 블록 생성부로 불릴 수도 있다.
복원된 픽처(reconstructed picture)에 대하여 필터부(150)는 디블록킹 필터 및/또는 샘플 적응적 오프셋(sample adaptive offset)을 적용할 수 있다. 디블록킹 필터링 및/또는 샘플 적응적 오프셋을 통해, 복원 픽처 내 블록 경계의 아티팩트나 양자화 과정에서의 왜곡이 보정될 수 있다. 샘플 적응적 오프셋은 샘플 단위로 적용될 수 있으며, 디블록킹 필터링의 과정이 완료된 후 적용될 수 있다. 필터부(150)는 ALF(Adaptive Loop Filter)를 복원된 픽처에 적용할 수도 있다. ALF는 디블록킹 필터 및/또는 샘플 적응적 오프셋이 적용된 후의 복원된 픽처에 대하여 적용될 수 있다.
메모리(160)는 복원 픽처(디코딩된 픽처) 또는 인코딩/디코딩에 필요한 정보를 저장할 수 있다. 여기서 복원 픽처는 상기 필터부(150)에 의하여 필터링 절차가 완료된 복원 픽처일 수 있다. 상기 저장된 복원 픽처는 다른 픽처의 (인터) 예측을 위한 참조 픽처로 활용될 수 있다. 예컨대, 메모리(160)는 인터 예측에 사용되는 (참조) 픽처들을 저장할 수 있다. 이 때, 인터 예측에 사용되는 픽처들은 참조 픽처 세트(reference picture set) 혹은 참조 픽처 리스트(reference picture list)에 의해 지정될 수 있다.
도 2는 본 발명이 적용될 수 있는 비디오/영상 디코딩 장치(video decoding apparatus)의 구성을 개략적으로 설명하는 도면이다. 이하 비디오 디코딩 장치라 함은 영상 디코딩 장치를 포함할 수 있다.
도 2를 참조하면, 비디오 디코딩 장치(200)는 엔트로피 디코딩부(entropy decoding module, 210), 레지듀얼 처리부(residual processing module, 220), 예측부(prediction module, 230), 가산부(adder, 240), 필터부(filtering module, 250) 및 메모리(memory, 260)을 포함할 수 있다. 여기서 레지듀얼 처리부(220)는 재정렬부(rearrangement module, 221), 역양자화부(dequantization module, 222), 역변환부(inverse transform module, 223)을 포함할 수 있다. 또한, 비록 도시되지는 않았으나, 비디오 디코딩 장치(200)는 비디오 정보를 포함하는 비트스트림을 수신하는 수신부를 포함할 수 있다. 상기 수신부는 별도의 모듈로 구성될 수도 있고 또는 엔트로피 디코딩부(210)에 포함될 수 있다.
비디오/영상 정보를 포함하는 비트스트림이 입력되면, 비디오 디코딩 장치는(200)는 비디오 인코딩 장치에서 비디오/영상 정보가 처리된 프로세스에 대응하여 비디오/영상/픽처를 복원할 수 있다.
예컨대, 비디오 디코딩 장치(200)는 비디오 인코딩 장치에서 적용된 처리 유닛을 이용하여 비디오 디코딩을 수행할 수 있다. 따라서 비디오 디코딩의 처리 유닛 블록은 일 예로 코딩 유닛일 수 있고, 다른 예로 코딩 유닛, 예측 유닛 또는 변환 유닛일 수 있다. 코딩 유닛은 최대 코딩 유닛으로부터 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 따라서 분할될 수 있다.
예측 유닛 및 변환 유닛이 경우에 따라 더 사용될 수 있으며, 이 경우 예측 블록은 코딩 유닛으로부터 도출 또는 파티셔닝되는 블록으로서, 샘플 예측의 유닛일 수 있다. 이 때, 예측 유닛은 서브 블록으로 나뉠 수도 있다. 변환 유닛은 코딩 유닛으로부터 쿼드 트리 구조를 따라서 분할 될 수 있으며, 변환 계수를 유도하는 유닛 또는 변환 계수로부터 레지듀얼 신호를 유도하는 유닛일 수 있다.
엔트로피 디코딩부(210)는 비트스트림을 파싱하여 비디오 복원 또는 픽처 복원에 필요한 정보를 출력할 수 있다. 예컨대, 엔트로피 디코딩부(210)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 비디오 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다.
보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 컨택스트(context) 모델을 결정하고, 결정된 컨택스트 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 컨택스트 모델 결정 후 다음 심볼/빈의 컨택스트 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 컨택스트 모델을 업데이트할 수 있다.
엔트로피 디코딩부(210)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(230)로 제공되고, 엔트로피 디코딩부(210)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수는 재정렬부(221)로 입력될 수 있다.
재정렬부(221)는 양자화되어 있는 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 재정렬부(221)는 인코딩 장치에서 수행된 계수 스캐닝에 대응하여 재정렬을 수행할 수 있다. 여기서 재정렬부(221)는 별도의 구성으로 설명하였으나, 재정렬부(221)는 역양자화부(222)의 일부일 수 있다.
역양자화부(222)는 양자화되어 있는 변환 계수들을 (역)양자화 파라미터를 기반으로 역양자화하여 변환 계수를 출력할 수 있다. 이 때, 양자화 파라미터를 유도하기 위한 정보는 인코딩 장치로부터 시그널링될 수 있다.
역변환부(223)는 변환 계수들을 역변환하여 레지듀얼 샘플들을 유도할 수 있다.
예측부(230)는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부(230)에서 수행되는 예측의 단위는 코딩 블록일 수도 있고, 변환 블록일 수도 있고, 예측 블록일 수도 있다.
예측부(230)는 상기 예측에 관한 정보를 기반으로 인트라 예측을 적용할 것인지 인터 예측을 적용할 것인지를 결정할 수 있다. 이 때, 인트라 예측과 인터 예측 중 어느 것을 적용할 것인지를 결정하는 단위와 예측 샘플을 생성하는 단위는 상이할 수 있다. 아울러, 인터 예측과 인트라 예측에 있어서 예측 샘플을 생성하는 단위 또한 상이할 수 있다. 예를 들어, 인터 예측과 인트라 예측 중 어느 것을 적용할 것인지는 CU 단위로 결정할 수 있다. 또한 예를 들어, 인터 예측에 있어서 PU 단위로 예측 모드를 결정하고 예측 샘플을 생성할 수 있고, 인트라 예측에 있어서 PU 단위로 예측 모드를 결정하고 TU 단위로 예측 샘플을 생성할 수도 있다.
인트라 예측의 경우에, 예측부(230)는 현재 픽처 내의 주변 참조 샘플을 기반으로 현재 블록에 대한 예측 샘플을 유도할 수 있다. 예측부(230)는 현재 블록의 주변 참조 샘플을 기반으로 방향성 모드 또는 비방향성 모드를 적용하여 현재 블록에 대한 예측 샘플을 유도할 수 있다. 이 때, 주변 블록의 인트라 예측 모드를 이용하여 현재 블록에 적용할 예측 모드가 결정될 수도 있다.
인터 예측의 경우에, 예측부(230)는 참조 픽처 상에서 움직임 벡터에 의해 참조 픽처 상에서 특정되는 샘플을 기반으로 현재 블록에 대한 예측 샘플을 유도할 수 있다. 예측부(230)는 스킵(skip) 모드, 머지(merge) 모드 및 MVP 모드 중 어느 하나를 적용하여 현재 블록에 대한 예측 샘플을 유도할 수 있다. 이때, 비디오 인코딩 장치에서 제공된 현재 블록의 인터 예측에 필요한 움직임 정보, 예컨대 움직임 벡터, 참조 픽처 인덱스 등에 관한 정보는 상기 예측에 관한 정보를 기반으로 획득 또는 유도될 수 있다
스킵 모드와 머지 모드의 경우에, 주변 블록의 움직임 정보가 현재 블록의 움직임 정보로 이용될 수 있다. 이 때, 주변 블록은 공간적 주변 블록과 시간적 주변 블록을 포함할 수 있다.
예측부(230)는 가용한 주변 블록의 움직임 정보로 머지 후보 리스트를 구성하고, 머지 인덱스가 머지 후보 리스트 상에서 지시하는 정보를 현재 블록의 움직임 벡터로 사용할 수 있다. 머지 인덱스는 인코딩 장치로부터 시그널링될 수 있다. 움직임 정보는 움직임 벡터와 참조 픽처를 포함할 수 있다. 스킵 모드와 머지 모드에서 시간적 주변 블록의 움직임 정보가 이용되는 경우에, 참조 픽처 리스트 상의 최상위 픽처가 참조 픽처로서 이용될 수 있다.
스킵 모드의 경우, 머지 모드와 달리 예측 샘플과 원본 샘플 사이의 차이(레지듀얼)이 전송되지 않는다.
MVP 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하여 현재 블록의 움직임 벡터가 유도될 수 있다. 이 때, 주변 블록은 공간적 주변 블록과 시간적 주변 블록을 포함할 수 있다.
일 예로, 머지 모드가 적용되는 경우, 복원된 공간적 주변 블록의 움직임 벡터 및/또는 시간적 주변 블록인 Col 블록에 대응하는 움직임 벡터를 이용하여, 머지 후보 리스트가 생성될 수 있다. 머지 모드에서는 머지 후보 리스트에서 선택된 후보 블록의 움직임 벡터가 현재 블록의 움직임 벡터로 사용된다. 상기 예측에 관한 정보는 상기 머지 후보 리스트에 포함된 후보 블록들 중에서 선택된 최적의 움직임 벡터를 갖는 후보 블록을 지시하는 머지 인덱스를 포함할 수 있다. 이 때, 예측부(230)는 상기 머지 인덱스를 이용하여, 현재 블록의 움직임 벡터를 도출할 수 있다.
다른 예로, MVP(Motion Vector Prediction) 모드가 적용되는 경우, 복원된 공간적 주변 블록의 움직임 벡터 및/또는 시간적 주변 블록인 Col 블록에 대응하는 움직임 벡터를 이용하여, 움직임 벡터 예측자 후보 리스트가 생성될 수 있다. 즉, 복원된 공간적 주변 블록의 움직임 벡터 및/또는 시간적 주변 블록인 Col 블록에 대응하는 움직임 벡터는 움직임 벡터 후보로 사용될 수 있다. 상기 예측에 관한 정보는 상기 리스트에 포함된 움직임 벡터 후보 중에서 선택된 최적의 움직임 벡터를 지시하는 예측 움직임 벡터 인덱스를 포함할 수 있다. 이 때, 예측부(230)는 상기 움직임 벡터 인덱스를 이용하여, 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중에서, 현재 블록의 예측 움직임 벡터를 선택할 수 있다. 인코딩 장치의 예측부는 현재 블록의 움직임 벡터와 움직임 벡터 예측자 간의 움직임 벡터 차분(MVD)을 구할 수 있고, 이를 인코딩하여 비트스트림 형태로 출력할 수 있다. 즉, MVD는 현재 블록의 움직임 벡터에서 상기 움직임 벡터 예측자를 뺀 값으로 구해질 수 있다. 이 때, 예측부(230)는 상기 예측에 관한 정보에 포함된 움직임 벡터 차분을 획득하고, 상기 움직임 벡터 차분과 상기 움직임 벡터 예측자의 가산을 통해 현재 블록의 상기 움직임 벡터를 도출할 수 있다. 예측부는 또한 참조 픽처를 지시하는 참조 픽처 인덱스 등을 상기 예측에 관한 정보로부터 획득 또는 유도할 수 있다.
가산부(240)는 레지듀얼 샘플과 예측 샘플을 더하여 현재 블록 혹은 현재 픽처를 복원할 수 있다. 가산부(240)는 레지듀얼 샘플과 예측 샘플을 블록 단위로 더하여 현재 픽처를 복원할 수도 있다. 스킵 모드가 적용된 경우에는 레지듀얼이 전송되지 않으므로, 예측 샘플이 복원 샘플이 될 수 있다. 여기서는 가산부(240)를 별도의 구성으로 설명하였으나, 가산부(240)는 예측부(230)의 일부일 수도 있다. 한편, 가산부(240)는 복원부(reconstruction module) 또는 복원 블록 생성부로 불릴 수도 있다.
필터부(250)는 복원된 픽처에 디블록킹 필터링 샘플 적응적 오프셋, 및/또는 ALF 등을 적용할 수 있다. 이 때, 샘플 적응적 오프셋은 샘플 단위로 적용될 수 있으며, 디블록킹 필터링 이후 적용될 수도 있다. ALF는 디블록킹 필터링 및/또는 샘플 적응적 오프셋 이후 적용될 수도 있다.
