KR102648969B1 - Heating carbon cement composite composition for floor heating and manufacturing method thereof - Google Patents

Heating carbon cement composite composition for floor heating and manufacturing method thereof Download PDF

Info

Publication number
KR102648969B1
KR102648969B1 KR1020230114167A KR20230114167A KR102648969B1 KR 102648969 B1 KR102648969 B1 KR 102648969B1 KR 1020230114167 A KR1020230114167 A KR 1020230114167A KR 20230114167 A KR20230114167 A KR 20230114167A KR 102648969 B1 KR102648969 B1 KR 102648969B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
carbon nanotubes
liquid waste
waste
carbon
Prior art date
Application number
KR1020230114167A
Other languages
Korean (ko)
Inventor
구현철
김인숙
구경민
Original Assignee
주식회사 하이퍼콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이퍼콘 filed Critical 주식회사 하이퍼콘
Priority to KR1020230114167A priority Critical patent/KR102648969B1/en
Application granted granted Critical
Publication of KR102648969B1 publication Critical patent/KR102648969B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/026Carbon of particular shape, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0481Other specific industrial waste materials not provided for elsewhere in C04B18/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00439Physico-chemical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00465Heat conducting materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

본 발명은 시멘트; 폐음극재, 액상 폐탄소나노튜브(CNT)를 포함하는 고상캡슐; 및 탄소섬유;를 포함하되, 상기 탄소섬유는, 탄소섬유를 탄화시켜 활성화된 개질 활성탄소섬유이고, 개질 활성탄소섬유를 액상 폐탄소나노튜브에 침지 시킨 후 건조하여 개질 활성탄소섬유의 표면 공극에 액상 폐탄소나노튜브가 흡착되며, 열적안정성 향상을 위한 메틸메타크릴레이트크로스폴리머;를 더 포함하여 주기적 고온 노출에 의한 열화를 제어하는 것을 특징으로 하는 바닥난방을 위한 발열 탄소시멘트 복합체 조성물에 관한 것이다.
The present invention relates to cement; Waste cathode material, solid capsule containing liquid waste carbon nanotubes (CNT); and carbon fiber; wherein the carbon fiber is a modified activated carbon fiber activated by carbonizing the carbon fiber, and the modified activated carbon fiber is immersed in liquid waste carbon nanotubes and then dried to form a surface pore of the modified activated carbon fiber. The present invention relates to a heat-generating carbon cement composite composition for floor heating, wherein liquid waste carbon nanotubes are adsorbed and further comprising methyl methacrylate crosspolymer to improve thermal stability to control deterioration due to periodic exposure to high temperatures. .

Description

바닥난방을 위한 발열 탄소시멘트 복합체 조성물 및 이의 제조방법{Heating carbon cement composite composition for floor heating and manufacturing method thereof}Heating carbon cement composite composition for floor heating and manufacturing method thereof}

본 발명은 바닥난방을 위해 폐음극재 및 액상 폐탄소나노튜브(CNT)를 포함하도록 성형되는 고상캡슐이 첨가되도록 하여 발열효율을 향상시킨 발열 탄소시멘트 복합체 조성물 및 이의 제조방법에 관한 것이다.The present invention relates to a heat-generating carbon cement composite composition with improved heat generation efficiency by adding a waste cathode material and a solid capsule molded to contain liquid waste carbon nanotubes (CNTs) for floor heating, and a method for manufacturing the same.

일반적으로 콘크리트는 주택, 도로, 다리, 초고층빌딩, 댐 등 도처에서 다양한 구조물의 시공에 필요한 것으로, 현대사회에서는 이러한 콘크리트의 영향에서 벗어나기 힘들 정도로 그 활용도가 상당한 실정이다.In general, concrete is needed for the construction of various structures such as houses, roads, bridges, high-rise buildings, and dams, and its utilization is so significant that it is difficult to escape the influence of concrete in modern society.

이러한 콘크리트 중 발열콘크리트는 전기전도성의 향상으로 콘크리트로 주거 또는 생산시설의 바닥 및 벽체, 폭설이나 결빙시 눈이나 얼음을 제거하는데 필요한 노동력을 절감할 수 있도록 하는 공항의 활주로, 도로의 결빙지역, 교량, 철도의 분기 시설지, 온실, 농산물의 건조시설 등 난방용 건설 및 건축설비물 등 다양한 온도영역에서 사용되고 있다.Among these concretes, heating concrete has improved electrical conductivity and is used for floors and walls of residential or production facilities, airport runways, icy areas on roads, and bridges to reduce the labor required to remove snow or ice during heavy snowfall or freezing. It is used in various temperature ranges such as heating construction and building facilities, such as railroad branch facilities, greenhouses, and agricultural product drying facilities.

종래기술의 일 예로 대한민국 특허등록 제10-1654478호에서는 콘크리트 제조방법에 있어서, 콘크리트 전체 100중량%에 대하여 마사토 골재 30~40중량%를 준비하는 마사토 골재 준비단계(S100); 콘크리트 전체 100중량%에 대하여 황토 3~7중량%와, 석회석 미분말 3~6중량%와, 시멘트 10~20중량%와, 슬래그미분말 5~7중량%와, 물 20~40중량%로 된 부재료를 준비하는 부재료 준비단계(S200); 콘크리트 전체 100중량%에 대하여 그래핀용액 0.1~6중량%를 준비하는 그래핀용액 준비단계(S300); 콘크리트 전체 100중량%에 대하여 광물접합물질 3~7 중량%를 준비하는 광물접합물질 준비단계(S400); 및 마사토 골재와, 황토와, 석회석 미분말과, 시멘트와, 슬래그 미분말과, 물과, 그래핀용액과, 광물접합물질을 혼합하는 혼합단계(S500)를 포함하되, 상기 그래핀용액 준비단계(S300)에서, 그래핀용액은, 황산(H2SO4) 50ml를 90℃까지 열중탕기를 이용하여 가열하고, 과황화칼륨(K2S2O8) 10g과 오산화인 10g을 넣어준 후, 다 녹을 때까지 교반하고, 교반된 혼합액을 80℃가 되도록 냉각시킨 후, 흑연(Graphite) 12g을 넣고 4~5시간동안 반응시킨 후, 가열을 멈추고 2L의 증류수로 12시간 동안 교반하면서 희석시키며, 희석된 용액을 0.2㎛의 나일론 필터를 이용하여 흑연을 걸러내어 용액만 추출하며, 추출된 용액을 0℃의 항온조에 2L비커를 넣어 준비하고 460mL의 황산을 비커에 넣고 전처리를 거친 그래핀을 비커에 넣고 교반하고, 혼합물을 비커에 과망간산칼륨(KMnO4) 60g을 넣고 완전히 녹을 때까지 교반한 후, 비커를 꺼내어 35℃의 항온조에 넣고 2시간동안 교반하며, 혼합물을 다시 0℃의 항온조에서 40~50℃의 온도를 유지하면서 증류수 920mL를 20~30mL로 나누어 넣어주면서 2시간 동안 교반 후, 2.8L의 물을 넣어 3시간동안 교반 희석하며, 희석물 100중량%에 대하여 과산화수소(H2O2)를 20~30중량%를 넣어준 후, 염화수소(HCl)와 증류수가 부피비로 1 : 2의 비율로 혼합된 물을 첨가하여 얻어진 PH 5~7에 해당하는 그래핀용액인 것을 특징으로 하는 그래핀을 함유한 전도성 발열콘크리트 제조방법을 제시하고 있다.As an example of the prior art, in Korean Patent Registration No. 10-1654478, in the concrete manufacturing method, the Masato aggregate preparation step (S100) of preparing 30 to 40% by weight of Masato aggregate based on 100% by weight of the total concrete; Auxiliary materials consisting of 3 to 7% by weight of red clay, 3 to 6% by weight of fine limestone powder, 10 to 20% by weight of cement, 5 to 7% by weight of fine slag powder, and 20 to 40% by weight of water, based on the total 100% by weight of concrete. Preparation of auxiliary materials (S200); Graphene solution preparation step (S300) of preparing 0.1 to 6% by weight of graphene solution based on 100% by weight of total concrete; A mineral bonding material preparation step (S400) of preparing 3 to 7% by weight of a mineral bonding material based on 100 weight% of the total concrete; And a mixing step (S500) of mixing the mass soil aggregate, red clay, limestone fine powder, cement, slag fine powder, water, graphene solution, and mineral bonding material, including the graphene solution preparation step (S300) ), the graphene solution was prepared by heating 50 ml of sulfuric acid (H2SO4) to 90°C using a hot water boiler, adding 10 g of potassium persulfide (K2S2O8) and 10 g of phosphorus pentoxide, stirring until all dissolved, and stirring until dissolved. After cooling the mixed solution to 80℃, add 12g of graphite and react for 4~5 hours, then stop heating and dilute with 2L of distilled water while stirring for 12 hours. Pass the diluted solution through a 0.2㎛ nylon filter. Filter out the graphite using a , extract only the solution, prepare the extracted solution by placing a 2L beaker in a constant temperature bath at 0℃, add 460mL of sulfuric acid to the beaker, add the pretreated graphene to the beaker, stir, and pour the mixture into the beaker. Add 60g of potassium permanganate (KMnO4) and stir until completely dissolved. Then, take out the beaker and place it in a thermostat at 35℃ and stir for 2 hours. The mixture is then placed in a thermostat at 0℃ while maintaining the temperature at 40~50℃ with 920mL of distilled water. Divide into 20-30mL portions and stir for 2 hours, then add 2.8L of water and stir and dilute for 3 hours. Add 20-30% by weight of hydrogen peroxide (H2O2) based on 100% by weight of the diluted product, then add hydrogen chloride. A method for producing conductive heating concrete containing graphene is proposed, which is characterized in that the graphene solution has a pH of 5 to 7 obtained by adding water mixed with (HCl) and distilled water in a volume ratio of 1:2. .

