KR102651363B1 - Method for preparing polyolefin with advanced environmental stress crack resistance - Google Patents

Method for preparing polyolefin with advanced environmental stress crack resistance Download PDF

Info

Publication number
KR102651363B1
KR102651363B1 KR1020180150788A KR20180150788A KR102651363B1 KR 102651363 B1 KR102651363 B1 KR 102651363B1 KR 1020180150788 A KR1020180150788 A KR 1020180150788A KR 20180150788 A KR20180150788 A KR 20180150788A KR 102651363 B1 KR102651363 B1 KR 102651363B1
Authority
KR
South Korea
Prior art keywords
group
formula
aryl
alkyl
transition metal
Prior art date
Application number
KR1020180150788A
Other languages
Korean (ko)
Other versions
KR20200064562A (en
Inventor
이원효
황혜인
윤승웅
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020180150788A priority Critical patent/KR102651363B1/en
Publication of KR20200064562A publication Critical patent/KR20200064562A/en
Application granted granted Critical
Publication of KR102651363B1 publication Critical patent/KR102651363B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

폴리에틸렌, 특히 난방용 파이프에 적용 시 우수한 ESCR 특성, 기계적 강도뿐만 아니라, 우수한 성형성을 갖도록 하는 폴리에틸렌 제조방법이 제공된다. 본 발명에서는 폴리에틸렌 제조 공정에서 투입되는 화합물의 투입량을 조절함으로써 상기와 같이 우수한 물성을 갖는 폴리에틸렌을 제공할 수 있다. A method for manufacturing polyethylene is provided, which enables it to have excellent ESCR properties and mechanical strength as well as excellent formability when applied to polyethylene, especially heating pipes. In the present invention, polyethylene having excellent physical properties as described above can be provided by controlling the amount of compounds added in the polyethylene manufacturing process.

Description

내환경응력균열저항 특성이 우수한 폴리에틸렌 제조방법{METHOD FOR PREPARING POLYOLEFIN WITH ADVANCED ENVIRONMENTAL STRESS CRACK RESISTANCE}Method for manufacturing polyethylene with excellent environmental stress crack resistance properties {METHOD FOR PREPARING POLYOLEFIN WITH ADVANCED ENVIRONMENTAL STRESS CRACK RESISTANCE}

본 발명은 내환경응력균열저항 특성이 우수한 폴리에틸렌 제조방법에 관한 것이다.The present invention relates to a method for producing polyethylene with excellent environmental stress crack resistance properties.

PERT(polyethylene raised temperature)는 기존의 폴리에틸렌이 지닌 내후성, 성형성, 위생성 등의 장점을 유지하면서 고온 장기내구성을 크게 강화시켜 50년 이상의 고 수명을 갖는 소재를 말한다. 주로 난방용 파이프 소재로 사용되며, 파이프를 설치하는 과정에서 스크래치가 발생해도 고온 고압의 조건을 장시간 견뎌야 하는 특징이 있다.PERT (polyethylene raised temperature) refers to a material that maintains the advantages of existing polyethylene, such as weather resistance, formability, and hygiene, while greatly enhancing long-term durability at high temperatures and having a high lifespan of more than 50 years. It is mainly used as a heating pipe material, and has the characteristic of being able to withstand high temperature and high pressure conditions for a long time even if scratches occur during the pipe installation process.

일반적으로 파이프의 균열양상은 연성파괴(ductile failure)와 취성파괴(brittle failure)로 나뉘어진다. 연성파괴의 경우 높은 수준의 응력이 가해졌을 때 발생하며 시료의 결정영역의 파괴로 인해 진행되기 때문에 기계적 물성(항복강도)이 좋을수록 이에 대한 저항성이 증가하는 특성을 보인다. 취성파괴의 경우 낮은 수준의 응력이 지속적으로 가해졌을 때 발생하며 시료의 결정영역은 그대로 유지되지만, 결정과 결정 사이에 존재하는 entanglement 및 tie-molecule의 파괴로 인해 균열이 진행되어 내환경응력균열저항 (ESCR, Environmental Stress Cracking Resistance) 특성이 우수할수록 이에 대한 저항성이 높아진다.In general, pipe cracking patterns are divided into ductile failure and brittle failure. In the case of ductile fracture, it occurs when a high level of stress is applied and progresses due to the destruction of the crystalline region of the sample, so the better the mechanical properties (yield strength), the higher the resistance. In the case of brittle fracture, it occurs when a low level of stress is continuously applied, and the crystal region of the sample remains the same, but cracks progress due to the destruction of the entanglement and tie-molecules that exist between crystals, resulting in environmental stress crack resistance. (ESCR, Environmental Stress Cracking Resistance) The better the characteristics, the higher the resistance.

기계적 물성이 우수한 고밀도 폴리에틸렌의 경우 고온 고압 조건에서도 쉽게 변형되지 않지만 내환경응력균열저항 특성이 취약하여 장기간 사용시 취성파괴가 진행되는 특성이 있으며, 저밀도 폴리에틸렌은 내환경응력균열저항 특성이 우수한 반면 기계적물성이 취약하여 고온 고압 조건에서 쉽게 변형되는 문제점이 있다.In the case of high-density polyethylene, which has excellent mechanical properties, it is not easily deformed even under high temperature and high pressure conditions, but its environmental stress cracking resistance characteristics are weak and brittle fracture occurs when used for a long period of time. Low-density polyethylene has excellent environmental stress cracking resistance characteristics, but its mechanical properties are poor. There is a problem in that it is weak and easily deformed under high temperature and high pressure conditions.

따라서, 일반적인 PERT의 경우 2종 이상의 혼성담지 촉매를 사용하여 제품의 분자량, 밀도 및 분자량 분포도, SCB(short chain branch) 함량 등을 최적화하여 기계적 물성과 내환경응력균열저항의 최적점을 찾아 제조한다.Therefore, in the case of general PERT, two or more types of hybrid supported catalysts are used to optimize the product's molecular weight, density, molecular weight distribution, and SCB (short chain branch) content to find the optimal point of mechanical properties and environmental stress crack resistance. .

또한, 해당 제품을 파이프로 성형하기 위해서는 적절한 수준의 흐름성을 갖추어야 하기 때문에 이에 대한 물성도 중요한 요소로 고려된다. In addition, in order to mold the product into a pipe, it must have an appropriate level of flowability, so its physical properties are also considered an important factor.

대한민국 공개공보 제10-2017-0049272호Republic of Korea Publication No. 10-2017-0049272 대한민국 공개공보 제10-2010-0032556호Republic of Korea Publication No. 10-2010-0032556

Cheng, J. J., Polak, M. A., & Penlidis, A. (2011). Influence of micromolecular structure on environmental stress cracking resistance of high density polyethylene. Tunnelling and Underground Space Technology, 26(4), 582-593. Cheng, J. J., Polak, M. A., & Penlidis, A. (2011). Influence of micromolecular structure on environmental stress cracking resistance of high density polyethylene. Tunneling and Underground Space Technology, 26(4), 582-593.

본 발명의 목적은 고온 고압 조건에서 장시간 쉽게 변형되지 않도록 기계적 강도 및 내환경응력균열저항 특성이 우수하고 이에 상응하는 분자량, 밀도 및 분자량 분포도를 가지며 흐름성이 우수한 폴리에틸렌을 제공하는 것이다. The purpose of the present invention is to provide polyethylene that has excellent mechanical strength and environmental stress crack resistance characteristics so that it is not easily deformed for a long time under high temperature and high pressure conditions, has corresponding molecular weight, density and molecular weight distribution, and has excellent flow properties.

본 발명의 일 구현예에 따르면, 알킬알루미늄 화합물, 에틸렌 단량체 및 수소를 반응기에 연속적으로 투입하는 단계; 및 에틸렌 단량체가 중합되는 단계를 포함하고, 상기 에틸렌 단량체의 시간당 투입량 1중량부에 대하여, 알킬알루미늄의 투입량은 2.35×10-4 내지 2.60×10-4 중량부/hr, 수소의 투입량은 0.55×10-4 내지 0.61×10-4 중량부/hr인 폴리에틸렌 제조방법이 제공된다. According to one embodiment of the present invention, continuously introducing an alkylaluminum compound, ethylene monomer, and hydrogen into a reactor; And a step of polymerizing ethylene monomer, wherein, with respect to 1 part by weight of ethylene monomer, the amount of alkylaluminum is 2.35×10 -4 to 2.60×10 -4 parts by weight/hr, and the amount of hydrogen is 0.55×10. A method for producing polyethylene from 10 -4 to 0.61×10 -4 parts by weight/hr is provided.

본 발명의 다른 구현예에 따르면, 하기 화학식 1로 표시되는 적어도 1종 이상의 제1전이금속 화합물 및 하기 화학식 2로 표시되는 적어도 1종 이상의 제2전이금속 화합물을 포함하는 혼성담지 촉매 하에서 에틸렌 단량체의 중합 반응에 의해 제조되는 폴리에틸렌이 제공된다:According to another embodiment of the present invention, ethylene monomer is used under a hybrid supported catalyst comprising at least one first transition metal compound represented by Formula 1 below and at least one second transition metal compound represented by Formula 2 below. Polyethylene produced by polymerization reaction is provided:

[화학식 1][Formula 1]

상기 화학식 1에서,In Formula 1,

M1은 주기율표 상의 3 내지 10족 원소로 이루어진 군에서 선택되고,M 1 is selected from the group consisting of elements of groups 3 to 10 on the periodic table,

X1은 할로겐기, 아민기, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기, 실릴(C6-C20)아릴기, (C1-C20)알콕시기, (C1-C20)알킬실록시기 및 (C6-C20)아릴옥시기로 이루어진 군에서 선택되고, X 1 is a halogen group, amine group , (C 1 -C 20 ) alkyl group, (C 3 -C 20 ) cycloalkyl group, (C 1 -C 20 ) alkylsiller C 6 -C 20 )aryl group, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl group, (C 1 -C 20 )alkyl(C 6 -C 20 )aryl group, (C 6 -C 20 ) Arylsilyl group, silyl (C 6 -C 20 )aryl group, (C 1 -C 20 )alkoxy group, (C 1 -C 20 )alkylsiloxy group and (C 6 -C 20 )aryloxy group. selected,

n은 1 내지 5의 정수이고,n is an integer from 1 to 5,

Ar1 및 Ar2는 서로 동일하거나 상이하며, 각각 독립적으로 시클로펜타디에닐 골격을 갖는 리간드이고,Ar 1 and Ar 2 are the same as or different from each other and are each independently a ligand having a cyclopentadienyl skeleton,

[화학식 2] [Formula 2]

상기 화학식 2에서,In Formula 2,

M2는 주기율표 상의 3 내지 10족 원소로 이루어진 군에서 선택되고,M 2 is selected from the group consisting of elements of groups 3 to 10 on the periodic table,

X2는 할로겐기, 아민기, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기, 실릴(C6-C20)아릴기, (C1-C20)알콕시기, (C1-C20)알킬실록시기 및 (C6-C20)아릴옥시기로 이루어진 군에서 선택되고, X 2 is a halogen group, amine group, (C 1 -C 20 ) alkyl group, (C 3 -C 20 ) cycloalkyl group, (C 1 -C 20 ) alkylsiller, sillyl (C 1 -C 20 ) C 6 -C 20 )aryl group, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl group, (C 1 -C 20 )alkyl(C 6 -C 20 )aryl group, (C 6 -C 20 ) Arylsilyl group, silyl (C 6 -C 20 )aryl group, (C 1 -C 20 )alkoxy group, (C 1 -C 20 )alkylsiloxy group and (C 6 -C 20 )aryloxy group. selected,

m은 1 내지 5의 정수이고,m is an integer from 1 to 5,

Ar3 및 Ar4는 서로 동일하거나 상이하며, 각각 독립적으로 시클로펜타디에닐 골격을 갖는 리간드이고, Ar 3 and Ar 4 are the same or different from each other and are each independently a ligand having a cyclopentadienyl skeleton,

B는 전이금속 M2에 직접 배위하지 않고 리간드 Ar3와 Ar4를 연결하는 성분으로서, 탄소(C), 규소(Si), 게르마늄(Ge), 질소(N) 및 인(P)으로 이루어진 군에서 선택되는 원소를 포함하고, B is a component that connects the ligands Ar 3 and Ar 4 without directly coordinating with the transition metal M 2 , and is a group consisting of carbon (C), silicon (Si), germanium (Ge), nitrogen (N), and phosphorus (P). Contains elements selected from,

L은 수소, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기 및 실릴(C6-C20)아릴기로 이루어진 군에서 선택되고,L is hydrogen, (C 1 -C 20 )alkyl group, (C 3 -C 20 )cycloalkyl group, (C 1 -C 20 )alkylsilyl group, silyl (C 1 -C 20 )alkyl group, (C 6 -C 20 ) Aryl group, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl group, (C 1 -C 20 )alkyl(C 6 -C 20 )aryl group, (C 6 -C 20 )arylsilyl group, and Silyl (C 6 -C 20 ) selected from the group consisting of aryl groups,

p는 1 또는 2이다.p is 1 or 2.

본 발명에 따르면, 폴리에틸렌 제조 시 투입되는 각 화합물의 투입량을 조절함으로써 기계적 물성과 내환경응력균열저항 특성이 향상된 폴리에틸렌을 제공한다. According to the present invention, polyethylene with improved mechanical properties and environmental stress crack resistance characteristics is provided by controlling the amount of each compound added during polyethylene production.

또한, 분자량이 높고, 분자량 분포가 넓은 폴리에틸렌을 제공함으로써 난방용 파이프 제조 시 성형성을 향상시킬 수 있다.In addition, by providing polyethylene with a high molecular weight and a wide molecular weight distribution, formability can be improved when manufacturing heating pipes.