메모리(260)는 복원 픽처(디코딩된 픽처) 또는 디코딩에 필요한 정보를 저장할 수 있다. 여기서 복원 픽처는 상기 필터부(250)에 의하여 필터링 절차가 완료된 복원 픽처일 수 있다. 예컨대, 메모리(260)는 인터 예측에 사용되는 픽처들을 저장할 수 있다. 이 때, 인터 예측에 사용되는 픽처들은 참조 픽처 세트 혹은 참조 픽처 리스트에 의해 지정될 수도 있다. 복원된 픽처는 다른 픽처에 대한 참조 픽처로서 이용될 수 있다. 또한, 메모리(260)는 복원된 픽처를 출력 순서에 따라서 출력할 수도 있다.
한편, 상술한 바와 같이 비디오 코딩을 수행함에 있어 압축 효율을 높이기 위하여 예측을 수행한다. 이를 통하여 코딩 대상 블록인 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록을 생성할 수 있다. 여기서 상기 예측된 블록은 공간 도메인(또는 픽셀 도메인)에서의 예측 샘플들을 포함한다. 상기 예측된 블록은 인코딩 장치 및 디코딩 장치에서 동일하게 도출되며, 상기 인코딩 장치는 원본 블록의 원본 샘플 값 자체가 아닌 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼에 대한 정보(레지듀얼 정보)를 디코딩 장치로 시그널링함으로써 영상 코딩 효율을 높일 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 레지듀얼 샘플들을 포함하는 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록과 상기 예측된 블록을 합하여 복원 샘플들을 포함하는 복원 블록을 생성할 수 있고, 복원 블록들을 포함하는 복원 픽처를 생성할 수 있다.
상기 레지듀얼 정보는 변환 및 양자화 절차를 통하여 생성될 수 있다. 예를 들어, 인코딩 장치는 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록에 포함된 레지듀얼 샘플들(레지듀얼 샘플 어레이)에 변환 절차를 수행하여 변환 계수들을 도출하고, 상기 변환 계수들에 양자화 절차를 수행하여 양자화된 변환 계수들을 도출하여 관련된 레지듀얼 정보를 (비트스트림을 통하여) 디코딩 장치로 시그널링할 수 있다. 여기서 상기 레지듀얼 정보는 상기 양자화된 변환 계수들의 값 정보, 위치 정보, 변환 기법, 변환 커널, 양자화 파라미터 등의 정보를 포함할 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 역양자화/역변환 절차를 수행하고 레지듀얼 샘플들(또는 레지듀얼 블록)을 도출할 수 있다. 디코딩 장치는 예측된 블록과 상기 레지듀얼 블록을 기반으로 복원 픽처를 생성할 수 있다. 인코딩 장치는 또한 이후 픽처의 인터 예측을 위한 참조를 위하여 양자화된 변환 계수들을 역양자화/역변환하여 레지듀얼 블록을 도출하고, 이를 기반으로 복원 픽처를 생성할 수 있다.
도 3은 일 실시예에 따른 CCLM에 기반한 인트라 예측을 설명하기 위한 도면이다.
일 실시예에 따라 크로마 영상에 대하여 인트라 부호화를 수행할 시, 예측 모드의 하나로 CCLM(Cross-Component Linear Model) 모드가 이용될 수 있다. CCLM은 크로마 영상(또는 크로마 블록)의 샘플값(또는 화소값)을 복원된 루마 영상(또는 루마 블록)의 샘플값을 기반으로 예측하는 방법으로, 루마 영상과 크로마 영상간의 상관도(correlation)가 높다는 특성을 이용한 방법이다.
일 실시예에서, Cb 및 Cr 크로마 영상의 CCLM 모드에 기반한 인트라 예측은 아래의 수학식 1을 기반으로 수행될 수 있다.
[수학식 1]
Predc(x, y)는 예측될 Cb 또는 Cr 크로마 영상의 샘플값을 의미하고, Rec'L(x, y)은 크로마 블록 크기로 조정된 복원된 루마 블록의 샘플값을 의미하고, (x, y)는 샘플의 좌표를 의미한다. 4:2:0 컬러 포맷(color format)에서는 루마 영상의 크기가 크로마 영상의 2배이기 때문에 다운 샘플링(downsampling)을 통해 크로마 블록 크기의 Rec'L을 생성하여야 하며, 따라서 크로마 영상의 샘플값 Predc(x, y)에 사용될 루마 영상의 샘플은 Rec'L(2x, 2y) 외에 주변 샘플까지 고려될 수 있다. 일 예시에서, Rec'L(x, y)는 수학식 2와 같이 6개의 주변 샘플들의 샘플값을 기반으로 도출될 수 있다.
[수학식 2]
일 실시예에서, CCLM 모드를 적용할 때 이용되는 선형 모델 파라미터 , 는 도 3의 옅은 음영으로 된 영역과 같이 Cb 또는 Cr 주변 크로마 참조 샘플 영역 (reference sample area 또는 template)과 주변 루마 참조 샘플 영역간의 크로스-코릴레이션(cross-correlation) 및 평균값의 차이를 기반으로 아래의 수학식 3과 같이 도출될 수 있다.
[수학식 3]
수학식 3에서 tL은 현재 크로마 블록에 대응하는 루마 블록의 주변 루마 참조 샘플을, tCL는 현재 부호화가 적용되는 크로마 블록의 주변 참조 크로마 샘플을 의미하며, (x, y)는 샘플 위치를 의미한다. 또한 M(A)는 참조 샘플 영역 내 A 샘플들의 평균을 의미한다. 루마 블록의 참조 샘플 또한 상기 수학식 3과 같은 다운 샘플링을 기반으로 도출될 수 있다.
다른 일 실시예에서, Cr 크로마 영상의 인트라 예측 모드가 CCLM 모드가 아닐 경우에는 우선 기본 인트라 예측 모드(예를 들어, 기본 인트라 예측 모드는 DC 모드, PLANAR 모드, 기타 방향성 인트라 예측 모드를 포함할 수 있다)를 기반으로 인트라 예측을 수행할 수 있다. 이 후, Cb 크로마 영상과 Cr 크로마 영상 간에 CCLM을 적용하고, CCLM이 적용된 결과를 상기 수학식 3과 같이 기존 예측 블록에 반영할 수 있다. 이때 Cb 및 Cr 크로마 영상 중 어느 하나를 사용하여 다른 하나를 예측하는 것이 가능하며, 일 예시에서 Cb 크로마 영상을 사용하여 Cr 크로마 영상을 예측하는 경우 아래의 수학식 4가 사용될 수 있다.
[수학식 4]
수학식 4에서 predCr은 최종 예측된 Cr 크로마 블록의 샘플값을, pre_predCr은 CCLM 이외의 Cr 크로마 인트라 예측 모드를 통해 예측된 Cr 크로마 블록의 샘플값을 의미하며, residualCb 는 이미 부호화가 완료된 Cb 크로마 영상의 레지듀얼 샘플값(또는 잔차 화소)을 의미할 수 있다. 또한, 는 수학식 1과 같이 Cb 및 Cr 크로마 블록의 주변 참조 샘플 영역 간 크로스-코릴레이션(cross-corelation)을 통해 산출될 수 있다.
도 4는 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측을 설명하기 위한 도면이다.
일 실시예에서는 현재 (부호화) 블록의 상측 참조 샘플 라인이 다른 CTU(Coding Tree Unit)의 경계에 위치할 경우, 앞선 수학식 2에 따른 다운 샘플링 대신 다음의 수학식 5와 같이 현재 블록 바로 위의 1줄의 참조 샘플 라인만을 이용하여 참조 샘플 다운 샘플링을 수행할 수 있다.
[수학식 5]
즉, 수학식 2와 같이 CCLM을 위한 루마 블록의 샘플들에 대한 다운 샘플링은 6개의 샘플(또는 화소)를 이용하지만, 수학식 5에 따른 일 실시예에서는 현재 블록의 상측 참조 샘플 라인이 다른 CTU의 경계에 위치하는 경우(또는 다른 CTU의 경계와 겹치는 경우)에 한 참조 샘플 라인의 3개의 샘플을 이용하여 다운 샘플링을 수행할 수 있다.
하드웨어 구현 시, 라인 버퍼는 영상의 전체 가로 크기만큼의 샘플(또는 화소) 데이터 및 압축 정보를 모두 포함해야 하기 때문에, 라인 버퍼를 많이 사용 할수록 비용이 증가할 수 있다. 수학식 5에 따른 일 실시예에서 제안하는 방법에 따르면, 윗 CTU 경계에서 1줄의 라인 버퍼만을 이용하여 CCLM 예측을 수행할 수 있고, 이에 따라 윗 CTU 경계에서 사용되는 라인 버퍼를 (절반으로) 줄임으로써 하드웨어 구현 시의 비용을 감소시킬 수 있다.
아래의 표 1은 도 4 및 수학식 5에 따른 일 실시예에서 제안하는 방법을 사용할 경우의 실험 결과의 일 예시를 나타낸다. 일 예시에서, 상기 실험의 앵커는 VTM1.0에 CCLM 기술이 추가된 소프트웨어일 수 있고, 올 인트라(All Intra) 세팅으로 영상을 부호화 한 결과를 나타내고 있다.
[표 1]
표 1을 참조하면, 도 4의 수학식 5에 따른 일 실시예에서 제안하는 방법을 이용하여 CCLM 모드를 적용할 경우, 수학식 5에 따른 일 실시예에서 제안하는 방법을 이용하지 않고 CCLM 모드를 적용하는 경우와 비교할 때, 루마(Y) 영상 0.00%, 크로마 영상 Cb 0.00% 및 크로마 영상 Cr 0.01%의 BD-rate를 얻을 수 있다. 즉, 도 4의 수학식 5에 따른 일 실시예에서 제안하는 방법을 이용하여 CCLM 모드를 적용하더라도 부호화 손실이 발생하지 않는 것을 확인할 수 있다.
수학식 5에서 제안한 다운 샘플링 방법 외에도, 일 실시예에서는 아래의 수학식 6 또는 수학식 7과 같은 다운 샘플링 방법을 기반으로 CCLM 모드를 적용할 수 있다.
[수학식 6]
[수학식 7]
수학식 2 및 수학식 5 내지 수학식 7에 따른 다운 샘플링 방법들은 크로마 인트라 예측 모드인 CCLM 모드에 적용될 수 있고, CCLM 모드를 통해 예측된 크로마 블록은 인코딩 장치(또는 부호기)에서 원본 영상과의 차분을 통해 레지듀얼 영상(또는 잔차 영상)을 획득할 때 이용되거나, 디코딩 장치(또는 복호기)에서 레지듀얼 신호(또는 잔차 신호)와의 합을 기반으로 복원된 영상을 획득할 때 이용될 수 있다.
도 5는 일 실시예에 따른 CCLM에 기반한 인트라 예측 과정을 도시하는 흐름도이다.
일 실시예에 따른 디코딩 장치(200)는 다운 샘플링된 루마 템플릿을 생성할 수 있다. 이때 디코딩 장치(200)는, 현재 블록의 상측 경계가 CTU의 경계와 겹치는지 여부를 판단하여, 현재 블록의 상측 경계가 CTU의 경계와 겹치는 경우 1-라인 다운 샘플링을 기반으로 상측 루마 템플릿을 생성하고, 현재 블록의 상측 경계가 CTU의 경계와 겹치지 않는 경우 2-라인 다운 샘플링을 기반으로 상측 루마 템플릿을 생성할 수 있다. 디코딩 장치(200)는 2-라인 다운 샘플링을 기반으로 좌측 루마 템플릿을 생성할 수 있다.
일 실시예에 따른 디코딩 장치(200)는 선형 파라미터 모델 계수인 를 도출할 수 있고, 다운 샘플링된 루마 블록을 생성할 수 있으며, 상기 수학식 1을 기반으로 CCLM 예측을 수행할 수 있다.
도 6은 일 실시예에 따른 CCLM에 기반한 인트라 예측의 하드웨어 파이프라인의 일 예시를 나타내는 도면이다.
일 실시예에서는 CCLM이 구현된 인트라 예측의 하드웨어 파이프라이닝(pipelining) 최적화를 위해, 복원된 루마 영상의 다운 샘플링 시 블록의 샘플 라인들 간 상관성을 제거하는 방법을 제안한다.
앞서 설명한 바와 같이 CCLM은 복원된 루마 블록의 샘플 값을 이용하여 크로마 블록의 샘플값을 예측하는 방법이므로, 동일 위치의 루마 블록이 부호화가 완료 되기 전에는 크로마 블록의 CCLM 예측이 불가능할 수 있다.
또한, 앞선 수학식 2와 같은 방법을 통해 복원된 영상의 다운 샘플링을 적용하기 때문에 블록의 샘플 라인들 간 상관성이 발생하며, 이로 인해 CCLM의 하드웨어 구현 시 도 6과 같이 클락 딜레이(clock delay)가 발생할 수 있다.