그러나 상기 기술의 경우 그래핀을 이용하여 전도성을 부여하고자 한 것이나 이러한 그래핀의 경우 분산이 용이하지 않아 페이스트에 전도성 단절구간을 형성하기 쉬워서 적은 에너지로 우수한 발열효율을 기대하기 어려운 문제가 있다.However, in the case of the above technology, it is attempted to provide conductivity using graphene, but in the case of such graphene, it is not easy to disperse, so it is easy to form conductive disconnected sections in the paste, so it is difficult to expect excellent heat generation efficiency with low energy.

대한민국 특허등록 제10-1654478호Republic of Korea Patent Registration No. 10-1654478

따라서 본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 폐탄소나노튜브 및 폐음극재를 첨가하여 발열 기능이 발현되도록 하되, 전기전도성 등을 향상시켜 적은 에너지로도 충분한 발열효율을 기대할 수 있도록 함으로써 바닥난방에 적합한 탄소시멘트 복합체 조성물 및 이의 제조방법을 제공함에 목적이 있다.Therefore, the present invention was developed to solve the above-mentioned problems. By adding waste carbon nanotubes and waste cathode materials, the heat generation function is achieved, but by improving electrical conductivity, etc., sufficient heat generation efficiency can be expected even with a small amount of energy. The purpose is to provide a carbon cement composite composition suitable for floor heating and a method for manufacturing the same.

상술한 문제점을 해결하기 위한 수단으로서 본 발명의 바닥난방을 위한 발열 탄소시멘트 복합체 조성물(이하, "본 발명의 조성물"이라 함)은, 시멘트; 폐음극재, 액상 폐탄소나노튜브(CNT)를 포함하는 고상캡슐; 및 탄소섬유;를 포함하되, 상기 탄소섬유는, 탄소섬유를 탄화시켜 활성화된 개질 활성탄소섬유이고, 개질 활성탄소섬유를 액상 폐탄소나노튜브에 침지 시킨 후 건조하여 개질 활성탄소섬유의 표면 공극에 액상 폐탄소나노튜브가 흡착되며, 열적안정성 향상을 위한 메틸메타크릴레이트크로스폴리머;를 더 포함하여 주기적 고온 노출에 의한 열화를 제어하는 것을 특징으로 한다.As a means to solve the above-mentioned problems, the exothermic carbon cement composite composition for floor heating of the present invention (hereinafter referred to as “the composition of the present invention”) includes cement; Waste cathode material, solid capsule containing liquid waste carbon nanotubes (CNT); and carbon fiber; wherein the carbon fiber is a modified activated carbon fiber activated by carbonizing the carbon fiber, and the modified activated carbon fiber is immersed in liquid waste carbon nanotubes and then dried to form a surface pore of the modified activated carbon fiber. Liquid waste carbon nanotubes are adsorbed, and methyl methacrylate crosspolymer is added to improve thermal stability to control deterioration due to periodic exposure to high temperatures.

삭제delete

삭제delete

삭제delete

하나의 예로 상기 액상 폐탄소나노튜브에는 에폭시화아민이 포함되는 것을 특징으로 한다. As an example, the liquid waste carbon nanotubes include epoxidized amine.

한편 본 발명의 바닥난방을 위한 발열 탄소시멘트 복합체의 제조방법(이하, "본 발명의 제조방법"이라 함)은, 폐음극재 및 액상 폐탄소나노튜브를 포함하는 고상캡슐을 제조하는 단계(S10); 탄소섬유를 탄화시켜 활성화된 활성탄소섬유를 액상 폐탄소나노튜브에 침지 시킨 후 건조하여 활성탄소섬유의 표면 공극에 액상 폐탄소나노튜브가 흡착되는 개질 활성탄소섬유를 제조하는 단계(S20); 및 시멘트와 상기 S10단계 및 S20단계에서 제조되는 고상캡슐와, 개질 활성탄소섬유에 더하여 열적안정성 향상을 위한 메틸메타크릴레이트크로스폴리머를 포함하는 조성물을 혼합 및 교반하는 단계(S30);를 포함하는 것을 특징으로 한다.Meanwhile, the method for manufacturing a heat-generating carbon cement composite for floor heating of the present invention (hereinafter referred to as the “manufacturing method of the present invention”) includes the step of manufacturing a solid capsule containing a waste cathode material and liquid waste carbon nanotubes (S10). ); A step of carbonizing carbon fibers, immersing the activated carbon fibers in liquid waste carbon nanotubes, and then drying them to produce modified activated carbon fibers in which the liquid waste carbon nanotubes are adsorbed to the surface pores of the activated carbon fibers (S20); And a step (S30) of mixing and stirring cement, the solid capsule prepared in steps S10 and S20, and a composition containing methyl methacrylate crosspolymer for improving thermal stability in addition to modified activated carbon fiber. It is characterized by

이와 같은 본 발명의 조성물 및 이의 제조방법은 산업부산물 및 폐자원을 사용함으로써 제조 단가를 절감할 수 있음은 물론 친환경적이며, 폐음극재 및 폐탄소나노튜브를 포함하는 고상캡슐을 바인더로 사용하여 30℃ 이상의 발열기능이 발현되게 함으로써 시공성과 작업성이 아주 간편하여 바닥용 시멘트 복합체로서 적용 및 이용할 수 있는 장점이 있다.The composition of the present invention and its manufacturing method not only reduce the manufacturing cost by using industrial by-products and waste resources, but are also environmentally friendly, and use a solid capsule containing waste cathode material and waste carbon nanotubes as a binder for 30 hours. It has the advantage of being applied and used as a cement composite for floors as it is very easy to construct and work by developing a heat generation function of ℃ or higher.

도 1은 본 발명의 조성물의 적용예를 도시한 도면.
도 2는 본 발명의 일 실시 예에 따른 고상캡슐을 나타내는 사진.
도 3은 본 발명의 일 실시 예에 따른 분산된 액상 폐탄소나노튜브를 나타내는 확대 사진.
도 4는 본 발명의 실시 예들에 대한 발열성 실험결과를 나타내는 그래프.
1 is a diagram showing an application example of the composition of the present invention.
Figure 2 is a photograph showing a solid capsule according to an embodiment of the present invention.
Figure 3 is an enlarged photograph showing dispersed liquid waste carbon nanotubes according to an embodiment of the present invention.
Figure 4 is a graph showing exothermic test results for embodiments of the present invention.

본 발명을 설명함에 있어서, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다.In describing the present invention, the terms and words used in the specification and claims are based on the principle that the inventor can appropriately define the concept of the term in order to explain the invention in the best way. It must be interpreted with meaning and concepts consistent with the technical ideas of.