이하, 본 발명의 바람직한 실시 형태를 설명한다. 그러나 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention may be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below.

본 발명의 일 구현예에 따르면, 알킬알루미늄 화합물, 에틸렌 단량체 및 수소를 반응기에 연속적으로 투입하는 단계; 및 에틸렌 단량체가 중합되는 단계를 포함하는 폴리에틸렌 제조방법이 제공된다.According to one embodiment of the present invention, continuously introducing an alkylaluminum compound, ethylene monomer, and hydrogen into a reactor; And a method for producing polyethylene is provided, including the step of polymerizing ethylene monomer.

상기 알킬알루미늄 화합물은 반응기 내 수분을 제거하기 위한 것으로, 본 발명에서 사용할 수 있는 알킬알루미늄의 구체적인 예로 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 디에틸알루미늄 에톡사이드, 트리-n-부틸알루미늄, 디이소부틸알루미늄 하이드라이드, 트리이소부틸알루미늄, 디에틸알루미늄 클로라이드 등을 들 수 있으나 이에 제한되는 것은 아니다. 바람직하게는 트리에틸알루미늄을 사용할 수 있다.The alkyl aluminum compound is used to remove moisture in the reactor. Specific examples of alkyl aluminum that can be used in the present invention include trimethyl aluminum, triethyl aluminum, tri-n-propyl aluminum, diethylaluminum ethoxide, and tri-n-butyl. Examples include, but are not limited to, aluminum, diisobutyl aluminum hydride, triisobutyl aluminum, and diethylaluminum chloride. Preferably, triethylaluminum can be used.

상기 알킬알루미늄은 에틸렌 단량체의 시간당 투입량 1 중량부에 대하여 2.35×10-4 내지 2.60×10-4 중량부/hr의 속도로 반응기에 투입된다. 상기 알킬알루미늄의 투입량이 2.35×10-4 중량부/hr 미만이면 반응기 내 존재하는 수분이 원활하게 제거되지 않아 분자량이 낮은 폴리에틸렌이 제조될 수 있다. 반면 상기 알킬알루미늄의 투입량이 2.60×10-4 중량부/hr를 초과하면 알킬알루미늄이 촉매와 반응하여 촉매 활성이 낮아지고, 중합 반응이 종결되어 분자량이 낮은 폴리에틸렌이 제조될 수 있다.The alkylaluminum is introduced into the reactor at a rate of 2.35×10 -4 to 2.60×10 -4 parts by weight/hr based on 1 part by weight of ethylene monomer per hour. If the input amount of the alkylaluminum is less than 2.35×10 -4 parts by weight/hr, the moisture present in the reactor is not smoothly removed, so polyethylene with a low molecular weight can be produced. On the other hand, if the input amount of the alkylaluminum exceeds 2.60×10 -4 parts by weight/hr, the alkylaluminum reacts with the catalyst, lowering the catalytic activity, and the polymerization reaction is terminated, thereby producing polyethylene with a low molecular weight.

한편, 본 발명에서 수소의 투입량은 에틸렌 단량체의 시간당 투입량 1 중량부에 대하여 0.55×10-4 내지 0.61×10-4 중량부/hr인 것이 바람직하다. 상기 수소의 투입량이 0.55×10-4 중량부/hr 미만이면 중합체의 분자량이 지나치게 높아 흐름성이 저하될 우려가 있고, 0.61×10-4 중량부/hr를 초과하면 중합 반응이 종결되어 분자량이 낮은 폴리에틸렌이 제조될 수 있으므로 바람직하지 않다. Meanwhile, in the present invention, the amount of hydrogen input is preferably 0.55 × 10 -4 to 0.61 × 10 -4 parts by weight/hr based on 1 part by weight of ethylene monomer per hour. If the hydrogen input amount is less than 0.55×10 -4 parts by weight/hr, the molecular weight of the polymer is too high and there is a risk that flowability may be reduced, and if it exceeds 0.61×10 -4 parts by weight/hr, the polymerization reaction is terminated and the molecular weight is reduced. This is undesirable as low polyethylene can be produced.

본 발명에서 에틸렌 단량체의 중합 반응은 촉매 존재 하에서 진행되고, 상기 촉매는 하기 화학식 1로 표시되는 적어도 1종 이상의 제1전이금속 화합물 및 하기 화학식 2로 표시되는 적어도 1종 이상의 제2전이금속 화합물을 포함하는 혼성담지 촉매일 수 있다.In the present invention, the polymerization reaction of ethylene monomer proceeds in the presence of a catalyst, and the catalyst includes at least one first transition metal compound represented by the following formula (1) and at least one second transition metal compound represented by the following formula (2) It may be a hybrid supported catalyst containing.

[화학식 1][Formula 1]

상기 화학식 1에서,In Formula 1,

M1은 주기율표 상의 3 내지 10족 원소로 이루어진 군에서 선택되고,M 1 is selected from the group consisting of elements of groups 3 to 10 on the periodic table,

X1은 할로겐기, 아민기, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기, 실릴(C6-C20)아릴기, (C1-C20)알콕시기, (C1-C20)알킬실록시기 및 (C6-C20)아릴옥시기로 이루어진 군에서 선택되고, X 1 is a halogen group, amine group , (C 1 -C 20 ) alkyl group, (C 3 -C 20 ) cycloalkyl group, (C 1 -C 20 ) alkylsiller C 6 -C 20 )aryl group, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl group, (C 1 -C 20 )alkyl(C 6 -C 20 )aryl group, (C 6 -C 20 ) Arylsilyl group, silyl (C 6 -C 20 )aryl group, (C 1 -C 20 )alkoxy group, (C 1 -C 20 )alkylsiloxy group and (C 6 -C 20 )aryloxy group. selected,

n은 1 내지 5의 정수이고,n is an integer from 1 to 5,

Ar1 및 Ar2는 서로 동일하거나 상이하며, 각각 독립적으로 시클로펜타디에닐 골격을 갖는 리간드이고,Ar 1 and Ar 2 are the same as or different from each other and are each independently a ligand having a cyclopentadienyl skeleton,

[화학식 2][Formula 2]

상기 화학식 2에서,In Formula 2,

M2는 주기율표 상의 3 내지 10족 원소로 이루어진 군에서 선택되고,M 2 is selected from the group consisting of elements of groups 3 to 10 on the periodic table,

X2는 할로겐기, 아민기, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기, 실릴(C6-C20)아릴기, (C1-C20)알콕시기, (C1-C20)알킬실록시기 및 (C6-C20)아릴옥시기로 이루어진 군에서 선택되고, X 2 is a halogen group, amine group, (C 1 -C 20 ) alkyl group, (C 3 -C 20 ) cycloalkyl group, (C 1 -C 20 ) alkylsiller, sillyl (C 1 -C 20 ) C 6 -C 20 )aryl group, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl group, (C 1 -C 20 )alkyl(C 6 -C 20 )aryl group, (C 6 -C 20 ) Arylsilyl group, silyl (C 6 -C 20 )aryl group, (C 1 -C 20 )alkoxy group, (C 1 -C 20 )alkylsiloxy group and (C 6 -C 20 )aryloxy group. selected,

m은 1 내지 5의 정수이고,m is an integer from 1 to 5,

Ar3 및 Ar4는 서로 동일하거나 상이하며, 각각 독립적으로 시클로펜타디에닐 골격을 갖는 리간드이고, Ar 3 and Ar 4 are the same or different from each other and are each independently a ligand having a cyclopentadienyl skeleton,

B는 전이금속 M2에 직접 배위하지 않고 리간드 Ar3와 Ar4를 연결하는 성분으로서, 탄소(C), 규소(Si), 게르마늄(Ge), 질소(N) 및 인(P)으로 이루어진 군에서 선택되는 원소를 포함하고, B is a component that connects the ligands Ar 3 and Ar 4 without directly coordinating with the transition metal M 2 , and is a group consisting of carbon (C), silicon (Si), germanium (Ge), nitrogen (N), and phosphorus (P). Contains elements selected from,

L은 수소, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기 및 실릴(C6-C20)아릴기로 이루어진 군에서 선택되고,L is hydrogen, (C 1 -C 20 )alkyl group, (C 3 -C 20 )cycloalkyl group, (C 1 -C 20 )alkylsilyl group, silyl (C 1 -C 20 )alkyl group, (C 6 -C 20 ) Aryl group, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl group, (C 1 -C 20 )alkyl(C 6 -C 20 )aryl group, (C 6 -C 20 )arylsilyl group, and Silyl (C 6 -C 20 ) selected from the group consisting of aryl groups,

p는 1 또는 2이다.p is 1 or 2.

제1전이금속 화합물의 구체적인 예로는 비스(1-부틸-3-메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(시클로펜타디에닐)지르코늄 디클로라이드, 비스(메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(테트라메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(이소프로필시클로펜타디에닐)지르코늄 디클로라이드, 비스(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(n-부틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(t-부틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(시클로펜타디에닐)티타늄 디클로라이드, 비스(시클로펜타디에닐)하프늄 디클로라이드 등을 들 수 있으며, 이들 중 단독으로 또는 2 이상 혼합하여 사용할 수 있고, 바람직하게는 비스(1-부틸-3-메틸시클로펜타디에닐)지르코늄 디클로라이드를 사용할 수 있다.Specific examples of the first transition metal compound include bis(1-butyl-3-methylcyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)zirconium dichloride, bis(methylcyclopentadienyl)zirconium dichloride, Bis(tetramethylcyclopentadienyl)zirconium dichloride, bis(isopropylcyclopentadienyl)zirconium dichloride, bis(pentamethylcyclopentadienyl)zirconium dichloride, bis(n-butylcyclopentadienyl)zirconium dichloride, bis(t-butylcyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)titanium dichloride, bis(cyclopentadienyl)hafnium dichloride, etc., among these alone or in combination with 2 The above can be mixed and used, preferably bis(1-butyl-3-methylcyclopentadienyl)zirconium dichloride.