도 6은 8x4 인트라 예측 블록에서 CCLM 예측의 유무에 따른 하드웨어 파이프라인의 예시를 나타낸다. 도 6에 도시된 바와 같이 4x1 단위로 루마 샘플들의 예측 및 복원이 진행되며, 4x1 블록을 복호화 하기 위해서는 2 클락이 요구되기 때문에 8x4 블록의 루마 샘플들을 모두 복호화 하기 위해서는 총 16 클락이 필요할 수 있다. 루마 및 크로마 영상 간의 상관성이 없을 경우, 루마 및 크로마 영상은 동시에 복호화가 진행되기 때문에 크로마 영상의 복호화는 루마 영상의 절반에 해당하는 클락(도 6의 예시의 경우 8 클락)이 경과하면 완료될 수 있다. 하지만 CCLM 알고리즘이 적용될 경우, 샘플 라인들 간 상관성에 의해 루마 블록의 2-샘플 라인들의 부호화가 모두 완료된 후 (도 6의 4번 4x1 라인), 크로마 블록의 1-샘플 라인에 CCLM을 적용할 수 있으며, 따라서 루마 블록의 부호화가 종료된 시점에서도 크로마 블록의 부호화를 위해 4 클락 딜레이가 발생할 수 있다.
도 7은 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측의 하드웨어 파이프라인의 일 예시를 나타내는 도면이다.
일 실시예에서는 CCLM을 위해 복원된 루마 영상을 다운 샘플링할 시, 샘플 라인들간 상관도를 제거함으로써 하드웨어 파이프 라인의 클락 딜레이를 줄이는 방법이 제공될 수 있다. 이를 위해, 다음의 수학식 8, 수학식 9, 수학식 10 또는 수학식 11에 기반하여 복원된 루마 블록의 다운 샘플링을 수행할 수 있다.
[수학식 8]
[수학식 9]
[수학식 10]
[수학식 11]
위 수학식 8 내지 수학식 11에서 제안하는 다운 샘플링은 현재 주변 참조 샘플 영역 (또는 주변 템플릿 영역)을 제외한 영역에 적용될 수 있다
일 실시예에서, 샘플 라인들 간 상관도를 제거한 다운 샘플링을 적용할 경우, 도 7과 같이 하드웨어 파이프 라인의 최적화를 수행 할 수 있다. 도 7의 예시와 같은 파이프 라인에서는 루마 블록의 하나의 샘플 라인이 복호화가 완료된 후 바로 크로마 블록의 복호화를 진행할 수 있으며 (도 7의 2번 4x1 line), 최종적으로 루마 블록의 세 번째 샘플 라인이 복호화 완료된 후 (도 7의 6번 4x1 line) 크로마 블록의 두 번째 샘플 라인의 복호화를 진행할 수 있다. 루마 블록의 네 번째 샘플 라인의 복호화에는 4 클락이 요구되고 크로마 블록의 두 번째 샘플 라인의 복호화 또한 4 클락이 요구되기 때문에 (크로마 Cb 및 Cr 각각 2 클락씩 필요), 최종적으로 딜레이 없이 루마 및 크로마 블록의 복호화가 동시에 완료될 수 있다.
즉, 본 실시예에서 제안하는 방법을 통해 루마 블록과 크로마 블록 간의 클락 딜레이 문제를 해결할 수 있으며, 이를 통해 CCLM의 하드웨어 구현시의 단점을 보완할 수 있다.
본 특허에서 제안하는 방법은 크로마 인트라 예측 모드인 CCLM 모드에 사용될 수 있고, CCLM 모드를 통해 예측된 크로마 블록은 부호기에서 원본 영상과의 차분을 통해 잔차 영상을 획득할 때 사용되거나, 복호기에서 잔차 신호와의 합을 통해 복원된 영상을 획득할 때 사용될 수 있다.
도 8은 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측 과정을 도시하는 흐름도이다.
일 실시예에 따른 디코딩 장치(200)는 다운 샘플링된 루마 템플릿을 생성할 수 있고, 선형 파라미터 모델 계수인 를 도출할 수 있다.
일 실시예에 따른 디코딩 장치(200)는 다운 샘플링된 루마 블록을 생성할 수 있다. 이때 디코딩 장치(200)는, 1-라인 다운 샘플링을 기반으로 루마 샘플을 생성할 수 있다.
일 실시예에 따른 디코딩 장치(200)는, 상기 수학식 1을 기반으로 CCLM 예측을 수행할 수 있다.
도 9는 또 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측의 하드웨어 파이프라인의 일 예시를 나타내는 도면이다.
일 실시예에서는 CCLM이 구현된 인트라 예측의 하드웨어 파이프 라이닝 최적화를 위해, 크로마 블록의 가로 길이가 2인 경우 (또는, 4 : 4 : 4 영상 포맷일 경우에는 크로마 블록의 가로 길이가 4인 경우) CCLM을 적용하지 않는 방법을 제안한다.
도 7에 따른 실시예를 기반으로 인트라 예측에서 CCLM 모드를 적용하는 경우 하드웨어 파이프 라인 최적화를 수행할 수 있지만, 루마 블록의 가로 길이가 4인 경우에는 클락 딜레이가 발생할 수 있다. 도 9를 참조하면, 루마 4x4 인트라 예측 블록에서 CCLM 예측의 유무에 따른 하드웨어 파이프라인의 예시가 도시되어 있다. 도 9에서도 도 7의 실시예에 따른 방법을 적용하여 복원된 루마 블록의 다운 샘플링을 수행할 시 샘플 라인들간 상관도를 제거하였지만, 여전히 2 클락의 딜레이가 발생하는 것을 확인할 수 있다.
따라서, 일 실시예에서는 CCLM 모드의 하드웨어 구현 친화성을 높이기 위해, 크로마 블록의 가로 길이가 2일 경우 (또는, 4 : 4 : 4 영상 포맷일 경우에는 크로마 블록의 가로 길이가 4인 경우) CCLM을 적용하지 않는 방법을 제안한다. 즉, 하드웨어 구현 상 문제점인 클락 딜레이를 제거함으로써 CCLM의 하드웨어 비 친화성 문제를 해결할 수 있다.
표 2는 도 7에 따른 일 실시예 및 도 9에 따른 일 실시예에서 제안하는 방법을 모두 사용할 경우의 실제 실험 결과를 나타낸다. 일 예시에서, 상기 실험의 앵커는 VTM1.0에 CCLM 기술이 추가된 소프트웨어일 수 있고, 올 인트라 세팅으로 영상을 부호화 한 결과를 나타내고 있다.
[표 2]
표 2에서 보여지는 바와 같이, 도 7에 따른 일 실시예 및 도 9에 따른 일 실시예에서 제안하는 방법을 모두 사용할 경우 루마 영상 0.26%, 크로마 영상 Cb 2.23% / Cr 2.19%의 BD-rate를 얻을 수 있다. 4 x N 블록에서 CCLM을 적용하지 않기 때문에 다소 성능 로스(loss)가 발생하였지만, 여전히 CCLM으로 인한 효과를 얻을 수 있다. ( VTM1.0 대비 Y -1.28%, Cb -8.03%, Cr -8.67% )
도 7에 따른 일 실시예 및 도 9에 따른 일 실시예에서 제안하는 방법은 크로마 인트라 예측 모드인 CCLM 모드에 적용될 수 있고, CCLM 모드를 통해 예측된 크로마 블록은 인코딩 장치(또는 부호기)에서 원본 영상과의 차분을 통해 레지듀얼 영상(또는 잔차 영상)을 획득할 때 이용되거나, 디코딩 장치(또는 복호기)에서 레지듀얼 신호(또는 잔차 신호)와의 합을 기반으로 복원된 영상을 획득할 때 이용될 수 있다.
도 10은 또 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측 과정을 도시하는 흐름도이다.
일 실시예에 따른 디코딩 장치(200)는 루마 블록의 가로 길이(또는, 폭, width 등)가 4가 아닌 경우, 다운 샘플링된 루마 템플릿을 생성하고, 선형 파라미터 모델 계수인 를 도출할 수 있고, 다운 샘플링된 루마 블록을 생성할 수 있으며, 상기 수학식 1을 기반으로 CCLM 예측을 수행할 수 있다. 반대로, 루마 블록의 가로 길이(또는, 폭, width 등)가 4인 경우, 상기된 절차(다운 샘플링된 루마 템플릿을 생성하고, 선형 파라미터 모델 계수인 를 도출하고, 다운 샘플링된 루마 블록을 생성하고, 상기 수학식 1을 기반으로 CCLM 예측을 수행하는 절차)를 생략할 수 있다.
도 11은 또 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측 과정을 설명하기 위한 도면이다.
일 실시예에서는 현재 (부호화) 블록의 상측 참조 샘플 라인이 다른 루마/크로마 블록 세퍼레이션 유닛 블록(luma/chroma block separation unit block)의 경계에 위치할 경우, 참조 샘플 라인을 제한하는 방법을 제안한다.
일 실시예에서, I 슬라이스(I slice)의 경우 루마 블록과 크로마 블록이 분리되어 부호화 및 복호화가 진행될 수 있다. 일 예시에서, 루마/크로마 블록 세퍼레이션 유닛 블록의 사이즈는 64x64일 수 있으나, 예시가 이에 한정되는 것은 아니다. 루마/크로마 블록 세퍼레이션 유닛 블록은 VPDU(Virtual Pipeline Data Units)로 지칭될 수도 있다.
하드웨어의 파이프 라인 및 병렬(parallel) 프로세싱을 위해서는 루마/크로마 블록 세퍼레이션 유닛 블록들 간의 상관성이 최소화 될 필요가 있다. 일 실시예에서는 최적화된 병렬 프로세싱을 위해, 루마/크로마 블록 세퍼레이션 유닛 블록의 상측 경계에서는 CCLM을 위한 복원된 루마 참조 샘플을 사용하지 않을 수 있다. 즉, 도 11의 예시와 같이, 루마/크로마 블록 세퍼레이션 유닛 블록의 상측 경계에서는 CCLM을 위해 왼쪽 참조 샘플 라인만을 사용함으로써, 하드웨어 파이프라인 구현상의 중복 이슈를 방지할 수 있다.
도 12는 또 다른 일 실시예에 따른 CCLM에 기반한 인트라 예측 과정을 도시하는 흐름도이다.
일 실시예에 따른 디코딩 장치(200)는 다운 샘플링된 루마 템플릿을 생성할 수 있다. 이때 디코딩 장치(200)는, 현재 블록의 상측 경계가 루마/크로마 블록 세퍼레이션 유닛 블록의 경계와 겹치는지 여부를 판단하여, 현재 블록의 상측 경계가 루마/크로마 블록 세퍼레이션 유닛 블록의 경계와 겹치는 경우 상측 루마 템플릿을 생성하지 않고, 현재 블록의 상측 경계가 루마/크로마 블록 세퍼레이션 유닛 블록의 경계와 겹치지 않는 경우 2-라인 다운 샘플링을 기반으로 상측 루마 템플릿을 생성할 수 있다. 디코딩 장치(200)는 2-라인 다운 샘플링을 기반으로 좌측 루마 템플릿을 생성할 수 있다.
일 실시예에 따른 디코딩 장치(200)는 선형 파라미터 모델 계수인 를 도출할 수 있고, 다운 샘플링된 루마 블록을 생성할 수 있으며, 상기 수학식 1을 기반으로 CCLM 예측을 수행할 수 있다.
도 13은 일 실시예에 따른 인코딩 장치의 동작을 도시하는 흐름도이고, 도 14는 일 실시예에 따른 인코딩 장치의 구성을 도시하는 블록도이다.
도 13 및 도 14에 따른 인코딩 장치는 후술하는 도 15 및 도 16에 따른 디코딩 장치와 대응되는 동작들을 수행할 수 있다. 따라서, 도 15 및 도 16에서 후술되는 내용들은 도 13 및 도 14에 따른 인코딩 장치에도 마찬가지로 적용될 수 있다.
도 13에 개시된 각 단계는 도 1 에 개시된 인코딩 장치(100)에 의하여 수행될 수 있다. 보다 구체적으로, S1300 및 S1310은 도 1에 개시된 가산부(140)에 의하여 수행될 수 있고, S1320 내지 S1340은 도 1에 개시된 예측부(110)에 의하여 수행될 수 있고, S1350은 도 1에 개시된 레지듀얼 처리부(120)에 의하여 수행될 수 있고, S1360은 도 1에 개시된 엔트로피 인코딩부(130)에 의하여 수행될 수 있다. 더불어 S1300 내지 S1360에 따른 동작들은, 도 3 내지 도 12에서 전술된 내용들 중 일부를 기반으로 한 것이다. 따라서, 도 1, 도 3 내지 도 12에서 전술된 내용과 중복되는 구체적인 내용은 설명을 생략하거나 간단히 하기로 한다.
도 14에 도시된 바와 같이, 일 실시예에 따른 인코딩 장치는 예측부(110), 레지듀얼 처리부(120), 엔트로피 인코딩부(130) 및 가산부(140)를 포함할 수 있다. 그러나, 경우에 따라서는 도 14에 도시된 구성 요소 모두가 인코딩 장치의 필수 구성 요소가 아닐 수 있고, 인코딩 장치는 도 14에 도시된 구성 요소보다 많거나 적은 구성 요소에 의해 구현될 수 있다. 예를 들어, 인코딩 장치는 메모리(160)를 더 포함할 수도 있다.
일 실시예에 따른 인코딩 장치에서 예측부(110), 레지듀얼 처리부(120), 엔트로피 인코딩부(130) 및 가산부(140)는 각각 별도의 칩(chip)으로 구현되거나, 적어도 둘 이상의 구성 요소가 하나의 칩을 통해 구현될 수도 있다.
일 실시예에 따른 인코딩 장치는 크로마 블록의 인트라 예측 모드가 CCLM 모드인 경우, 상기 크로마 블록에 대한 주변 크로마 참조 샘플들을 도출할 수 있다(S1300). 보다 구체적으로, 인코딩 장치의 가산부(140)는 크로마 블록의 인트라 예측 모드가 CCLM 모드인 경우, 상기 크로마 블록에 대한 주변 크로마 참조 샘플들을 도출할 수 있다.
일 실시예에 따른 인코딩 장치는 상기 크로마 블록에 대응되는 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출할 수 있다(S1310). 보다 구체적으로, 인코딩 장치의 예측부(110)는 상기 크로마 블록에 대응되는 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출할 수 있다.
일 실시예에 따른 인코딩 장치는 상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출할 수 있다(S1320). 보다 구체적으로, 인코딩 장치의 예측부(110)는 상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출할 수 있다.
일 실시예에서, 상기 루마 블록의 상기 상측 경계가 CTU(Coding Tree Unit)의 경계와 겹치는(overlap) 경우, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적은 것을 특징으로 할 수 있다.
일 실시예에 따른 인코딩 장치는 상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출할 수 있다(S1330). 보다 구체적으로, 인코딩 장치의 예측부(110)는 상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출할 수 있다.
일 실시예에 따른 인코딩 장치는 상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성할 수 있다(S1340). 보다 구체적으로, 인코딩 장치의 예측부(110)는 상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성할 수 있다.
일 실시예에 따른 인코딩 장치는 상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록에 대한 레지듀얼 샘플들을 도출할 수 있다(S1350). 보다 구체적으로, 인코딩 장치의 레지듀얼 처리부(120)는 상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록에 대한 레지듀얼 샘플들을 도출할 수 있다.
일 실시예에 따른 인코딩 장치는 상기 레지듀얼 샘플들에 대한 정보를 포함하는 픽처 정보를 인코딩할 수 있다(S1360). 보다 구체적으로, 인코딩 장치의 엔트로피 인코딩부(130)는 상기 레지듀얼 샘플들에 대한 정보를 포함하는 픽처 정보를 인코딩할 수 있다.
도 13 및 도 14에 개시된 인코딩 장치 및 인코딩 장치의 동작 방법에 따르면, 인코딩 장치는 크로마 블록의 인트라 예측 모드가 CCLM 모드인 경우, 상기 크로마 블록에 대한 주변 크로마 참조 샘플들을 도출하고(S1300), 상기 크로마 블록에 대응되는 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출하고(S1310), 상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출하고(S1320), 상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출하고(S1330), 상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성하고(S1340), 상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록에 대한 레지듀얼 샘플들을 도출하고(S1350), 상기 레지듀얼 샘플들에 대한 정보를 포함하는 픽처 정보를 인코딩하되(S1360), 이때 상기 주변 루마 참조 샘플들은 상기 루마 블록의 상측 경계의 상측에 위치한 상측 주변 루마 참조 샘플들과 상기 루마 블록의 좌측 경계의 좌측에 위치한 좌측 주변 루마 참조 샘플들을 포함하고, 상기 루마 블록의 상기 상측 경계가 CTU(Coding Tree Unit)의 경계와 겹치는(overlap) 경우, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적은 것을 특징으로 할 수 있다. 즉, CCLM에 기반한 인트라 예측을 수행할 시 1-샘플 라인의 주변 루마 참조 샘플들을 다운 샘플링함으로써 영상 코딩 효율을 높일 수 있고, CCLM에 기반한 인트라 예측을 하드웨어에서 구현할 시 파이프 라인 딜레이(pipeline delay)를 개선할 수 있다.
도 15는 일 실시예에 따른 디코딩 장치의 동작을 도시하는 흐름도이고, 도 16은 일 실시예에 따른 디코딩 장치의 구성을 도시하는 블록도이다.
도 15에 개시된 각 단계는 도 2 에 개시된 디코딩 장치(200)에 의하여 수행될 수 있다. 보다 구체적으로, S1500, S1510 및 S1550은 도 2에 개시된 가산부(240)에 의하여 수행될 수 있고, S1510 내지 S1540은 도 2에 개시된 예측부(230)에 의하여 수행될 수 있다. 더불어 S1500 내지 S1550에 따른 동작들은, 도 3 내지 도 12에서 전술된 내용들 중 일부를 기반으로 한 것이다. 따라서, 도 2 내지 도 12에서 전술된 내용과 중복되는 구체적인 내용은 설명을 생략하거나 간단히 하기로 한다.
도 16에 도시된 바와 같이, 일 실시예에 따른 디코딩 장치는 예측부(230) 및 가산부(240) 를 포함할 수 있다. 그러나, 경우에 따라서는 도 16에 도시된 구성 요소 모두가 디코딩 장치의 필수 구성 요소가 아닐 수 있고, 디코딩 장치는 도 16에 도시된 구성 요소보다 많거나 적은 구성 요소에 의해 구현될 수 있다. 일 예시에서, 디코딩 장치는 메모리(260)를 더 포함할 수 있다.
일 실시예에 따른 디코딩 장치에서 예측부(230) 및 가산부(240)는 각각 별도의 칩(chip)으로 구현되거나, 적어도 둘 이상의 구성 요소가 하나의 칩을 통해 구현될 수도 있다.
일 실시예에 따른 디코딩 장치는 크로마 블록의 인트라 예측 모드가 CCLM 모드인 경우, 상기 크로마 블록에 대한 주변 크로마 참조 샘플들을 도출할 수 있다(S1600). 보다 구체적으로, 디코딩 장치의 가산부(140)는 크로마 블록의 인트라 예측 모드가 CCLM 모드인 경우, 상기 크로마 블록에 대한 주변 크로마 참조 샘플들을 도출(또는 복원)할 수 있다
일 실시예에 따른 디코딩 장치는 상기 크로마 블록에 대응되는 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출할 수 있다(S1610). 보다 구체적으로, 디코딩 장치의 예측부(230) 및/또는 가산부(240)는 상기 크로마 블록에 대응되는 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출할 수 있다.
일 실시예에 따른 디코딩 장치는 상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출할 수 있다(S1620). 보다 구체적으로, 디코딩 장치의 예측부(230)는 상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출할 수 있다.
일 실시예에서, 상기 주변 루마 참조 샘플들은 상기 루마 블록의 상측 경계의 상측에 위치한 상측 주변 루마 참조 샘플들과 상기 루마 블록의 좌측 경계의 좌측에 위치한 좌측 주변 루마 참조 샘플들을 포함하고, 상기 루마 블록의 상기 상측 경계가 CTU(Coding Tree Unit)의 경계와 겹치는(overlap) 경우, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적은 것을 특징으로 할 수 있다.
일 실시예에서, 상기 루마 블록의 상기 상측 경계가 상기 CTU의 경계와 겹치는 경우, 상기 상측 주변 루마 참조 샘플들은 상기 루마 블록 상측의 수평 1-샘플 라인에 포함되는 것을 특징으로 할 수 있다. 또한, 상기 좌측 주변 루마 참조 샘플들은 상기 루마 블록 좌측의 복수의 수평 또는 수직 샘플 라인들에 포함될 수 있다. 예를 들어, 상기 좌측 주변 루마 참조 샘플들은 상기 루마 블록 좌측의 수평 2-샘플 라인들에 포함되거나, 상기 루마 블록 좌측의 수직 3-샘플 라인들에 포함될 수 있으며, 예시는 이에 한정되지 않는다.
일 실시예에서, 상기 다운 샘플링된 주변 루마 참조 샘플들은, 다운 샘플링된 좌측 주변 루마 참조 샘플들 및 다운 샘플링된 상측 주변 루마 참조 샘플들을 포함하고, 상기 루마 블록의 상기 상측 경계가 상기 CTU의 경계와 겹치는 경우, 하나의 다운 샘플링된 상측 주변 루마 참조 샘플을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는 3개이고, 하나의 다운 샘플링된 좌측 주변 루마 참조 샘플을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수는 6개인 것을 특징으로 할 수 있다.
일 실시예에서, 상기 다운 샘플링된 상측 주변 루마 참조 샘플의 좌표가 (x, -1)인 경우, 상기 3개의 상측 주변 루마 참조 샘플들은 각각 좌표 (2*x-1, -1), (2*x, -1) 및 (2*x+1, -1)에 위치하는 것을 특징으로 할 수 있다.
일 실시예에서, 상기 다운 샘플링된 상측 주변 루마 참조 샘플의 좌표가 (0, -1)이며 좌표 (-1, -1)에 대응하는 루마 참조 샘플의 샘플값이 존재할 경우 , 상기 3개의 상측 주변 루마 참조 샘플들은 각각 좌표 (-1, -1), (0, -1) 및 (1, -1)에 위치하는 것을 특징으로 할 수 있다.
일 실시예에서, 상기 다운 샘플링된 상측 주변 루마 참조 샘플의 좌표가 (0, -1)이며 좌표 (-1, -1)에 대응하는 루마 참조 샘플의 샘플값이 존재하지 않을 경우, 상기 다운 샘플링된 상측 주변 루마 참조 샘플을 도출하기 위하여 1개의 상측 주변 루마 참조 샘플이 사용되고, 상기 다운 샘플링된 상측 주변 루마 참조 샘플의 샘플값은 좌표 (0, -1)에 위치하는 상측 주변 루마 참조 샘플의 샘플값으로 결정될 수 있다.
일 실시예에서, 상기 선형 모델 파라미터는 스케일링 팩터(scaling factor)를 나타내는 제1 선형 모델 파라미터 및 오프셋(offset)을 나타내는 제2 선형 모델 파라미터를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 따른 디코딩 장치는 상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출할 수 있다(S1630). 보다 구체적으로, 디코딩 장치의 예측부(230)는 상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출할 수 있다.
일 실시예에 따른 디코딩 장치는 상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성할 수 있다(S1640). 보다 구체적으로, 디코딩 장치의 예측부(230)는 상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성할 수 있다.
일 실시예에 따른 디코딩 장치는 상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록을 복원할 수 있다(S1650). 보다 구체적으로, 디코딩 장치의 가산부(240)는 상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록을 복원할 수 있다.
일 실시예에서, 본 명세서에서 전술된 CCLM에 기반한 인트라 예측은, 예를 들어 아래와 같은 영문 스펙(spec)에 따라 구현될 수 있다.
Abstract
This embodiments provides the experimental results of CCLM line buffer restriction Experimental results from All Intra configuration show 0.01%, 0.01%, and 0.04% bit-rate increase compared to VTM2.0.1 on Y, Cb, and Cr components, respectively.
1) Proposed method
The CCLM (cross-component linear model) method in the current VVC specification always uses 2 lines of reconstructed luma reference samples to get the down-sampled collocated luma . In this proposal, to avoid the line buffer increase in the intra prediction, only one luma line (general line buffer in intra prediction) is used to make the downsampled luma samples when the upper reference line is at the CTU boundary.
2) Experimental results
The proposed method has been implemented using BMS-2.0.1 as software base and experimentally evaluated for VTM test according to the common test conditions defined in JVET-K1010 and Core Experiment description in JVET-K1023. For the VTM based test, the VTM configuration was enabled.
Table 3 and Table 4 show the test results in AI and RA configuration.
Table 3 Experimental results of Test1 for all-intra (AI) test condition; anchor is VTM2.0.1
Table 4 Experimental results of Test1 for random-access (RA) test condition; anchor is VTM2.0.1
3) Specification of INTRA_CCLM intra prediction mode with proposed method
Inputs to this process are:
a chroma location ( xCbC, yCbC ) of the top-left sample of the current coding block relative to the top-left sample of the current picture,
a sample location ( xTbC, yTbC ) of the top-left sample of the current transform block relative to the top-left sample of the current picture,
a variable nTbW specifying the transform block width,
a variable nTbH specifying the transform block height,
chroma neighbouring samples p[ x ][ y ], with x = -1, y = 0..nTbH - 1 and x = 0..nTbW - 1, y = - 1.
Output of this process are predicted samples predSamples[ x ][ y ], with x = 0..nTbW - 1, y = 0..nTbH - 1.
The current luma location ( xTbY, yTbY ) is derived as follows:
( xTbY, yTbY )  =  ( xTbC << 1, yTbC << 1 )
The variables availL, availT and availTL are derived as follows:
The availability of left neighbouring samples derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring blocks availability checking process tbd] is invoked with the current luma location ( xCurr, yCurr ) set equal to ( xTbY, yTbY ) and the neighbouring luma location ( xTbY - 1, yTbY ) as inputs, and the output is assigned to availL.
The availability of top neighbouring samples derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring blocks availability checking process tbd] is invoked with the current luma location ( xCurr, yCurr ) set equal to ( xTbY, yTbY ) and the neighbouring luma location ( xTbY, yTbY - 1 ) as inputs, and the output is assigned to availT.
The availability of top-left neighbouring samples derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring blocks availability checking process tbd] is invoked with the current luma location ( xCurr, yCurr ) set equal to ( xTbY, yTbY ) and the neighbouring luma location ( xTbY - 1, yTbY - 1 ) as inputs, and the output is assigned to availTL.
The variable bCTUboudary is derived as follows:
bCTUboudary = yCbC & ( (1 << (CtbLog2SizeY - 1) - 1) == 0
The prediction samples predSamples[ x ][ y ] with x = 0..nTbW - 1, y = 0..nTbH - 1 are derived as follows:
If both availL and availT are equal to FALSE, the following applies:
predSamples[ x ][ y ] = 1 << ( BitDepthC - 1 )
Otherwise, the following ordered steps apply:
1. The collocated luma samples pY[ x ][ y ] with x = 0..nTbW * 2 - 1, y= 0..nTbH * 2 -1 are set equal to the reconstructed luma samples prior to the deblocking filter process at the locations ( xTbY + x, yTbY + y ).
2. The neighbouring luma samples samples pY[ x ][ y ] are derived as follows:
When availL is equal to TRUE, the neighbouring left luma samples pY[ x ][ y ] with x = -1..-3, y = 0..2 * nTbH -1, are set equal to the reconstructed luma samples prior to the deblocking filter process at the locations ( xTbY + x , yTbY +y ).
When availT is equal to TRUE, the neighbouring top luma samples pY[ x ][ y ] with x = 0..2 * nTbW - 1, y = -1, -2, are set equal to the reconstructed luma samples prior to the deblocking filter process at the locations ( xTbY+ x, yTbY + y ).
When availTL is equal to TRUE, the neighbouring top-left luma samples pY[ x ][ y ] with x = -1, y = -1, -2, are set equal to the reconstructed luma samples prior to the deblocking filter process at the locations ( xTbY+ x, yTbY + y ).
3. The down-sampled collocated luma samples pDsY[ x ][ y ] with x = 0..nTbW - 1,  y = 0..nTbH -1 are derived as follows:
- pDsY[ x ][ y ] with x = 1..nTbW - 1, y = 0..nTbH -1 is derived as follows:
pDsY[ x ][ y ] = ( pY[ 2 * x - 1 ][ 2 * y ] + pY[ 2 * x -1 ][ 2 * y + 1 ] + 2* pY[ 2 * x ][ 2 * y ] + 2*pY[ 2 * x ][ 2 * y + 1 ] + pY[ 2 * x + 1 ][ 2 * y ] + pY[ 2 * x + 1 ][ 2 * y + 1 ] + 4 ) >> 3
If availL is equal to TRUE, pDsY[ 0 ][ y ] with y = 0..nTbH - 1 is derived as follows:
pDsY[ 0 ][ y ] = ( pY[ -1 ][ 2 * y ] + pY[ -1 ][ 2 * y + 1 ] + 2* pY[ 0 ][ 2 * y ] + 2*pY[ 0 ][ 2*y + 1 ] + pY[ 1 ][ 2 * y ] + pY[ 1 ][ 2 * y + 1 ] + 4 ) >> 3
Otherwise, pDsY[ 0 ][ y ] with y = 0..nTbH - 1 is derived as follows:
pDsY[ 0 ][ y ] = ( pY[ 0 ][ 2 * y ] + pY[ 0 ][ 2 * y + 1 ] + 1 ) >> 1
4. When availL is equal to TRUE, the down-sampled neighbouring left luma samples pLeftDsY[ y ] with y = 0..nTbH - 1 are derived as follows:
pLeftDsY[ y ] = ( pY[ -1 ][ 2 * y ] + pY[ -1 ][ 2 * y + 1 ] + 2* pY[ -2 ][ 2 * y ] + 2*pY[ -2 ][ 2 * y + 1 ] + pY[ -3 ][ 2 * y ] + pY[ -3 ][ 2 * y + 1 ] + 4 ) >> 3
5. When availT is equal to TRUE and bCTUboudary is equal to FALSE, the down-sampled neighbouring top luma samples pTopDsY[ x ] with x = 0..nTbW - 1 are specified as follows:
- pTopDsY[ x ] with x = 1..nTbW - 1 is derived as follows:
pTopDsY[ x ] = ( pY[ 2 * x - 1 ][ -2 ] + pY[ 2 * x - 1 ][ -1 ] + 2* pY[ 2 * x ][ -2 ] + 2*pY[ 2 * x ][ -1 ] + pY[ 2 * x + 1 ][ -2 ] + pY[ 2 * x + 1 ][ -1 ] + 4 ) >>3
If availTL is equal to TRUE, pTopDsY[ 0 ] is derived as follows:
pTopDsY[ 0 ] = ( pY[ - 1 ][ -2 ] + pY[ -1 ][ -1 ] + 2* pY[ 0 ][ -2 ] + 2*pY[ 0 ][ -1 ] + pY[ 1 ][ -2 ] + pY[ 1 ][ -1 ] + 4 ) >> 3
Otherwise, pTopDsY[ 0 ] is derived as follows:
pTopDsY[ 0 ] = ( pY[ 0 ][ -2 ] + pY[ 0 ][ -1 ] + 1 ) >> 1
6. When availT is equal to TRUE and bCTUboudary is equal to TRUE, the down-sampled neighbouring top luma samples pTopDsY[ x ] with x = 0..nTbW - 1 are specified as follows:
- pTopDsY[ x ] with x = 1..nTbW - 1 is derived as follows:
pTopDsY[ x ] = ( pY[ 2 * x - 1 ][ -1 ] + 2*pY[ 2 * x ][ -1 ] + pY[ 2 * x + 1 ][ -1 ] + 2 ) >> 2
If availTL is equal to TRUE, pTopDsY[ 0 ] is derived as follows:
pTopDsY[ 0 ] = ( pY[ - 1 ][ -1 ] + 2*pY[ 0 ][ -1 ] + pY[ 1 ][ -1 ] + 2 ) >> 2
Otherwise, pTopDsY[ 0 ] is derived as follows:
pTopDsY[ 0 ] = pY[ 0 ][ -1 ] 
7. The variables nS, xS, yS, k0, k1 are derived as follows:
nS = ( ( availL && availT ) ? Min( nTbW, nTbH ) : ( availL ? nTbH : nTbW ) )
xS = 1 << ( ( ( nTbW > nTbH ) && availL && availT ) ? ( Log2( nTbW) - Log2( nTbH ) ) : 0 )
yS = 1 << ( ( ( nTbH > nTbW ) && availL && availT ) ? ( Log2( nTbH) -Log2( nTbW ) ) : 0 )
k1 = ( ( availL && availT ) ? Log2( nS ) + 1 : Log2( nS ) )
k0 = BitDepthC + k1 - 15
8. Variables l, c, ll, lc and k1 are derived as follows:
9. When k0 is greater than 0, the variable l, c, ll, lc and k1 are modified as follows
l = ( l + ( l << ( k0 - 1 ) ) ) >> k0
*c = ( c + ( c << ( k0 -1 ) ) ) >> k0
ll = ( ll + ( ll << ( k0 -1 ) ) ) >> k0
lc = ( lc + ( lc << ( k0 - 1 ) ) ) >> k0
k1 = k1 -k0
10. The variables a, b, and k are derived as follows:
If k1 is equal to 0, the following applies:
k = 0
a = 0
b = 1 << ( BitDepthC - 1)
Otherwise, the following applies:
avgY = l >> k1
errY = l & ( ( 1 << k1 ) - 1 )
avgC = c >> k1
errC = c & ( ( 1 << k1 ) -1 
a1 = lc -( ( avgY * avgC ) << k1 + avgY * errC + avgC * errY )
a2 = ll -( ( avgY2 ) << k1 + 2 * avgY * errY )
k2 = ( a1 = = 0 ) ? 0 : Max( 0, Floor( Log2( Abs( a1 ) ) ) -BitDepthC + 2 )
k3 = ( a2 = = 0 ) ? 0 : Max( 0, Floor( Log2( Abs( a2 ) ) ) -5 )
k4 = k3 -k2 + BitDepthC -2
a1s = a1 >> k2
a2s = a2 >> k3
a2t = ( a2s < 32 ) ? 0 : ( ( 1 << ( BitDepthY + 4 ) ) + a2s / 2 ) / a2s
if( a2s < 32 )
a3 = 0
else if( a2s >= 32 && k4 >= 0 )
a3 = ( a1s * a2t ) >> k4 
else
a3 = ( a1s * a2t ) << ( -k4 )
a4 = Clip3( -28, 28 -1, a3 )
a5 = a4 << 7
k5 = ( a5 = = 0 ) ? 0 : Floor( Log2( Abs( a5 ) + ( Sign2( a5 ) - 1 ) / 2 ) ) -5
k = 13 - k5
a = a5 >> k5
b = avgC -( ( a * avgY ) >> k )
11. The prediction samples predSamples[ x ][ y ] with x = 0..nTbW - 1, y = 0.. nTbH - 1 are derived as follows:
predSamples[ x ][ y ] = Clip1C( ( ( pDsY[ x ][ y ] * a ) >> k ) + b )
상기 영문 스펙에 특히, 아래의 수학식 12 내지 수학식 14가 개시된 것을 확인할 수 있다.
[수학식 12]
bCTUboundary = yCbC & ( (1 << (CtbLog2SizeY - 1) - 1) == 0
수학식 12와 관련하여, 루마 블록의 상측 경계가 CTU의 경계와 겹치는지 여부는 수학식 12가 TRUE인지 또는 FALSE인지 여부를 기반으로 결정될 수 있으며, 수학식 12에서 yCbC는 현재 크로마 픽처의 좌상측 샘플에 대한 현재 크로마 블록의 좌상측 샘플의 y축 방향 위치를 나타내고, CtbLog2SizeY는 루마 CTB 사이즈의 로그값을 나타낼 수 있다.
다음으로, 수학식 13은 아래와 같다.
[수학식 13]
pTopDsY[x] = ( pY[ 2*x - 1 ][ -1 ] + 2*pY[ 2*x ][ -1 ] + pY[ 2*x + 1 ][ -1 ] + 2 ) >> 2
수학식 13에서 pTopDsY[x]는 루마 블록의 상측 경계의 상측에 위치하는, 다운 샘플링이 적용된 루마 참조 샘플의 샘플값을 나타내고, x는 상기 다운 샘플링이 적용된 루마 참조 샘플의 x축 방향 위치를 나타내고, pY[ 2*x - 1 ][ -1 ], pY[ 2*x ][ -1 ] 및 pY[ 2*x + 1 ][ -1 ]은 상기 상측에 위치한 루마 참조 샘플들의 샘플값을 각각 나타내고, 상기 상측에 위치한 루마 참조 샘플들의 y축 방향 위치는 -1이다.
일 실시예에서, x의 값이 0이며, 샘플값 pY[ -1 ][ -1 ]이 존재할 경우에 수학식 13은 아래의 수학식 14와 같이 나타날 수 있다.
[수학식 14]
pTopDsY[0] = ( pY[ -1 ][ -1 ] + 2*pY[ 0 ][ -1 ] + pY[ 1 ][ -1 ] + 2 ) >> 2
수학식 14에서 pTopDsY[0]는 상기 상측 경계의 상측에 위치하는 상기 다운 샘플링이 적용된 루마 참조 샘플의 x축 방향 위치가 0일 때의 상기 상측 경계의 상측에 위치하는 상기 다운 샘플링이 적용된 루마 참조 샘플의 샘플값을 나타내고, pY[ -1 ][ -1 ], pY[ 0 ][ -1 ] 및 pY[ 1 ][ -1 ]은 상기 상측에 위치한 루마 참조 샘플들의 샘플값을 각각 나타내고, 상기 상측에 위치한 루마 참조 샘플들의 y축 방향 위치는 -1이다.
일 실시예에서, x의 값이 0 이며, pY[ -1 ][ -1 ] 샘플값이 존재하지 않을 경우에 수학식 13은 아래의 수학식 15와 같이 나타날 수 있다.
[수학식 15]
pTopDsY[0] = pY[ 0 ][ -1 ]
수학식 15에서 pTopDsY[0]는 루마 블록의 상측 경계의 상측에 위치하는 상기 다운 샘플링이 적용된 루마 참조 샘플의 x축 방향 위치가 0일 때의 상기 상측 경계의 상측에 위치하는 상기 다운 샘플링이 적용된 루마 참조 샘플의 샘플값을 나타내고, pY[ 0 ][ -1 ]은 루마 블록의 상측에 위치한 루마 참조 샘플의 샘플값을 나타낸다.
도 15 및 도 16의 디코딩 장치 및 디코딩 장치의 동작 방법에 따르면, 디코딩 장치는 크로마 블록의 인트라 예측 모드가 CCLM(Cross-Component Linear Model) 모드인 경우, 상기 크로마 블록에 대한 주변 크로마 참조 샘플들을 도출하고(S1600), 상기 크로마 블록에 대응되는 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출하고(S1610), 상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출하고(S1620), 상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출하고(S1630), 상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성하고(S1640), 상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록을 복원하되(S1650), 이때 상기 주변 루마 참조 샘플들은 상기 루마 블록의 상측 경계의 상측에 위치한 상측 주변 루마 참조 샘플들과 상기 루마 블록의 좌측 경계의 좌측에 위치한 좌측 주변 루마 참조 샘플들을 포함하고, 상기 루마 블록의 상기 상측 경계가 CTU(Coding Tree Unit)의 경계와 겹치는(overlap) 경우, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적은 것을 특징으로 할 수 있다. 즉, CCLM에 기반한 인트라 예측을 수행할 시 1-샘플 라인의 주변 루마 참조 샘플들을 다운 샘플링함으로써 영상 코딩 효율을 높일 수 있고, CCLM에 기반한 인트라 예측을 하드웨어에서 구현할 시 파이프 라인 딜레이(pipeline delay)를 개선할 수 있다.
상술한 본 발명에 따른 방법은 소프트웨어 형태로 구현될 수 있으며, 본 발명에 따른 인코딩 장치 및/또는 디코딩 장치는 예를 들어 TV, 컴퓨터, 스마트폰, 셋톱박스, 디스플레이 장치 등의 영상 처리를 수행하는 장치에 포함될 수 있다.
전술한 각각의 파트, 모듈 또는 유닛은 메모리(또는 저장 유닛)에 저장된 연속된 수행과정들을 실행하는 프로세서이거나 하드웨어 파트일 수 있다. 전술한 실시예에 기술된 각 단계들은 프로세서 또는 하드웨어 파트들에 의해 수행될 수 있다. 전술한 실시예에 기술된 각 모듈/블록/유닛들은 하드웨어/프로세서로서 동작할 수 있다. 또한, 본 발명이 제시하는 방법들은 코드로서 실행될 수 있다. 이 코드는 프로세서가 읽을 수 있는 저장매체에 쓰여질 수 있고, 따라서 장치(apparatus)가 제공하는 프로세서에 의해 읽혀질 수 있다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타내어진 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
본 발명에서 실시예들이 소프트웨어로 구현될 때, 상술한 방법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. 프로세서는 ASIC(appICation-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다.

Claims (7)

  1. 디코딩 장치에 의하여 수행되는 픽처 디코딩 방법에 있어서,
    크로마 블록에 대한 주변 크로마 참조 샘플들을 도출하는 단계;
    상기 크로마 블록에 관련된 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출하는 단계;
    상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출하는 단계;
    상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출하는 단계;
    상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성하는 단계; 및
    상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록을 복원하는 단계를 포함하되,
    상기 주변 루마 참조 샘플들은 상기 루마 블록의 상측 경계의 상측에 위치한 상측 주변 루마 참조 샘플들과 상기 루마 블록의 좌측 경계의 좌측에 위치한 좌측 주변 루마 참조 샘플들을 포함하고,
    상기 루마 블록이 위치하는 CTU(Coding Tree Unit)가 상기 상측 주변 루마 참조 샘플들이 위치하는 CTU와 다른 경우를 기반으로, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적고,
    상기 루마 블록이 위치하는 CTU가 상기 상측 주변 루마 참조 샘플들이 위치하는 CTU와 다른 경우를 기반으로, 상기 상측 주변 루마 참조 샘플들은 상기 루마 블록의 상기 상측 경계에 인접한 수평 방향의 1개의 샘플 라인에 위치하고, 상기 좌측 주변 루마 참조 샘플들은 상기 루마 블록의 상기 좌측 경계와 이웃하는 적어도 2개의 수직 방향의 샘플 라인들에 위치하는 것을 특징으로 하는, 픽처 디코딩 방법.
  2. 삭제
  3. 삭제
  4. 인코딩 장치에 의하여 수행되는 픽처 인코딩 방법에 있어서,
    크로마 블록에 대한 주변 크로마 참조 샘플들을 도출하는 단계;
    상기 크로마 블록에 관련된 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출하는 단계;
    상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출하는 단계;
    상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출하는 단계;
    상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성하는 단계;
    상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록에 대한 레지듀얼 샘플들을 도출하는 단계; 및
    상기 레지듀얼 샘플들에 대한 정보를 포함하는 픽처 정보를 인코딩하는 단계를 포함하되,
    상기 주변 루마 참조 샘플들은 상기 루마 블록의 상측 경계의 상측에 위치한 상측 주변 루마 참조 샘플들과 상기 루마 블록의 좌측 경계의 좌측에 위치한 좌측 주변 루마 참조 샘플들을 포함하고,
    상기 루마 블록이 위치하는 CTU(Coding Tree Unit)가 상기 상측 주변 루마 참조 샘플들이 위치하는 CTU와 다른 경우를 기반으로, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적고,
    상기 루마 블록이 위치하는 CTU가 상기 상측 주변 루마 참조 샘플들이 위치하는 CTU와 다른 경우를 기반으로, 상기 상측 주변 루마 참조 샘플들은 상기 루마 블록의 상기 상측 경계에 인접한 수평 방향의 1개의 샘플 라인에 위치하고, 상기 좌측 주변 루마 참조 샘플들은 상기 루마 블록의 상기 좌측 경계와 이웃하는 적어도 2개의 수직 방향의 샘플 라인들에 위치하는 것을 특징으로 하는, 픽처 인코딩 방법.
  5. 삭제
  6. 삭제
  7. 픽처 인코딩 방법에 의해 생성된 인코딩된 픽처 정보를 저장하는 컴퓨터 판독 가능한 저장 매체에 있어서, 상기 픽처 인코딩 방법은:
    크로마 블록에 대한 주변 크로마 참조 샘플들을 도출하는 단계;
    상기 크로마 블록에 관련된 루마 블록의 주변 루마 참조 샘플들 및 상기 루마 블록 내의 루마 샘플들을 도출하는 단계;
    상기 주변 루마 참조 샘플들 및 상기 루마 샘플들을 다운 샘플링하여 다운 샘플링된 주변 루마 참조 샘플들 및 다운 샘플링된 루마 샘플들을 도출하는 단계;
    상기 다운 샘플링된 주변 루마 참조 샘플들과 상기 주변 크로마 참조 샘플들을 기반으로 선형 모델 파라미터를 도출하는 단계;
    상기 선형 모델 파라미터와 상기 루마 블록의 다운 샘플링된 루마 샘플들을 기반으로 상기 크로마 블록에 대한 예측 샘플들을 생성하는 단계;
    상기 크로마 블록에 대한 상기 예측 샘플들을 기반으로 상기 크로마 블록에 대한 레지듀얼 샘플들을 도출하는 단계; 및
    상기 레지듀얼 샘플들에 대한 정보를 포함하는 픽처 정보를 인코딩하는 단계를 포함하되,
    상기 주변 루마 참조 샘플들은 상기 루마 블록의 상측 경계의 상측에 위치한 상측 주변 루마 참조 샘플들과 상기 루마 블록의 좌측 경계의 좌측에 위치한 좌측 주변 루마 참조 샘플들을 포함하고,
    상기 루마 블록이 위치하는 CTU(Coding Tree Unit)가 상기 상측 주변 루마 참조 샘플들이 위치하는 CTU와 다른 경우를 기반으로, 상기 주변 루마 참조 샘플들 중 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 상측 주변 루마 참조 샘플들의 개수는, 상기 다운 샘플링된 주변 루마 참조 샘플들을 도출하기 위하여 사용되는 상기 좌측 주변 루마 참조 샘플들의 개수보다 적고,
    상기 루마 블록이 위치하는 CTU가 상기 상측 주변 루마 참조 샘플들이 위치하는 CTU와 다른 경우를 기반으로, 상기 상측 주변 루마 참조 샘플들은 상기 루마 블록의 상기 상측 경계에 인접한 수평 방향의 1개의 샘플 라인에 위치하고, 상기 좌측 주변 루마 참조 샘플들은 상기 루마 블록의 상기 좌측 경계와 이웃하는 적어도 2개의 수직 방향의 샘플 라인들에 위치하는 것을 특징으로 하는, 저장 매체.
KR1020237002947A 2018-07-02 2019-06-24 Cclm에 기반한 인트라 예측 방법 및 그 장치 KR102658215B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247012189A KR20240051331A (ko) 2018-07-02 2019-06-24 Cclm에 기반한 인트라 예측 방법 및 그 장치

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20180076446 2018-07-02
KR1020180076446 2018-07-02
US201862700181P 2018-07-18 2018-07-18
US62/700,181 2018-07-18
US201862741528P 2018-10-04 2018-10-04
US62/741,528 2018-10-04
PCT/KR2019/007582 WO2020009357A1 (ko) 2018-07-02 2019-06-24 Cclm에 기반한 인트라 예측 방법 및 그 장치
KR1020207036375A KR102493516B1 (ko) 2018-07-02 2019-06-24 Cclm에 기반한 인트라 예측 방법 및 그 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207036375A Division KR102493516B1 (ko) 2018-07-02 2019-06-24 Cclm에 기반한 인트라 예측 방법 및 그 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020247012189A Division KR20240051331A (ko) 2018-07-02 2019-06-24 Cclm에 기반한 인트라 예측 방법 및 그 장치

Publications (2)

Publication Number Publication Date
KR20230018551A KR20230018551A (ko) 2023-02-07
KR102658215B1 true KR102658215B1 (ko) 2024-04-18

Family

ID=69060081

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020207036375A KR102493516B1 (ko) 2018-07-02 2019-06-24 Cclm에 기반한 인트라 예측 방법 및 그 장치
KR1020247012189A KR20240051331A (ko) 2018-07-02 2019-06-24 Cclm에 기반한 인트라 예측 방법 및 그 장치
KR1020237002947A KR102658215B1 (ko) 2018-07-02 2019-06-24 Cclm에 기반한 인트라 예측 방법 및 그 장치

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020207036375A KR102493516B1 (ko) 2018-07-02 2019-06-24 Cclm에 기반한 인트라 예측 방법 및 그 장치
KR1020247012189A KR20240051331A (ko) 2018-07-02 2019-06-24 Cclm에 기반한 인트라 예측 방법 및 그 장치

Country Status (5)

Country Link
US (4) US10887596B2 (ko)
EP (1) EP3799428A4 (ko)
KR (3) KR102493516B1 (ko)
CN (5) CN116708837A (ko)
WO (1) WO2020009357A1 (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111434109A (zh) * 2017-11-28 2020-07-17 韩国电子通信研究院 图像编码/解码方法和装置以及存储有比特流的记录介质
CN112136325B (zh) * 2018-05-14 2023-12-05 英迪股份有限公司 图像解码方法/装置、图像编码方法/装置以及存储比特流的记录介质
KR102483942B1 (ko) * 2018-07-16 2022-12-30 후아웨이 테크놀러지 컴퍼니 리미티드 비디오 인코더, 비디오 디코더 및 대응하는 인코딩 및 디코딩 방법
CN116347109A (zh) * 2018-08-17 2023-06-27 北京字节跳动网络技术有限公司 一种处理视频数据的方法和装置
CN117478883A (zh) * 2018-09-12 2024-01-30 北京字节跳动网络技术有限公司 交叉分量线性模型中的尺寸相关的下采样
WO2020076835A1 (en) * 2018-10-08 2020-04-16 Beijing Dajia Internet Information Technology Co., Ltd. Simplifications of cross-component linear model
CN112997492B (zh) 2018-11-06 2024-02-20 北京字节跳动网络技术有限公司 帧内预测的简化参数推导
CN113170122B (zh) 2018-12-01 2023-06-27 北京字节跳动网络技术有限公司 帧内预测的参数推导
WO2020114445A1 (en) 2018-12-07 2020-06-11 Beijing Bytedance Network Technology Co., Ltd. Context-based intra prediction
GB2580326A (en) 2018-12-28 2020-07-22 British Broadcasting Corp Video encoding and video decoding
AU2019417996A1 (en) 2019-01-02 2021-07-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Prediction decoding method, device and computer storage medium
CN113439437B (zh) 2019-02-22 2023-11-24 北京字节跳动网络技术有限公司 用于帧内预测的邻近样点选择
KR102472756B1 (ko) 2019-02-24 2022-12-01 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 인트라 예측을 위한 파라미터 유도
CN117880494A (zh) 2019-03-24 2024-04-12 北京字节跳动网络技术有限公司 用于帧内预测的参数推导的条件
WO2020192180A1 (zh) * 2019-03-25 2020-10-01 Oppo广东移动通信有限公司 图像分量的预测方法、编码器、解码器及计算机存储介质
WO2021004152A1 (zh) * 2019-07-10 2021-01-14 Oppo广东移动通信有限公司 图像分量的预测方法、编码器、解码器以及存储介质
CN114667730A (zh) 2019-11-01 2022-06-24 北京字节跳动网络技术有限公司 交叉分量视频编解码的块尺寸限制
GB2591806B (en) * 2020-02-07 2023-07-19 British Broadcasting Corp Chroma intra prediction in video coding and decoding
CN115606177A (zh) * 2020-03-21 2023-01-13 抖音视界有限公司(Cn) 在跨分量视频编解码中使用相邻样点
WO2021210556A1 (en) * 2020-04-15 2021-10-21 Sharp Kabushiki Kaisha Systems and methods for performing intra prediction in video coding
WO2021209065A1 (en) 2020-04-18 2021-10-21 Beijing Bytedance Network Technology Co., Ltd. Use restrictions for cross-component prediction
EP4324208A1 (en) * 2021-04-16 2024-02-21 Beijing Dajia Internet Information Technology Co., Ltd. Video coding using multi-model linear model
KR20230137250A (ko) * 2022-03-21 2023-10-04 주식회사 케이티 영상 부호화/복호화 방법 및 장치
WO2024022325A1 (en) * 2022-07-27 2024-02-01 Mediatek Inc. Method and apparatus of improving performance of convolutional cross-component model in video coding system
WO2024081012A1 (en) 2022-10-13 2024-04-18 Google Llc Inter-prediction with filtering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086502A1 (en) 2011-06-20 2014-03-27 Mei Guo Method and apparatus of chroma intra prediction with reduced line memory
US20160277762A1 (en) 2015-03-20 2016-09-22 Qualcomm Incorporated Downsampling process for linear model prediction mode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539312B1 (ko) * 2011-05-27 2015-07-24 미디어텍 인크. 비디오 프로세싱에 대한 라인 버퍼 감소를 위한 방법 및 장치
JP2014525176A (ja) * 2011-07-12 2014-09-25 インテル コーポレイション 輝度に基づく色度イントラ予測
KR20130058524A (ko) * 2011-11-25 2013-06-04 오수미 색차 인트라 예측 블록 생성 방법
WO2013102293A1 (en) * 2012-01-04 2013-07-11 Mediatek Singapore Pte. Ltd. Improvements of luma-based chroma intra prediction
US9307237B2 (en) * 2012-01-19 2016-04-05 Futurewei Technologies, Inc. Reference pixel reduction for intra LM prediction
JP7036628B2 (ja) * 2017-03-10 2022-03-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、復号装置、符号化方法及び復号方法
WO2019210840A1 (en) * 2018-05-03 2019-11-07 FG Innovation Company Limited Device and method for coding video data based on different reference sets in linear model prediction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086502A1 (en) 2011-06-20 2014-03-27 Mei Guo Method and apparatus of chroma intra prediction with reduced line memory
US20160277762A1 (en) 2015-03-20 2016-09-22 Qualcomm Incorporated Downsampling process for linear model prediction mode

Also Published As

Publication number Publication date
US20210084305A1 (en) 2021-03-18
CN112369023B (zh) 2023-07-14
EP3799428A4 (en) 2021-04-14
CN116708838A (zh) 2023-09-05
KR20230018551A (ko) 2023-02-07
KR102493516B1 (ko) 2023-01-31
US11973954B2 (en) 2024-04-30
CN116708837A (zh) 2023-09-05
CN116708835A (zh) 2023-09-05
CN116708833A (zh) 2023-09-05
WO2020009357A1 (ko) 2020-01-09
US20220272351A1 (en) 2022-08-25
KR20240051331A (ko) 2024-04-19
US20240048714A1 (en) 2024-02-08
EP3799428A1 (en) 2021-03-31
KR20210006993A (ko) 2021-01-19
US20200195930A1 (en) 2020-06-18
US11356668B2 (en) 2022-06-07
CN112369023A (zh) 2021-02-12
US10887596B2 (en) 2021-01-05

Similar Documents

Publication Publication Date Title
KR102658215B1 (ko) Cclm에 기반한 인트라 예측 방법 및 그 장치
KR102543468B1 (ko) Cclm에 기반한 인트라 예측 방법 및 그 장치
KR102644185B1 (ko) 비디오 코딩 시스템에서 레지듀얼 신호 코딩 방법 및 장치
JP7422913B2 (ja) 変換に基づく映像コーディング方法及びその装置
JP7404488B2 (ja) アフィン動き予測に基づく映像コーディング方法及び装置
KR20240015170A (ko) 영상 코딩 시스템에서 어파인 mvp 후보 리스트를 사용하는 어파인 움직임 예측에 기반한 영상 디코딩 방법 및 장치
KR102606291B1 (ko) 교차성분 선형 모델을 이용한 비디오 신호 처리 방법 및 장치
RU2815810C2 (ru) Кодирование информации относительно набора ядер преобразования
KR102410326B1 (ko) 영상 부호화/복호화 방법 및 장치
KR20210152576A (ko) 디블록킹 필터링에 기반한 영상 코딩 방법 및 그 장치
KR20230137232A (ko) 컨텍스트 모델 초기화를 사용하는 비디오 코딩방법 및 장치
CN116235495A (zh) 用于视频译码中的跨分量线性模型(cclm)模式的固定比特深度处理

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right