이하에서는 도면을 참조하여 본 발명의 바람직한 실시 예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

본 발명의 조성물은 시멘트 및 고상캡슐을 포함하는 것으로, 특히 상기 고상캡슐의 경우 폐기되는 리튬이차전지의 음극재(이하 "폐음극재"라 칭함)와, 액상 폐탄소나노튜브(CNT)와, 고성능 감수재 및 고성능 유동화제를 포함하여 구성될 수 있다.The composition of the present invention includes cement and a solid capsule, and in particular, in the case of the solid capsule, a discarded negative electrode material of a lithium secondary battery (hereinafter referred to as "waste negative electrode material"), liquid waste carbon nanotubes (CNT), It may be composed of a high-performance water reducing material and a high-performance fluidizing agent.

이러한 본 발명의 조성물은 도 1에서 보는 바와 같이 바닥용 시멘트 복합체로 타설되도록 하고, 이러한 바닥용 시멘트 복합체 내부에 전기인가에 의해 발열이 이루어지는 스틸와이어메쉬 등이 내재되어 스틸와이어메쉬의 발열에 의해 바닥용 시멘트 복합체가 30℃ 이상으로 발열이 이루어지도록 함으로써 겨울철 난방용으로 충분히 적용이 가능하도록 하는 것이다. As shown in Figure 1, the composition of the present invention is poured into a cement composite for flooring, and a steel wire mesh, which generates heat by applying electricity, is embedded inside this cement composite for flooring, causing the floor to be damaged by heat generation from the steel wire mesh. By ensuring that the cement composite generates heat above 30℃, it can be sufficiently applied for heating in the winter.

바람직하게 시멘트 100중량부에 대해 제강슬래그 골재 100 내지 300중량부 및 고상캡슐 0.01 내지 1중량부를 포함하도록 배합되는 것이 타당하다. Preferably, it is reasonable to mix 100 to 300 parts by weight of steelmaking slag aggregate and 0.01 to 1 part by weight of solid capsules per 100 parts by weight of cement.

먼저 본 발명에서 제시되는 고상캡슐은 도 2에 도시된 바와 같이 바인더로서 활용되기 적합하도록 상기 조성들이 배합된 상태에서 기설정된 범위 내의 구경과 길이로 성형되어 캡슐 형태를 갖는다.First, as shown in FIG. 2, the solid capsule presented in the present invention has a capsule shape by mixing the above compositions to be suitable for use as a binder and molding it to a diameter and length within a preset range.

이때 캡슐 형태를 성형하기 위한 성형기는 압출 성형기 등 공지의 다양한 성형기 중 적합한 하나를 선택할 수 있는 바, 이에 대한 구체적인 설명은 생략한다.At this time, a suitable molding machine for forming the capsule shape can be selected from various known molding machines such as an extrusion molding machine, and detailed description thereof will be omitted.

상기 폐탄소나노튜브는 탄소나노튜브(CNT)의 생산 과정에서 발생되는 폐자재로, 일부는 활성탄 제품에 활용되고 있고 대부분이 매립 또는 소각되고 있는 실정이며 나노 소재인 탄소나노튜브가 토양에 침투하거나 소각 시 발생되는 오염물질에 대한 영향성을 평가하기 어려운 상황이다. The waste carbon nanotubes are waste materials generated during the production process of carbon nanotubes (CNTs). Some are used in activated carbon products, and most are landfilled or incinerated. Carbon nanotubes, a nano material, penetrate into the soil or It is difficult to assess the impact of pollutants generated during incineration.

이에 본 발명에서는 폐기 처리되는 탄소나노튜브 즉 폐탄소나노튜브를 고상캡슐의 일 조성으로 첨가하여 재활용이 가능하게 하면서, 탄소나노튜브가 가지는 전기전도성에 따라 발열효과가 발현될 수 있게 함으로써, 고상캡슐을 바인더로 활용하는 콘크리트에서도 동일한 발열효과가 발현될 수 있게 하는 것이다.Accordingly, in the present invention, waste carbon nanotubes, that is, waste carbon nanotubes, are added as a component of the solid capsule to enable recycling, and a heating effect can be expressed according to the electrical conductivity of the carbon nanotubes, thereby making the solid capsule The same heating effect can be achieved in concrete using as a binder.

본 발명의 바람직한 실시 예에 따른 폐탄소나노튜브는 액상 수용액으로 분산 과정을 거친 폐탄소나노튜브 분산액으로 상기 고상캡슐에 첨가될 수 있다.Waste carbon nanotubes according to a preferred embodiment of the present invention can be added to the solid capsule as a dispersion of waste carbon nanotubes that has undergone a dispersion process in a liquid aqueous solution.

구체적으로 상기 폐탄소나노튜브 분산액은 폐탄소나노튜브, 물, 폴리카르본산계 감수제가 포함되도록 제조되는 것일 수 있다.Specifically, the waste carbon nanotube dispersion may be prepared to include waste carbon nanotubes, water, and a polycarboxylic acid-based water reducing agent.

즉 폐탄소나노튜브를 물로 희석 및 분산시킨 폐탄소나노튜브 분산액이 제조되도록 하는 것이며, 폴리카르본산계 감수제에 의해 균일한 분산이 실시될 수 있게 한다.In other words, a dispersion of waste carbon nanotubes is prepared by diluting and dispersing waste carbon nanotubes with water, and uniform dispersion can be achieved using a polycarboxylic acid-based water reducing agent.

통상 탄소나노튜브 입자들은 강한 반데르발스(Van der Waals) 인력으로 인해 입자 간 인력이 생기며, 이로 인해 자기-응집(self-aggregation)을 이루게 된다.Typically, carbon nanotube particles generate inter-particle attraction due to strong Van der Waals attraction, which results in self-aggregation.

그리고 상술한 탄소나노튜브의 특성으로 인해 페이스트에서 탄소나노튜브 입자 자체를 미세입자로 분산시키고, 분산된 미세입자들의 분산성을 유지하는 것에 한계가 있다. Also, due to the above-described characteristics of carbon nanotubes, there is a limit to dispersing the carbon nanotube particles themselves into fine particles in the paste and maintaining the dispersibility of the dispersed fine particles.

특히 탄소나노튜브는 비중이 매우 낮아 배합 시 고르게 분포되지 못하며 표면으로 떠오르기 때문으로 균일한 분산이 이루어지기가 곤란한 문제가 있다.In particular, carbon nanotubes have a very low specific gravity, so they are not evenly distributed when mixed, and because they float to the surface, it is difficult to achieve uniform dispersion.

이에 본 실시 예에 따르면, 상기 분산액에 폴리카르본산계 감수제가 더 포함되도록 하여 액상 폐탄소나노튜브의 분산 시 균일한 분산이 이루어지도록 하는 것이다. Accordingly, according to this embodiment, the polycarboxylic acid-based water reducing agent is further included in the dispersion to ensure uniform dispersion when dispersing the liquid waste carbon nanotubes.

도 2는 분산된 액상 폐탄소나노튜브를 100,000배 확대한 사진으로, 상기 폴리카르본산계 감수제의 첨가로 인하여 균일한 분산 효과는 이루어졌음을 확인할 수 있다.Figure 2 is a photograph of dispersed liquid waste carbon nanotubes magnified 100,000 times, and it can be seen that the uniform dispersion effect was achieved due to the addition of the polycarboxylic acid-based water reducing agent.

특히 폴리카르본산계 감수제의 경우, 콘크리트 및 시멘트 모르타르에 혼입 시 적은 사용량만으로도 시멘트 입자를 강하게 분산시켜 물의 사용량을 20 ~ 30% 가량을 줄일 수 있게 되어 원활한 작업과 강도를 획기적으로 높일 수 있고, 이하에서 설명하는 폐음극재의 흑연 사용량을 줄일 수 있을 뿐 아니라, 폐탄소나노튜브의 분산 시 계면활성화 작용에 도움을 줄 수 있게 된다.In particular, in the case of polycarboxylic acid-based water reducers, when mixed into concrete and cement mortar, even a small amount can strongly disperse cement particles, reducing the amount of water used by about 20 to 30%, thereby dramatically increasing smooth work and strength. Not only can it reduce the amount of graphite used in waste cathode materials as explained in, but it can also help with the surface activation function when dispersing waste carbon nanotubes.

여기서 상기 폐탄소나노튜브 분산액을 구성하는 폐탄소나노튜브, 물, 폴리카르본산계 감수제의 배합비는 폐탄소나노튜브의 농도나 용도 등 다양한 인자에 의해 선택적으로 조절될 수 있음은 당연하다.Here, it is natural that the mixing ratio of the waste carbon nanotubes, water, and polycarboxylic acid-based water reducing agent constituting the waste carbon nanotube dispersion can be selectively adjusted by various factors such as the concentration or use of the waste carbon nanotubes.

또한 폐탄소나노튜브를 분류해보면, 탄소원자로 구성된 벽이 하나인 튜브 형태를 갖는 단일벽 탄소나노튜브(SWCNT)의 경우 전기전도성, 열전도성이 가장 우수하며, 탄소원자로 구성된 벽이 두 개인 이중벽 나노튜브(Double-wall Nanotube)는 전기전도성과 기계적 특성이 뛰어나고, 하나의 튜브에 탄소원자로 구성된 벽이 여러 겹인 튜브 형태를 갖는 다중벽 탄소나노튜브(MWCNT)는 전기 및 열적 특성은 다소 떨어지는 반면에 기계적 특성이 우수하고 제조가 용이하여 응용범위가 넓은 것으로 알려져 있는 바, 본 발명의 고상캡슐의 사용 목적을 고려하여 그에 적합한 폐탄소나노튜브를 선택하여 첨가하는 것이 바람직하다.Additionally, when classifying waste carbon nanotubes, single-walled carbon nanotubes (SWCNTs), which have a tube shape with one wall made of carbon atoms, have the best electrical and thermal conductivity, and double-walled nanotubes (SWCNTs) which have two walls made of carbon atoms. (Double-wall Nanotube) has excellent electrical conductivity and mechanical properties, while Multi-Wall Carbon Nanotube (MWCNT), which has a tube shape with multiple walls made of carbon atoms in one tube, has somewhat poorer electrical and thermal properties but has better mechanical properties. Since it is known to be excellent and easy to manufacture and has a wide range of applications, it is desirable to select and add waste carbon nanotubes suitable for the purpose of use of the solid capsule of the present invention.

한편 본 발명의 고상캡슐은 페이스트의 전기전도도가 발현되도록 하기 위해 폐음극재를 더 포함한다.Meanwhile, the solid capsule of the present invention further includes a waste cathode material in order to develop the electrical conductivity of the paste.

일반적으로 전기자동차 및 소형가전 제품 등에 사용되는 리듐이차전지는 양극, 음극, 분리막, 유기 전해액으로 구성되어 있으며, 전이금속산화물을 양극 소재로 사용하고 탄소를 음극소재로 사용한다.Lithium secondary batteries, which are generally used in electric vehicles and small home appliances, are composed of an anode, a cathode, a separator, and an organic electrolyte, and transition metal oxides are used as anode materials and carbon is used as a cathode material.

상기 폐음극재는 상술한 전기자동차 및 소형가전 제품 등에서 사용 후 폐기되는 리듐이차전지 중 음극재를 활용한 것으로, 이러한 폐음극재에는 인조흑연, 천연흑연, 저결정탄소(피치/코크스, 열경화성 수지), 금속계(siox,si 탄소복합계) 등의 고순도 탄소복합계가 포함됨에 따라, 상기 폐탄소나노튜브와 함께 첨가됨으로써 전기전도성에 의한 발열 효과가 발현될 수 있게 한다.The above-mentioned waste cathode material is made of cathode material from lithium secondary batteries discarded after use in the above-mentioned electric vehicles and small home appliances. These waste cathode materials include artificial graphite, natural graphite, low-crystalline carbon (pitch/coke, thermosetting resin). , As high-purity carbon composite systems such as metal systems (siox, si carbon composite systems) are included, the heating effect due to electrical conductivity can be expressed by being added together with the waste carbon nanotubes.

뿐만 아니라 현재 사용되는 흑연은 10,000 ~ 80,000원/㎏에 이르고 있으며, 흑연이 시멘트 복합체에 다량 배합되는 경우 비용적인 한계로 인한 연구개발 및 제품생산에 어려움이 발생된다.In addition, the price of graphite currently used ranges from 10,000 to 80,000 won/kg, and when a large amount of graphite is mixed into cement composites, difficulties arise in research and development and product production due to cost limitations.

이에 본 발명에서는 폐리튬이차전지에서 발생되는 폐음극재를 활용함으로써 기존 흑연 제품대비 1/20 ~ 1/50 이상의 가격 경쟁력을 확보할 수 있게 되는 것이며, 특히 폐기되는 폐음극재를 재활용하여 자원순환과 환경오염을 방지할 수 있게 되는 것이다.Accordingly, in the present invention, by utilizing waste cathode material generated from waste lithium secondary batteries, it is possible to secure price competitiveness of 1/20 to 1/50 or more compared to existing graphite products. In particular, recycling of discarded waste cathode material ensures resource circulation. and environmental pollution can be prevented.

한편 소정의 전도성능이나 강도 강화 성능을 발현하기 위해서는 필러로서 폐탄소나노튜브 또는 폐음극재 간에 네트워킹(Networking)이 형성되어야 하며, 이러한 필러 간에 좋은 네트워킹을 형성하기 위해서는 장축비가 작은 폐음극재보다는 장축비가 월등히 큰 폐탄소나노튜브가 절대적으로 유리하다. Meanwhile, in order to develop a certain conductive performance or strength enhancement performance, networking must be formed between waste carbon nanotubes or waste cathode materials as fillers, and in order to form good networking between these fillers, the long axis ratio is better than the waste cathode material with a small long axis ratio. Waste carbon nanotubes, which have a much larger ratio, are absolutely advantageous.

즉 장축비가 큰 폐탄소나노튜브는 적은 양의 함량으로도 우수한 전기전도성을 발현하며, 반면에 장축비가 작은 폐음극재는 폐탄소나노튜브에 비하면 훨씬 많은 양의 함량이 필요하다.In other words, waste carbon nanotubes with a large long axis ratio exhibit excellent electrical conductivity even with a small amount, while waste cathode materials with a small long axis ratio require a much larger amount than waste carbon nanotubes.

상기 고상캡슐에는 고성능 감수제 및 고성능 유동화제가 더 포함되도록 할 수 있는 바, 이때 고성능 감수제 및 고성능 유동화제는 상기 폐음극재, 액상 폐탄소나노튜브와 함께 배합되는 것일 수 있으며, 고상캡슐의 성형이 완료된 이후 캡슐의 표면에 도포되어 코팅층으로서 마련되는 것일 수 있다.The solid capsule may further include a high-performance water reducing agent and a high-performance fluidizing agent. In this case, the high-performance water reducing agent and the high-performance fluidizing agent may be mixed with the waste cathode material and the liquid waste carbon nanotubes, and the molding of the solid capsule is completed. It may then be applied to the surface of the capsule to provide a coating layer.

이러한 고성능 감수제 및 고성능 유동화제는 본 발명의 고상캡슐이 바인더로서 콘크리트 내지 시멘트 모르타르에 첨가될 경우 물-시멘트 비를 저감하는 효과가 발현될 수 있게 한다.These high-performance water reducing agents and high-performance fluidizing agents enable the effect of reducing the water-cement ratio to be expressed when the solid capsule of the present invention is added to concrete or cement mortar as a binder.

이상에서 설명한 본 발명의 조성물은 액상 폐탄소나노튜브 100중량부에 대해 폐음극재 5 내지 20중량부, 고성능 감수제 0.01 내지 1중량부 및 고성능 유동화제 0.01 내지 1중량부가 포함하도록 배합되는 것이 바람직하다.The composition of the present invention described above is preferably mixed to include 5 to 20 parts by weight of waste cathode material, 0.01 to 1 part by weight of high-performance water reducing agent, and 0.01 to 1 part by weight of high-performance fluidizing agent per 100 parts by weight of liquid waste carbon nanotubes. .

한편 상기 시멘트는 1종 보통 포틀랜드 시멘트인 것이 타당하다.Meanwhile, it is reasonable that the cement is a type 1 ordinary Portland cement.

상기 제강슬래그 골재를 제조하는데 사용되는 제강슬래그는 제한되는 것은 아니며, 일반적으로 제강슬래그를 받아서 이송하는 포트 상층부의 제강슬래그를 이용하는 것이 바람직하다. 포트의 하층부는 금속함량이 높고 상층부는 금속성분이 낮은 경향이 있어, 상층부의 제강슬래그를 이용하는 것이 하층부의 높은 금속성분을 포함하는 부분까지 사용하는 경우에 비하여 경제적으로 유리하다. The steelmaking slag used to produce the steelmaking slag aggregate is not limited, and it is generally preferable to use the steelmaking slag in the upper layer of the port where the steelmaking slag is received and transferred. The lower layer of the pot tends to have a high metal content and the upper layer tends to have a low metal content, so using steelmaking slag from the upper layer is economically advantageous compared to using the lower layer containing high metal content.

또한 제강슬래그를 이용하여 제강슬래그 골재를 제조하는 방법은 다양한 공지기술의 적용이 가능하므로 그 상세 설명은 생략한다.In addition, since the method of producing steelmaking slag aggregate using steelmaking slag can apply various known technologies, detailed description thereof will be omitted.

한편 본 발명의 조성물을 타설시에 경화과정에서 수분증발에 의한 건조수축의 문제가 발생될 수 있으며, 특히 본 발명의 조성물에 의해 타설되는 바닥의 경우 주기적 발열에 의해 고온에 노출됨에 따라 열화 등에 의해 강도가 저하되는 문제가 있을 수 있다. On the other hand, when pouring the composition of the present invention, the problem of drying shrinkage due to moisture evaporation may occur during the curing process. In particular, in the case of floors poured with the composition of the present invention, deterioration is caused by exposure to high temperatures due to periodic heat generation. There may be a problem of reduced strength.

이에 본 발명에서는 상기 조성들외에도 메틸메타크릴레이트크로스폴리머가 더 첨가되도록 하여 건조수축을 제어하는 것은 물론 주기적 고온노출에 의한 열화를 제어할 수 있도록 한다. 상기 메틸메타크릴레이트크로스폴리머는 그물망 구조를 가짐으로써 페이스트와의 결합을 비교적 단단하게 해주면서 점도를 올려준다. 이에 따라 열적안정성을 향상시켜 페이스트의 주기적 고온의 노출에도 강도 등의 유지성을 높일 수 있는 것이다. Accordingly, in the present invention, in addition to the above compositions, methyl methacrylate crosspolymer is added to control drying shrinkage as well as control deterioration due to periodic high temperature exposure. The methyl methacrylate crosspolymer has a network structure, making the bond with the paste relatively strong and increasing viscosity. Accordingly, the thermal stability can be improved and the maintenance of strength, etc. can be increased even when the paste is periodically exposed to high temperatures.

바람직하게 시멘트 100중량부에 대해 메틸메타크릴레이트크로스폴리머 0.01 내지 1중량부가 배합되도록 하는 것이 타당하다. Preferably, it is reasonable to mix 0.01 to 1 part by weight of methyl methacrylate crosspolymer with respect to 100 parts by weight of cement.

본 발명의 조성물에는 상기 조성들외에도 탄소섬유가 더 포함되도록 할 수 있다. The composition of the present invention may further include carbon fiber in addition to the above compositions.

이렇게 탄소섬유가 혼입됨으로써 가교 작용을 통한 균열 저항성을 향상시키도록 하는 것이며, 특히 탄소섬유 역시 전기전도성을 가지고 있으므로 페이스트에 전기전도성을 부여하게 되는 것이다. By incorporating carbon fiber in this way, crack resistance is improved through crosslinking. In particular, since carbon fiber also has electrical conductivity, electrical conductivity is imparted to the paste.

또한 콘크리트에 균열이 발생되는 경우, 균열 부분에서 전도성의 단절구간이 형성되는데 탄소섬유가 첨가됨에 의해 탄소섬유의 가교 작용을 통해 페이스트의 균열을 제어함으로써 이와 같은 문제가 해결되도록 하는 것이다.In addition, when a crack occurs in concrete, a conductive disconnection section is formed at the crack. The addition of carbon fiber solves this problem by controlling the cracking of the paste through the crosslinking action of the carbon fiber.

바람직하게 시멘트 100중량부에 대해 탄소섬유 0.01 내지 1중량부가 배합되도록 하는 것이 타당하다. Preferably, it is reasonable to mix 0.01 to 1 part by weight of carbon fiber per 100 parts by weight of cement.

더욱 바람직하게는 상기 탄소섬유는 개질 탄소섬유가 적용되도록 하여 더욱 높은 전기전도성이 발현되도록 할 수 있다. More preferably, the carbon fiber may be modified carbon fiber to achieve higher electrical conductivity.

상기 개질 탄소섬유는 탄화시킨 탄소섬유 표면에 액상 폐탄소나노튜브가 도포된 개질 탄소섬유인 것을 특징으로 한다. 이와 같이 탄화시킨 탄소섬유 표면에 액상 폐탄소나노튜브가 도포되도록 하는 이유는 탄화에 의해 탄소섬유 표면에 더 많은 공극이 형성되도록 하고, 이렇게 더 많은 공극에 폐탄소나노튜브가 흡착이 된 상태가 되도록 함으로써 탄소섬유 전체에 걸쳐 균일하게 많은 량의 폐탄소나노튜브가 도포되어 그 만큼 전기전도도를 향상시키도록 하는 것이다. The modified carbon fiber is characterized in that it is a modified carbon fiber in which liquid waste carbon nanotubes are applied to the surface of carbonized carbon fiber. The reason why liquid waste carbon nanotubes are applied to the surface of the carbonized carbon fiber in this way is to form more pores on the surface of the carbon fiber by carbonization, and to allow the waste carbon nanotubes to be adsorbed into more pores. By doing this, a large amount of waste carbon nanotubes are applied uniformly throughout the carbon fiber, thereby improving electrical conductivity.

즉 상기 개질 탄소섬유는 탄소섬유를 활성탄소섬유로 개질하고, 개질된 활성탄소섬유의 표면 공극에 폐탄소나노튜브가 흡착되도록 하는 것으로 2차에 걸친 개질이 이루어지도록 하는 것이다. In other words, the modified carbon fiber is made by modifying carbon fiber into activated carbon fiber and allowing waste carbon nanotubes to be adsorbed into the surface pores of the modified activated carbon fiber, thereby allowing secondary modification.

이러한 활성탄소섬유는 탄소섬유를 탄화시켜 제조되는 것으로, 탄소섬유로는 레이온계 섬유, 아크릴계 섬유, 페놀계 섬유, 피치계 섬유 중 어느 하나가 이용될 수 있다. 탄소섬유를 탄화시켜 활성탄소섬유로 활성화하는 방법으로는, 열분해 공정, 열처리를 이용한 산화 공정, 열화학적 활성화 공정 중 어느 하나를 이용할 수 있다.These activated carbon fibers are manufactured by carbonizing carbon fibers, and any one of rayon-based fibers, acrylic-based fibers, phenol-based fibers, and pitch-based fibers can be used as the carbon fiber. As a method of carbonizing carbon fiber and activating it into activated carbon fiber, any one of a thermal decomposition process, an oxidation process using heat treatment, or a thermochemical activation process can be used.

먼저, 열분해 공정을 설명하면, 아르곤 또는 질소 등의 불활성가스 분위기 하에서 600∼900℃의 온도로 탄소섬유를 열분해하여 활성탄소섬유를 제조할 수 있다. 또한, 열처리를 이용한 산화공정은 산소 또는 수증기 등의 산화 분위기 하에서 탄소섬유를 산화시켜 활성탄소섬유를 제조하는 방법이며, 열화학적 활성화 공정은 탄소섬유를 산, 염기 및 염과 혼합한 상태에서 450∼900℃의 온도를 가하여 탄소 섬유를 활성탄소섬유로 활성화 하는 방법이 적용될 수 있다.First, explaining the pyrolysis process, activated carbon fiber can be manufactured by pyrolyzing carbon fiber at a temperature of 600 to 900°C under an inert gas atmosphere such as argon or nitrogen. In addition, the oxidation process using heat treatment is a method of producing activated carbon fiber by oxidizing carbon fiber under an oxidizing atmosphere such as oxygen or water vapor, and the thermochemical activation process is a method of producing activated carbon fiber by mixing carbon fiber with acid, base, and salt and A method of activating carbon fiber into activated carbon fiber by applying a temperature of 900°C can be applied.

그 다음으로 이렇게 제조된 활성탄소섬유를 상기 액상 폐탄소나노튜브에 침지 시킨후 건조시켜 최종의 개질 탄소섬유가 제조 되는 것이다. Next, the activated carbon fibers prepared in this way are immersed in the liquid waste carbon nanotubes and then dried to produce the final modified carbon fibers.

이에 더하여 개질 탄소섬유의 제조에 있어 적용되는 액상 폐탄소나노튜브에는 에폭시화아민이 포함되는 예가 제시된다. 상기에서 언급한 바와 같이 상기 개질 탄소섬유의 경우 전기전도도가 향상됨에 따라 정전기에 의해 섬유간 응집의 문제가 있을 수 있는데, 이를 해결하기 위해 액상 폐탄소나노튜브에는 에폭시화아민이 더 포함되도록 하여 섬유간 응집이 제어되도록 하는 것이다. In addition, an example is presented in which epoxidized amine is included in liquid waste carbon nanotubes used in the production of modified carbon fiber. As mentioned above, in the case of the modified carbon fiber, as the electrical conductivity improves, there may be a problem of cohesion between fibers due to static electricity. To solve this, the liquid waste carbon nanotubes are further included with epoxidized amine to form the fiber. This is to control liver aggregation.

상기 에폭시화아민은 액상 폐탄소나노튜브 전체 중량대비 0.01 내지 0.1중량부로 배합됨이 타당하다. It is appropriate that the epoxidized amine is mixed in an amount of 0.01 to 0.1 parts by weight based on the total weight of liquid waste carbon nanotubes.

이하, 실험예에 의해 본 발명의 실시예를 설명한다. Hereinafter, embodiments of the present invention will be described through experimental examples.

<고상캡슐 제조예><Solid capsule manufacturing example>

물 100중량부에 대해 폐탄소나노튜브 10중량부, 폐음극재 10중량부, 폴리카르본산계 감수제 0.05중량부를 혼합하고 교반하여 혼합물을 제조하는 단계와, 상기 혼합물을 직경 1mm, 길이 2mm의 크기로 압출 성형하는 단계를 거쳐 고상캡슐을 제조한다. Preparing a mixture by mixing and stirring 10 parts by weight of waste carbon nanotubes, 10 parts by weight of waste cathode material, and 0.05 parts by weight of a polycarboxylic acid-based water reducing agent with respect to 100 parts by weight of water, and forming the mixture into a mixture having a diameter of 1 mm and a length of 2 mm. Solid capsules are manufactured through an extrusion molding step.

<시료 제조예><Sample preparation example>

실시예 1의 경우는 시멘트를 100중량부에 대해 제강슬래그 골재 150중량부, 고상캡슐 0.1중량부가 포함되도록 배합된 예이고, 실시예 2의 경우 실시예 1과 동일하게 배합하되, 메틸메타크릴레이트크로스폴리머 0.1중량부가 더 배합된 예이고, 실시예 3의 경우 실시예 2와 동일하되, 탄소섬유 0.1중량부가 더 배합된 예이고, 실시예 4의 경우 실시예 3과 동일하되, 탄소섬유는 탄화시킨 탄소섬유 표면에 액상 폐탄소나노튜브(물 100중량부에 대해 폐탄소나노튜브 10중량부, 폴리카르본산계 감수제 0.05중량부로 혼합)가 도포된 개질 탄소섬유가 배합된 예이고, 실시예 5의 경우 실시예 4와 동일하되, 개질 탄소섬유 제조시 액상 폐탄소나노튜브 전체 중량대비 에폭시화아민 0.01중량부가 더 포함된 액상 폐탄소나노튜브에 의해 활성탄소섬유의 표면개질을 하였다.In Example 1, 150 parts by weight of steel slag aggregate and 0.1 parts by weight of solid capsules were mixed for 100 parts by weight of cement. In Example 2, the mixture was mixed in the same manner as Example 1, but methyl methacrylate was added. This is an example in which 0.1 parts by weight of crosspolymer was added, Example 3 was the same as Example 2, but 0.1 parts by weight of carbon fiber was added, and Example 4 was the same as Example 3, but the carbon fiber was carbonized. This is an example of a mixture of modified carbon fibers in which liquid waste carbon nanotubes (mixed with 10 parts by weight of waste carbon nanotubes and 0.05 parts by weight of polycarboxylic acid-based water reducing agent per 100 parts by weight of water) were applied to the surface of the prepared carbon fibers, Example 5 In the case of Example 4, the surface of the activated carbon fiber was modified using liquid waste carbon nanotubes, except that 0.01 parts by weight of epoxidized amine was added based on the total weight of the liquid waste carbon nanotubes during production of the modified carbon fibers.

<압축강도 및 발열시험><Compressive strength and heat generation test>

이러한 각 시료에 대해 KS L ISO 679에 의해 압축강도실험(28일)을 수행 하였으며, 91일 압축강도의 경우 28일부터 91일까지 상온조건(개략 18℃) 및 고온조건(개략 50℃)을 반복한 후에 측정한 것으로 그 결과가 하기 표 1에 도시되고 있다. For each of these samples, a compressive strength test (28 days) was performed according to KS L ISO 679, and in the case of 91-day compressive strength, room temperature conditions (approximately 18℃) and high temperature conditions (approximately 50℃) were used from the 28th to the 91st day. The measurements were repeated and the results are shown in Table 1 below.

또한 상기 시료들에 대한 발열실험을 수행하였는 바, 규격이 900×900×50cm인 거푸집에 전기적으로 연결된 스테인레스메쉬망을 발열수단으로 내재시킨 상태에서 상기 시료들을 시공하고 전기를 인가하여 시멘트 복합체 내 온도를 측정하였으며, 그 결과가 도 4에 도시되고 있다. In addition, a heat generation test was performed on the samples. The samples were constructed with a stainless steel mesh net electrically connected to a formwork with dimensions of 900 × 900 × 50 cm embedded as a heating means, and electricity was applied to determine the temperature within the cement composite. was measured, and the results are shown in Figure 4.

구분division 압축강도(28일, MPa)Compressive strength (28 days, MPa) 압축강도(91일, MPa)Compressive strength (91 days, MPa) 실시예1Example 1 2626 2424 실시예2Example 2 2828 3030 실시예3Example 3 2525 -- 실시예4Example 4 2525 -- 실시예5Example 5 2626 --

28일 압축강도면에서 살펴보면 상기 표 1에서 보는 바와 같이 실시예 1보다 실시예 2의 경우가 조금 더 우수한 것을 알 수 있는데, 이는 실시예 2의 경우 메틸메타크릴레이트크로스폴리머가 더 첨가되어 건조수축 등의 제어에 기인한 것으로 판단된다. 그리고 실시예 2보다 실시예 3 내지 5가 압축강도면에서 조금 저하되는 것을 알 수 있는데, 이는 탄소섬유가 더 첨가됨에 기인한 것으로 판단된다.In terms of 28-day compressive strength, as shown in Table 1 above, it can be seen that Example 2 is slightly better than Example 1. This is because in Example 2, more methyl methacrylate crosspolymer was added to reduce drying shrinkage. It is believed to be due to control such as etc. In addition, it can be seen that Examples 3 to 5 are slightly lower in compressive strength than Example 2, which is believed to be due to the addition of more carbon fiber.

한편 91일 압축강도를 보면 실시예 1의 경우 28일 압축강도와 대비 오히려 줄어드는 것을 알 수 있는 반면, 실시예 2의 경우 주기적인 고온에 노출의 경우도 압축강도가 저하되지 않는 것을 알 수 있는데, 이는 메틸메타크릴레이트크로스폴리머가 더 첨가됨에 기인한 것으로 판단된다.Meanwhile, looking at the 91-day compressive strength, it can be seen that in the case of Example 1, it is rather reduced compared to the 28-day compressive strength, while in the case of Example 2, it can be seen that the compressive strength does not decrease even when exposed to periodic high temperatures. This is believed to be due to the addition of more methyl methacrylate crosspolymer.

한편 발열 효율에서 보면 도 4에 도시된 바와 같이 실시예 1 및 실시예 2보다 실시예 3의 경우가 더욱 발열효율이 좋은 것을 알 수 있는데, 이는 탄소섬유가 더 첨가됨에 기인한 것이고, 실시예 3보다 실시예 4가 더 발열효율이 좋은 것을 알 수 있는데, 이는 상기에서 언급한 바와 같이 탄소섬유를 개질시킴에 의해 전기전도성이 더욱 향상됨에 기인한 것으로 판단되며, 실시예 5의 경우가 가장 우수한 결과가 도출되는 것을 알 수 있는 바, 이는 탄소섬유 개질시 사용되는 액상 폐탄소나노튜브에 에폭시화아민이 첨가되어 섬유 응집을 제어함에 기인한 것으로 판단된다.Meanwhile, in terms of heat generation efficiency, as shown in FIG. 4, it can be seen that Example 3 has better heat generation efficiency than Examples 1 and 2. This is due to the addition of more carbon fiber, and Example 3 It can be seen that Example 4 has better heat generation efficiency. As mentioned above, this is believed to be due to further improvement in electrical conductivity by modifying the carbon fiber, and Example 5 shows the best results. It can be seen that is derived, which is believed to be due to the addition of epoxidized amine to the liquid waste carbon nanotubes used in carbon fiber modification to control fiber aggregation.

한편 본 발명의 제조방법은, 폐음극재 및 액상 폐탄소나노튜브를 포함하는 고상캡슐을 제조하는 단계(S10); 액상 폐탄소나노튜브에 탄화된 탄소섬유를 함침시켜 개질 탄소섬유를 제조하는 단계(S20); 및 시멘트와 상기 S10단계 및 S20단계에서 제조되는 고상캡슐 및 개질 탄소섬유를 포함하는 조성물을 혼합 및 교반하는 단계(S30)를 포함한다.Meanwhile, the manufacturing method of the present invention includes manufacturing a solid capsule containing a waste cathode material and liquid waste carbon nanotubes (S10); Producing modified carbon fiber by impregnating liquid waste carbon nanotubes with carbonized carbon fiber (S20); And a step (S30) of mixing and stirring cement and a composition containing the solid capsule and modified carbon fiber prepared in steps S10 and S20.

먼저 상기 S10단계는 고상캡슐을 제조하기 위한 과정으로, 폐탄소나노튜브 분산액을 제조하는 단계(S100)와, 상기 폐탄소나노튜브 분산액에 폐음극재를 혼합하고 교반하여 제 1혼합물을 제조하는 단계(S200)와, 상기 제 1혼합물에 고성능 감수제 및 고성능 유동화제를 혼합하고 교반하여 제 2혼합물을 제조하는 단계(S300)와, 상기 제 2혼합물을 기설정된 범위 내의 구경과 길이를 갖는 크기로 압출 성형하는 단계(S400) 및 상기 S400단계에서 성형되는 성형물을 건조시키는 단계(S50)를 포함할 수 있다.First, step S10 is a process for manufacturing a solid capsule, including preparing a waste carbon nanotube dispersion (S100) and mixing waste cathode material with the waste carbon nanotube dispersion and stirring to prepare a first mixture. (S200), mixing and stirring a high-performance water reducing agent and a high-performance fluidizing agent in the first mixture to prepare a second mixture (S300), and extruding the second mixture to a size having a diameter and length within a preset range. It may include a step of molding (S400) and a step of drying the molded product formed in step S400 (S50).

즉 상기 고상캡슐은 선행적으로 액상 폐탄소나노튜브를 제조한 후, 액상 폐탄소나노튜브와 폐음극재를 혼합 및 1차 교반하게 되는데, 이때 상기 액상 폐탄소나노튜브는 앞서 언급한 바와 같이 액상 수용액으로 분산 처리된 폐탄소나노튜브 분산액일 수 있다.That is, in the solid capsule, liquid waste carbon nanotubes are first manufactured, and then the liquid waste carbon nanotubes and the waste cathode material are mixed and first stirred. At this time, the liquid waste carbon nanotubes are liquid waste carbon nanotubes as mentioned above. It may be a dispersion of waste carbon nanotubes dispersed in an aqueous solution.

구체적으로 고상캡슐의 제조과정을 살펴보면, 상기 S100단계에는 교반용기에 폐탄소나노튜브, 물, 폴리카르본산계 감수제를 혼합한 후 초음파발생구를 가동하여 폐탄소나노튜브 분산액을 제조하게 된다.Looking specifically at the manufacturing process of the solid capsule, in step S100, waste carbon nanotubes, water, and a polycarboxylic acid-based water reducing agent are mixed in a stirring container, and then an ultrasonic generator is operated to produce a waste carbon nanotube dispersion.

여기서 상기 초음파발생구는 다양한 공지기술이 존재하므로 그 상세 설명은 생략한다.Here, since various known technologies exist for the ultrasonic generator, a detailed description thereof will be omitted.

다만 폴리카르본산계 감수제에 의한 폐탄소나노튜브의 분산 시 폐탄소나노튜브 간에 충돌로 인하여 미세 열이 발생하여 폐탄소나노튜브의 길이가 끓어지거나 마찰에 의한 기능 저하가 발생할 수 있으므로, 내부 온도가 50℃ 이하가 되도록 일정하게 유지하여 액상 폐탄소나노튜브의 발열로 인한 품질 변화를 방지하면서 분산을 실시하는 것이 바람직하다.However, when dispersing waste carbon nanotubes using a polycarboxylic acid-based water reducing agent, micro-heat is generated due to collisions between waste carbon nanotubes, which may boil the length of the waste carbon nanotubes or cause functional deterioration due to friction, so the internal temperature may decrease. It is desirable to carry out dispersion while preventing quality changes due to heat generation of liquid waste carbon nanotubes by maintaining a constant temperature of 50°C or lower.

이후 상기 S100단계에서 제조되는 폐탄소나노튜브 분산액에 폐음극재를 혼합하고 교반하여 제 1혼합물을 제조(S200)한 후, 상기 제 1혼합물에 고성능 감수제 및 고성능 유동화제를 혼합 및 교반하여 제 2혼합물을 제조(S300)하게 된다.Afterwards, a first mixture is prepared by mixing and stirring the waste cathode material with the waste carbon nanotube dispersion prepared in step S100 (S200), and then mixing and stirring a high-performance water reducing agent and a high-performance fluidizing agent in the first mixture to form a second mixture. A mixture is prepared (S300).

상기와 같이 제 2혼합물을 제조하는 단계(S300)를 거치면, 상기 제 2혼합물을 고성능 진공 압출 성형기를 이용하여 기설정된 범위 내의 구경과 길이를 갖는 캡슐 형태로 압출 성형하는 단계(S400)를 수행한다.After the step (S300) of preparing the second mixture as described above, the step (S400) of extruding the second mixture into a capsule shape having a diameter and length within a preset range is performed using a high-performance vacuum extrusion molding machine. .

상기 캡슐 크기는 구경 1 내지 60mm, 길이 5 내지 100mm의 범위로 설정하는 것이 콘크리트 내지 시멘트 모르타르용 바인더로 활용되기에 적합하다.The capsule size is set to a range of 1 to 60 mm in diameter and 5 to 100 mm in length, suitable for use as a binder for concrete or cement mortar.

마지막으로 상기 S400단계에서 성형된 캡슐 형태의 성형물을 건조시키는 단계(S500)를 수행하게 되는데, 성형물의 함수비가 0.1 내지 30%를 갖도록 건조시키는 것이 바람직하다.Finally, a step (S500) of drying the capsule-shaped molded product in step S400 is performed. It is preferable to dry the molded product so that the water content of the molded product is 0.1 to 30%.

그 다음으로 액상 폐탄소나노튜브에 탄화된 탄소섬유를 함침시켜 개질 탄소섬유를 제조하는 단계(S20)를 갖는 바, 상기에서 언급한 바와 같이 탄화된 탄소섬유는 다양한 공지 방법에 의해 제조되는 활성탄소섬유이며, 이러한 활성탄소섬유를 액상 폐탄소나노튜브에 함침 시킨후 건조시켜 개질 탄소섬유가 제조되도록 한다. Next, there is a step (S20) of producing modified carbon fiber by impregnating liquid waste carbon nanotubes with carbonized carbon fiber. As mentioned above, carbonized carbon fiber is activated carbon produced by various known methods. It is a fiber, and these activated carbon fibers are impregnated with liquid waste carbon nanotubes and then dried to produce modified carbon fibers.

이상에서 본 발명의 바람직한 실시 예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements made by those skilled in the art using the basic concept of the present invention defined in the following claims are also possible. falls within the scope of rights.

Claims (6)

시멘트; 폐음극재, 액상 폐탄소나노튜브(CNT)를 포함하는 고상캡슐; 및 탄소섬유;를 포함하되,
상기 탄소섬유는,
탄소섬유를 탄화시켜 활성화된 개질 활성탄소섬유이고, 개질 활성탄소섬유를 액상 폐탄소나노튜브에 침지 시킨 후 건조하여 개질 활성탄소섬유의 표면 공극에 액상 폐탄소나노튜브가 흡착되며,
열적안정성 향상을 위한 메틸메타크릴레이트크로스폴리머;를 더 포함하여 주기적 고온 노출에 의한 열화를 제어하는 것을 특징으로 하는 바닥난방을 위한 발열 탄소시멘트 복합체 조성물.
cement; Waste cathode material, solid capsule containing liquid waste carbon nanotubes (CNT); And carbon fiber;
The carbon fiber is,
It is a modified activated carbon fiber activated by carbonizing carbon fiber. The modified activated carbon fiber is immersed in liquid waste carbon nanotubes and then dried, and the liquid waste carbon nanotubes are adsorbed on the surface pores of the modified activated carbon fiber.
A heat-generating carbon cement composite composition for floor heating, further comprising methyl methacrylate crosspolymer to improve thermal stability and controlling deterioration due to periodic high temperature exposure.
삭제delete 삭제delete 삭제delete 제 1항에 있어서,
상기 액상 폐탄소나노튜브에는 에폭시화아민이 포함되는 것을 특징으로 하는 바닥난방을 위한 발열 탄소시멘트 복합체 조성물.
According to clause 1,
A heat-generating carbon cement composite composition for floor heating, wherein the liquid waste carbon nanotubes include epoxidized amine.
폐음극재 및 액상 폐탄소나노튜브를 포함하는 고상캡슐을 제조하는 단계(S10);
탄소섬유를 탄화시켜 활성화된 활성탄소섬유를 액상 폐탄소나노튜브에 침지 시킨 후 건조하여 활성탄소섬유의 표면 공극에 액상 폐탄소나노튜브가 흡착되는 개질 활성탄소섬유를 제조하는 단계(S20); 및
시멘트와 상기 S10단계 및 S20단계에서 제조되는 고상캡슐와, 개질 활성탄소섬유에 더하여 열적안정성 향상을 위한 메틸메타크릴레이트크로스폴리머를 포함하는 조성물을 혼합 및 교반하는 단계(S30);를 포함하는 것을 특징으로 하는 바닥난방을 위한 발열 탄소시멘트 복합체의 제조방법.
Manufacturing a solid capsule containing waste cathode material and liquid waste carbon nanotubes (S10);
A step of carbonizing the carbon fiber, immersing the activated carbon fiber in liquid waste carbon nanotubes, and then drying them to produce a modified activated carbon fiber in which the liquid waste carbon nanotubes are adsorbed to the surface pores of the activated carbon fiber (S20); and
A step (S30) of mixing and stirring cement, the solid capsule prepared in steps S10 and S20, and a composition containing methyl methacrylate crosspolymer to improve thermal stability in addition to modified activated carbon fiber. Method for manufacturing a heat-generating carbon cement composite for floor heating.
KR1020230114167A 2023-08-30 2023-08-30 Heating carbon cement composite composition for floor heating and manufacturing method thereof KR102648969B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230114167A KR102648969B1 (en) 2023-08-30 2023-08-30 Heating carbon cement composite composition for floor heating and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230114167A KR102648969B1 (en) 2023-08-30 2023-08-30 Heating carbon cement composite composition for floor heating and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR102648969B1 true KR102648969B1 (en) 2024-03-19

Family

ID=90483123

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230114167A KR102648969B1 (en) 2023-08-30 2023-08-30 Heating carbon cement composite composition for floor heating and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102648969B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150020318A (en) * 2012-05-16 2015-02-25 주식회사 다이셀 Epoxy-amine adduct, resin composition, sizing agent, carbon fiber coated with sizing agent, and fiber-reinforced composite material
KR101654478B1 (en) 2015-09-03 2016-09-05 김승묵 A method and electrical conducting heating concrete containing graphene
KR102496923B1 (en) * 2022-10-06 2023-02-08 주식회사 하이퍼콘 Electromagnetic Wave Shielding Concrete with Solid Carbon Capsules and Manufacturing Method
KR102496925B1 (en) * 2022-10-06 2023-02-08 주식회사 하이퍼콘 Heat-generating concrete with solid carbon capsules and manufacturing method
KR102553066B1 (en) * 2022-12-16 2023-07-10 주식회사 하이퍼콘 Method for manufacturing electromagnetic shielding remital using solid carbon capsules and steelmaking slag aggregate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150020318A (en) * 2012-05-16 2015-02-25 주식회사 다이셀 Epoxy-amine adduct, resin composition, sizing agent, carbon fiber coated with sizing agent, and fiber-reinforced composite material
KR101654478B1 (en) 2015-09-03 2016-09-05 김승묵 A method and electrical conducting heating concrete containing graphene
KR102496923B1 (en) * 2022-10-06 2023-02-08 주식회사 하이퍼콘 Electromagnetic Wave Shielding Concrete with Solid Carbon Capsules and Manufacturing Method
KR102496925B1 (en) * 2022-10-06 2023-02-08 주식회사 하이퍼콘 Heat-generating concrete with solid carbon capsules and manufacturing method
KR102553066B1 (en) * 2022-12-16 2023-07-10 주식회사 하이퍼콘 Method for manufacturing electromagnetic shielding remital using solid carbon capsules and steelmaking slag aggregate

Similar Documents

Publication Publication Date Title
CN101239800B (en) Carbon nano-tube enhanced cement-base composite material and preparation method thereof
Lee et al. Thermal response characterization and comparison of carbon nanotube-enhanced cementitious composites
Colorado et al. Chemically bonded phosphate ceramics composites reinforced with graphite nanoplatelets
CN114455874B (en) Preparation method and application of conductive aggregate
CN113024141B (en) Modified carbon fiber, preparation method thereof and modified carbon fiber reinforced cement-based material
KR102496923B1 (en) Electromagnetic Wave Shielding Concrete with Solid Carbon Capsules and Manufacturing Method
Han et al. Multiscale carbon nanosphere–carbon fiber reinforcement for cement-based composites with enhanced high-temperature resistance
KR102440213B1 (en) Electromagnetic wave shielding concrete and its manufacturing method using waste carbon nanotube and waste anode materials
KR102493676B1 (en) Exothermic concrete and its manufacturing method using waste carbon nanotube and waste anode materials
CN104513485A (en) Carbon nanotube/polyetherimide/thermosetting resin dielectric composite material and preparation method thereof
KR102212289B1 (en) Remitar composition for manufacturing exothermic concrete and Method of exothermic concrete using the remitar composition
KR102496925B1 (en) Heat-generating concrete with solid carbon capsules and manufacturing method
KR102648969B1 (en) Heating carbon cement composite composition for floor heating and manufacturing method thereof
KR102212288B1 (en) Exothermic Concrete using Liquid Carbon Nanotubes and Manufacturing Method
KR102493675B1 (en) Exothermic water permeable concrete and its manufacturing method using waste anode materials
CN108275948B (en) Conductive steel tube concrete and preparation method thereof
KR102553066B1 (en) Method for manufacturing electromagnetic shielding remital using solid carbon capsules and steelmaking slag aggregate
CN116462436A (en) Conductive aggregate, intelligent cement composite material, and preparation method and application thereof
KR102127983B1 (en) Self-healing cement composite comprising conductive filler and polymer filler
CN107698738A (en) The preparation method of the epoxy resin composite materials of oxidation modification CB/CFDSF/AG 80
KR102553063B1 (en) Solid Carbon Capsules and Manufacturing Methods
KR102648967B1 (en) Electromagnetic wave shielding concrete composition using industrial by-product and its manufacturing method
Imanian et al. Performance improvement of cement paste loaded with MWCNT–magnetite nanocomposite
CN111423163A (en) Regenerated graphite-cement mortar composite material and preparation method thereof
Ma et al. Property Improvement of Cement Emulsified Asphalt Paste Modified by Graphene Oxide

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant