KR102649360B1 - Wheelslip control method for electric vehicles - Google Patents

Wheelslip control method for electric vehicles Download PDF

Info

Publication number
KR102649360B1
KR102649360B1 KR1020220032640A KR20220032640A KR102649360B1 KR 102649360 B1 KR102649360 B1 KR 102649360B1 KR 1020220032640 A KR1020220032640 A KR 1020220032640A KR 20220032640 A KR20220032640 A KR 20220032640A KR 102649360 B1 KR102649360 B1 KR 102649360B1
Authority
KR
South Korea
Prior art keywords
vehicle
friction coefficient
wheel slip
road surface
slip control
Prior art date
Application number
KR1020220032640A
Other languages
Korean (ko)
Other versions
KR20230136767A (en
Inventor
이석
이순교
김영훈
Original Assignee
한국철도기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국철도기술연구원 filed Critical 한국철도기술연구원
Priority to KR1020220032640A priority Critical patent/KR102649360B1/en
Publication of KR20230136767A publication Critical patent/KR20230136767A/en
Application granted granted Critical
Publication of KR102649360B1 publication Critical patent/KR102649360B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/26Vehicle weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/647Surface situation of road, e.g. type of paving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/667Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1025Input torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/30Wheel torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles

Abstract

본 발명은 전기차용 휠슬립 제어방법에 관한 것으로, 보다 상세하게는 머신러닝 기법을 이용하여 노면의 마찰계수를 보다 정확히 추정하고, 이를 통해 모터 토크의 상한값을 연산하여 연산된 상한값에 따라 모터 드라이버를 제어함으로써 내연기관 차량에 비해 저마찰로에서 휠슬립(wheelslip)이 발생할 가능성이 높은 전기차의 휠슬립을 보다 정확히 제어할 수 있도록 하는 전기차용 휠슬립 제어방법에 관한 것이다.The present invention relates to a wheel slip control method for electric vehicles. More specifically, the friction coefficient of the road surface is more accurately estimated using machine learning techniques, the upper limit value of the motor torque is calculated through this, and the motor driver is operated according to the calculated upper limit value. This relates to a wheel slip control method for electric vehicles that allows more accurate control of wheel slip of electric vehicles, where wheelslip is more likely to occur on low-friction roads compared to internal combustion engine vehicles.

Description

전기차용 휠슬립 제어방법{Wheelslip control method for electric vehicles}{Wheelslip control method for electric vehicles}

본 발명은 전기차용 휠슬립 제어방법에 관한 것으로, 보다 상세하게는 머신러닝 기법을 이용하여 노면의 마찰계수를 보다 정확히 추정하고, 이를 통해 모터 토크의 상한값을 연산하여 연산된 상한값에 따라 모터 드라이버를 제어함으로써 내연기관 차량에 비해 저마찰로에서 휠슬립(wheelslip)이 발생할 가능성이 높은 전기차의 휠슬립을 보다 정확히 제어할 수 있도록 하는 전기차용 휠슬립 제어방법에 관한 것이다.The present invention relates to a wheel slip control method for electric vehicles. More specifically, the friction coefficient of the road surface is more accurately estimated using machine learning techniques, the upper limit value of the motor torque is calculated through this, and the motor driver is operated according to the calculated upper limit value. This relates to a wheel slip control method for electric vehicles that allows more accurate control of wheel slip of electric vehicles, where wheelslip is more likely to occur on low-friction roads compared to internal combustion engine vehicles.

일반적으로, 전기차는 전기의 힘, 즉 차량에 구비되는 배터리에 모여 있는 전기를 동력으로 하는 친환경적인 차량을 의미하는 것으로, 화석 연료를 사용하지 않기 때문에 소음과 배기가스 배출이 거의 없는 편이다.In general, an electric vehicle refers to an eco-friendly vehicle powered by electricity, that is, electricity collected in the battery provided in the vehicle. Since it does not use fossil fuels, it produces almost no noise and exhaust gas emissions.

1990년대부터 환경오염 문제와 화석 연료 자원의 부족 문제가 대두되면서 전 세계 자동차 업체들의 전기차 개발 경쟁이 치열하게 이루어지고 있다.Since the 1990s, as problems of environmental pollution and shortage of fossil fuel resources have emerged, competition among automobile companies around the world to develop electric vehicles has become fierce.

또한, 최근에는 정보통신기술과 자동차를 연결시켜 양방향 소통이 가능한 커넥티드 카(connected car)에 대한 개발이 활발히 이루어지고 있는데, 이러한 커넥티드 카는 폭설, 폭우 등 기상악화로 인해 발생하는 차량 문제를 해결하기 위한 목적으로 고안된 기술로, 자동차가 날씨 정보를 실시간으로 업데이트하여 소통하면서 사고 발생률을 낮추기 위해 사용되고 있다.In addition, recently, the development of connected cars that enable two-way communication by connecting information and communication technology with cars has been actively conducted. These connected cars are designed to solve vehicle problems caused by bad weather such as heavy snow or heavy rain. This technology was designed to solve this problem and is being used to reduce the incidence of accidents by allowing cars to update and communicate weather information in real time.

한편, 휠슬립(wheelslip)은 타이어와 노면 사이의 접착력 보다 구동력이 과대해 차륜이 헛도는 현상을 의미하는 것으로, 전기차는 내연기관 대비 큰 토크를 낼 수 있기 때문에 저마찰로에서 휠슬립이 일어날 가능성이 내연기관 차량에 비해 높다는 단점이 있다.Meanwhile, wheelslip refers to a phenomenon in which the wheel spins due to the driving force being excessive than the adhesion between the tire and the road surface. Since electric vehicles can produce greater torque than internal combustion engines, wheel slip is likely to occur on low-friction roads. The disadvantage is that the possibility is higher than that of internal combustion engine vehicles.

즉, 전기차는 기존 내연기관과는 달리 엔진 대신 모터를 사용하고, 연료 대신 배터리를 사용하므로, 모터를 제어하는 특성 상 내연기관 대비 초반 발진토크를 최대로 활용할 수 있는 장점이 있는데, 풀 악셀(Wide Open Throttle)로 발진 가속하는 경우 모터의 최대토크를 낼 수 있기 때문에 차량의 출발 또는 가속 시 내연기관 차량에 비해 휠슬립에 취약한 부분이 존재한다.In other words, unlike existing internal combustion engines, electric vehicles use a motor instead of an engine and a battery instead of fuel, so they have the advantage of being able to maximize the initial starting torque compared to an internal combustion engine due to the nature of controlling the motor. When starting and accelerating with Open Throttle (Open Throttle), the maximum torque of the motor can be produced, so there is a vulnerability to wheel slip when starting or accelerating the vehicle compared to an internal combustion engine vehicle.

이러한 문제점을 해결하고, 보다 안전한 전기차의 주행을 실현하기 위한 목적으로 최근 들어 차량의 주행 중 획득할 수 있는 정보들을 이용하여 노면상태 또는 노면의 마찰계수를 실시간으로 추정하고, 이를 통해 휠슬립을 제어할 수 있도록 하는 기술 또는 방법들이 개발되고 있다.In order to solve these problems and realize safer driving of electric vehicles, the road surface condition or friction coefficient is estimated in real time using information that can be obtained while driving the vehicle, and wheel slip is controlled through this. Technologies or methods that allow this to be done are being developed.

일례로, 대한민국 공개특허공보 제10-2022-0008952호에는 차량의 휠 슬립 저감 제어 방법이 개시되어 있는데, 그 주요 기술적 구성은 제어기가 차량에서 수집되는 차량 운전 정보로부터 저마찰 노면에서의 휠 슬립 발생 상태를 나타내는 정해진 조건을 만족하는지를 판단하고, 정해진 조건을 만족하는 것으로 판단한 경우, 제어기가 상기 정해진 조건을 만족하는 횟수인 저마찰 노면에서의 휠 슬립 발생 횟수를 누적하여 카운트하여, 카운트 된 저마찰 노면에서의 휠 슬립 발생 횟수가 정해진 설정횟수에 도달하면, 제어기가 차량의 발진 토크를 감소시키는 것에 기술적 특징이 있으나, 상기 종래기술을 포함한 종래의 휠슬립 제어방법들은 노면상태 또는 노면 마찰계수의 추정에 사용되는 정보들이 제한적이므로 정확성이 떨어지는 문제점이 있다.For example, Republic of Korea Patent Publication No. 10-2022-0008952 discloses a vehicle wheel slip reduction control method, the main technical configuration of which is that the controller generates wheel slip on low-friction road surfaces from vehicle driving information collected from the vehicle. It is determined whether the set conditions representing the state are satisfied, and when it is determined that the set conditions are satisfied, the controller accumulates and counts the number of wheel slip occurrences on the low-friction road surface, which is the number of times the set conditions are satisfied, and the counted low-friction road surface When the number of wheel slip occurrences reaches a set number of times, the controller reduces the starting torque of the vehicle. However, conventional wheel slip control methods, including the above-described prior art, are based on the estimation of road surface conditions or road surface friction coefficient. Since the information used is limited, there is a problem of low accuracy.

1. 대한민국 공개특허공보 제10-2022-0008952호(2022. 01. 24. 공개)1. Republic of Korea Patent Publication No. 10-2022-0008952 (published on January 24, 2022)

본 발명은 상기와 같은 종래기술의 문제점들을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 사전 학습한 딥러닝 모델을 이용하여 주행 중인 전기차의 마찰계수를 실시간으로 연산하고, 이를 이용하여 모터 토크 상한값을 연산함으로써 주행 중인 전기차의 휠슬립을 실시간으로 정확하게 제어할 수 있도록 하는 전기차용 휠슬립 제어방법을 제공함에 있다.The present invention was created to solve the problems of the prior art as described above. The purpose of the present invention is to calculate the friction coefficient of a running electric vehicle in real time using a pre-learned deep learning model, and use this to determine the upper limit of motor torque. The aim is to provide a wheel slip control method for electric vehicles that allows the wheel slip of a running electric vehicle to be accurately controlled in real time by calculating .

또한, 본 발명은 딥러닝 모델을 이용한 사전 학습에 날씨정보, 차량정보 및 차량중량을 포함하는 다양한 정보들을 사용하여 마찰계수를 추정할 수 있도록 함으로써 마찰계수 추정의 정확성을 향상시킬 수 있고, 그에 따라 휠슬립 제어의 정확성을 향상시킬 수 있도록 하는 전기차용 휠슬립 제어방법을 제공함에 다른 목적이 있다.In addition, the present invention can improve the accuracy of friction coefficient estimation by enabling the friction coefficient to be estimated using various information including weather information, vehicle information, and vehicle weight in dictionary learning using a deep learning model, thereby improving the accuracy of friction coefficient estimation. Another purpose is to provide a wheel slip control method for electric vehicles that can improve the accuracy of wheel slip control.

상기와 같은 목적들을 달성하기 위한 본 발명은,The present invention to achieve the above objectives,

노면의 마찰계수 추정에 사용될 정보들을 수집하는 데이터 수집단계와, 상기 데이터 수집단계에서 수집된 정보들을 입력으로 하고, 출력을 노면 마찰계수로 정의하는 시계열 정보를 처리할 수 있는 딥러닝 모델을 이용하여 반복학습을 수행하는 딥러닝 학습단계와, 상기 딥러닝 학습단계에서 학습된 모델 및 데이터 수집단계에서 실시간으로 수집되는 정보들을 이용하여 실시간 노면 마찰계수를 연산하는 마찰계수 추정단계와, 상기 마찰계수 추정단계에서 연산된 실시간 노면 마찰계수를 이용하여 차량의 휠슬립을 제어하는 휠슬립 제어단계를 포함할 수 있다.A data collection step that collects information to be used for estimating the friction coefficient of the road surface, and a deep learning model that can process time series information that uses the information collected in the data collection step as input and defines the output as the road surface friction coefficient. A deep learning learning step of performing repetitive learning, a friction coefficient estimation step of calculating a real-time road surface friction coefficient using the model learned in the deep learning step and information collected in real time in the data collection step, and estimating the friction coefficient It may include a wheel slip control step of controlling wheel slip of the vehicle using the real-time road surface friction coefficient calculated in the step.

이때, 상기 데이터 수집단계는, 커넥티드카 기술을 이용하여 외기온도, 습도, 강수량을 포함하는 실시간 날씨정보를 획득하는 날씨정보 획득단계와, 차량에 구비되는 센서들을 통해 측정되는 휠토크, 와이퍼 사용여부, 휠속도를 포함하는 주행 중인 차량정보를 획득하는 차량정보 획득단계 및 상기 차량정보 획득단계에서 획득된 차량정보와 차량의 제원을 이용하여 차량의 중량을 연산하는 차량중량 추정단계를 포함할 수 있다.At this time, the data collection step includes a weather information acquisition step of acquiring real-time weather information including outside temperature, humidity, and precipitation using connected car technology, and wheel torque and wiper use measured through sensors provided in the vehicle. It may include a vehicle information acquisition step of acquiring driving vehicle information including whether and wheel speed, and a vehicle weight estimation step of calculating the weight of the vehicle using the vehicle information and vehicle specifications obtained in the vehicle information acquisition step. there is.

여기서, 상기 차량중량 추정단계에서 차량의 중량 m은,Here, the weight m of the vehicle in the vehicle weight estimation step is,

에 의해 연산되는 것을 특징으로 한다.(여기서, , , , 이고, 은 트랜스미션으로 입력되는 토크로 EV모드인 경우 이고, Ntransmission과 Ndifferential은 각각 트랜스미션과 차동창치의 기어비, fefficiency는 전기차의 효율, rtire는 바퀴의 반경이다.) It is characterized by being calculated by (here, , , , ego, is the torque input to the transmission when in EV mode. , N transmission and N differential are the gear ratios of the transmission and differential, respectively, f efficiency is the efficiency of the electric vehicle, and r tire is the radius of the wheels.)

그리고, 상기 휠슬립 제어단계는, 상기 마찰계수 추정단계에서 연산된 노면 마찰계수와, 상기 차량중량 추정단계에서 연산된 차량 중량을 이용하여 모터 드라이버에 공급될 모터 토크의 상한값을 연산하는 모터토크 연산단계를 포함할 수 있다.In addition, the wheel slip control step is a motor torque calculation that calculates the upper limit of the motor torque to be supplied to the motor driver using the road surface friction coefficient calculated in the friction coefficient estimation step and the vehicle weight calculated in the vehicle weight estimation step. May include steps.

또한, 상기 휠슬립 제어단계에서는, 상기 모터 드라이버가 모터토크 연산단계에서 연산된 모터 토크의 상한값 이상으로 구동되지 않도록 제어하는 것을 특징으로 한다.Additionally, in the wheel slip control step, the motor driver is controlled not to drive beyond the upper limit value of the motor torque calculated in the motor torque calculation step.

본 발명에 따르면 사전 학습한 딥러닝 모델을 이용하여 주행 중인 전기차의 마찰계수를 실시간으로 연산하고, 이를 이용하여 모터 토크 상한값을 연산하며, 연산된 모터 토크 상한값을 모터 드라이버에 적용하여 전기차의 휠슬립을 정확하고 안정적으로 제어할 수 있는 뛰어난 효과를 갖는다.According to the present invention, the friction coefficient of a running electric vehicle is calculated in real time using a pre-trained deep learning model, the motor torque upper limit is calculated using this, and the calculated motor torque upper limit is applied to the motor driver to prevent wheel slip of the electric vehicle. It has an excellent effect of accurately and stably controlling.

또한, 본 발명에 따르면 딥러닝 모델을 이용한 사전 학습에 날씨정보, 차량정보 및 차량중량을 포함하는 다양한 정보들을 사용하여 마찰계수 추정의 정확성을 향상시킬 수 있고, 그에 따라 휠슬립 제어의 정확성을 향상시킬 수 있는 효과를 추가로 갖는다.In addition, according to the present invention, the accuracy of friction coefficient estimation can be improved by using various information including weather information, vehicle information, and vehicle weight in dictionary learning using a deep learning model, thereby improving the accuracy of wheel slip control. It has additional effects that can be used.

도 1은 본 발명에 따른 전기차용 휠슬립 제어방법을 순차적으로 나타낸 도면.
도 2는 본 발명에 따른 전기차용 휠슬립 제어방법을 개념적으로 나타낸 도면.
도 3은 도 2에 나타낸 본 발명 중 차량중량 추정단계에서 사용되는 전기차의 기하학적 관계를 개략적으로 나타낸 도면.
도 4의 (a),(b)는 도 2에 나타낸 본 발명 중 휠슬립 제어단계에서의 휠슬립 제어를 종래와 비교하여 나타낸 도면.
1 is a diagram sequentially showing a wheel slip control method for an electric vehicle according to the present invention.
Figure 2 is a diagram conceptually showing a wheel slip control method for an electric vehicle according to the present invention.
Figure 3 is a diagram schematically showing the geometric relationship of the electric vehicle used in the vehicle weight estimation step of the present invention shown in Figure 2.
Figures 4 (a) and (b) are diagrams showing wheel slip control in the wheel slip control stage of the present invention shown in Figure 2, compared with the prior art.

이하, 첨부된 도면들을 참고로 하여 본 발명에 따른 전기차용 휠슬립 제어방법의 바람직한 실시예들을 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the wheel slip control method for an electric vehicle according to the present invention will be described in detail with reference to the attached drawings.

도 1은 본 발명에 따른 전기차용 휠슬립 제어방법을 순차적으로 나타낸 도면이고, 도 2는 본 발명에 따른 전기차용 휠슬립 제어방법을 개념적으로 나타낸 도면이며, 도 3은 도 2에 나타낸 본 발명 중 차량중량 추정단계에서 사용되는 전기차의 기하학적 관계를 개략적으로 나타낸 도면이고, 도 4의 (a),(b)는 도 2에 나타낸 본 발명 중 휠슬립 제어단계에서의 휠슬립 제어를 종래와 비교하여 나타낸 도면이다.Figure 1 is a diagram sequentially showing a wheel slip control method for an electric vehicle according to the present invention, Figure 2 is a diagram conceptually showing a wheel slip control method for an electric vehicle according to the present invention, and Figure 3 is a diagram showing the wheel slip control method for an electric vehicle according to the present invention. It is a diagram schematically showing the geometric relationship of the electric vehicle used in the vehicle weight estimation step, and Figures 4 (a) and (b) show wheel slip control in the wheel slip control step of the present invention shown in Figure 2 compared to the prior art. This is the drawing shown.

본 발명은 머신러닝 기법을 이용하여 노면의 마찰계수를 보다 정확히 추정하고, 이를 통해 모터 토크의 상한값을 연산하여 연산된 상한값에 따라 모터 드라이버를 제어함으로써 내연기관 차량에 비해 저마찰로에서 휠슬립(wheelslip)이 발생할 가능성이 높은 전기차(10)의 휠슬립을 보다 정확히 제어할 수 있도록 하는 전기차용 휠슬립 제어방법에 관한 것으로, 그 구성은 도 1에 나타낸 바와 같이, 크게 데이터 수집단계(S10), 딥러닝 학습단계(S20), 마찰계수 추정단계(S30) 및 휠슬립 제어단계(S40)를 포함할 수 있다.The present invention uses machine learning techniques to more accurately estimate the friction coefficient of the road surface, calculates the upper limit value of the motor torque through this, and controls the motor driver according to the calculated upper limit value, thereby reducing wheel slip (wheel slip) on low friction roads compared to internal combustion engine vehicles. This relates to a wheel slip control method for electric vehicles that allows more accurate control of wheel slip of an electric vehicle (10), which is likely to cause wheel slip. As shown in Figure 1, the structure is largely comprised of a data collection step (S10), It may include a deep learning learning step (S20), a friction coefficient estimation step (S30), and a wheel slip control step (S40).

먼저 상기 데이터 수집단계(S10)는 휠슬립 제어에 활용될 정보들을 수집하기 위한 과정으로, 후술할 딥러닝 학습 및 학습된 모델을 이용한 노면 마찰계수 추정에 활용될 정보들을 수집할 수 있다. First, the data collection step (S10) is a process for collecting information to be used for wheel slip control, and can collect information to be used for deep learning learning, which will be described later, and for estimating the road surface friction coefficient using the learned model.

보다 상세히 설명하면, 상기 데이터 수집단계(S10)는 날씨정보 획득단계(S12), 차량정보 획득단계(S14) 및 차량중량 추정단계(S16)를 포함할 수 있는데, 상기 날씨정보 획득단계(S12)는 도 2에 나타낸 바와 같이, 전기차(10)에 구비되는 날씨정보 획득부(20)를 통해 차량이 주행하는 노면의 마찰계수와 연관성이 있는 외부 날씨정보를 획득하기 위한 과정으로, 상기 날씨정보에는 기온(외기 온도), 습도, 강수량 등이 포함될 수 있다.In more detail, the data collection step (S10) may include a weather information acquisition step (S12), a vehicle information acquisition step (S14), and a vehicle weight estimation step (S16), wherein the weather information acquisition step (S12) As shown in FIG. 2, is a process for acquiring external weather information related to the friction coefficient of the road surface on which the vehicle runs through the weather information acquisition unit 20 provided in the electric vehicle 10, and the weather information includes Temperature (outside temperature), humidity, precipitation, etc. may be included.

이때, 상기 날씨정보 획득부(20)로는 차량에 구비되는 외기온도센서, 습도센서 등이 활용될 수도 있으나, 커넥티드 카(Connnected car) 기술을 이용하여 차량이 주행하는 주변 지역의 날씨 정보를 실시간으로 획득할 수 있도록 하는 것이 바람직하다.At this time, the weather information acquisition unit 20 may use an external temperature sensor, a humidity sensor, etc. provided in the vehicle. However, by using connected car technology, weather information of the surrounding area where the vehicle is driving is collected in real time. It is desirable to make it possible to obtain it.

다음, 상기 차량정보 획득단계(S14)는 노면의 마찰계수와 연관성이 있는 휠토크, 와이퍼 사용여부 및 휠속도를 포함하는 주행 중인 차량의 정보들을 획득하기 위한 과정으로, 차량에 구비되는 센서들을 포함하는 차량정보 획득부(30)를 통해 획득할 수 있다.Next, the vehicle information acquisition step (S14) is a process for acquiring information about the running vehicle, including wheel torque, whether wipers are used, and wheel speed, which are related to the friction coefficient of the road surface, and includes sensors provided in the vehicle. It can be obtained through the vehicle information acquisition unit 30.

또한, 상기 차량정보 획득단계(S14)에서는 후술할 차량중량 추정단계(S16)에서의 차량중량 연산에 사용될 차량정보들, 즉 전기차(10)의 추진력(Fx), 공기 저항(Faero), 구름 저항(Frolling), 구배 저항(Fgrade)의 연산을 위해 필요한 차량정보들을 획득할 수 있다.In addition, in the vehicle information acquisition step (S14), vehicle information to be used for calculating the vehicle weight in the vehicle weight estimation step (S16) to be described later, that is, the propulsion force (F x ), air resistance (F aero ) of the electric vehicle 10, You can obtain vehicle information necessary for calculating rolling resistance (F rolling ) and grade resistance (F grade ).

다음, 상기 차량중량 추정단계(S16)는 차량정보 획득단계(S14)에서 획득된 차량정보들과 차량의 제원(specifications)을 이용하여 차량의 중량을 연산하는 과정으로, 연산된 차량의 중량은 후술할 노면 마찰계수 추정을 위한 딥러닝 학습 및 추정된 노면 마찰계수를 이용한 모터 토크의 상한값 연산에 활용될 수 있다.Next, the vehicle weight estimation step (S16) is a process of calculating the weight of the vehicle using the vehicle information and vehicle specifications obtained in the vehicle information acquisition step (S14). The calculated vehicle weight is described later. It can be used for deep learning learning to estimate the road surface friction coefficient and to calculate the upper limit of motor torque using the estimated road surface friction coefficient.

보다 상세히 설명하면, 상기 차량중량 추정단계(S16)에서는 도 3에 나타낸 차량의 기하학적 구조 및 차량에 작용하는 힘의 공식을 이용하여 아래의 (1)식에 의해 주행 중인 차량의 중량(m)을 연산할 수 있다.In more detail, in the vehicle weight estimation step (S16), the weight (m) of the running vehicle is calculated by equation (1) below using the geometric structure of the vehicle and the formula for the force acting on the vehicle shown in FIG. 3. It can be calculated.

... (1) ... (One)

여기서, Fx, Faero, Frolling 및 Fgrade은 각각 주행 중인 전기차(10)의 추진력, 즉 바퀴에 가해지는 힘과, 주행 중인 전기차(10)에 작용하는 공기저항, 구름저항 및 구배저항을 각각 나타내는 것으로, 아래의 (2) ~ (5)식에 의해 연산될 수 있다. Here , F Each is represented and can be calculated using equations (2) to (5) below.

... (2) ... (2)

... (3) ... (4) ... (3) ... (4)

... (5) ...(5)

이때, 상기 (2) ~ (5)식에서 사용되는 변수들은 모두 상기 차량정보 획득단계(S14)에서 획득되는 차량정보들과, 차량의 제원 및 도로의 경사면 각도(θ)를 포함하는 기하학적 관계로부터 획득될 수 있는 정보들이고, (3) ~ (5)식에 해당하는 차량에 작용하는 공기저항, 구름저항 및 구배저항은 이미 공지된 연산식에 해당하는 것이므로 상세한 설명은 생략하기로 한다.At this time, the variables used in equations (2) to (5) are all obtained from the vehicle information obtained in the vehicle information acquisition step (S14), vehicle specifications, and geometric relationships including the slope angle (θ) of the road. This is information that can be used, and the air resistance, rolling resistance, and gradient resistance acting on the vehicle corresponding to equations (3) to (5) correspond to already known calculation equations, so detailed explanations will be omitted.

또한, 상기 (2)식에서 사용되는 은 트랜스미션(TM)으로 입력되는 토크를 의미하는 것으로, 전기차(10)에 적용되는 EV모드인 경우 과 같이 나타낼 수 있다.Additionally, the one used in equation (2) above is refers to the torque input to the transmission (TM), in the case of EV mode applied to the electric vehicle (10) It can be expressed as follows.

그리고, Ntransmission과 Ndifferential은 각각 트랜스미션과 차동창치의 기어비를 의미하고, fefficiency는 전기차(10)의 효율을 의미하며, rtire는 바퀴의 반경이다.And, N transmission and N differential mean the gear ratio of the transmission and differential, respectively, f efficiency means the efficiency of the electric vehicle 10, and r tire is the radius of the wheel.

상기와 같은 차량 중량의 연산을 위해 상기 (1) ~ (5)식을 포함하는 연산식이 프로그래밍된 차량 중량 추정부(40)가 전기차(10)에 구비될 수 있다.To calculate the vehicle weight as described above, a vehicle weight estimation unit 40 programmed with calculation equations including equations (1) to (5) may be provided in the electric vehicle 10.

다음, 상기 딥러닝 학습단계(S20)는 데이터 수집단계(S10)에서 수집되는 정보들을 이용한 노면 마찰계수의 추정을 위한 선행학습을 수행하는 과정으로, 전기차(10)에 구비되는 딥러닝 학습부(50)에서 이루어질 수 있다.Next, the deep learning learning step (S20) is a process of performing prior learning to estimate the road surface friction coefficient using the information collected in the data collection step (S10). The deep learning learning unit ( 50).

상기와 같은 선행학습을 위한 딥러닝 학습부(50)로는 외기온도(기온), 습도, 강수량을 포함하는 날씨정보와, 휠토크, 와이퍼 사용여부, 휠속도를 포함하는 차량정보 및 차량 중량을 입력으로 하고, 출력을 노면 마찰계수로 정의하는 시계열 정보를 처리할 수 있는 딥러닝 모델이 사용될 수 있다.The deep learning learning unit 50 for prior learning as described above inputs weather information including outside temperature (air temperature), humidity, and precipitation, vehicle information including wheel torque, whether wipers are used, and wheel speed, and vehicle weight. A deep learning model that can process time series information whose output is defined as the road surface friction coefficient can be used.

즉, 상기 딥러닝 학습단계(S20)에서는 데이터 수집단계(S10)에서 수집되는 정보들을 이용하여 노면 마찰계수를 연산할 수 있도록 하는 딥러닝 모델의 반복학습을 통해, 주행 중인 차량으로부터 제공되는 실시간 정보에 의해 노면 마찰계수를 추정할 수 있도록 하는데, 딥러닝 모델에 입력되는 정보들을 다양화함으로써 노면 마찰계수 추정의 정확성을 향상시킬 수 있다.That is, in the deep learning learning step (S20), real-time information provided from a running vehicle through repeated learning of a deep learning model that allows calculating the road surface friction coefficient using the information collected in the data collection step (S10). It is possible to estimate the road surface friction coefficient, and by diversifying the information input to the deep learning model, the accuracy of road surface friction coefficient estimation can be improved.

다음, 상기 마찰계수 추정단계(S30)는 차량의 주행 중 실시간으로 수집되는 정보들, 즉 상기 데이터 수집단계(S10)에서 수집되는 정보들을 이용하여 차량이 주행하는 노면의 마찰계수를 실시간으로 연산하는 과정으로, 딥러닝 학습단계(S20)를 통해 사전학습된 딥러닝 모델을 통해 노면 마찰계수를 실시간으로 연산할 수 있다.Next, the friction coefficient estimation step (S30) calculates the friction coefficient of the road surface on which the vehicle runs in real time using the information collected in real time while the vehicle is driving, that is, the information collected in the data collection step (S10). As a process, the road surface friction coefficient can be calculated in real time through a deep learning model pre-trained through the deep learning learning step (S20).

이때, 상기 전기차(10)에는 차량의 주행 중 실시간으로 수집되는 정보들은 저장하는 데이터베이스(미도시)가 구비될 수 있고, 상기 데이터베이스에 저장되는 정보들을 이용하여 딥러닝 모델을 업데이트함으로써 노면 마찰계수 연산의 정확성을 지속적으로 향상시킬 수 있다.At this time, the electric vehicle 10 may be equipped with a database (not shown) that stores information collected in real time while the vehicle is driving, and calculates the road surface friction coefficient by updating the deep learning model using the information stored in the database. accuracy can be continuously improved.

다음, 상기 휠습립 제어단계(S40)는 마찰계수 추정단계(S30)에서 연산된 실시간 노면 마찰계수를 이용하여 주행 중인 차량의 휠습립을 제어하기 위한 과정으로, 차량의 모터(16)를 구동시키기 위한 모터 드라이버(14)로 공급되는 모터 토크를 제어하는 방식에 의해 휠슬립을 제어할 수 있다.Next, the wheel folding control step (S40) is a process for controlling the wheel folding of a running vehicle using the real-time road surface friction coefficient calculated in the friction coefficient estimation step (S30), which involves driving the motor 16 of the vehicle. Wheel slip can be controlled by controlling the motor torque supplied to the motor driver 14.

즉, 상기 휠슬립 제어단계(S40)는 모터토크 연산단계(S42)와 모터토크 제어단계(S44)를 포함할 수 있는데, 먼저 상기 모터토크 연산단계(S42)는 마찰계수 추정단계(S30)에서 연산된 실시간 노면 마찰계수와 차량중량 추정단계(S16)에서 연산되는 차량의 중량을 이용하여 모터 드라이버(14)로 공급될 모터 토크의 상한값을 연산하기 위한 과정으로, 상기 전기차(10)에는 모터 토크의 상한값 연산을 위한 연산부(60)가 구비될 수 있다.That is, the wheel slip control step (S40) may include a motor torque calculation step (S42) and a motor torque control step (S44). First, the motor torque calculation step (S42) is performed in the friction coefficient estimation step (S30). This is a process for calculating the upper limit value of the motor torque to be supplied to the motor driver 14 using the calculated real-time road surface friction coefficient and the weight of the vehicle calculated in the vehicle weight estimation step (S16), and the motor torque to be supplied to the electric vehicle 10 A calculation unit 60 may be provided to calculate the upper limit value of .

이때, 상기 연산부(60)에서 이루어지는 노면 마찰계수와 차량 중량을 이용한 모터 토크의 상한값 연산하는 방법은 이미 공지된 것이므로 이에 대한 상세한 설명은 생략하기로 한다.At this time, since the method of calculating the upper limit value of the motor torque using the road surface friction coefficient and vehicle weight performed in the calculation unit 60 is already known, detailed description thereof will be omitted.

다음, 상기 모터토크 제어단계(S44)는 모터토크 연산단계(S42)에서 연산된 모터 토크의 상한값을 넘지 않도록 모터 드라이버(14)로 공급되는 모터 토크를 제어하는 과정으로, 이를 통해 모터 드라이버(14)가 연산된 모터 토크의 상한값 이상으로 구동되지 않도록 제어할 수 있다.Next, the motor torque control step (S44) is a process of controlling the motor torque supplied to the motor driver 14 so as not to exceed the upper limit of the motor torque calculated in the motor torque calculation step (S42), through which the motor driver 14 ) can be controlled so that it is not driven beyond the upper limit of the calculated motor torque.

보다 상세히 설명하면, 도 4의 (a)에 나타낸 바와 같이, 종래에는 모터 드라이버(14)에서 요구되는 모터 토크의 양을 타겟 토크 생성기(12)를 통해 생성하여 모터 드라이버(14)로 공급하고, 상기 모터 드라이버(14)는 공급된 토크에 해당하는 만큼의 전류를 차량을 구동시키기 모터(16)로 공급하는 방식에 의해 전기차(10)의 구동을 제어하는 방식을 사용한다.In more detail, as shown in (a) of FIG. 4, conventionally, the amount of motor torque required by the motor driver 14 is generated through the target torque generator 12 and supplied to the motor driver 14, The motor driver 14 controls the driving of the electric vehicle 10 by supplying an amount of current corresponding to the supplied torque to the motor 16 to drive the vehicle.

이에 비해, 본 발명에서는 도 4의 (b)에 나타낸 바와 같이, 타겟 토크 생성기(12)와 모터 드라이버(14)의 사이에 모터 토크 제한기(70)를 구비할 수 있는데, 상기 모터 토크 제한기(70)는 모터 드라이버(14)로 공급되는 모터 토크가 모터토크 연산단계(S42)에서 연산된 모터 토크의 상한값을 넘지 않도록 제어하는 역할을 할 수 있다.In contrast, in the present invention, as shown in (b) of FIG. 4, a motor torque limiter 70 may be provided between the target torque generator 12 and the motor driver 14, and the motor torque limiter (70) may serve to control the motor torque supplied to the motor driver 14 so that it does not exceed the upper limit value of the motor torque calculated in the motor torque calculation step (S42).

즉, 차량의 구동 중 휠슬립의 발생 여부는 주행하는 노면의 마찰계수에 따라 달라지므로, 차량의 주행 중 획득된 정보들을 이용하여 선행학습된 딥러닝 모델을 통해 실시간으로 노면 마찰계수를 추정하고, 추정된 노면 마찰계수에 따른 모터 드라이버(14)로 공급될 수 있는 모터 토크의 상한값을 연산한 후, 모터 드라이버(14)로 공급되는 모터 토크가 연산된 상한값을 넘지 않도록 제어함으로써 차량의 주행 도중 휠슬립이 발생되지 않도록 정확하게 제어할 수 있다.In other words, the occurrence of wheel slip while driving the vehicle depends on the friction coefficient of the road surface on which the vehicle is driven, so the road surface friction coefficient is estimated in real time through a deep learning model previously learned using information acquired while the vehicle is driving. After calculating the upper limit value of the motor torque that can be supplied to the motor driver 14 according to the estimated road surface friction coefficient, the motor torque supplied to the motor driver 14 is controlled so as not to exceed the calculated upper limit value, thereby It can be accurately controlled to prevent slip.

따라서, 전술한 바와 같은 본 발명에 따른 전기차용 휠슬립 제어방법에 의하면, 사전 학습한 딥러닝 모델을 이용하여 주행 중인 전기차(10)의 마찰계수를 실시간으로 연산하고, 이를 이용하여 모터 토크 상한값을 연산하며, 연산된 모터 토크 상한값을 모터 드라이버(14)에 적용하여 전기차(10)의 휠슬립을 정확하고 안정적으로 제어할 수 있을 뿐만 아니라, 딥러닝 모델을 이용한 사전 학습에 날씨정보, 차량정보 및 차량중량을 포함하는 다양한 정보들을 사용하여 마찰계수 추정의 정확성을 향상시킬 수 있고, 그에 따라 휠슬립 제어의 정확성을 향상시킬 수 있는 등의 다양한 장점을 갖는 것이다.Therefore, according to the wheel slip control method for an electric vehicle according to the present invention as described above, the friction coefficient of the running electric vehicle 10 is calculated in real time using a pre-learned deep learning model, and the upper limit value of the motor torque is determined using this. Not only can the wheel slip of the electric vehicle (10) be accurately and stably controlled by applying the calculated motor torque upper limit to the motor driver (14), but also weather information, vehicle information, and It has various advantages, such as being able to improve the accuracy of friction coefficient estimation by using various information including the vehicle weight, and thus improving the accuracy of wheel slip control.

전술한 실시예들은 본 발명의 가장 바람직한 예에 대하여 설명한 것이지만, 상기 실시예에만 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변형이 가능하다는 것은 당업자에게 있어서 명백한 것이다.Although the above-described embodiments describe the most preferred examples of the present invention, it is not limited to the above embodiments, and it is clear to those skilled in the art that various modifications are possible without departing from the technical spirit of the present invention.

본 발명은 전기차용 휠슬립 제어방법에 관한 것으로, 보다 상세하게는 머신러닝 기법을 이용하여 노면의 마찰계수를 보다 정확히 추정하고, 이를 통해 모터 토크의 상한값을 연산하여 연산된 상한값에 따라 모터 드라이버를 제어함으로써 내연기관 차량에 비해 저마찰로에서 휠슬립(wheelslip)이 발생할 가능성이 높은 전기차의 휠슬립을 보다 정확히 제어할 수 있도록 하는 전기차용 휠슬립 제어방법에 관한 것이다.The present invention relates to a wheel slip control method for electric vehicles. More specifically, the friction coefficient of the road surface is more accurately estimated using machine learning techniques, the upper limit value of the motor torque is calculated through this, and the motor driver is operated according to the calculated upper limit value. This relates to a wheel slip control method for electric vehicles that allows more accurate control of wheel slip of electric vehicles, where wheelslip is more likely to occur on low-friction roads compared to internal combustion engine vehicles.

10 : 전기차 12 : 토크 생성기
14 : 모터 드라이버 16 : 모터
20 : 날씨정보 획득부 30 : 차량정보 획득부
40 : 차량중량 추정부 50 : 딥러닝 학습부
60 : 연산부 70 : 모터 토크 제한기
S10 : 데이터 수집단계 S12 : 날씨정보 획득단계
S14 : 차량정보 획득단계 S16 : 차량중량 추정단계
S20 : 딥러닝 학습단계 S30 : 마찰계수 추정단계
S40 : 휠슬립 제어단계 S42 : 모터토크 연산단계
S44 : 모터토크 제어단계
10: Electric vehicle 12: Torque generator
14: motor driver 16: motor
20: Weather information acquisition unit 30: Vehicle information acquisition unit
40: Vehicle weight estimation unit 50: Deep learning learning unit
60: calculation unit 70: motor torque limiter
S10: Data collection step S12: Weather information acquisition step
S14: Vehicle information acquisition step S16: Vehicle weight estimation step
S20: Deep learning learning step S30: Friction coefficient estimation step
S40: Wheel slip control step S42: Motor torque calculation step
S44: Motor torque control stage

Claims (5)

노면의 마찰계수 추정에 사용될 정보들을 수집하는 데이터 수집단계와,
상기 데이터 수집단계에서 수집된 정보들을 입력으로 하고, 출력을 노면 마찰계수로 정의하는 시계열 정보를 처리할 수 있는 딥러닝 모델을 이용하여 반복학습을 수행하는 딥러닝 학습단계와,
상기 딥러닝 학습단계에서 학습된 모델 및 데이터 수집단계에서 실시간으로 수집되는 정보들을 이용하여 실시간 노면 마찰계수를 연산하는 마찰계수 추정단계와,
상기 마찰계수 추정단계에서 연산된 실시간 노면 마찰계수를 이용하여 차량의 휠슬립을 제어하는 휠슬립 제어단계를 포함하되,
상기 데이터 수집단계는,
커넥티드카 기술을 이용하여 외기온도, 습도, 강수량을 포함하는 실시간 날씨정보를 획득하는 날씨정보 획득단계와,
차량에 구비되는 센서들을 통해 측정되는 휠토크, 와이퍼 사용여부, 휠속도를 포함하는 주행 중인 차량정보를 획득하는 차량정보 획득단계 및
상기 차량정보 획득단계에서 획득된 차량정보와 차량의 제원을 이용하여 차량의 중량을 연산하는 차량중량 추정단계를 포함하고,
상기 휠슬립 제어단계는,
상기 마찰계수 추정단계에서 연산된 노면 마찰계수와, 상기 차량중량 추정단계에서 연산된 차량 중량을 이용하여 모터 드라이버에 공급될 모터 토크의 상한값을 연산하는 모터토크 연산단계를 포함하는 전기차용 휠슬립 제어방법.
A data collection step of collecting information to be used to estimate the friction coefficient of the road surface,
A deep learning learning step that uses the information collected in the data collection step as input and performs iterative learning using a deep learning model capable of processing time series information defined as the road surface friction coefficient as the output;
A friction coefficient estimation step of calculating a real-time road surface friction coefficient using the model learned in the deep learning learning step and the information collected in real time in the data collection step;
A wheel slip control step of controlling the wheel slip of the vehicle using the real-time road surface friction coefficient calculated in the friction coefficient estimation step,
The data collection step is,
A weather information acquisition step of acquiring real-time weather information including outdoor temperature, humidity, and precipitation using connected car technology;
A vehicle information acquisition step of acquiring driving vehicle information including wheel torque, wiper use, and wheel speed measured through sensors installed in the vehicle, and
A vehicle weight estimation step of calculating the weight of the vehicle using the vehicle information and vehicle specifications obtained in the vehicle information acquisition step,
The wheel slip control step is,
Wheel slip control for an electric vehicle including a motor torque calculation step of calculating an upper limit value of the motor torque to be supplied to the motor driver using the road surface friction coefficient calculated in the friction coefficient estimation step and the vehicle weight calculated in the vehicle weight estimation step. method.
삭제delete 제 1항에 있어서,
상기 차량중량 추정단계에서 차량의 중량 m은,
에 의해 연산되는 것을 특징으로 하는 전기차용 휠슬립 제어방법.
(여기서, , , , 이고, 은 트랜스미션으로 입력되는 토크로 EV모드인 경우 이고, Ntransmission과 Ndifferential은 각각 트랜스미션과 차동창치의 기어비, fefficiency는 전기차의 효율, rtire는 바퀴의 반경이다.)
According to clause 1,
In the vehicle weight estimation step, the weight m of the vehicle is,
A wheel slip control method for an electric vehicle, characterized in that it is calculated by.
(here, , , , ego, is the torque input to the transmission when in EV mode. , N transmission and N differential are the gear ratios of the transmission and differential, respectively, f efficiency is the efficiency of the electric vehicle, and r tire is the radius of the wheels.)
삭제delete 제 1항에 있어서,
상기 휠슬립 제어단계에서는,
상기 모터 드라이버가 모터토크 연산단계에서 연산된 모터 토크의 상한값 이상으로 구동되지 않도록 제어하는 것을 특징으로 하는 전기차용 휠슬립 제어방법.
According to clause 1,
In the wheel slip control step,
A wheel slip control method for an electric vehicle, characterized in that the motor driver is controlled not to drive beyond the upper limit of the motor torque calculated in the motor torque calculation step.
KR1020220032640A 2022-03-16 2022-03-16 Wheelslip control method for electric vehicles KR102649360B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220032640A KR102649360B1 (en) 2022-03-16 2022-03-16 Wheelslip control method for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220032640A KR102649360B1 (en) 2022-03-16 2022-03-16 Wheelslip control method for electric vehicles

Publications (2)

Publication Number Publication Date
KR20230136767A KR20230136767A (en) 2023-09-27
KR102649360B1 true KR102649360B1 (en) 2024-03-22

Family

ID=88189102

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220032640A KR102649360B1 (en) 2022-03-16 2022-03-16 Wheelslip control method for electric vehicles

Country Status (1)

Country Link
KR (1) KR102649360B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866018B1 (en) * 2016-04-19 2018-06-08 현대자동차주식회사 Method and apparatus for motor torque variable control of electric vehicle
KR101897628B1 (en) * 2017-02-06 2018-10-04 서울대학교산학협력단 Method and apparatus for estimating friction coefficient of tire surface in high-speed normal driving situation
KR102616240B1 (en) * 2019-02-26 2023-12-21 에이치엘만도 주식회사 Device and method for improving the starting and accelerating performance of a vehicle based on temperature
KR20210098027A (en) * 2020-01-31 2021-08-10 현대모비스 주식회사 Method and Apparatus for Reading Road Friction Coefficient
KR20220008952A (en) 2020-07-14 2022-01-24 현대자동차주식회사 Control method for wheel sleep reduction of vehicle
KR20220022514A (en) * 2020-08-18 2022-02-28 현대자동차주식회사 Apparatus and method for estimating the friction coefficient of road surface

Also Published As

Publication number Publication date
KR20230136767A (en) 2023-09-27

Similar Documents

Publication Publication Date Title
CN110991757B (en) Comprehensive prediction energy management method for hybrid electric vehicle
CN101734253B (en) Drive energy learning device, method, and program
CN111753377B (en) Pure electric vehicle energy consumption optimal path planning method based on road information
Mensing et al. Vehicle trajectory optimization for application in ECO-driving
CN110985651B (en) Automatic transmission multi-parameter fusion gear shifting strategy based on prediction
CN108638915B (en) Torque control method for manual oiling before electric automobile runs to creep speed
CN107161154B (en) Consider the economic pace acquisition methods of gear
CN111923897B (en) Intelligent energy management method for plug-in hybrid electric vehicle
CN112286212B (en) Vehicle network cooperative energy-saving control method
CN104976337A (en) Vehicle starting process optimal control method based on estimation of clutch transmission torque
Chindamo et al. Simulation tool for optimization and performance prediction of a generic hybrid electric series powertrain
CN105329191A (en) Efficient energy-saving electrical vehicle endurance control system
CN110667564B (en) Intelligent management method for autonomous queue running energy of parallel hybrid electric vehicle
CN110287526B (en) Hybrid electric vehicle model construction method
Stroe et al. A two-layer predictive control for hybrid electric vehicles energy management
KR102649360B1 (en) Wheelslip control method for electric vehicles
CN110546054B (en) Method for calculating a control setpoint for a hybrid drive train of a motor vehicle
Obereigner et al. A two-layer approach for ecodriving under traffic
Yiangkamolsing et al. A development of electric Tuk Tuk conversion in Thailand
Marignetti et al. Design and experiments of a test equipment for hybrid and electric vehicle drivetrains
CN105128698A (en) Electric vehicle endurance control system
Chaim et al. A Model of Vehicle Fuel Consumption at conditions of the EUDC
Srinivasan Performance fuel economy and CO 2 prediction of a vehicle using AVL Cruise simulation techniques
CN114564791B (en) Bus total weight measurement method based on vehicle operation data
US20240132047A1 (en) Energy efficient predictive power split for hybrid powertrains

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right