제2전이금속 화합물의 구체적인 예로는 rac-에틸렌비스(테트라하이드로인데닐)지르코늄 디클로라이드, 디페닐메틸리덴(n-부틸-시클로펜타디에닐)(2,7-디-tert-부틸-9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)지르코늄 디클로라이드, 디톨릴메틸리덴(시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)지르코늄 디클로라이드, 디메틸실릴렌(2-메틸-4-(4'-tert-부틸페닐)인데닐)(테트라메틸시클로펜타디에닐)지르코늄 디클로라이드, rac-에틸렌비스(테트라하이드로인데닐)지르코늄 디클로라이드, rac-에틸렌비스(1-인데닐)지르코늄 디클로라이드, rac-에틸렌비스(1-인데닐)하프늄 디클로라이드, rac-에틸렌비스(1-테트라하이드로인데닐)지르코늄 디클로라이드, rac-에틸렌비스(1-테트라하이드로인데닐)하프늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-테트라하이드로벤즈인데닐)지르코늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-테트라하이드로벤즈인데닐)하프늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-테트라하이드로벤즈인데닐)지르코늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-테트라하이드로벤즈인데닐)하프늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-4,5-벤즈인데닐)지르코늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-4,5-벤즈인데닐)하프늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-4,5-벤즈인데닐)지르코늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-4,5-벤즈인데닐)하프늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-5,6-시클로펜타디에닐인데닐)지르코늄 디클로라이드, rac-디메틸실란디일비스 (2-메틸-5,6-시클로펜타디에닐인데닐)하프늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-5,6-시클로펜타디에닐인데닐)지르코늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-5,6-시클로펜타디에닐인데닐)하프늄 디클로라이드, rac-디메틸실릴비스(2-메틸-4-페닐인데닐)지르코늄 디클로라이드, rac-디메틸실릴비스(2-메틸-4-페닐인데닐)하프늄 디클로라이드, rac-디페닐실릴비스(2-메틸-4-페닐인데닐)지르코늄 디클로라이드, rac-디페닐실릴비스(2-메틸-4-페닐인데닐)하프늄 디클로라이드, 이소-프로필리덴(시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소-프로필리덴(시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 디페닐메틸리덴(시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 이소-프로필리덴(3-메틸시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소-프로필리덴(3-메틸시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 디페닐메틸리덴(3-메틸시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(3-메틸시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 디페닐실릴(시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐실릴(시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(3-tert-부틸시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)지르코늄 디클로라이드, 디페닐메틸리덴(3-tert-부틸시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(3-tert-부틸-5-메틸시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)지르코늄 디클로라이드, 디페닐메틸리덴(3-tert-부틸-5-메틸시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 1,2-에틸렌비스(9-플루오레닐)지르코늄 디클로라이드, 1,2-에틸렌비스(9-플루오레닐)하프늄 디클로라이드, rac-[1,2-비스(9-플루오레닐)-1-페닐-에탄]지르코늄 디클로라이드, rac-[1,2-비스(9-플루오레닐)-1-페닐-에탄]하프늄 디클로라이드, [1-(9-플루오레닐)-2-(5,6-시클로펜타-2-메틸-1-인데닐)에탄]지르코늄 디클로라이드, [1-(9-플루오레닐)-2-(5,6-시클로펜타-2-메틸-1-인데닐)에탄]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-페닐-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-페닐-테트라하이드로펜타렌]하프늄 디클로라이드, 이소-프로필리덴(2-페닐-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소-프로필리덴(2-페닐-시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 디페닐메틸리덴(2-페닐-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-페닐-시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 이소프로필리덴(2-페닐-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)지르코늄 디클로라이드, 이소프로필리덴(2-페닐-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-페닐-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)지르코늄 디클로라이드, 디페닐메틸리덴(2-페닐-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(p-톨릴)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(p-톨릴)테트라하이드로펜타렌]하프늄 디클로라이드, [이소프로필리덴-(2-(p-톨릴)시클로펜타디에닐)-(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴-(2-(p-톨릴)시클로펜타디에닐)-(9-플루오레닐)]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(m-톨릴)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(m-톨릴)테트라하이드로펜타렌]하프늄 디클로라이드, [이소프로필리덴(2-(m-톨릴) 시클로펜타디에닐)-(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴(2-(m-톨릴)시클로펜타디에닐)-(9-플루오레닐)]하프늄 디클로라이드, [디페닐메틸리덴(2-(m-톨릴)시클로펜타디에닐)-(9-플루오레닐)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(m-톨릴)시클로펜타디에닐)-(9-플루오레닐)]하프늄 디클로라이드, [이소프로필리덴(2-(m-톨릴)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]지르코늄 디클로라이드, [이소프로필리덴(2-(m-톨릴)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]하프늄 디클로라이드, [디페닐메틸리덴(2-(m-톨릴)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(m-톨릴)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(o-톨릴)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(o-톨릴)테트라하이드로펜타렌]하프늄 디클로라이드, [이소프로필리덴(2-(o-톨릴)시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴(2-(o-톨릴)시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,3-디메틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,3-디메틸페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,4-디메틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,4-디메틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [이소프로필리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [디페닐메틸리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [디페닐메틸리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]지르코늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]하프늄 디클로라이드, [이소프로필리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]지르코늄 디클로라이드, [이소프로필리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]하프늄 디클로라이드, [디페닐메틸리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]하프늄 디클로라이드, [디페닐메틸리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,6-디메틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,6-디메틸페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디메틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디메틸페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-테트라메틸페닐-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-테트라메틸페닐-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,4-디메톡시페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,4-디메톡시페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디메톡시페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디메톡시페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(클로로페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(클로로페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(플루오로페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(플루오로페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(디플루오로페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(디플루오로페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(펜타플루오로페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(디플루오로페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(tert-부틸페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-트리플루오로메틸-페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-트리플루오로메틸-페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디-tert-부틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디-tert-부틸페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(비페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(비페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-나프틸-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-나프틸-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디페닐-페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디페닐-페닐)테트라하이드로펜타렌]하프늄 디클로라이드, 이소프로필리덴(2-테트라메틸페닐-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(2,6-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(2,4-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(2,3-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(2,6-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(클로로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(디클로로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(트리클로로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(플루오로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(디플루오로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(펜타플루오로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-트리플루오로메틸-페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(tert-부틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-디-tert-부틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(비페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-디페닐-페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-나프틸-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-테트라메틸페닐-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(2,6-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(2,4-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(2,3-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(2,6-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(클로로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(디클로로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(트리클로로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(플루오로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(디플루오로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(펜타플루오로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-트리플루오로메틸-페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-tert-부틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디-tert-부틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(비페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디페닐-페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-나프틸-시클로펜타디에닐)(9-플루오레닐)지르코늄디클로라이드, 이소프로필리덴(2-테트라메틸페닐-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(2,6-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(2,4-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(2,3-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(2,6-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(클로로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(디클로로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(트리클로로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(플루오로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(디플루오로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(펜타플루오로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-트리플루오로메틸-페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(tert-부틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-디-tert-부틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(비페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-디페닐-페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-나프틸-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-테트라메틸페닐-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(2,6-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(2,4-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(2,3-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(2,6-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(클로로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(디클로로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(트리클로로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(플루오로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(디플루오로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(펜타플루오로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-트리플루오로메틸-페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(tert-부틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디-tert-부틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(비페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디페닐-페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-나프틸-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드 등을 들 수 있으며, 이들 중 단독으로 또는 2 이상 혼합하여 사용할 수 있고 바람직하게는 rac-에틸렌비스(테트라하이드로인데닐)지르코늄 디클로라이드 를 사용할 수 있다.Specific examples of the second transition metal compound include rac-ethylenebis(tetrahydroindenyl)zirconium dichloride, diphenylmethylidene(n-butyl-cyclopentadienyl)(2,7-di-tert-butyl-9- Fluorenyl)zirconium dichloride, diphenylmethylidene (cyclopentadienyl) (2,7-di-tert-butylfluoren-9-yl)zirconium dichloride, ditolylmethylidene (cyclopentadienyl) ( 2,7-di-tert-butylfluoren-9-yl)zirconium dichloride, dimethylsilylene (2-methyl-4-(4'-tert-butylphenyl)indenyl) (tetramethylcyclopentadienyl) Zirconium dichloride, rac-ethylenebis(tetrahydroindenyl)zirconium dichloride, rac-ethylenebis(1-indenyl)zirconium dichloride, rac-ethylenebis(1-indenyl)hafnium dichloride, rac-ethylenebis (1-tetrahydroindenyl)zirconium dichloride, rac-ethylenebis(1-tetrahydroindenyl)hafnium dichloride, rac-dimethylsilanediylbis(2-methyl-tetrahydrobenzidenyl)zirconium dichloride, rac-dimethylsilanediylbis(2-methyl-tetrahydrobenzidenyl)hafnium dichloride, rac-diphenylsilanediylbis(2-methyl-tetrahydrobenzidenyl)zirconium dichloride, rac-diphenylsil Landiylbis(2-methyl-tetrahydrobenzidenyl)hafnium dichloride, rac-dimethylsilanediylbis(2-methyl-4,5-benzidenyl)zirconium dichloride, rac-dimethylsilanediylbis( 2-methyl-4,5-benzydenyl)hafnium dichloride, rac-diphenylsilanediylbis(2-methyl-4,5-benzydenyl)zirconium dichloride, rac-diphenylsilanediylbis( 2-methyl-4,5-benzydenyl)hafnium dichloride, rac-dimethylsilanediylbis(2-methyl-5,6-cyclopentadienylindenyl)zirconium dichloride, rac-dimethylsilanediylbis (2-methyl-5,6-cyclopentadienylindenyl)hafnium dichloride, rac-diphenylsilanediylbis(2-methyl-5,6-cyclopentadienylindenyl)zirconium dichloride, rac- Diphenylsilanediylbis(2-methyl-5,6-cyclopentadienylindenyl)hafnium dichloride, rac-dimethylsilylbis(2-methyl-4-phenylindenyl)zirconium dichloride, rac-dimethylsilyl Bis(2-methyl-4-phenylindenyl)hafnium dichloride, rac-diphenylsilylbis(2-methyl-4-phenylindenyl)zirconium dichloride, rac-diphenylsilylbis(2-methyl-4- Phenylindenyl)hafnium dichloride, iso-propylidene (cyclopentadienyl) (9-fluorenyl) zirconium dichloride, iso-propylidene (cyclopentadienyl) (9-fluorenyl) hafnium dichloride, Diphenylmethylidene(cyclopentadienyl)(9-fluorenyl)zirconium dichloride, diphenylmethylidene(cyclopentadienyl)(9-fluorenyl)hafnium dichloride, iso-propylidene(3-methyl Cyclopentadienyl)(9-fluorenyl)zirconium dichloride, iso-propylidene(3-methylcyclopentadienyl)(9-fluorenyl)hafnium dichloride, diphenylmethylidene(3-methylcyclopenta) Dienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylidene (3-methylcyclopentadienyl) (9-fluorenyl) hafnium dichloride, diphenylsilyl (cyclopentadienyl) (9- Fluorenyl)zirconium dichloride, diphenylsilyl (cyclopentadienyl) (9-fluorenyl)zirconium dichloride, diphenylmethylidene (cyclopentadienyl) (2,7-di-tert-butylfluorene -9-yl) Hafnium dichloride, diphenylmethylidene (3-tert-butylcyclopentadienyl) (2,7-di-tert-butylfluoren-9-yl) zirconium dichloride, diphenylmethylidene ( 3-tert-butylcyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, diphenylmethylidene (3-tert-butyl-5-methylcyclopentadienyl) (2,7-di-tert-butylfluoren-9-yl)zirconium dichloride, diphenylmethylidene (3-tert-butyl-5-methylcyclopentadienyl) (2,7-di-tert-butyl Fluoren-9-yl)hafnium dichloride, 1,2-ethylenebis(9-fluorenyl)zirconium dichloride, 1,2-ethylenebis(9-fluorenyl)hafnium dichloride, rac-[1, 2-bis(9-fluorenyl)-1-phenyl-ethane]zirconium dichloride, rac-[1,2-bis(9-fluorenyl)-1-phenyl-ethane]hafnium dichloride, [1- (9-fluorenyl)-2-(5,6-cyclopenta-2-methyl-1-indenyl)ethane]zirconium dichloride, [1-(9-fluorenyl)-2-(5,6 -Cyclopenta-2-methyl-1-indenyl)ethane]hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-phenyl-tetrahydropentarene]zirconium dichloride, [ 4-(fluorenyl)-4,6,6-trimethyl-2-phenyl-tetrahydropentarene]hafnium dichloride, iso-propylidene(2-phenyl-cyclopentadienyl)(9-fluorenyl) Zirconium dichloride, iso-propylidene (2-phenyl-cyclopentadienyl) (9-fluorenyl) Hafnium dichloride, diphenylmethylidene (2-phenyl-cyclopentadienyl) (9-fluorenyl) Zirconium dichloride, diphenylmethylidene (2-phenyl-cyclopentadienyl) (9-fluorenyl) hafnium dichloride, isopropylidene (2-phenyl-cyclopentadienyl) (2,7-di-tert -Butylfluoren-9-yl)zirconium dichloride, isopropylidene (2-phenyl-cyclopentadienyl) (2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, diphenylmethyl Liden (2-phenyl-cyclopentadienyl) (2,7-di-tert-butylfluoren-9-yl) zirconium dichloride, diphenylmethylidene (2-phenyl-cyclopentadienyl) (2,7 -di-tert-butylfluoren-9-yl)hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(p-tolyl)-tetrahydropentarene]zirconium dichloride , [4-(fluorenyl)-4,6,6-trimethyl-2-(p-tolyl)tetrahydropentarene]hafnium dichloride, [isopropylidene-(2-(p-tolyl)cyclopentadiene Nyl)-(9-fluorenyl)]zirconium dichloride, [isopropylidene-(2-(p-tolyl)cyclopentadienyl)-(9-fluorenyl)]hafnium dichloride, [4-( Fluorenyl)-4,6,6-trimethyl-2-(m-tolyl)tetrahydropentarene]zirconium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(m -Tolyl)tetrahydropentarene]hafnium dichloride, [isopropylidene(2-(m-tolyl)cyclopentadienyl)-(9-fluorenyl)]zirconium dichloride, [isopropylidene(2-( m-tolyl)cyclopentadienyl)-(9-fluorenyl)]hafnium dichloride, [diphenylmethylidene(2-(m-tolyl)cyclopentadienyl)-(9-fluorenyl)]zirconium Dichloride, [diphenylmethylidene(2-(m-tolyl)cyclopentadienyl)-(9-fluorenyl)]hafnium dichloride, [isopropylidene(2-(m-tolyl)cyclopentadienyl) )(2,7-di-tert-butylfluoren-9-yl)]zirconium dichloride, [isopropylidene(2-(m-tolyl)cyclopentadienyl)(2,7-di-tert-butyl fluoren-9-yl)]hafnium dichloride, [diphenylmethylidene(2-(m-tolyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)]zirconium dichloride Chloride, [diphenylmethylidene(2-(m-tolyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)]hafnium dichloride, [4-(fluorenyl) -4,6,6-trimethyl-2-(o-tolyl)tetrahydropentarene]zirconium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(o-tolyl)tetra Hydropentalene]hafnium dichloride, [isopropylidene(2-(o-tolyl)cyclopentadienyl)(9-fluorenyl)]zirconium dichloride, [isopropylidene(2-(o-tolyl)cyclo)] Pentadienyl)(9-fluorenyl)]hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(2,3-dimethylphenyl)tetrahydropentarene]zirconium dichloride Chloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(2,3-dimethylphenyl)tetrahydropentarene]hafnium dichloride, [4-(fluorenyl)-4,6 ,6-trimethyl-2-(2,4-dimethylphenyl)tetrahydropentarene]zirconium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(2,4-dimethylphenyl ) Tetrahydropentarene] zirconium dichloride, [isopropylidene (2- (2,3-dimethylphenyl) cyclopentadienyl) (9-fluorenyl)] zirconium dichloride, [isopropylidene (2- ( 2,3-dimethylphenyl)cyclopentadienyl)(9-fluorenyl)]hafnium dichloride, [isopropylidene(2-(2,4-dimethylphenyl)cyclopentadienyl)(9-fluorenyl) )]zirconium dichloride, [isopropylidene(2-(2,3-dimethylphenyl)cyclopentadienyl)(9-fluorenyl)]hafnium dichloride, [diphenylmethylidene(2-(2,3) -dimethylphenyl)cyclopentadienyl)(9-fluorenyl)]zirconium dichloride, [diphenylmethylidene(2-(2,3-dimethylphenyl)cyclopentadienyl)(9-fluorenyl)] Hafnium dichloride, [diphenylmethylidene(2-(2,4-dimethylphenyl)cyclopentadienyl)(9-fluorenyl)]zirconium dichloride, [diphenylmethylidene(2-(2,4- dimethylphenyl)cyclopentadienyl)(9-fluorenyl)]hafnium dichloride, [isopropylidene(2-(2,3-dimethylphenyl)cyclopentadienyl)(2,7-di-tert-butyl fluoren-9-yl)]zirconium dichloride, [isopropylidene(2-(2,3-dimethylphenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)] Hafnium dichloride, [isopropylidene(2-(2,4-dimethylphenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)]zirconium dichloride, [isopropylidene (2-(2,4-dimethylphenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)]hafnium dichloride, [diphenylmethylidene(2-(2,3 -dimethylphenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)]zirconium dichloride, [diphenylmethylidene(2-(2,3-dimethylphenyl)cyclopentadiene Nyl)(2,7-di-tert-butylfluoren-9-yl)]hafnium dichloride, [diphenylmethylidene(2-(2,4-dimethylphenyl)cyclopentadienyl)(2,7- di-tert-butylfluoren-9-yl)]zirconium dichloride, [diphenylmethylidene(2-(2,4-dimethylphenyl)cyclopentadienyl)(2,7-di-tert-butylfluorene -9-yl)]hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(2,6-dimethylphenyl)tetrahydropentarene]zirconium dichloride, [4-( Fluorenyl)-4,6,6-trimethyl-2-(2,6-dimethylphenyl)tetrahydropentarene]hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2 -(3,5-dimethylphenyl)tetrahydropentarene]zirconium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(3,5-dimethylphenyl)tetrahydropentarene] Hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-tetramethylphenyl-tetrahydropentarene]zirconium dichloride, [4-(fluorenyl)-4,6,6- trimethyl-2-tetramethylphenyl-tetrahydropentarene]hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(2,4-dimethoxyphenyl)tetrahydropentarene]zirconium Dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(2,4-dimethoxyphenyl)tetrahydropentarene]hafnium dichloride, [4-(fluorenyl)-4 ,6,6-trimethyl-2-(3,5-dimethoxyphenyl)tetrahydropentarene]zirconium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(3,5 -dimethoxyphenyl)tetrahydropentarene]hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(chlorophenyl)tetrahydropentarene]zirconium dichloride, [4-( Fluorenyl)-4,6,6-trimethyl-2-(chlorophenyl)tetrahydropentarene]hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(fluoro Phenyl)tetrahydropentarene]zirconium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(fluorophenyl)tetrahydropentarene]hafnium dichloride, [4-(fluorene) Nyl)-4,6,6-trimethyl-2-(difluorophenyl)tetrahydropentarene]zirconium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(difluorine) Lophenyl)tetrahydropentarene]hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(pentafluorophenyl)tetrahydropentarene]zirconium dichloride, [4-( Fluorenyl)-4,6,6-trimethyl-2-(difluorophenyl)tetrahydropentarene]hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-( tert-butylphenyl)tetrahydropentarene]hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(3,5-trifluoromethyl-phenyl)tetrahydropentarene] Zirconium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(3,5-trifluoromethyl-phenyl)tetrahydropentarene]hafnium dichloride, [4-(fluorine Nyl)-4,6,6-trimethyl-2-(3,5-di-tert-butylphenyl)tetrahydropentarene]zirconium dichloride, [4-(fluorenyl)-4,6,6-trimethyl -2-(3,5-di-tert-butylphenyl)tetrahydropentarene]hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(biphenyl)tetrahydropenta ren]zirconium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(biphenyl)tetrahydropentarene]hafnium dichloride, [4-(fluorenyl)-4,6 ,6-trimethyl-2-naphthyl-tetrahydropentarene]zirconium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-naphthyl-tetrahydropentarene]hafnium dichloride, [4-(fluorenyl)-4,6,6-trimethyl-2-(3,5-diphenyl-phenyl)tetrahydropentarene]zirconium dichloride, [4-(fluorenyl)-4,6 ,6-trimethyl-2-(3,5-diphenyl-phenyl)tetrahydropentarene]hafnium dichloride, isopropylidene (2-tetramethylphenyl-cyclopentadienyl)(9-fluorenyl)zirconium dichloride , Isopropylidene (2- (2,6-dimethylphenyl) cyclopentadienyl) (9-fluorenyl) zirconium dichloride, Isopropylidene (2- (3,5-dimethylphenyl) cyclopentadienyl) (9-Fluorenyl)zirconium dichloride, isopropylidene (2-(2,4-dimethoxyphenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, isopropylidene (2-(3) , 5-dimethoxyphenyl) cyclopentadienyl) (9-fluorenyl) zirconium dichloride, isopropylidene (2- (2,3-dimethoxyphenyl) cyclopentadienyl) (9-fluorenyl) Zirconium dichloride, isopropylidene (2-(2,6-dimethoxyphenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, isopropylidene (2-(chlorophenyl)cyclopentadienyl) (9-Fluorenyl)zirconium dichloride, isopropylidene (2-(dichlorophenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, isopropylidene (2-(trichlorophenyl)cyclopenta Dienyl) (9-fluorenyl) zirconium dichloride, isopropylidene (2- (fluorophenyl) cyclopentadienyl) (9-fluorenyl) zirconium dichloride, isopropylidene (2- (difluoro Lophenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, isopropylidene (2-(pentafluorophenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, isopropylidene (2-(3,5-trifluoromethyl-phenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, isopropylidene (2-(tert-butylphenyl)cyclopentadienyl)(9 -Fluorenyl)zirconium dichloride, isopropylidene (2-(3,5-di-tert-butylphenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, isopropylidene (2-( Biphenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, isopropylidene (2-(3,5-diphenyl-phenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride , Isopropylidene (2-naphthyl-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylidene (2-tetramethylphenyl-cyclopentadienyl) (9-fluorenyl) zirconium dichloride Chloride, diphenylmethylidene (2-(2,6-dimethylphenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, diphenylmethylidene (2-(3,5-dimethylphenyl)cyclopenta Dienyl)(9-fluorenyl)zirconium dichloride, diphenylmethylidene (2-(2,4-dimethoxyphenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, diphenylmethylidene (2-(3,5-dimethoxyphenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, diphenylmethylidene (2-(2,3-dimethoxyphenyl)cyclopentadienyl)( 9-Fluorenyl)zirconium dichloride, diphenylmethylidene (2-(2,6-dimethoxyphenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, diphenylmethylidene (2-( Chlorophenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, diphenylmethylidene (2-(dichlorophenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, diphenylmethylidene (2-(trichlorophenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, diphenylmethylidene(2-(fluorophenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride Chloride, diphenylmethylidene (2- (difluorophenyl) cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylidene (2- (pentafluorophenyl) cyclopentadienyl) ( 9-Fluorenyl)zirconium dichloride, diphenylmethylidene (2-(3,5-trifluoromethyl-phenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, diphenylmethylidene ( 2-tert-butylphenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, diphenylmethylidene (2-(3,5-di-tert-butylphenyl)cyclopentadienyl)(9- Fluorenyl)zirconium dichloride, diphenylmethylidene (2-(biphenyl)cyclopentadienyl)(9-fluorenyl)zirconium dichloride, diphenylmethylidene (2-(3,5-diphenyl- Phenyl) cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylidene (2-naphthyl-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, isopropylidene (2- Tetramethylphenyl-cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, isopropylidene (2-(2,6-dimethylphenyl)cyclopentadienyl)(2 ,7-di-tert-butylfluoren-9-yl)hafnium dichloride, isopropylidene (2-(3,5-dimethylphenyl)cyclopentadienyl)(2,7-di-tert-butylfluorene -9-yl)hafnium dichloride, isopropylidene (2-(2,4-dimethoxyphenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, Isopropylidene (2-(3,5-dimethoxyphenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, isopropylidene (2-(2, 3-dimethoxyphenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, isopropylidene (2-(2,6-dimethoxyphenyl)cyclopentadiene Nyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, isopropylidene(2-(chlorophenyl)cyclopentadienyl)(2,7-di-tert-butylfluorene -9-yl) Hafnium dichloride, isopropylidene (2-(dichlorophenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, isopropylidene (2 -(trichlorophenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, isopropylidene (2-(fluorophenyl)cyclopentadienyl)(2 ,7-di-tert-butylfluoren-9-yl)hafnium dichloride, isopropylidene (2-(difluorophenyl)cyclopentadienyl)(2,7-di-tert-butylfluorene-9 -yl) Hafnium dichloride, isopropylidene (2-(pentafluorophenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, isopropylidene (2 -(3,5-trifluoromethyl-phenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, isopropylidene (2-(tert-butylphenyl) )Cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, isopropylidene (2-(3,5-di-tert-butylphenyl)cyclopentadienyl) (2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, isopropylidene (2-(biphenyl)cyclopentadienyl)(2,7-di-tert-butylfluorene-9 -yl) Hafnium dichloride, isopropylidene (2-(3,5-diphenyl-phenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, iso Propylidene (2-naphthyl-cyclopentadienyl) (2,7-di-tert-butylfluoren-9-yl) hafnium dichloride, diphenylmethylidene (2-tetramethylphenyl-cyclopentadienyl) ( 2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, diphenylmethylidene (2-(2,6-dimethylphenyl)cyclopentadienyl)(2,7-di-tert-butyl) Fluoren-9-yl)hafnium dichloride, diphenylmethylidene (2-(3,5-dimethylphenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium di Chloride, diphenylmethylidene (2-(2,4-dimethoxyphenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, diphenylmethylidene (2 -(3,5-dimethoxyphenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, diphenylmethylidene (2-(2,3-dimethoxy Phenyl) cyclopentadienyl) (2,7-di-tert-butylfluoren-9-yl) hafnium dichloride, diphenylmethylidene (2- (2,6-dimethoxyphenyl) cyclopentadienyl) ( 2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, diphenylmethylidene (2-(chlorophenyl)cyclopentadienyl)(2,7-di-tert-butylfluorene-9 -yl) Hafnium dichloride, diphenylmethylidene (2-(dichlorophenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, diphenylmethylidene (2 -(trichlorophenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, diphenylmethylidene(2-(fluorophenyl)cyclopentadienyl)( 2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, diphenylmethylidene (2-(difluorophenyl)cyclopentadienyl)(2,7-di-tert-butylfluorene -9-yl) Hafnium dichloride, diphenylmethylidene (2-(pentafluorophenyl) cyclopentadienyl) (2,7-di-tert-butylfluoren-9-yl) hafnium dichloride, diphenyl Methylidene (2-(3,5-trifluoromethyl-phenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, diphenylmethylidene (2- (tert-butylphenyl)cyclopentadienyl)(2,7-di-tert-butylfluoren-9-yl)hafnium dichloride, diphenylmethylidene (2-(3,5-di-tert-butylphenyl ) Cyclopentadienyl) (2,7-di-tert-butylfluoren-9-yl) hafnium dichloride, diphenylmethylidene (2- (biphenyl) cyclopentadienyl) (2,7-di- tert-butylfluoren-9-yl)hafnium dichloride, diphenylmethylidene (2-(3,5-diphenyl-phenyl)cyclopentadienyl)(2,7-di-tert-butylfluorene-9 -yl) hafnium dichloride, diphenylmethylidene (2-naphthyl-cyclopentadienyl) (2,7-di-tert-butylfluoren-9-yl) hafnium dichloride, etc., among these. It can be used alone or in combination of two or more, and preferably rac-ethylenebis(tetrahydroindenyl)zirconium dichloride.

상기 제1전이금속 화합물과 제2전이금속 화합물의 몰비는 1:1 내지 50:1일 수 있으며, 상기 몰비가 1:1 미만이면 흐름성이 좋지 않아 성형성이 나빠지고, 50:1을 초과하면 분자량이 낮아 ESCR 특성이 저하되므로 바람직하지 않다. The molar ratio of the first transition metal compound and the second transition metal compound may be 1:1 to 50:1. If the molar ratio is less than 1:1, the moldability is poor due to poor flow, and if the molar ratio is less than 1:1, the moldability is poor. This is undesirable because the molecular weight is low and the ESCR properties deteriorate.

상기 일 구현예에서 사용할 수 있는 조촉매 화합물로는 하기 화학식 3으로 표시되는 단위를 포함하는 화합물, 하기 화학식 4로 표시되는 화합물 및 하기 화학식 5로 표시되는 화합물로 이루어진 군에서 선택되는 1 또는 2 이상을 들 수 있다.Cocatalyst compounds that can be used in the above embodiment include 1 or 2 or more selected from the group consisting of a compound containing a unit represented by Formula 3, a compound represented by Formula 4, and a compound represented by Formula 5. can be mentioned.

[화학식 3][Formula 3]

상기 화학식 3에서,In Formula 3 above,

q는 2 이상의 정수이고,q is an integer greater than or equal to 2,

Al은 알루미늄이며,Al is aluminum,

O는 산소이고,O is oxygen,

Ra는 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이며, Ra is halogen; or a (C 1 -C 20 ) hydrocarbyl group substituted or unsubstituted with halogen,

[화학식 4] [Formula 4]

상기 화학식 4에서,In Formula 4 above,

Q는 알루미늄 또는 보론이고, Q is aluminum or boron,

Rb는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐; 또는 할로겐로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이며, Rb are the same as or different from each other, and are each independently halogen; or a (C 1 -C 20 ) hydrocarbyl group substituted or unsubstituted with halogen,

[화학식 5][Formula 5]

상기 화학식 5에서, In Formula 5 above,

[W]+는 양이온성 루이스 산; 또는 수소 원자가 결합한 양이온성 루이스 산이고,[W] + is a cationic Lewis acid; or a cationic Lewis acid with a hydrogen atom bonded to it,

Z는 13족 원소이고,Z is a group 13 element,

Rc는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C6-C20)아릴기; 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C1-C20 )알킬기이다.Rc is the same or different from each other, and each independently (C 6 -C 20 )aryl substituted with one or two or more substituents selected from the group consisting of halogen, (C 1 -C 20 )hydrocarbyl group, alkoxy group, and phenoxy group. energy; It is a (C 1 -C 20 )alkyl group substituted with one or two or more substituents selected from the group consisting of halogen, (C 1 -C 20 )hydrocarbyl group, alkoxy group, and phenoxy group.

상기 조촉매 화합물은 상기 화학식 1 또는 화학식 2로 표시되는 전이금속 화합물과 함께 촉매 조성물에 포함되어 상기 전이금속 화합물을 활성화시키는 역할을 한다. 구체적으로, 상기 전이금속 화합물이 올레핀 중합에 사용되는 활성 촉매 성분이 되기 위하여, 전이금속 화합물 중의 리간드를 추출하여 중심금속(M1 또는 M2)을 양이온화 시키면서 약한 결합력을 가진 반대이온, 즉 음이온으로 작용할 수 있는 상기 화학식 3으로 표시되는 단위를 포함하는 화합물, 화학식 4로 표시되는 화합물 및 화학식 5로 표시되는 화합물이 조촉매로서 함께 작용한다.The cocatalyst compound is included in a catalyst composition together with the transition metal compound represented by Formula 1 or Formula 2 and serves to activate the transition metal compound. Specifically, in order for the transition metal compound to become an active catalyst component used in olefin polymerization, the ligand in the transition metal compound is extracted to cationize the central metal (M 1 or M 2 ) while generating a counter ion with a weak binding force, that is, an anion. A compound containing a unit represented by Formula 3, a compound represented by Formula 4, and a compound represented by Formula 5 that can act as a cocatalyst.

상기 화학식 3으로 표시되는 '단위'는 화합물 내에 [ ] 내의 구조가 q개 연결되는 구조로, 화학식 3으로 표시되는 단위를 포함하는 경우라면 화합물 내의 다른 구조는 특별히 한정하지 않으며, 화학식 3의 반복 단위가 서로 연결된 클러스터형 예컨대, 구상의 화합물일 수 있다.The 'unit' represented by Formula 3 is a structure in which q structures in [ ] are connected in the compound. If it includes the unit represented by Formula 3, other structures in the compound are not particularly limited, and the repeating unit of Formula 3 It may be a cluster-type, for example, spherical compound that is connected to each other.

화학식 3으로 표시되는 단위를 포함하는 화합물은 특별히 한정되지 않으며, 알킬알루미녹산인 것이 바람직하다. 비제한적인 예로, 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있다. 상기 전이금속 화합물의 활성을 고려할 때 메틸알루미녹산이 바람직하게 사용될 수 있다.The compound containing the unit represented by Formula 3 is not particularly limited, and alkylaluminoxane is preferable. Non-limiting examples include methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, butylaluminoxane, etc. Considering the activity of the transition metal compound, methylaluminoxane may be preferably used.

또한 상기 화학식 4로 표시되는 화합물은 알킬 금속 화합물로서 특별히 한정되지 않으며, 이의 비제한적인 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 있다. 상기 전이금속 화합물의 활성을 고려할 때, 트리메틸알루미늄, 트리에틸알루미늄 및 트리이소부틸알루미늄로 이루어진 군에서 선택된 1종 또는 2종 이상이 바람직하게 사용될 수 있다.In addition, the compound represented by Formula 4 is not particularly limited as an alkyl metal compound, and non-limiting examples thereof include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethyl chloroaluminum, and triiso Propyl aluminum, tri-s-butyl aluminum, tricyclopentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyldimethyl aluminum, methyldiethyl aluminum, triphenyl aluminum, tri-p-tolyl. These include aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, and tributyl boron. Considering the activity of the transition metal compound, one or two or more types selected from the group consisting of trimethyl aluminum, triethyl aluminum, and triisobutyl aluminum may be preferably used.

화학식 5로 표시되는 화합물은 상기 전이금속 화합물의 활성을 고려할 때, 상기 [W]+가 수소 원자가 결합한 양이온성 루이스 산인 경우, 디메틸아닐리늄 양이온이고, [W]+가 양이온성 루이스 산인 경우, [(C6H5)3C]+이고, 상기 [Z(Rc)4]-는 [B(C6F5)4]-인 것이 바람직하게 사용될 수 있다.Considering the activity of the transition metal compound, the compound represented by Formula 5 is a dimethylanilinium cation when [W] + is a cationic Lewis acid to which a hydrogen atom is bonded, and when [W] + is a cationic Lewis acid, [ (C 6 H 5 ) 3 C] + , and [Z(Rc) 4 ] - may be preferably used as [B(C 6 F 5 ) 4 ] - .

화학식 5로 표시되는 화합물은 특별히 한정되지 않으나, [W]+가 수소 원자가 결합한 양이온성 루이스산인 경우의 비제한적인 예로는 트리에틸암모니움테트라키스페닐보레이트, 트리부틸암모니움테트라키스페닐보레이트, 트리메틸암모니움테트라키스페닐보레이트, 트리프로필암모니움테트라키스페닐보레이트, 트리메틸암모니움테트라키스(p-톨릴)보레이트, 트리프로필암모니움테트라키스(p-톨릴)보레이트, 트리메틸암모니움테트라키스(o,p-디메틸페닐)보레이트, 트리에틸암모니움테트라키스(o,p-디메틸페닐)보레이트, 트리부틸암모니움테트라키스(p-트리플루오로메틸페닐)보레이트, 트리메틸암모니움테트라키스(p-트리플루오로메틸페닐)보레이트, 트리부틸암모니움테트라키스펜타플루오로페닐보레이트, 아닐리니움 테트라키스페닐보레이트, 아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리니움테트라키스페틸보레이트, N,N-디에틸아닐리니움테트라키스페닐보레이트, N,N-디에틸아닐리니움테트라키스펜타플루오로페닐보레이트, 디에틸암모니움테트라키스펜타플루오로페닐보레이트, 트리페닐포스포늄테트라키스페닐보레이트, 트리메틸포스포늄테트라키스페닐보레이트, 트리페닐카보니움테트라키스(p-트리플루오로메틸페닐)보레이트, 트리페닐카보니움테트라키스펜타플루오로페닐보레이트, 디메틸아닐리니움테트라키스(펜타플루오로페닐)보레이트 등이 있다. The compound represented by Formula 5 is not particularly limited, but non-limiting examples where [W] + is a cationic Lewis acid to which a hydrogen atom is bonded include triethylammonium tetrakisphenyl borate, tributylammonium tetrakisphenyl borate, and trimethyl Ammonium tetrakisphenyl borate, tripropylammonium tetrakisphenyl borate, trimethylammonium tetrakis(p-tolyl)borate, tripropylammonium tetrakis(p-tolyl)borate, trimethylammonium tetrakis(o,p -Dimethylphenyl)borate, triethylammonium tetrakis(o,p-dimethylphenyl)borate, tributylammonium tetrakis(p-trifluoromethylphenyl)borate, trimethylammonium tetrakis(p-trifluoromethylphenyl) )borate, tributylammonium tetrakispentafluorophenylborate, anilinium tetrakisphenylborate, anilinium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate Phenyl)borate, N,N-diethylaniliniumtetrakispetylborate, N,N-diethylaniliniumtetrakisphenylborate, N,N-diethylaniliniumtetrakispentafluorophenylborate, di Ethylammonium tetrakispentafluorophenyl borate, triphenylphosphonium tetrakisphenyl borate, trimethylphosphonium tetrakisphenyl borate, triphenylcarbonium tetrakis(p-trifluoromethylphenyl)borate, triphenylcarbonium Tetrakispentafluorophenylborate, dimethylaniliniumtetrakis(pentafluorophenyl)borate, etc.

조촉매 화합물은 상기 화학식 1로 표시되는 제1전이금속 화합물 및 상기 화학식 2로 표시되는 제2전이금속 화합물의 전체 함량에 대하여 10 내지 200의 몰비로 포함될 수 있다. 조촉매의 몰비가 10 미만이면 전이금속 화합물이 담체에 담지되는 양이 적고, 몰비가 200을 초과하면 전이금속 화합물이 용매 층에 존재하는 조촉매와 반응하여 바람직하지 않다.The cocatalyst compound may be included in a molar ratio of 10 to 200 based on the total content of the first transition metal compound represented by Formula 1 and the second transition metal compound represented by Formula 2. If the molar ratio of the cocatalyst is less than 10, the amount of the transition metal compound supported on the carrier is small, and if the molar ratio exceeds 200, the transition metal compound reacts with the cocatalyst present in the solvent layer, which is not desirable.

상기 일 구현예에서 담체는 실리카, 알루미나, 실리카-알루미나 혼합물, 산화티탄, 제올라이트 등의 유기 또는 무기 다공성 담체일 수 있다. 제1전이금속 화합물, 제2전이금속 화합물 및 조촉매의 혼합물은 고체 분말 상태 또는 균일 용액 상태로 존재할 수 있으며, 상기 혼합물은 공지의 방법에 의해 담지될 수 있다.In the above embodiment, the carrier may be an organic or inorganic porous carrier such as silica, alumina, silica-alumina mixture, titanium oxide, or zeolite. The mixture of the first transition metal compound, the second transition metal compound, and the cocatalyst may exist in a solid powder state or a homogeneous solution state, and the mixture may be supported by a known method.

혼성담지 촉매 제조시 반응의 용매는 헥산, 펜탄과 같은 지방족 탄화수소 용매, 톨루엔, 벤젠과 같은 방향족 탄화 수소 용매, 티클로로메탄과 같은 염소원자로 치환된 탄화수소 용매, 디에틸에테르, 테트라히드로퓨란과 같은 에테르계 용매, 아세톤, 에틸아세테이트 등의 대부분의 유기용매가 사용 가능하며 바람직하게는 톨루엔, 헥산을 사용할 수 있으나, 이에 제한되지 않는다.When preparing a hybrid supported catalyst, the reaction solvent is an aliphatic hydrocarbon solvent such as hexane or pentane, an aromatic hydrocarbon solvent such as toluene or benzene, a hydrocarbon solvent substituted with a chlorine atom such as thichloromethane, or an ether such as diethyl ether or tetrahydrofuran. Most organic solvents such as solvents, acetone, and ethyl acetate can be used, and toluene and hexane are preferably used, but are not limited thereto.

본 발명에서 폴리에틸렌의 중합 반응은 기상, 액상 또는 슬러리상에서 실시될 수 있다. 바람직하게는 기상중합기를 이용하는 기상 상태로 중합 반응할 수 있다. 또한, 각각의 중합 반응 조건은 중합 방법, 목적하는 중합 결과 또는 중합체의 형태에 따라 다양하게 변형될 수 있다.In the present invention, the polymerization reaction of polyethylene may be carried out in a gas phase, liquid phase, or slurry phase. Preferably, the polymerization reaction can be performed in a gas phase using a gas phase polymerization device. Additionally, each polymerization reaction condition may be modified in various ways depending on the polymerization method, desired polymerization result, or type of polymer.

구체적으로 본 발명에서 폴리에틸렌 중합 반응은 65 내지 100℃의 온도 범위에서 수행되며, 반응기에 투입되는 헥센의 주입량은 0.05 내지 0.15 kg/h이고, 에틸렌 및 수소, 헥센을 포함하는 혼합 가스의 순환 속도는 0.30 내지 0.40m/sec일 수 있다.Specifically, in the present invention, the polyethylene polymerization reaction is performed at a temperature range of 65 to 100°C, the injection amount of hexene introduced into the reactor is 0.05 to 0.15 kg/h, and the circulation rate of the mixed gas containing ethylene, hydrogen, and hexene is It may be 0.30 to 0.40 m/sec.

본 발명의 다른 구현예에 따르면, 상기 화학식 1로 표시되는 적어도 1종 이상의 제1전이금속 화합물 및 상기 화학식 2로 표시되는 적어도 1종 이상의 제2전이금속 화합물을 포함하는 혼성담지 촉매 하에서 에틸렌 단량체의 중합 반응에 의해 제조된 폴리에틸렌이 제공된다. 상기 폴리에틸렌은 수평균분자량(Mn)이 10,000 내지 50,000g/mol이고, 중량평균분자량(Mw)이 100,000 내지 300,000g/mol이고, Z평균분자량(Mz)이 750,000 내지 2,000,000g/mol인 것일 수 있다. 또한, 상기 폴리에틸렌은 분자량 분포(MWD)가 4.5 내지 10이고, 분자량 분포(MZD)가 15 내지 50인 것일 수 있다.According to another embodiment of the present invention, ethylene monomer is used under a hybrid supported catalyst comprising at least one first transition metal compound represented by Formula 1 and at least one second transition metal compound represented by Formula 2. Polyethylene produced by polymerization reaction is provided. The polyethylene may have a number average molecular weight (Mn) of 10,000 to 50,000 g/mol, a weight average molecular weight (Mw) of 100,000 to 300,000 g/mol, and a Z average molecular weight (Mz) of 750,000 to 2,000,000 g/mol. . Additionally, the polyethylene may have a molecular weight distribution (MWD) of 4.5 to 10 and a molecular weight distribution (MZD) of 15 to 50.

또한, 상기 폴리에틸렌은 용융흐름지수(MI2.16)가 0.5 내지 1 g/mol이고, 유동율비(MFRR)가 50 내지 80인 것일 수 있다. 폴리에틸렌이 상기와 같은 수평균분자량(Mn), 중량평균분자량(Mw), Z평균분자량(Mz), 용융흐름지수(MI2.16) 및 유동율비(MFRR)를 가짐으로써 내환경응력균열저항 특성(이하, ESCR라고도 한다.) 및 기계적 강도가 향상되는 효과가 있으며, 특히 난방용 파이프 제조시 적절한 수준의 흐름성을 확보하게 되어 성형성이 향상되는 효과가 있다.Additionally, the polyethylene may have a melt flow index (MI 2.16 ) of 0.5 to 1 g/mol and a flow rate ratio (MFRR) of 50 to 80. Polyethylene has the above-mentioned number average molecular weight (Mn), weight average molecular weight (Mw), Z average molecular weight (Mz), melt flow index (MI 2.16 ), and flow rate ratio (MFRR), resulting in environmental stress cracking resistance characteristics (hereinafter referred to as , also called ESCR) and mechanical strength are improved, and in particular, when manufacturing heating pipes, an appropriate level of flow is secured and formability is improved.

또한 본 발명의 폴리에틸렌은 밀도가 0.937 내지 0.943 g/cm3인 것이 바람직하다. 밀도는 폴리에틸렌의 물성과 가공 조건에 큰 영향을 미치는 요인으로 특히 ESCR 및 기계적 강도에 영향을 준다. 일반적으로 폴리에틸렌의 밀도가 낮을수록 ESCR은 높아지나 기계적 강도는 낮아지며, 폴리에틸렌의 밀도가 높을수록 ESCR은 낮아지고 기계적 강도는 높아진다. 본 발명에서 폴리에틸렌 수지의 밀도가 0.937 내지 0.943 g/cm3인 경우 최적의 ESCR 및 기계적 강도를 갖는다.Additionally, the polyethylene of the present invention preferably has a density of 0.937 to 0.943 g/cm 3 . Density is a factor that greatly affects the physical properties and processing conditions of polyethylene, particularly affecting ESCR and mechanical strength. In general, the lower the density of polyethylene, the higher the ESCR but lower the mechanical strength, and the higher the density of polyethylene, the lower the ESCR and higher mechanical strength. In the present invention, the polyethylene resin has optimal ESCR and mechanical strength when the density is 0.937 to 0.943 g/cm 3 .

본 발명의 폴리에틸렌 제조방법에 따르면 HS (Hardening stiffness), LA (Lamellae area)가 향상되고, 따라서 ESCR이 우수한 폴리에틸렌이 제조된다. 구체적으로 상기 폴리에틸렌은 104 kg/cm3 이상의 HS, 12 m2/mol 이상의 LA를 갖는 것일 수 있다. ESCR은 고분자 수지 내에 존재하는 tie-molecule 및 entanglement의 함량과 연관이 있으며, 고분자 수지의 HS, LA 등을 통해 예측할 수 있는 것으로 알려져 있다. 본 발명의 혼성담지 촉매 하에서 제조된 폴리에틸렌의 경우, ESCR 가속화 측정값이 1100시간 이상일 수 있다. According to the polyethylene manufacturing method of the present invention, HS (Hardening stiffness) and LA (Lamellae area) are improved, and thus polyethylene with excellent ESCR is manufactured. Specifically, the polyethylene may have an HS of 104 kg/cm 3 or more and an LA of 12 m 2 /mol or more. It is known that ESCR is related to the content of tie-molecules and entanglements present in the polymer resin, and can be predicted through the HS and LA of the polymer resin. In the case of polyethylene produced under the hybrid supported catalyst of the present invention, the measured ESCR acceleration value may be 1100 hours or more.

ESCR의 가속화 측정 방법은 다음과 같다. 폴리에틸렌 수지를 평판으로 제조하여 일정 크기로 자른 시료를 준비하고, 상기 시료의 인장강도를 측정한다. 측정된 인장강도는 응력-변형도 곡선(strain-stress curve)으로 도시하고, 상기 응력-변형도 곡선에서 변형 경화(strain hardening) 이후의 기울기를 측정하여 이를 HS(Hardening stiffness)라 한다.The ESCR acceleration measurement method is as follows. Prepare a sample cut to a certain size by making a polyethylene resin into a flat plate, and measure the tensile strength of the sample. The measured tensile strength is shown as a stress-strain curve, and the slope after strain hardening is measured from the stress-strain curve, which is called HS (Hardening stiffness).

이후 폴리에틸렌 수지 시료의 표면에 0.5mm 깊이의 노치(notch)를 가하고, 시료를 일정하게 구부린 후 채널(channel)에 체결하고 60℃, 50vol%의 계면활성제 수용액에 침지시켜 시료에 금이 갔을 때의 시간(t)을 측정한다. Afterwards, a 0.5 mm deep notch was added to the surface of the polyethylene resin sample, the sample was bent uniformly, fastened to a channel, and immersed in a 50 vol% surfactant aqueous solution at 60°C to remove cracks in the sample. Measure time (t).

상술한 ESCR의 가속화 측정 방법은 중량평균분자량(Mw)이 100,000 내지 1,000,000이고, 분자량 분포(MWD)가 5.0 내지 10.0이며, 밀도가 0.935 내지 0.950g/ml인 폴리에틸렌에 대해 제한 없이 적용할 수 있다. The above-described accelerated measurement method of ESCR can be applied without limitation to polyethylene with a weight average molecular weight (Mw) of 100,000 to 1,000,000, a molecular weight distribution (MWD) of 5.0 to 10.0, and a density of 0.935 to 0.950 g/ml.

종래 상용화된 고온 파이프용 폴리에틸렌의 ESCR은 일반적으로 8,760 시간 이상이며, 측정에 1년 이상 소요되어 연구개발 시 개발된 제품의 ESCR을 즉각적으로 측정할 수 없는 문제가 있다. 그러나 본 발명의 ESCR의 가속화 측정 방법에 의하면 고분자 수지의 HS(Hardening stiffness) 또는 LA(Lamellae Area)로부터 ESCR을 예측함으로써, ESCR의 평가 시간을 단축시킬 수 있다.The ESCR of conventionally commercialized polyethylene for high-temperature pipes is generally more than 8,760 hours, and since it takes more than a year to measure, there is a problem in that the ESCR of products developed during research and development cannot be measured immediately. However, according to the accelerated ESCR measurement method of the present invention, the ESCR evaluation time can be shortened by predicting the ESCR from the HS (Hardening stiffness) or LA (Lamellae Area) of the polymer resin.

실시예Example

이하, 본 발명의 실시예에 대해 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명을 한정하는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail. The following examples are only for understanding of the present invention and do not limit the present invention.

실시예 및 비교예Examples and Comparative Examples

(1) 혼성담지 촉매의 제조(1) Preparation of hybrid supported catalyst

제1전이금속 화합물로 비스(1-부틸-3-메틸시클로펜타디에닐)지르코늄 디클로라이드 (S-PCI사)를 사용하고, 제2전이금속 화합물로 rac-에틸렌비스(테트라하이드로인데닐)지르코늄 디클로라이드 (STREM사)를 사용하였다.Bis(1-butyl-3-methylcyclopentadienyl)zirconium dichloride (S-PCI) was used as the first transition metal compound, and rac-ethylenebis(tetrahydroindenyl)zirconium was used as the second transition metal compound. Dichloride (STREM) was used.

모든 합성 반응은 질소 또는 아르곤 등의 비활성 분위기에서 진행되었고, 표준 쉴렌크(Standard Schlenk) 기술과 글러브 박스(Glove Box) 기술을 이용하였다.All synthesis reactions were carried out in an inert atmosphere such as nitrogen or argon, and standard Schlenk and glove box techniques were used.

톨루엔은 무수 등급(Anhydrous Grade) (Sigma-Aldrich사)을 활성화된 분자체(Molecular Sieve, 4A) 또는 활성화된 알루미나 층을 통과시켜 추가로 건조한 다음 사용하였다. 조촉매인 MAO(메틸알루미녹산, Methylaluminoxane)는 10% 톨루엔 용액(HS-MAO-10%)(Albemarle사)을 구매하여 사용하였으며, 소성된 실리카는 더 이상의 처리 없이 사용하였다. 또한, 실시예 및 비교예에서 사용된 촉매 화합물은 추가의 정제 없이 사용하였다.Toluene was used after additional drying by passing an anhydrous grade (Sigma-Aldrich) through an activated molecular sieve (4A) or an activated alumina layer. The cocatalyst, MAO (Methylaluminoxane), was purchased and used as a 10% toluene solution (HS-MAO-10%) (Albemarle), and the calcined silica was used without further treatment. Additionally, the catalyst compounds used in Examples and Comparative Examples were used without further purification.

혼성담지 촉매를 합성하기 위해 Glove Box 안에서 실리카(300g)를 1L 둥근바닥 플라스크에 담아 Glove Box 밖으로 꺼낸 다음, 1L 톨루엔을 가하고 슬러리 상태의 실리카에 MAO(1.7L)를 천천히 가한 다음 70℃에서 1시간 동안 교반하였다. 제1전이금속 화합물(15mmol)과 제2전이금속 화합물(0.5mmol)을 둥근바닥 플라스크에 담아 Glove Box 밖으로 꺼낸 뒤 톨루엔 100ml에 용해시킨 뒤 실리카와 MAO가 반응한 슬러리에 천천히 가하였다. 50℃에서 1시간 동안 교반시킨 뒤 교반을 멈추고 상온으로 식혀 톨루엔 상등액을 분리하여 제거한 후, 톨루엔과 노르말헥산으로 씻어준 뒤, 진공 건조하여 자유 유동 분말 형태의 담지 촉매를 얻을 수 있었다.To synthesize a hybrid supported catalyst, put silica (300g) in a 1L round bottom flask inside the glove box and take it out of the glove box, then add 1L toluene, slowly add MAO (1.7L) to the silica in slurry state, and let it sit at 70℃ for 1 hour. It was stirred for a while. The first transition metal compound (15 mmol) and the second transition metal compound (0.5 mmol) were placed in a round bottom flask, taken out of the glove box, dissolved in 100 ml of toluene, and then slowly added to the slurry in which silica and MAO reacted. After stirring at 50°C for 1 hour, the stirring was stopped, cooled to room temperature, the toluene supernatant was separated and removed, washed with toluene and n-hexane, and vacuum dried to obtain a supported catalyst in the form of a free-flowing powder.

(2) 폴리에틸렌 중합(2) Polyethylene polymerization

실시예 및 비교예에서는 기상 중합기를 이용하였으며, 기상 중합기의 공통 운전 조건은 다음과 같다. 중합 온도는 85oC이며 공중합체로 사용된 1-hexene의 투입 속도는 0.11kg/h이다. 트리에틸알루미늄(TEAL)은 헥산에 10wt%로 희석하여 사용하였고 혼합가스의 순환 속도는 0.3~0.4m/sec로 조절하였다. 기타 중합체의 물성 조건은 에틸렌, 수소, 트리에틸알루미늄의 투입량을 바꾸어 조절하였으며, 상기 각 화합물의 투입량(g/hr) 및 에틸렌 단량체 투입량에 대한 수소 및 트리에틸알루미늄(TEAL)의 상대적인 투입량(중량부/hr)을 하기 표 1에 나타내었다.In the examples and comparative examples, a vapor phase polymerization device was used, and common operating conditions for the vapor phase polymerization device are as follows. The polymerization temperature is 85 o C and the input rate of 1-hexene used as the copolymer is 0.11 kg/h. Triethylaluminum (TEAL) was used diluted to 10 wt% in hexane, and the circulation speed of the mixed gas was adjusted to 0.3~0.4 m/sec. The physical properties of other polymers were controlled by changing the input amounts of ethylene, hydrogen, and triethylaluminum, and the relative input amount (parts by weight) of hydrogen and triethylaluminum (TEAL) relative to the input amount of each compound (g/hr) and the amount of ethylene monomer. /hr) is shown in Table 1 below.

에틸렌ethylene 수소hydrogen 트리알킬알루미늄(TEAL)Trialkyl Aluminum (TEAL) 투입량
(g/hr)
input
(g/hr)
투입량
(g/hr)
input
(g/hr)
투입량
(10-4 중량부/hr)
input
(10 -4 parts by weight/hr)
투입량
(g/hr)
input
(g/hr)
투입량
(10-4 중량부/hr)
input
(10 -4 parts by weight/hr)
실시예 1Example 1 20,00020,000 1.21.2 0.600.60 4.94.9 2.452.45 비교예 1Comparative Example 1 20,00020,000 1.21.2 0.600.60 2.52.5 1.251.25 비교예 2Comparative Example 2 18,50018,500 1.21.2 0.650.65 4.94.9 2.652.65 비교예 3Comparative Example 3 20,00020,000 1.241.24 0.620.62 4.94.9 2.452.45 비교예 4Comparative Example 4 21,00021,000 1.261.26 0.600.60 4.94.9 2.332.33

실시예 1 및 비교예 1~4에서 제조된 폴리에틸렌 및 현재 상용화되어 있는 고온 파이프용 폴리에틸렌 제품(PERT, polyethylene raised temperature)에 대하여 하기 물성을 각각 측정하여 표 2 및 표 3에 나타내었다. 현재 상용화되어 있는 고온 파이프용 폴리에틸렌 제품은 비교예 5로 하고, 폴리에틸렌의 물성은 다음과 같은 방법으로 측정되었다. The following physical properties were measured for the polyethylene manufactured in Example 1 and Comparative Examples 1 to 4 and the currently commercialized polyethylene product for high temperature pipes (PERT, polyethylene raised temperature), respectively, and are shown in Tables 2 and 3. The currently commercialized polyethylene product for high-temperature pipes was used as Comparative Example 5, and the physical properties of polyethylene were measured by the following method.

물성 측정 방법How to measure physical properties

(1) 용융흐름지수(MI2.16)(1) Melt flow index (MI 2.16 )

측정온도 190℃에서 AMTM1238을 기준으로 하여 측정하였다.Measurement was made based on AMTM1238 at a measurement temperature of 190°C.

(2) 유동율비(MFRR) (2) Liquidity Ratio (MFRR)

MFR21.6 용융지수(MI, 21.6kg 하중)를 MFR2.16 (MI 2.16kg 하중)으로 나누어 측정하였다.MFR21.6 melt index (MI, 21.6kg load) was measured by dividing it by MFR2.16 (MI 2.16kg load).

(3) 밀도(3) Density

ASTM D1505를 기준으로 하여 측정하였다.Measurements were made based on ASTM D1505.

(4) 분자량(Mn, Mw, Mz), 분자량 분포(MWD, MZD)(4) Molecular weight (Mn, Mw, Mz), molecular weight distribution (MWD, MZD)

Polymer Laboratories Ltd (UK)사의 PL GPC-220와 Differential Viscometer (M210R)로 구성된 GPC 시스템을 통해 160℃에서 측정한 결과를 적용하였다.The results measured at 160°C were applied using a GPC system consisting of Polymer Laboratories Ltd (UK)'s PL GPC-220 and Differential Viscometer (M210R).

(5) 항복강도(5) Yield strength

ASTM D 638 기준으로 50mm/min의 속도로 측정하였으며, 각 시편당 4회 측정하여 그 평균치를 적용하였다.It was measured at a speed of 50 mm/min based on ASTM D 638, and each specimen was measured four times and the average value was applied.

(6) HS (Hardening Stiffness)(6) HS (Hardening Stiffness)

ASTM D 638 기준으로 50mm/min의 속도로 측정하였으며, strain(mm)-stress(kgf/cm2) 그래프에서 항복구간이 종료되고 일정한 기울기로 응력이 증가하는 단계인 변형 경화(strain hardening) 단계에서의 기울기를 측정하였다.It was measured at a speed of 50 mm/min based on ASTM D 638, and in the strain (mm)-stress (kgf/cm 2 ) graph, at the strain hardening stage, which is the stage where the yield section ends and the stress increases at a constant slope, The slope was measured.

(7) LA (Lamellae Area)(7) LA (Lamellae Area)

LA는 TA사의 DSC(Q-200)로 측정한 녹는점(Tm, ℃)과 폴리에틸렌 결정의 단위부피당 용융엔탈피(△hm,crystal, 2.88*108 J/m3), 폴리에틸렌 결정의 기저면에서의 표면자유에너지(σe, 60.9*10-3J/m2), 폴리에틸렌 무한결정의 평형상태 녹는점(Tm o, 415K)을 이용하여 아래의 식 (1)을 통해 라멜라 두께(LT)를 구한 후, 시편의 밀도(d), 중량평균분자량(Mw)과 DSC를 통해 측정한 시편의 결정화도(DC, %), 폴리에틸렌 결정의 단위 무게당 부피(Vcrystal, 1 m3/kg)를 이용하여 식 (2)를 통해 LA 값을 계산하였다. LA is the melting point (T m, ℃) measured by TA's DSC (Q-200), the melting enthalpy per unit volume of the polyethylene crystal (△h m,crystal , 2.88*10 8 J/m 3 ), and the basal surface of the polyethylene crystal. Using the surface free energy (σ e , 60.9*10 -3 J/m 2 ) and the equilibrium melting point (T m o , 415K) of an infinite polyethylene crystal, the lamella thickness (LT) can be determined through equation (1) below. ), then the density of the specimen (d), weight average molecular weight (Mw), crystallinity of the specimen measured through DSC (DC, %), and volume per unit weight of polyethylene crystal (V crystal , 1 m 3 /kg) The LA value was calculated using equation (2).

식 (1) Equation (1)

식 (2) Equation (2)

흐름성flowability 분자량Molecular Weight MI2.16 MI 2.16 MFRR
(MI21.6/MI2.16)
MFRR
(MI 21.6 /MI 2.16 )
밀도
(g/cm3)
density
(g/ cm3 )
Mn
(g/mol)
Mn
(g/mol)
Mw
(g/mol)
Mw
(g/mol)
Mz
(g/mol)
Mz
(g/mol)
MWDMWD MZDMZD
실시예 1Example 1 0.640.64 6262 0.94080.9408 3.63.6 2727 129129 7.57.5 3535 비교예 1Comparative Example 1 0.720.72 5353 0.94040.9404 2.22.2 1818 7575 8.48.4 3434 비교예 2Comparative Example 2 0.450.45 5959 0.94180.9418 2.82.8 1919 9494 6.96.9 3232 비교예 3Comparative Example 3 0.610.61 5454 0.94180.9418 3.33.3 1616 6868 4.84.8 2020 비교예 4Comparative Example 4 0.570.57 5555 0.94140.9414 2.32.3 2020 8888 8.68.6 3838 비교예 5Comparative Example 5 0.60.6 3535 0.94100.9410 5.45.4 2424 7171 4.44.4 1313

실시예 1에 의해 제조된 폴리에틸렌의 경우 상용화된 PERT(비교예 5)와 밀도가 유사하고, 비교예 1~5에 비해 분자량이 높으며 고분자의 함량이 높은 것을 알 수 있다. 비교예 1, 4의 경우 상대적으로 트리에틸알루미늄이 적게 투입되어 반응기 수분 제거가 원활하게 이루어지지 못하였고, 비교예 2, 3의 경우 에틸렌에 비해 상대적으로 수소의 투입량이 증가하였다. 따라서 비교예 1~4에서는 분자량이 작은 폴리에틸렌이 제조되었음을 확인할 수 있다. It can be seen that the polyethylene prepared in Example 1 has a similar density to commercialized PERT (Comparative Example 5), has a higher molecular weight, and has a higher polymer content than Comparative Examples 1 to 5. In Comparative Examples 1 and 4, a relatively small amount of triethylaluminum was input, so moisture removal from the reactor was not performed smoothly, and in Comparative Examples 2 and 3, the amount of hydrogen input was relatively increased compared to ethylene. Therefore, it can be confirmed that polyethylene with a low molecular weight was manufactured in Comparative Examples 1 to 4.

기계적 특성mechanical properties ESCR 예측ESCR Forecast 항복강도
(kgf/cm2)
yield strength
(kgf/ cm2 )
HS
(kgf/cm3)
HS
(kgf/ cm3 )
LA
(109 m2/mol)
L.A.
(10 9 m 2 /mol)
ESCR 가속화 측정
(hr)
ESCR accelerated measurements
(hr)
실시예 1Example 1 175175 104.4104.4 14.314.3 12001200 비교예 1Comparative Example 1 164164 99.699.6 8.98.9 720720 비교예 2Comparative Example 2 187187 102.4102.4 10.510.5 960960 비교예 3Comparative Example 3 188188 97.897.8 8.68.6 672672 비교예 4Comparative Example 4 168168 100.6100.6 9.39.3 792792 비교예 5Comparative Example 5 166166 103.6103.6 11.611.6 10801080

상기 표 3은 실시예 1 및 비교예 1~5의 항복강도, HS, LA, ESCR 가속화 측정값을 나타낸 것이다. 실시예 1의 경우 비교예 5 대비 동등하거나 우수한 흐름성을 보이면서도 기계적 강도 및 내환경응력저항 특성이 우수한 것을 알 수 있다. Table 3 shows the yield strength, HS, LA, and ESCR acceleration measurements of Example 1 and Comparative Examples 1 to 5. In the case of Example 1, it can be seen that while showing equal or superior flowability compared to Comparative Example 5, mechanical strength and environmental stress resistance characteristics are excellent.

Claims (11)

알킬알루미늄 화합물, 에틸렌 단량체 및 수소를 반응기에 연속적으로 투입하는 단계; 및
촉매, 또는 상기 촉매 및 조촉매의 존재 하에서 에틸렌 단량체가 중합되는 단계를 포함하고,
상기 에틸렌 단량체의 시간당 투입량 1 중량부에 대하여, 알킬알루미늄의 투입량은 2.35×10-4 내지 2.60×10-4 중량부/hr, 수소의 투입량은 0.55×10-4 내지 0.61×10-4 중량부/hr인 폴리에틸렌 제조방법.
Continuously introducing an alkylaluminum compound, ethylene monomer, and hydrogen into the reactor; and
polymerizing ethylene monomer in the presence of a catalyst, or the catalyst and cocatalyst,
With respect to the ethylene monomer input amount of 1 part by weight per hour, the input amount of alkyl aluminum is 2.35 × 10 -4 to 2.60 × 10 -4 parts by weight / hr, and the input amount of hydrogen is 0.55 × 10 -4 to 0.61 × 10 -4 parts by weight. /hr polyethylene production method.
제1항에 있어서,
상기 알킬알루미늄 화합물은 트리에틸알루미늄, 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 디에틸알루미늄 에톡사이드, 트리-n-부틸알루미늄, 디이소부틸알루미늄 하이드라이드, 트리이소부틸알루미늄 및 디에틸알루미늄 클로라이드로 이루어진 군에서 선택된 1 또는 2 이상의 화합물인 폴리에틸렌 제조방법.
According to paragraph 1,
The alkyl aluminum compounds include triethyl aluminum, trimethyl aluminum, triethyl aluminum, tri-n-propyl aluminum, diethyl aluminum ethoxide, tri-n-butyl aluminum, diisobutyl aluminum hydride, triisobutyl aluminum and diethyl. A method for producing polyethylene, which is one or two or more compounds selected from the group consisting of aluminum chloride.
제1항에 있어서,
상기 촉매는 하기 화학식 1로 표시되는 적어도 1종 이상의 제1전이금속 화합물 및 하기 화학식 2로 표시되는 적어도 1종 이상의 제2전이금속 화합물을 포함하는 혼성담지 촉매인 폴리에틸렌 제조방법:

[화학식 1]

상기 화학식 1에서,
M1은 주기율표 상의 3 내지 10족 원소로 이루어진 군에서 선택되고,
X1은 할로겐기, 아민기, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기, 실릴(C6-C20)아릴기, (C1-C20)알콕시기, (C1-C20)알킬실록시기 및 (C6-C20)아릴옥시기로 이루어진 군에서 선택되고,
n은 1 내지 5의 정수이고,
Ar1 및 Ar2는 서로 동일하거나 상이하며, 각각 독립적으로 시클로펜타디에닐 골격을 갖는 리간드이고,

[화학식 2]

상기 화학식 2에서,
M2는 주기율표 상의 3 내지 10족 원소로 이루어진 군에서 선택되고,
X2는 할로겐기, 아민기, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기, 실릴(C6-C20)아릴기, (C1-C20)알콕시기, (C1-C20)알킬실록시기 및 (C6-C20)아릴옥시기로 이루어진 군에서 선택되고,
m은 1 내지 5의 정수이고,
Ar3 및 Ar4는 서로 동일하거나 상이하며, 각각 독립적으로 시클로펜타디에닐 골격을 갖는 리간드이고,
B는 전이금속 M2에 직접 배위하지 않고 리간드 Ar3와 Ar4를 연결하는 성분으로서, 탄소(C), 규소(Si), 게르마늄(Ge), 질소(N) 및 인(P)으로 이루어진 군에서 선택되는 원소를 포함하고,
L은 수소, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기 및 실릴(C6-C20)아릴기로 이루어진 군에서 선택되고,
p는 1 또는 2이다.
According to paragraph 1,
The catalyst is a hybrid supported catalyst comprising at least one first transition metal compound represented by the following formula (1) and at least one second transition metal compound represented by the following formula (2). Method for producing polyethylene:

[Formula 1]

In Formula 1,
M 1 is selected from the group consisting of elements of groups 3 to 10 on the periodic table,
X 1 is a halogen group, amine group , (C 1 -C 20 ) alkyl group, (C 3 -C 20 ) cycloalkyl group, (C 1 -C 20 ) alkylsiller C 6 -C 20 )aryl group, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl group, (C 1 -C 20 )alkyl(C 6 -C 20 )aryl group, (C 6 -C 20 ) Arylsilyl group, silyl (C 6 -C 20 )aryl group, (C 1 -C 20 )alkoxy group, (C 1 -C 20 )alkylsiloxy group and (C 6 -C 20 )aryloxy group. selected,
n is an integer from 1 to 5,
Ar 1 and Ar 2 are the same as or different from each other and are each independently a ligand having a cyclopentadienyl skeleton,

[Formula 2]

In Formula 2,
M 2 is selected from the group consisting of elements of groups 3 to 10 on the periodic table,
X 2 is a halogen group, amine group, (C 1 -C 20 ) alkyl group, (C 3 -C 20 ) cycloalkyl group, (C 1 -C 20 ) alkylsiller, sillyl (C 1 -C 20 ) C 6 -C 20 )aryl group, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl group, (C 1 -C 20 )alkyl(C 6 -C 20 )aryl group, (C 6 -C 20 ) Arylsilyl group, silyl (C 6 -C 20 )aryl group, (C 1 -C 20 )alkoxy group, (C 1 -C 20 )alkylsiloxy group and (C 6 -C 20 )aryloxy group. selected,
m is an integer from 1 to 5,
Ar 3 and Ar 4 are the same or different from each other and are each independently a ligand having a cyclopentadienyl skeleton,
B is a component that connects the ligands Ar 3 and Ar 4 without directly coordinating with the transition metal M 2 , and is a group consisting of carbon (C), silicon (Si), germanium (Ge), nitrogen (N), and phosphorus (P). Contains elements selected from,
L is hydrogen, (C 1 -C 20 )alkyl group, (C 3 -C 20 )cycloalkyl group, (C 1 -C 20 )alkylsilyl group, silyl (C 1 -C 20 )alkyl group, (C 6 -C 20 ) Aryl group, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl group, (C 1 -C 20 )alkyl(C 6 -C 20 )aryl group, (C 6 -C 20 )arylsilyl group, and Silyl (C 6 -C 20 ) selected from the group consisting of aryl groups,
p is 1 or 2.
제3항에 있어서,
상기 제1전이금속 화합물은 비스(1-부틸-3-메틸시클로펜타디에닐)지르코늄 디클로라이드이고, 상기 제2전이금속 화합물은 rac-에틸렌비스(테트라하이드로인데닐)지르코늄 디클로라이드인 폴리에틸렌 제조방법.
According to paragraph 3,
The first transition metal compound is bis(1-butyl-3-methylcyclopentadienyl)zirconium dichloride, and the second transition metal compound is rac-ethylenebis(tetrahydroindenyl)zirconium dichloride. .
제3항에 있어서,
상기 제1전이금속 화합물과 상기 제2전이금속 화합물의 몰비는 1:1 내지 50:1인 폴리에틸렌 제조방법.
According to paragraph 3,
A method for producing polyethylene, wherein the molar ratio of the first transition metal compound and the second transition metal compound is 1:1 to 50:1.
제3항에 있어서,
상기 조촉매 화합물은 하기 화학식 3으로 표시되는 단위를 포함하는 화합물, 하기 화학식 4로 표시되는 화합물 및 하기 화학식 5로 표시되는 화합물로 이루어진 군에서 선택되는 1 또는 2 이상의 화합물인 폴리에틸렌 제조방법:

[화학식 3]

상기 화학식 3에서,
q는 2 이상의 정수이고,
Al은 알루미늄이며,
O는 산소이고,
Ra는 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이며,

[화학식 4]

상기 화학식 4에서,
Q는 알루미늄 또는 보론이고,
Rb는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이며,

[화학식 5]

상기 화학식 5에서,
[W]+는 양이온성 루이스 산; 또는 수소 원자가 결합한 양이온성 루이스 산이고,
Z는 13족 원소이고,
Rc는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C6-C20)아릴기; 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C1-C20)알킬기이다.
According to paragraph 3,
The cocatalyst compound is one or two or more compounds selected from the group consisting of a compound containing a unit represented by Formula 3, a compound represented by Formula 4, and a compound represented by Formula 5. Method for producing polyethylene:

[Formula 3]

In Formula 3 above,
q is an integer greater than or equal to 2,
Al is aluminum,
O is oxygen,
Ra is halogen; or a (C 1 -C 20 ) hydrocarbyl group substituted or unsubstituted with halogen,

[Formula 4]

In Formula 4 above,
Q is aluminum or boron,
Rb are the same as or different from each other, and are each independently halogen; or a (C 1 -C 20 ) hydrocarbyl group substituted or unsubstituted with halogen,

[Formula 5]

In Formula 5 above,
[W] + is a cationic Lewis acid; or a cationic Lewis acid with a hydrogen atom bonded to it,
Z is a group 13 element,
Rc is the same or different from each other, and each independently (C 6 -C 20 )aryl substituted with one or two or more substituents selected from the group consisting of halogen, (C 1 -C 20 )hydrocarbyl group, alkoxy group, and phenoxy group. energy; It is a (C 1 -C 20 )alkyl group substituted with one or two or more substituents selected from the group consisting of halogen, (C 1 -C 20 )hydrocarbyl group, alkoxy group, and phenoxy group.
제6항에 있어서,
상기 조촉매 화합물은 상기 화학식 1로 표시되는 제1전이금속 화합물 및 상기 화학식 2로 표시되는 제2전이금속 화합물의 전체 함량에 대하여 10 내지 200의 몰비로 포함되는 것인 폴리에틸렌 제조방법.
According to clause 6,
A method for producing polyethylene, wherein the cocatalyst compound is included in a molar ratio of 10 to 200 based on the total content of the first transition metal compound represented by Formula 1 and the second transition metal compound represented by Formula 2.
하기 화학식 1로 표시되는 적어도 1종 이상의 제1전이금속 화합물 및 하기 화학식 2로 표시되는 적어도 1종 이상의 제2전이금속 화합물을 포함하는 혼성담지 촉매, 또는 상기 혼성담지 촉매 및 조촉매의 존재 하에서 알킬알루미늄 화합물 및 수소와 함께 투입된 에틸렌 단량체의 중합 반응에 의해 제조되는 폴리에틸렌으로서,
상기 에틸렌 단량체의 시간당 투입량 1 중량부에 대하여, 알킬알루미늄의 투입량은 2.35×10-4 내지 2.60×10-4 중량부/hr, 수소의 투입량은 0.55×10-4 내지 0.61×10-4 중량부/hr인, 폴리에틸렌:

[화학식 1]

상기 화학식 1에서,
M1은 주기율표 상의 3 내지 10족 원소로 이루어진 군에서 선택되고,
X1은 할로겐기, 아민기, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기, 실릴(C6-C20)아릴기, (C1-C20)알콕시기, (C1-C20)알킬실록시기 및 (C6-C20)아릴옥시기로 이루어진 군에서 선택되고,
n은 1 내지 5의 정수이고,
Ar1 및 Ar2는 서로 동일하거나 상이하며, 각각 독립적으로 시클로펜타디에닐 골격을 갖는 리간드이고,

[화학식 2]

상기 화학식 2에서,
M2는 주기율표 상의 3 내지 10족 원소로 이루어진 군에서 선택되고,
X2는 할로겐기, 아민기, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기, 실릴(C6-C20)아릴기, (C1-C20)알콕시기, (C1-C20)알킬실록시기 및 (C6-C20)아릴옥시기로 이루어진 군에서 선택되고,
m은 1 내지 5의 정수이고,
Ar3 및 Ar4는 서로 동일하거나 상이하며, 각각 독립적으로 시클로펜타디에닐 골격을 갖는 리간드이고,
B는 전이금속 M2에 직접 배위하지 않고 리간드 Ar3와 Ar4를 연결하는 성분으로서, 탄소(C), 규소(Si), 게르마늄(Ge), 질소(N) 및 인(P)으로 이루어진 군에서 선택되는 원소를 포함하고,
L은 수소, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기 및 실릴(C6-C20)아릴기로 이루어진 군에서 선택되고,
p는 1 또는 2이다.
A hybrid supported catalyst comprising at least one first transition metal compound represented by Formula 1 below and at least one second transition metal compound represented by Formula 2 below, or an alkyl catalyst in the presence of the hybrid supported catalyst and cocatalyst Polyethylene produced by polymerization of ethylene monomer added with an aluminum compound and hydrogen,
With respect to the ethylene monomer input amount of 1 part by weight per hour, the input amount of alkyl aluminum is 2.35 × 10 -4 to 2.60 × 10 -4 parts by weight / hr, and the input amount of hydrogen is 0.55 × 10 -4 to 0.61 × 10 -4 parts by weight. /hr, polyethylene:

[Formula 1]

In Formula 1,
M 1 is selected from the group consisting of elements of groups 3 to 10 on the periodic table,
X 1 is a halogen group, amine group , (C 1 -C 20 ) alkyl group, (C 3 -C 20 ) cycloalkyl group, (C 1 -C 20 ) alkylsiller C 6 -C 20 )aryl group, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl group, (C 1 -C 20 )alkyl(C 6 -C 20 )aryl group, (C 6 -C 20 ) Arylsilyl group, silyl (C 6 -C 20 )aryl group, (C 1 -C 20 )alkoxy group, (C 1 -C 20 )alkylsiloxy group and (C 6 -C 20 )aryloxy group. selected,
n is an integer from 1 to 5,
Ar 1 and Ar 2 are the same as or different from each other and are each independently a ligand having a cyclopentadienyl skeleton,

[Formula 2]

In Formula 2,
M 2 is selected from the group consisting of elements of groups 3 to 10 on the periodic table,
X 2 is a halogen group, amine group, (C 1 -C 20 ) alkyl group, (C 3 -C 20 ) cycloalkyl group, (C 1 -C 20 ) alkylsiller, sillyl (C 1 -C 20 ) C 6 -C 20 )aryl group, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl group, (C 1 -C 20 )alkyl(C 6 -C 20 )aryl group, (C 6 -C 20 ) Arylsilyl group, silyl (C 6 -C 20 )aryl group, (C 1 -C 20 )alkoxy group, (C 1 -C 20 )alkylsiloxy group and (C 6 -C 20 )aryloxy group. selected,
m is an integer from 1 to 5,
Ar 3 and Ar 4 are the same or different from each other and are each independently a ligand having a cyclopentadienyl skeleton,
B is a component that connects the ligands Ar 3 and Ar 4 without directly coordinating with the transition metal M 2 , and is a group consisting of carbon (C), silicon (Si), germanium (Ge), nitrogen (N), and phosphorus (P). Contains elements selected from,
L is hydrogen, (C 1 -C 20 )alkyl group, (C 3 -C 20 )cycloalkyl group, (C 1 -C 20 )alkylsilyl group, silyl (C 1 -C 20 )alkyl group, (C 6 -C 20 ) Aryl group, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl group, (C 1 -C 20 )alkyl(C 6 -C 20 )aryl group, (C 6 -C 20 )arylsilyl group, and Silyl (C 6 -C 20 ) selected from the group consisting of aryl groups,
p is 1 or 2.
제8항에 있어서,
상기 제1전이금속 화합물은 비스(1-부틸-3-메틸시클로펜타디에닐)지르코늄 디클로라이드이고, 상기 제2전이금속 화합물은 rac-에틸렌비스(테트라하이드로인데닐)지르코늄 디클로라이드인 폴리에틸렌.
According to clause 8,
The first transition metal compound is bis(1-butyl-3-methylcyclopentadienyl)zirconium dichloride, and the second transition metal compound is rac-ethylenebis(tetrahydroindenyl)zirconium dichloride.
제8항에 있어서,
상기 제1전이금속 화합물과 상기 제2전이금속 화합물의 몰비는 1:1 내지 50:1인 폴리에틸렌.
According to clause 8,
Polyethylene wherein the molar ratio of the first transition metal compound and the second transition metal compound is 1:1 to 50:1.
제8항 내지 제10항 중 어느 한 항에 있어서,
하기 (a) ~ (c)의 요건을 만족하는 폴리에틸렌:
(a) Hardening stiffness(HS) 104 kg/cm3 이상;
(b) Lamellae area(LA) 12 m2/mol 이상;
(c) ESCR 가속화 측정값 1100 시간 이상.

According to any one of claims 8 to 10,
Polyethylene that satisfies the requirements of (a) to (c) below:
(a) Hardening stiffness (HS) 104 kg/cm 3 or more;
(b) Lamellae area (LA) greater than 12 m 2 /mol;
(c) ESCR acceleration measurements greater than 1100 hours.

KR1020180150788A 2018-11-29 2018-11-29 Method for preparing polyolefin with advanced environmental stress crack resistance KR102651363B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180150788A KR102651363B1 (en) 2018-11-29 2018-11-29 Method for preparing polyolefin with advanced environmental stress crack resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180150788A KR102651363B1 (en) 2018-11-29 2018-11-29 Method for preparing polyolefin with advanced environmental stress crack resistance

Publications (2)

Publication Number Publication Date
KR20200064562A KR20200064562A (en) 2020-06-08
KR102651363B1 true KR102651363B1 (en) 2024-03-26

Family

ID=71089627

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180150788A KR102651363B1 (en) 2018-11-29 2018-11-29 Method for preparing polyolefin with advanced environmental stress crack resistance

Country Status (1)

Country Link
KR (1) KR102651363B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102395347B1 (en) * 2020-10-20 2022-05-09 한화토탈에너지스 주식회사 Polyethylene resin composition and Method of producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205473B1 (en) 2008-09-18 2012-11-27 주식회사 엘지화학 Olefin polymer resin composition for pipe and pipe produced by thereof
KR101810740B1 (en) * 2015-09-25 2017-12-20 롯데케미칼 주식회사 Method for preparing polyolefin and polyolefin prepared therefrom
KR20170049272A (en) 2015-10-28 2017-05-10 대림산업 주식회사 Multimodal polyolefin resin and article prepared with the same

Also Published As

Publication number Publication date
KR20200064562A (en) 2020-06-08

Similar Documents

Publication Publication Date Title
US7678866B2 (en) Polyethylene composition and process for producing same
CN106661160B (en) Ethylene/α -olefin copolymer having excellent processability
KR100738851B1 (en) Process for producing olefin polymers
JP4245801B2 (en) Catalyst with ketimido ligand
US6486273B1 (en) Mixed phosphinimine catalyst
KR102260362B1 (en) Olefin copolymer
EP3031832A1 (en) Method for preparing polyolefin and polyolefin prepared thereby
KR101618460B1 (en) Supported catalyst for olefin polymerization and process for preparing polyolefin using the same
KR101773722B1 (en) High density ethylene polymer with excellent processability using supported hybrid metallocene catalyst and methods for producing the same
EP3372620A1 (en) Catalyst composition for synthesizing olefin copolymer, and method for preparing olefin copolymer
EP3078682B1 (en) Olefin-based polymer having excellent processability
KR20070072236A (en) Transition metal complexes, catalysts composition containing the same and olefin polymerization theirwith
KR20220086857A (en) Polyolefin and Process for Preparing the Same
KR20180067939A (en) Catalyst composition for preparing polyolefin having an excellent flexural modulus using the same
KR102375854B1 (en) Polypropylene and method for preparing the same
KR101206166B1 (en) Catalyst composition comprising metallocene catalyst
KR101213733B1 (en) New catalyst composition and a process of preparing for olefin polymer using the same
KR102651363B1 (en) Method for preparing polyolefin with advanced environmental stress crack resistance
EP3708596A1 (en) Novel metallocene catalyst compound for production of polyolefin resin or method of preparing same
KR20210045201A (en) Process for Preparing a Hybrid Catalyst for Polymerizing an Olefin, Hybrid Catalyst for Polymerizing an Olefin, and Polyolefin
KR100958676B1 (en) Synthesis, Characterization, and Polymerization of dinuclear CGC Complexes
EP3560965A1 (en) Olefin polymer, preparation method therefor and film using same
US20240084057A1 (en) Olefin polymer and preparation method therefor
KR20170075530A (en) Metallocene supported catalyst and method for preparing polyolefin using the same
KR102547238B1 (en) Processes for Preparing Mixed Catalytic Composition and Catalyst Comprising the Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant