KR102648840B1 - Composite anode material structure and anode active material for lithium secondary batteries including the same - Google Patents

Composite anode material structure and anode active material for lithium secondary batteries including the same Download PDF

Info

Publication number
KR102648840B1
KR102648840B1 KR1020230190168A KR20230190168A KR102648840B1 KR 102648840 B1 KR102648840 B1 KR 102648840B1 KR 1020230190168 A KR1020230190168 A KR 1020230190168A KR 20230190168 A KR20230190168 A KR 20230190168A KR 102648840 B1 KR102648840 B1 KR 102648840B1
Authority
KR
South Korea
Prior art keywords
silicon
graphene
carbon nanotube
nanotube composite
layer
Prior art date
Application number
KR1020230190168A
Other languages
Korean (ko)
Inventor
양승진
강두인
김민수
김미르
서대훈
Original Assignee
주식회사 비에스지머티리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비에스지머티리얼즈 filed Critical 주식회사 비에스지머티리얼즈
Priority to KR1020230190168A priority Critical patent/KR102648840B1/en
Application granted granted Critical
Publication of KR102648840B1 publication Critical patent/KR102648840B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명의 일실시예는 외부의 피치(pitch) 코팅층을 포함하고, 중심을 포함하는 단면은, 그래핀층; 상기 그래핀층 상에 위치하고 복수개의 탄소나노튜브를 포함하는 탄소나노튜브층; 및 상기 그래핀층 상에 위치하고 상기 탄소나노튜브와 결합된 복수개의 나노 실리콘 입자를 포함하는 나노 실리콘 입자층;을 포함하는, 실리콘-그래핀-탄소나노튜브 복합체를 제공한다. 실리콘-그래핀-탄소나노튜브 복합체의 제조를 통해 음극활물질을 이용하여 리튬 이차전지의 최적의 충방전 용량 및 초기 효율을 달성할 수 있고 사이클(cycle) 특성을 개선할 수 있다.One embodiment of the present invention includes an external pitch coating layer, and the cross section including the center includes a graphene layer; A carbon nanotube layer located on the graphene layer and including a plurality of carbon nanotubes; and a nano silicon particle layer located on the graphene layer and including a plurality of nano silicon particles bonded to the carbon nanotubes. It provides a silicon-graphene-carbon nanotube composite comprising a. Through the production of a silicon-graphene-carbon nanotube composite, optimal charge/discharge capacity and initial efficiency of a lithium secondary battery can be achieved and cycle characteristics can be improved by using a negative electrode active material.

Description

복합 음극재 구조 및 이를 포함하는 리튬 이차 전지용 음극활물질{Composite anode material structure and anode active material for lithium secondary batteries including the same}Composite anode material structure and anode active material for lithium secondary batteries including the same}

본 발명은 복합 음극재 구조 및 이를 포함하는 리튬 이차 전지용 음극활물질에 관한 것으로, 더욱 상세하게는 복합 음극재로서 실리콘-그래핀-탄소나노튜브 복합체 및 이를 포함하는 리튬 이차 전지용 음극활물질에 관한 것이다.The present invention relates to a composite negative electrode material structure and a negative electrode active material for lithium secondary batteries containing the same. More specifically, it relates to a silicon-graphene-carbon nanotube composite as a composite negative electrode material and a negative electrode active material for lithium secondary batteries containing the same.

휴대용 전자기기, 전기차 시장 등의 규모가 확대됨에 따라 충방전이 가능한 이차전지에 대한 연구가 활발히 진행되고 있다. 다양한 종류의 이차전지 중에서 리튬 이차전지는 양극 활물질층을 형성시킨 양극, 음극 활물질층을 형성시킨 음극 및 상기 양극과 음극의 사이에서 전기적으로 절연시키는 세퍼레이터를 가지는 구성이다. 도전제 입자들이 전극 활물질 슬러리 내에서 잘 분산되어야만 전극 활물질층의 이온전도도가 균일하게 유지될 수 있다.As the size of the portable electronic device and electric vehicle markets expands, research on secondary batteries that can be charged and discharged is actively underway. Among various types of secondary batteries, lithium secondary batteries have a positive electrode formed with a positive electrode active material layer, a negative electrode formed with a negative electrode active material layer, and a separator that electrically insulates between the positive electrode and the negative electrode. Only when the conductive agent particles are well dispersed in the electrode active material slurry can the ionic conductivity of the electrode active material layer be maintained uniformly.

그러나 통상적인 분산방법을 이용하는 경우, 전극 활물질 입자와 도전제의 입자 크기의 차이, 비중 등의 차이로 인하여 도전제 입자들이 슬러리 내에 균일하게 분산되기 어렵고, 이로 인하여 전기화학적으로 충방전 특성이 감소하고 안정성, 장기 신뢰성 등 역시도 감소하게 된다.However, when using a typical dispersion method, it is difficult for the conductive agent particles to be uniformly dispersed in the slurry due to differences in particle size and specific gravity between the electrode active material particles and the conductive agent, which leads to a decrease in electrochemical charge and discharge characteristics. Stability and long-term reliability also decrease.

그라파이트 상에 실리콘 입자가 잘 분산되어 있더라도 다소 불균일성이 존재하고, 입자 형태가 팽창흑연이 팽창된 상태 위에 실리콘입자가 존재하여 구상화하기 힘든 부분이 있어 음극활물질로 바로 적용하기에 문제점이 있다는 것이 자체 연구를 통해 밝혀졌다.Even if the silicon particles are well dispersed on the graphite, there is some non-uniformity, and the particle shape is difficult to spheroid due to the presence of silicon particles on the expanded expanded graphite, so there are problems in directly applying it as a negative electrode active material. It was revealed through

이에 분산을 통해 균일성을 향상시킬 필요가 있었는데, 기존의 분산 방법으로 분산된 실리콘-그래핀 복합체의 경우, 실리콘 입자와 그래핀이 무작위로 겹쳐진 구조를 가지게 되어 두께 및 입자 사이즈 제어가 어려우며 실리콘 입자의 응집이 다소 발생하여 전기화학적으로 평가시 충방전특성 및 초기 효율의 감소 및 장기 신뢰성이 미흡되고 실리콘의 충방전시 팽창 수축으로 인하여 실리콘 깨짐이나 탈리되는 문제점이 있다.Accordingly, there was a need to improve uniformity through dispersion. In the case of silicon-graphene composites dispersed using existing dispersion methods, silicon particles and graphene have a randomly overlapping structure, making it difficult to control thickness and particle size, and silicon particles Some agglomeration occurs, resulting in a decrease in charge/discharge characteristics and initial efficiency when electrochemically evaluated, as well as insufficient long-term reliability, and there is a problem of silicon cracking or detachment due to expansion and contraction of silicon during charge and discharge.

KRKR 10-2010-0006409 10-2010-0006409 AA

본 발명이 이루고자 하는 기술적 과제는 리튬 이차전지의 충방전 용량 및 초기 효율을 향상시키고 사이클(cycle) 특성을 구현하기 위한 최적의 음극활물질을 제조할 수 있는 실리콘-그래핀-탄소나노튜브 복합체의 구조를 제공하는 것이다.The technical problem to be achieved by the present invention is the structure of a silicon-graphene-carbon nanotube composite that can improve the charge/discharge capacity and initial efficiency of lithium secondary batteries and manufacture an optimal anode active material to realize cycle characteristics. is to provide.

본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description below. There will be.

상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 외부의 피치(pitch) 코팅층을 포함하고, 중심을 포함하는 단면은, 그래핀층; 상기 그래핀층 상에 위치하고 복수개의 탄소나노튜브를 포함하는 탄소나노튜브층; 및 상기 그래핀층 상에 위치하고 상기 탄소나노튜브와 결합된 복수개의 나노 실리콘 입자를 포함하는 나노 실리콘 입자층;을 포함하는, 실리콘-그래핀-탄소나노튜브 복합체를 제공한다.In order to achieve the above technical problem, one embodiment of the present invention includes an external pitch coating layer, and the cross section including the center includes a graphene layer; A carbon nanotube layer located on the graphene layer and including a plurality of carbon nanotubes; and a nano silicon particle layer located on the graphene layer and including a plurality of nano silicon particles bonded to the carbon nanotubes. It provides a silicon-graphene-carbon nanotube composite comprising a.

본 발명의 실시예에 있어서, 상기 그래핀층의 두께는 1 nm 내지 300 nm인 것을 특징으로 할 수 있다.In an embodiment of the present invention, the thickness of the graphene layer may be 1 nm to 300 nm.

본 발명의 실시예에 있어서, 상기 탄소나노튜브의 길이는 0.1 내지 30 um이고 비표면적은 100 ~ 500 m2/g이고 bulk density는 0.05~0.2 g/cm3이고 순도는 95% 이상이고, 단일벽(Single wall) 또는 다층벽(multi wall)인 것을 특징으로 할 수 있다.In an embodiment of the present invention, the length of the carbon nanotube is 0.1 to 30 um, the specific surface area is 100 to 500 m 2 /g, the bulk density is 0.05 to 0.2 g/cm 3 , the purity is 95% or more, and a single It may be characterized as a single wall or a multi-layer wall.

본 발명의 실시예에 있어서, 상기 피치 코팅층의 두께는 0.05 내지 1 μm 인 것을 특징으로 할 수 있다.In an embodiment of the present invention, the pitch coating layer may have a thickness of 0.05 to 1 μm.

본 발명의 실시예에 있어서, 상기 나노 실리콘의 함유량은 0 초과 85 이하 wt%인 것을 특징으로 할 수 있다. In an embodiment of the present invention, the content of nano silicon may be greater than 0 and less than or equal to 85 wt%.

상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 실시예는 실리콘-그라파이트-탄소나노튜브 융합 전구체를 준비하는 단계; 상기 실리콘-그라파이트-탄소나노튜브 융합 전구체를 플라즈마 처리하는 단계; 상기 플라즈마 처리된 실리콘-그라파이트-탄소나노튜브 융합 전구체를 습식 분쇄 공정으로 분산시켜 박리된 형태의 실리콘-그래핀-탄소나노튜브 복합체를 형성하는 단계; 상기 박리된 형태의 실리콘-그래핀-탄소나노튜브 복합체를 바인더 코팅하는 단계; 및 상기 바인더 코팅된 박리된 형태의 실리콘-그래핀-탄소나노튜브 복합체를 과립화(granulation)하여 과립화된 실리콘-그래핀-탄소나노튜브 복합체를 제조하는 단계;를 포함하는, 실리콘-그래핀-탄소나노튜브 복합체 제조방법을 제공한다.In order to achieve the above technical problem, another embodiment of the present invention includes preparing a silicon-graphite-carbon nanotube fusion precursor; Plasma processing the silicon-graphite-carbon nanotube fusion precursor; forming an exfoliated silicon-graphene-carbon nanotube composite by dispersing the plasma-treated silicon-graphite-carbon nanotube fusion precursor through a wet grinding process; Coating the peeled silicon-graphene-carbon nanotube composite with a binder; And granulating the binder-coated exfoliated silicon-graphene-carbon nanotube composite to produce a granulated silicon-graphene-carbon nanotube composite. Silicon-graphene comprising a. -Provides a method for manufacturing carbon nanotube composites.

본 발명의 실시예에 있어서, 상기 바인더 코팅은 피치액(pitch)을 코팅시키는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the binder coating may be characterized by coating pitch liquid.

본 발명의 실시예에 있어서, 상기 습식 분쇄 공정에서 사용되는 용매는 한센 용해도 인자(Hansen Solubility Parameter)가 17 내지 23 MPa ½ 또는 45 내지 50 MPa ½ 인 것을 특징으로 할 수 있다.In an embodiment of the present invention, the solvent used in the wet grinding process may be characterized as having a Hansen Solubility Parameter of 17 to 23 MPa ½ or 45 to 50 MPa ½.

본 발명의 실시예에 있어서, 상기 습식 분쇄 공정에서 사용되는 용매는 끓는점이 60 내지 160℃ 인 것을 특징으로 할 수 있다.In an embodiment of the present invention, the solvent used in the wet grinding process may have a boiling point of 60 to 160°C.

상기 기술적 과제를 달성하기 위하여, 본 발명의 또 다른 실시예는 상기 실리콘-그래핀-탄소나노튜브 복합체를 포함하는, 리튬 이차전지용 음극활물질을 제공한다.In order to achieve the above technical problem, another embodiment of the present invention provides a negative electrode active material for a lithium secondary battery including the silicon-graphene-carbon nanotube composite.

본 발명의 실시예에 따르면, 실리콘-그래핀-탄소나노튜브 복합체의 제조를 통해 음극활물질을 이용하여 리튬 이차전지의 최적의 충방전 용량 및 초기 효율을 달성할 수 있고 사이클(cycle) 특성을 개선할 수 있다.According to an embodiment of the present invention, the optimal charge/discharge capacity and initial efficiency of a lithium secondary battery can be achieved using a negative electrode active material through the production of a silicon-graphene-carbon nanotube composite, and cycle characteristics can be improved. can do.

본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the effects described above, and should be understood to include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.

도1은 실리콘-그래핀-탄소나노튜브 복합체 단면의 모식도이다.
도2는 (a)실리콘-탄소나노튜브, (b)실리콘-그래핀, (c)실리콘-그래핀-탄소나노튜브 융합전구체 구성에 따른 모식도이다.
도3은 실리콘-그래핀-탄소나노튜브 복합체의 모식도이다.
도4는 실리콘-그래핀-탄소나노튜브 복합체 단면의 FE-SEM 이미지이다.
도5는 (a)비교예와 (b)실시예의 전기화학 평가에 대한 그래프이다.
도6은 비교예와 실시예의 cycle retention 그래프이다.
Figure 1 is a schematic diagram of the cross section of a silicon-graphene-carbon nanotube composite.
Figure 2 is a schematic diagram according to the configuration of (a) silicon-carbon nanotube, (b) silicon-graphene, and (c) silicon-graphene-carbon nanotube fusion precursor.
Figure 3 is a schematic diagram of a silicon-graphene-carbon nanotube composite.
Figure 4 is an FE-SEM image of a cross section of a silicon-graphene-carbon nanotube composite.
Figure 5 is a graph of electrochemical evaluation of (a) Comparative Example and (b) Example.
Figure 6 is a cycle retention graph of comparative examples and examples.

이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the attached drawings. However, the present invention may be implemented in various different forms and, therefore, is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts that are not related to the description are omitted, and similar parts are given similar reference numerals throughout the specification.

명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, combined)" with another part, this means not only "directly connected" but also "indirectly connected" with another member in between. "Includes cases where it is. Additionally, when a part is said to “include” a certain component, this does not mean that other components are excluded, but that other components can be added, unless specifically stated to the contrary.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.

이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings.

본 명세서에 사용된 용어들은 다음과 같이 정의된다.Terms used in this specification are defined as follows.

“복합 음극재”는 실리콘-그래핀-탄소나노튜브 복합체를 의미한다.“Composite cathode material” refers to a silicon-graphene-carbon nanotube composite.

도1은 실리콘-그래핀-탄소나노튜브 복합체 단면의 모식도이다. Figure 1 is a schematic diagram of the cross section of a silicon-graphene-carbon nanotube composite.

도2는 (a)실리콘-탄소나노튜브, (b)실리콘-그래핀, (c)실리콘-그래핀-탄소나노튜브 융합전구체 구성에 따른 모식도이다.Figure 2 is a schematic diagram according to the configuration of (a) silicon-carbon nanotube, (b) silicon-graphene, and (c) silicon-graphene-carbon nanotube fusion precursor.

도3은 실리콘-그래핀-탄소나노튜브 복합체의 모식도이다.Figure 3 is a schematic diagram of a silicon-graphene-carbon nanotube composite.

도1 내지 도3을 참고하여 본 발명의 실시예에 따른 실리콘-그래핀-탄소나노튜브 복합체를 설명한다.A silicon-graphene-carbon nanotube composite according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.

본 발명의 일 실시예에 따른 실리콘-그래핀-탄소나노튜브 복합체는 외부의 피치(pitch) 코팅층을 포함하고, 중심을 포함하는 단면은, 그래핀층; 상기 그래핀층 상에 위치하고 복수개의 탄소나노튜브를 포함하는 탄소나노튜브층; 및 상기 그래핀층 상에 위치하고 상기 탄소나노튜브와 결합된 복수개의 나노 실리콘 입자를 포함하는 나노 실리콘 입자층;을 포함할 수 있다.The silicon-graphene-carbon nanotube composite according to an embodiment of the present invention includes an external pitch coating layer, and the cross section including the center includes a graphene layer; A carbon nanotube layer located on the graphene layer and including a plurality of carbon nanotubes; and a nano-silicon particle layer located on the graphene layer and including a plurality of nano-silicon particles bonded to the carbon nanotubes.

그래핀층의 두께는 1 nm 내지 300 nm일 수 있다. 두께가 300nm 이상일 경우, 나노 Si의 고른 분산 보다는 일부 나노 Si의 응집 및 조대화된 입자성장이 되어 최종 복합재 전기화학 평가시 팽창이 커지게 되어 전기화학 평가중 장기 신뢰성에 안좋은 영향을 나타낸다.The thickness of the graphene layer may be 1 nm to 300 nm. If the thickness is more than 300 nm, some nano-Si agglomerates and grows coarse grains rather than evenly dispersing nano-Si, resulting in increased expansion during electrochemical evaluation of the final composite, which has a negative impact on long-term reliability during electrochemical evaluation.

탄소나노튜브의 길이는 0.1 내지 30 μm이고 비표면적은 100 ~ 500 m2/g이고 bulk density는 0.05~0.2 g/cm3이고 순도는 95% 이상이고, 단일벽(Single wall) 또는 다층벽(multi wall)일 수 있다. 탄소나노튜브의 길이가 0.1um보다 작을 경우, 나노 Si과 인접한 나노 Si간의 얽힘(entanglements)이 이뤄지지 않을 수 있어 최종 복합체 전기화학 평가시 나노 Si의 탈리를 막을 수 없으며, 그래핀-그래핀 층간 전도 네트워크도 형성이 어려워져 탄소나노튜브에서 적절한 범위의 사이즈가 필요로 한다. 30 um 이상의 탄소나노 튜브를 사용할 경우, 최적의 얽힘보다는 자체적인 얽힘이 커져 효과가 급감하여 30um이하의 길이가 적절하다. 단일벽 및 다층벽의 경우 단일벽이 성능이 우수하나 탄소나노튜브의 고유의 높은 전도성을 갖는 다층벽 탄소나노튜브의 적용도 가능하다.Carbon nanotubes have a length of 0.1 to 30 μm, a specific surface area of 100 to 500 m 2 /g, a bulk density of 0.05 to 0.2 g/cm 3 , a purity of 95% or more, and a single wall or multi-layer wall ( It can be multi wall). If the length of the carbon nanotube is less than 0.1um, entanglements between nano Si and adjacent nano Si may not be achieved, so detachment of nano Si cannot be prevented during electrochemical evaluation of the final composite, and graphene-graphene interlayer conduction may not be achieved. Network formation has also become difficult, and an appropriate range of sizes is required for carbon nanotubes. When using carbon nanotubes longer than 30 um, the effect decreases rapidly due to self-entanglement becoming larger than the optimal entanglement, so a length of 30 um or less is appropriate. In the case of single-wall and multi-layer walls, single-wall has excellent performance, but multi-wall carbon nanotubes, which have the inherent high conductivity of carbon nanotubes, can also be applied.

팽창흑연의 비표면적이 10~100m2/g인데 반해 탄소나노튜브의 경우 팽창흑연보다 더 높은 100~500m2/g의 높은 비표면적 값을 갖게 되어 Si의 응축사이트가 많아져 Si 85wt% 까지 나노 Si으로 응축이 가능하다. While the specific surface area of expanded graphite is 10 to 100 m 2 /g, carbon nanotubes have a higher specific surface area value of 100 to 500 m 2 /g, which is higher than that of expanded graphite, increasing the number of condensation sites for Si, resulting in nano nanoscale up to 85 wt% of Si. Condensation into Si is possible.

피치 코팅층의 두께는 0.05 내지 1 μm 일 수 있다.The thickness of the pitch coating layer may be 0.05 to 1 μm.

나노 실리콘의 함유량은 0 초과 85 이하 wt%일 수 있다. Si이 85 wt%보다 높게 혼합될 경우, Si의 과다로 나노 실리콘으로 응축되는 것이 아니라 융합 전구체에서 나노 Si간 성장이 다수 발생하여 μm급 Si가 형성될 가능성이 매우 커진다. The content of nano silicon may be greater than 0 and less than or equal to 85 wt%. When Si is mixed higher than 85 wt%, rather than condensing into nano-silicon due to excessive Si, growth between nano-Si occurs in large quantities in the fusion precursor, greatly increasing the possibility of μm-level Si being formed.

이하 본 발명의 다른 실시예에 따른 실리콘-그래핀-탄소나노튜브 복합체 제조방법을 설명한다.Hereinafter, a method for manufacturing a silicon-graphene-carbon nanotube composite according to another embodiment of the present invention will be described.

본 발명의 일 실시예에 따른 실리콘-그래핀-탄소나노튜브 복합체 제조방법은 실리콘-그라파이트-탄소나노튜브 융합 전구체를 준비하는 단계; 상기 실리콘-그라파이트-탄소나노튜브 융합 전구체를 플라즈마 처리하는 단계; 상기 플라즈마 처리된 실리콘-그라파이트-탄소나노튜브 융합 전구체를 습식 분쇄 공정으로 분산시켜 박리된 형태의 실리콘-그래핀-탄소나노튜브 복합체를 형성하는 단계; 상기 박리된 형태의 실리콘-그래핀-탄소나노튜브 복합체를 바인더 코팅하는 단계; 및 상기 바인더 코팅된 박리된 형태의 실리콘-그래핀-탄소나노튜브 복합체를 과립화(granulation)하여 과립화된 실리콘-그래핀-탄소나노튜브 복합체를 제조하는 단계;를 포함할 수 있다.A method for manufacturing a silicon-graphene-carbon nanotube composite according to an embodiment of the present invention includes preparing a silicon-graphite-carbon nanotube fusion precursor; Plasma processing the silicon-graphite-carbon nanotube fusion precursor; forming an exfoliated silicon-graphene-carbon nanotube composite by dispersing the plasma-treated silicon-graphite-carbon nanotube fusion precursor through a wet grinding process; Coating the peeled silicon-graphene-carbon nanotube composite with a binder; and granulating the binder-coated, exfoliated silicon-graphene-carbon nanotube composite to produce a granulated silicon-graphene-carbon nanotube composite.

먼저는 실리콘-그라파이트-탄소나노튜브 융합 전구체를 준비하는 단계이다. 실리콘은 μm급 무정형 Si이거나 태양전지 잉곳 제조시 부산물로 나오는 실리콘 슬러지로 서브 미크론(submicron)급 슬러지를 활용할 수 있다. 그라파이트는 판상흑연(flaked graphite)을 강산(acid)으로 인터컬레이션(intercalation) 시킨 팽창흑연을 사용할 수 있다. Si 분말 0 초과 85 이하 wt%와 팽창흑연 99.9~15 wt%, 탄소나노튜브 20~0 wt% 원료를 혼합기로 혼합하여 Si-팽창흑연 혼합분을 만들 수 있다. 상기 실리콘의 함유량은 0 초과 85 이하 wt%이되, 상기 실리콘의 함유량은 융합 전구체 단독 적용, 융합 전구체와 실리콘의 혼합 적용, 또는 팽창 흑연, 탄소나노튜브와 실리콘의 혼합 적용된 복합체의 경우일 수 있다. 여기서 팽창흑연의 비표면적이 10~100m2/g인데 탄소나노튜브의 경우 팽창흑연보다 더 높은 100~500m2/g의 높은 비표면적 값을 갖게 되어 Si의 응축사이트가 많아져 Si 85wt% 까지 나노 Si으로 응축이 가능하다. Si이 85wt%보다 높게 혼합될 경우, Si의 과다로 나노 실리콘으로 응축되는 것이 아니라 융합 전구체에서 나노 Si간 성장이 다수 발생하여 μm급 Si가 형성될 가능성이 매우 커진다. The first step is to prepare the silicon-graphite-carbon nanotube fusion precursor. Silicon can be μm-level amorphous Si or submicron-level silicon sludge, which is a by-product of solar cell ingot manufacturing. Graphite can be expanded graphite obtained by intercalating flaked graphite with a strong acid. Si-expanded graphite mixed powder can be made by mixing 0 to 85 wt% of Si powder, 99.9 to 15 wt% of expanded graphite, and 20 to 0 wt% of carbon nanotubes using a mixer. The silicon content is greater than 0 and 85 wt% or less, and the silicon content may be a fusion precursor alone, a mixture of a fusion precursor and silicon, or a composite of expanded graphite, carbon nanotubes, and silicon. Here, the specific surface area of expanded graphite is 10 to 100 m 2 /g, but in the case of carbon nanotubes, it has a higher specific surface area value of 100 to 500 m 2 /g, which is higher than that of expanded graphite, and the number of condensation sites for Si increases, resulting in nano nanoscale up to 85 wt% of Si. Condensation into Si is possible. If Si is mixed higher than 85wt%, rather than condensing into nano-silicon due to excessive Si, growth between nano-Si occurs in large quantities in the fusion precursor, greatly increasing the possibility of μm-level Si being formed.

여기서 융합전구체 제조시 사용된 탄소나노튜브의 경우,, 단일벽(single wall) 이거나 다중벽(multi wall)로 이루어져 있으며, 주요 물성으로는 Bulk density가 0.05~0.2 g/cm3이며, 비표면적이 100~500m2/g이며 순도는 95% 이상의 재료를 사용하였다.Here, in the case of carbon nanotubes used in manufacturing the fusion precursor, they are single wall or multi wall, and the main physical properties are bulk density of 0.05 to 0.2 g/cm 3 and specific surface area. Materials with a purity of 100 to 500 m 2 /g and over 95% were used.

다음은 상기 실리콘-그라파이트-탄소나노튜브 융합 전구체를 플라즈마 처리하는 단계이다.Next is the step of plasma processing the silicon-graphite-carbon nanotube fusion precursor.

상기 실리콘-그라파이트-탄소나노튜브 융합 전구체를 플라즈마 처리하는 단계는 20kW로 N2 purge하여 DC 플라즈마 처리하여 Si의 기화를 발생시키고 동시에 팽창흑연이 팽창하면서 팽창된 팽창흑연 층과 층 사이와 탄소나노튜브 번들 표면에 nano size의 Si이 응축되어 최종적으로 플라즈마 처리된 실리콘, 그라파이트와 탄소나노튜브가 결합된 융합 전구체를 얻을 수 있다.In the step of plasma treating the silicon-graphite-carbon nanotube fusion precursor, N 2 purge at 20 kW and DC plasma treatment are performed to generate vaporization of Si, and at the same time, as the expanded graphite expands, the expanded graphite layer is expanded between the layers and the carbon nanotube. Nano-sized Si is condensed on the surface of the bundle, ultimately yielding a fusion precursor combining plasma-treated silicon, graphite, and carbon nanotubes.

다음은 상기 플라즈마 처리된 실리콘-그라파이트-탄소나노튜브 융합 전구체를 습식 분쇄 공정으로 분산시켜 박리된 형태의 실리콘-그래핀-탄소나노튜브 복합체를 형성하는 단계이다. The next step is to disperse the plasma-treated silicon-graphite-carbon nanotube fusion precursor through a wet grinding process to form an exfoliated silicon-graphene-carbon nanotube composite.

상기 분쇄 공정은 습식 분쇄 공정인 것을 특징으로 할 수 있다. 기존의 건식 분쇄 공정으로 실리콘-그라파이트 융합 전구체를 분산할 경우 그라파이트의 박리 상태(판상흑연/그래핀)가 균일하지 않아 두께 및 입자 사이즈 제어가 어려우며 실리콘 입자의 응집이 발생하여 전기화학적으로 평가 시 충방전 특성 및 초기 효율의 감소 및 장기 신뢰성이 미흡하게 될 수 있다.The grinding process may be characterized as a wet grinding process. When dispersing the silicon-graphite fusion precursor using the existing dry grinding process, the exfoliation state of the graphite (platelet graphite/graphene) is not uniform, making it difficult to control the thickness and particle size, and agglomeration of silicon particles occurs, creating problems during electrochemical evaluation. Discharge characteristics and initial efficiency may decrease and long-term reliability may become insufficient.

상기 습식 분쇄 공정에서 사용되는 용매는 수계 및 유기계 용매 중 단일 성분이거나 혼합이 가능한 용매의 조합이 될 수 있다. 물을 비롯하여 에탄올, 이소프로판올, N-뷰탄올 아밀 알코올, 사이클로헥산올 등을 포함하는 알코올계, 아세톤, MEK, MIBK, 사이클로헥사논과 같은 케톤류, 에틸 아세테이트, 이소프로판올 아세테이트, N-뷰틸 아세테이트, 아밀 아세테이트 등을 포함하는 에스테르계, 미네랄 스피릿(Mineral spirit), 헵테인, 사이클로헥세인, 톨루엔, 크실렌(Xylen) 등을 포함하는 하이드로카본(Hydrocarbon)계, 뷰틸 셀로솔브(Butyl cellosolve), 에틸 셀로솔브(Ethyl cellosolve), 아세테이트, 뷰틸 카비톨(Butyl carbitol), 뷰틸 카비톨 아세테이트(Butyl carbitol acetate) 등을 포함하는 글리코에테르 아세테이트(Glycolether Acetate)계, 1.1.1-트리클로로에탄(1.1.1-TCE), TCE, EDC(1,2-dichloroethane) 등을 포함하는 할로겐화 탄화수소(Halogenated hydrocarbon)계, 테트라하이드로퓨란 (Tetrahydrofuran) 등을 포함하는 퓨란(Furan)계, NMP(N-Methyl-2-pyrrolidone) 등을 포함하는 Lactam계 등의 용매가 사용될 수 있다.The solvent used in the wet grinding process may be a single component among aqueous and organic solvents or a combination of miscible solvents. Alcohols including water, ethanol, isopropanol, N-butanol amyl alcohol, cyclohexanol, etc., ketones such as acetone, MEK, MIBK, cyclohexanone, ethyl acetate, isopropanol acetate, N-butyl acetate, amyl acetate, etc. Ester series containing, mineral spirit, heptane, cyclohexane, toluene, hydrocarbon series containing xylene, butyl cellosolve, ethyl cellosolve, etc. cellosolve), acetate, butyl carbitol, glycoether acetate series including butyl carbitol acetate, 1.1.1-trichloroethane (1.1.1-TCE), Halogenated hydrocarbons including TCE and EDC (1,2-dichloroethane), furans including tetrahydrofuran, NMP (N-Methyl-2-pyrrolidone), etc. Solvents containing Lactam-based solvents may be used.

최적 용매의 조건으로는, 끓는점(boiling point)은 60~160℃ 사이가 바람직하며, 용매의 한센 용해도 인자(Hansen Solubility Parameter, MPa  ½ )는 17~23 사이 또는 45~50 사이가 바람직하다. 더욱 바람직하게는 18~22사이 또는 47~48 사이 일 수 있다. As conditions for the optimal solvent, the boiling point is preferably between 60 and 160°C, and the solvent's Hansen Solubility Parameter (MPa)  ½ ) is preferably between 17 and 23 or between 45 and 50. More preferably, it may be between 18 and 22 or between 47 and 48.

이를 만족하는 용매로서는 Acetaldoxime, Acetic acid, Acetic anhydride, Acetonecyanhydrin, N-Acetyl caprolactam, Acetylacetone, Acetylbromide, Allyl acetate, Arryl acetoacetate, Allyl Alcohol, Amyl acetate, Benzene, N-benzyl pyrrolidone, 4-bromo-1-butene, 1-butanethiol, 2-buanol, 1-butene, Carbon tetrachl oride, Chloro acetaldehyde, Cyclohexanone, Cyclohexanol, 2-chloro allyl alcohol, 4-chloro-1,2- butadiene, 1-chloro-2-butene, Ethanol, Isoamyl acetate, Methyl ethyl ketone, Isoamyl alcohol, Xylene, Tetrahydrofuran, Toluene, , Water 인 것들로, 이들 용매를 단독 혹은 혼합하여 사용하는 것이 바람직하다.Solvents that satisfy this requirement include Acetaldoxime, Acetic acid, Acetic anhydride, Acetonecyanhydrin, N-Acetyl caprolactam, Acetylacetone, Acetylbromide, Allyl acetate, Arryl acetoacetate, Allyl Alcohol, Amyl acetate, Benzene, N-benzyl pyrrolidone, 4-bromo-1-butene. , 1-butanethiol, 2-buanol, 1-butene, Carbon tetrachl oride, Chloro acetaldehyde, Cyclohexanone, Cyclohexanol, 2-chloro allyl alcohol, 4-chloro-1,2-butadiene, 1-chloro-2-butene, Ethanol, These solvents are Isoamyl acetate, Methyl ethyl ketone, Isoamyl alcohol, Xylene, Tetrahydrofuran, Toluene, and Water. It is preferable to use these solvents alone or in combination.

한센 용해도 인자(Hansen Solubility Parameter)는 1966년 Charles M. Hansen이 개발한 용매별 고유한 값으로서, 3가지 매개변수인 분산력 구성 요소, 수소 결합 구성 요소, 말단 극성 구성 요소로 구성될 수 있다. 이때 Total Solubility Parameter는 아래 식과 같이 계산할 수 있다.The Hansen Solubility Parameter is a unique value for each solvent developed by Charles M. Hansen in 1966, and can be composed of three parameters: a dispersion force component, a hydrogen bond component, and a terminal polarity component. At this time, the Total Solubility Parameter can be calculated as follows:

HANSEN SOLUBILITY PARAMETERS (HSP)HANSEN SOLUBILITY PARAMETERS (HSP)

d2 = dD2 + dP2 + dH2 d 2 = dD 2 + dP 2 + dH 2

d = 응집에너지 밀도의 제곱근d = square root of coherent energy density

δD: 분산력에 유래하는 에너지δD: Energy derived from dispersion force

δP: 극성에 유래하는 에너지δP: Energy derived from polarity

δH: 수소결합력에 유래하는 에너지δH: Energy derived from hydrogen bonding force

상기 습식 분쇄 공정은 플라즈마에서 수득된 융합 전구체를 화학적으로 활성화(Activation)시키는 것을 특징으로 할 수 있다.The wet grinding process may be characterized by chemically activating the fusion precursor obtained in plasma.

활성화를 위하여 표면에 유무기 분산을 할 수 있는 isopropyl di(dioctylphosphite) titanate, tetraoctyl bis(ditridecylphosphite)titanate, isopropyl triisostearoyl titanat와 같은 티타네이트계 커플링제(Coupling agent)와 ,Vinyltrimethoxysilane, 3-Aminopropyltriethoxysilane, 3-(Trimethoxysilyl)propylsuccinic anhydride와 같은 실란 커플링제, Stearic Acid, Palmitic acid, Oleic Acid와 같은 지방산 류 및 아크릴레이트 공중합체(Acrylate copolymer), 안료 친화형 그룹을 갖는 공중합체, 알킬나프탈렌술폰산나트륨, 폴리아크릴산나트륨, 올레핀-말레인산나트륨 공중합체, 카르복시메틸셀룰로스, 알킬벤젠(나프탈렌)술폰산염, 지방산아미드, 폴리옥시에틸렌 알킬아민, 알킬아민(초산염,지방산염), 알킬2급(3급) 아민(아미드), 알킬이미다졸린과 같은 아민유도체와 잔탄검, 자당 지방산 에스테르, 글리세린 지방산 에스테르, 프로필렌 글리콜 지방산 에스테르, 폴리비닐피돌리돈,, 폴리에틸렌-플리프로필렌 글리콜 등의 유화제 및 알킬페놀, 지방산, 고급지방산아민 등의 고분자형 분산제를 첨가하여 무기 Si/Graphite/CNT를 용매 내에 분산이 가능하게 활성화 시킬 수 있다.For activation, titanate-based coupling agents such as isopropyl di(dioctylphosphite) titanate, tetraoctyl bis(ditridecylphosphite)titanate, and isopropyl triisostearoyl titanate, which can disperse organic and inorganic substances on the surface, Vinyltrimethoxysilane, 3-Aminopropyltriethoxysilane, 3- Silane coupling agents such as (Trimethoxysilyl)propylsuccinic anhydride, fatty acids such as stearic acid, palmitic acid, and oleic acid, and acrylate copolymer, copolymers with pigment affinity groups, sodium alkylnaphthalenesulfonate, sodium polyacrylate , olefin-sodium maleate copolymer, carboxymethyl cellulose, alkylbenzene (naphthalene) sulfonate, fatty acid amide, polyoxyethylene alkylamine, alkylamine (acetate, fatty acid salt), alkyl secondary (tertiary) amine (amide), Amine derivatives such as alkyl imidazolines, xanthan gum, sucrose fatty acid ester, glycerin fatty acid ester, propylene glycol fatty acid ester, polyvinyl pyridolidone, polyethylene-polypropylene glycol, emulsifiers, alkyl phenols, fatty acids, higher fatty acid amines, etc. By adding a polymer-type dispersant, inorganic Si/Graphite/CNT can be activated to enable dispersion in the solvent.

상기 습식 분쇄 공정은 활성화시킨 슬러리를 전단력(shear stress)과 공동현상(Cavitation)을 가하는 장비를 사용하여 융합 전구체를 균질화하는 것을 특징으로 할 수 있다. The wet grinding process may be characterized by homogenizing the fusion precursor using equipment that applies shear stress and cavitation to the activated slurry.

다음은 상기 박리된 형태의 실리콘-그래핀-탄소나노튜브 복합체를 바인더 코팅하는 단계이다.The next step is to coat the peeled silicon-graphene-carbon nanotube composite with a binder.

바인더 코팅은 과립화(granulation)을 위한 코팅 과정이다. 바인더는 용매에 용해되는 수지로 박리된 입자에 코팅 및 과립화(granulation)시 바인딩 역할을 하는 수지로 열가소성 수지, 열 경화성 수지, 피치(Pitch) 및 하이드로카본 수지계 수지가 적용된다. 열가소성 바인더는 아크릴(Acryl), 에틸 셀룰로오스(Ethyl cellulose), 폴리에스테르 (Polyester), 폴리설폰(Polysulfone), 페녹시(Phenoxy), 폴리아미드계(Polyamide)들 중 하나이거나 또는 적어 도 2개 이상의 혼합물로 구성될 수 있고, 열경화성 바인더는 아미노(Amino), 에폭시(Epoxy), 페놀(Phenol)들 중 하나이거나 또는 적어도 2개 이상의 혼합물로 구성될 수 있다. 피치는 석탄계 혹은 석유계 피치가 사용이 가능하다. 본 실시예에서는 콜타르 피치를 복합체 대비 10wt% 추가하여 혼합기를 활용하여 혼합하였다.Binder coating is a coating process for granulation. The binder is a resin that dissolves in a solvent and plays a binding role during coating and granulation of exfoliated particles. Thermoplastic resins, thermosetting resins, pitch and hydrocarbon resins are used. The thermoplastic binder is one of Acryl, Ethyl cellulose, Polyester, Polysulfone, Phenoxy, and Polyamide, or a mixture of at least two of them. It may be composed of, and the thermosetting binder may be one of amino, epoxy, and phenol, or a mixture of at least two or more. Pitch can be either coal-based or petroleum-based pitch. In this example, 10 wt% of coal tar pitch was added compared to the composite and mixed using a mixer.

다음은 상기 바인더 코팅된 박리된 형태의 실리콘-그래핀-탄소나노튜브 복합체를 과립화(granulation)하여 과립화된 실리콘-그래핀-탄소나노튜브 복합체를 제조하는 단계이다.The next step is to granulate the binder-coated, exfoliated silicon-graphene-carbon nanotube composite to produce a granulated silicon-graphene-carbon nanotube composite.

바인더가 코팅된 입자를 구형화를 위하여 원하는 회전력을 얻기 위하여 장비를 활용하는데, 볼밀(Ball mill), 어트리션 밀(attrition mill), 페이스트 믹서(Paste mixer) 및 회전력을 조절할 수 있는 초미립 분쇄기나 입자를 회전력으로 다질 수 있는 메카노퓨전(mechano fusion) 등 작업 rpm과 공정 시간을 제어하여 구형화가 가능하다. Equipment is used to obtain the desired rotational force to spheroidize the binder-coated particles, including a ball mill, attrition mill, paste mixer, and an ultra-fine grinder that can control the rotational force. Spheronization is possible by controlling the working rpm and process time, such as through mechano fusion, which can compact particles with rotational force.

이하 본 발명의 또 다른 실시예에 따른 리튬 이차전지용 음극활물질을 설명한다.Hereinafter, a negative electrode active material for a lithium secondary battery according to another embodiment of the present invention will be described.

본 발명의 일 실시예에 따른 리튬 이차전지용 음극활물질은 상기 실리콘-그래핀-탄소나노튜브 복합체를 포함할 수 있다.A negative electrode active material for a lithium secondary battery according to an embodiment of the present invention may include the silicon-graphene-carbon nanotube composite.

분산을 통하여 기공이 없고 응집이 되지 않은 균일한 분포를 나타내는 상기 실리콘-그래핀-탄소나노튜브 복합체로 이루어진 음극활물질은 리튬 이차전지의 최적의 충방전 용량 및 초기 효율율 달성할 수 있고, 사이클(cycle) 특성을 구현할 수 있다.The anode active material made of the silicon-graphene-carbon nanotube composite, which exhibits a uniform distribution without pores and without agglomeration through dispersion, can achieve optimal charge/discharge capacity and initial efficiency of a lithium secondary battery, and can achieve cycle ( cycle) characteristics can be implemented.

이하 본 발명의 실시예 및 실험예를 상세히 설명하기로 한다.Hereinafter, examples and experimental examples of the present invention will be described in detail.

<실시예><Example>

High shear mixer, ball mill, attrition mill, high pressure homogenizer, three roll mill, basket mill, apex mill, paste mixer, planetary mixer, spike mill, ultrasonic 중 선택하여 분산을 진행한다. 본 발명에서는 Basket mill 3000rpm, 2hr, Zirconia ball 0.4mm을 적용하여 1차 분산을 진행하였으며, 이후 4000 Watt급 초음파 분산기를 적용하여 흑연과 Si을 추가 박리하였다. 이후 High shear를 가할 수 있는 장비를 추가하면 더 큰 박리도를 얻을 수 있다.Proceed with dispersion by selecting among high shear mixer, ball mill, attrition mill, high pressure homogenizer, three roll mill, basket mill, apex mill, paste mixer, planetary mixer, spike mill, and ultrasonic. In the present invention, primary dispersion was performed by applying a Basket mill at 3000 rpm, 2 hr, and Zirconia ball 0.4 mm, and then graphite and Si were further separated by applying a 4000 Watt class ultrasonic disperser. If equipment capable of applying high shear is added later, a greater degree of peeling can be obtained.

표 1은 제조공정에 따른 기존 비교예와 제조예의 공정 조건을 도시하였다. 플라즈마 처리 및 활성화(Activation)를 위하여 안료친화적 공중합체 분산제를 적용하였으며, 끓는점이 60~160℃ 사이이며 Hansen solubility parameter의 차이를 두어 코인half셀을 제조하였다.Table 1 shows the process conditions of existing comparative examples and manufacturing examples according to the manufacturing process. A pigment-friendly copolymer dispersant was applied for plasma treatment and activation, and coin half cells were manufactured by varying the boiling point between 60 and 160°C and the Hansen solubility parameter.

<실험예1> 분산에 따른 실리콘-그래핀-탄소나노튜브 복합체의 단면<Experimental Example 1> Cross section of silicon-graphene-carbon nanotube composite according to dispersion

도4는 실리콘-그래핀-탄소나노튜브 복합체 단면의 FE-SEM 이미지이다. 도4를 참고하면, 그래핀층 상에 균일하게 분산되어 분포된 실리콘 입자층 및 실리콘을 여러방향으로 감고 있는 탄소나노튜브층이 관찰된 것을 확인할 수 있다.Figure 4 is an FE-SEM image of a cross section of a silicon-graphene-carbon nanotube composite. Referring to Figure 4, it can be seen that a layer of silicon particles uniformly dispersed and distributed on the graphene layer and a layer of carbon nanotubes wrapping the silicon in various directions were observed.

<실험예2> 전기화학 평가<Experimental Example 2> Electrochemical evaluation

도5는 (a)비교예와 (b)실시예의 전기화학 평가에 대한 그래프이다. 도6은 비교예와 실시예의 cycle retention 그래프이다. 표2는 이들의 데이터를 나타낸 것이다.Figure 5 is a graph of electrochemical evaluation of (a) Comparative Example and (b) Example. Figure 6 is a cycle retention graph of comparative examples and examples. Table 2 shows these data.

이를 통해 실리콘-그래핀-탄소나노튜브 복합체를 활용하여 제조된 혼합전극의 경우 음극활물질로 적용하였을 때 초기 방전용량, 초기효율 및 사이클 용량변화 및 용량유지율이 향상됨을 확인할 수 있다.Through this, it can be confirmed that in the case of a mixed electrode manufactured using a silicon-graphene-carbon nanotube composite, the initial discharge capacity, initial efficiency, cycle capacity change, and capacity maintenance rate are improved when applied as a negative electrode active material.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The description of the present invention described above is for illustrative purposes, and those skilled in the art will understand that the present invention can be easily modified into other specific forms without changing the technical idea or essential features of the present invention. will be. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. For example, each component described as single may be implemented in a distributed manner, and similarly, components described as distributed may also be implemented in a combined form.

본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the patent claims described below, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present invention.

Claims (10)

외부의 피치(pitch) 코팅층을 포함하고,
중심을 포함하는 단면은,
그래핀층;
상기 그래핀층 상에 위치하고 복수개의 탄소나노튜브를 포함하는 탄소나노튜브층; 및
상기 그래핀층 상에 위치하고 상기 탄소나노튜브와 결합된 복수개의 나노 실리콘 입자를 포함하는 나노 실리콘 입자층;을 포함하는, 실리콘-그래핀-탄소나노튜브 복합체.
Includes an external pitch coating layer,
The cross section containing the center is
Graphene layer;
A carbon nanotube layer located on the graphene layer and including a plurality of carbon nanotubes; and
A silicon-graphene-carbon nanotube composite comprising a nano-silicon particle layer located on the graphene layer and including a plurality of nano-silicon particles bonded to the carbon nanotubes.
제1항에 있어서,
상기 그래핀층의 두께는 1 nm 내지 300 nm인 것을 특징으로 하는, 실리콘-그래핀-탄소나노튜브 복합체.
According to paragraph 1,
A silicon-graphene-carbon nanotube composite, characterized in that the thickness of the graphene layer is 1 nm to 300 nm.
제1항에 있어서,
상기 탄소나노튜브의 길이는 0.1 내지 30 um이고 비표면적은 100 ~ 500 m2/g이고 bulk density는 0.05~0.2 g/cm3이고 순도는 95% 이상이고, 단일벽(Single wall) 또는 다층벽(multi wall)인 것을 특징으로 하는, 실리콘-그래핀-탄소나노튜브 복합체.
According to paragraph 1,
The carbon nanotubes have a length of 0.1 to 30 um, a specific surface area of 100 to 500 m 2 /g, a bulk density of 0.05 to 0.2 g/cm 3 , a purity of 95% or more, and a single wall or multi-layer wall. A silicon-graphene-carbon nanotube composite, characterized in that it is (multi wall).
제1항에 있어서,
상기 피치 코팅층의 두께는 0.05 내지 1 μm 인 것을 특징으로 하는, 실리콘-그래핀-탄소나노튜브 복합체.
According to paragraph 1,
A silicon-graphene-carbon nanotube composite, characterized in that the thickness of the pitch coating layer is 0.05 to 1 μm.
제1항에 있어서,
실리콘 함유량은 0 초과 85 이하 wt%인 것을 특징으로 하는, 실리콘-그래핀-탄소나노튜브 복합체.
According to paragraph 1,
A silicon-graphene-carbon nanotube composite, characterized in that the silicon content is more than 0 and less than 85 wt%.
실리콘-그라파이트-탄소나노튜브 융합 전구체를 준비하는 단계;
상기 실리콘-그라파이트-탄소나노튜브 융합 전구체를 플라즈마 처리하는 단계;
상기 플라즈마 처리된 실리콘-그라파이트-탄소나노튜브 융합 전구체를 습식 분쇄 공정으로 분산시켜 박리된 형태의 실리콘-그래핀-탄소나노튜브 복합체를 형성하는 단계;
상기 박리된 형태의 실리콘-그래핀-탄소나노튜브 복합체를 바인더 코팅하는 단계; 및
상기 바인더 코팅된 박리된 형태의 실리콘-그래핀-탄소나노튜브 복합체를 과립화(granulation)하여 과립화된 실리콘-그래핀-탄소나노튜브 복합체를 제조하는 단계;를 포함하는, 실리콘-그래핀-탄소나노튜브 복합체 제조방법.
Preparing a silicon-graphite-carbon nanotube fusion precursor;
Plasma processing the silicon-graphite-carbon nanotube fusion precursor;
forming an exfoliated silicon-graphene-carbon nanotube composite by dispersing the plasma-treated silicon-graphite-carbon nanotube fusion precursor through a wet grinding process;
Coating the peeled silicon-graphene-carbon nanotube composite with a binder; and
Granulating the binder-coated exfoliated silicon-graphene-carbon nanotube composite to produce a granulated silicon-graphene-carbon nanotube composite; including, silicon-graphene- Carbon nanotube composite manufacturing method.
제6항에 있어서,
상기 바인더 코팅은 피치액(pitch)을 코팅시키는 것을 특징으로 하는, 실리콘-그래핀-탄소나노튜브 복합체 제조방법.
According to clause 6,
The binder coating is a silicon-graphene-carbon nanotube composite manufacturing method, characterized in that the pitch liquid (pitch) is coated.
제6항에 있어서,
상기 습식 분쇄 공정에서 사용되는 용매는 한센 용해도 인자(Hansen Solubility Parameter)가 17 내지 23 MPa ½ 또는 45 내지 50 MPa ½ 인 것을 특징으로 하는, 실리콘-그래핀-탄소나노튜브 복합체 제조방법.
According to clause 6,
A method for producing a silicon-graphene-carbon nanotube composite, characterized in that the solvent used in the wet grinding process has a Hansen Solubility Parameter of 17 to 23 MPa ½ or 45 to 50 MPa ½.
제6항에 있어서,
상기 습식 분쇄 공정에서 사용되는 용매는 끓는점이 60 내지 160℃ 인 것을 특징으로 하는, 실리콘-그래핀-탄소나노튜브 복합체 제조방법.
According to clause 6,
A method for producing a silicon-graphene-carbon nanotube composite, characterized in that the solvent used in the wet grinding process has a boiling point of 60 to 160 ° C.
제1항의 실리콘-그래핀-탄소나노튜브 복합체를 포함하는, 리튬 이차전지용 음극활물질.

A negative electrode active material for a lithium secondary battery comprising the silicon-graphene-carbon nanotube composite of claim 1.

KR1020230190168A 2023-12-22 2023-12-22 Composite anode material structure and anode active material for lithium secondary batteries including the same KR102648840B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230190168A KR102648840B1 (en) 2023-12-22 2023-12-22 Composite anode material structure and anode active material for lithium secondary batteries including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230190168A KR102648840B1 (en) 2023-12-22 2023-12-22 Composite anode material structure and anode active material for lithium secondary batteries including the same

Publications (1)

Publication Number Publication Date
KR102648840B1 true KR102648840B1 (en) 2024-03-18

Family

ID=90473983

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230190168A KR102648840B1 (en) 2023-12-22 2023-12-22 Composite anode material structure and anode active material for lithium secondary batteries including the same

Country Status (1)

Country Link
KR (1) KR102648840B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100006409A (en) 2008-07-09 2010-01-19 주식회사 엘지화학 A forming method of electrode active material layer of a secondary battery developing dispersibility of electroconductive particles
KR20200078397A (en) * 2018-12-21 2020-07-01 울산과학기술원 Composite anode active material, a method of preparing the composite anode material, and a lithium secondary battery comprising the composite anode active material
KR102166645B1 (en) * 2020-08-19 2020-10-16 유성운 Anode active material composition, manufacturing method the same and secondary battery comprising the same
KR20230076428A (en) * 2021-11-24 2023-05-31 부경대학교 산학협력단 Negative electrode active material for secondary battery, electrode and secondary battery provided therewith, and manufacturing method for such a negative electrode avtive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100006409A (en) 2008-07-09 2010-01-19 주식회사 엘지화학 A forming method of electrode active material layer of a secondary battery developing dispersibility of electroconductive particles
KR20200078397A (en) * 2018-12-21 2020-07-01 울산과학기술원 Composite anode active material, a method of preparing the composite anode material, and a lithium secondary battery comprising the composite anode active material
KR102166645B1 (en) * 2020-08-19 2020-10-16 유성운 Anode active material composition, manufacturing method the same and secondary battery comprising the same
KR20230076428A (en) * 2021-11-24 2023-05-31 부경대학교 산학협력단 Negative electrode active material for secondary battery, electrode and secondary battery provided therewith, and manufacturing method for such a negative electrode avtive material

Similar Documents

Publication Publication Date Title
JP6857443B2 (en) Battery electrode composition and method for forming battery electrodes
JP6858175B2 (en) Silicon-carbon composite particle material
JP5201313B2 (en) Electrode for electrochemical device and method for producing the same
US20130004657A1 (en) Enhanced Electrode Composition For Li ion Battery
CN110582871A (en) Lithium secondary battery containing protected anode active material particles and method of manufacturing the same
US20110171371A1 (en) Enhanced Electrode Composition for Li ion Battery
Al Ja’farawy et al. A review: the development of SiO 2/C anode materials for lithium-ion batteries
KR101778652B1 (en) Negative active material having expanded graphite for lithium secondary battery, method for preparing the same and lithium secondary battery comprising thereof
KR20160012083A (en) A slurry composition and a lithium-ion battery separator comprising the same
WO2006118235A1 (en) Electro-chemical element electrode
US20200313162A1 (en) Method of producing graphene-encapsulated graphite-supported anode active material for lithium-ion batteries
JP7397110B2 (en) Systems and methods for producing structures defined by networks of CNT pulp
WO2013085498A1 (en) Carbon nanotube based pastes
US20200168898A1 (en) Chemical-free production of protected anode active material particles for lithium batteries
WO2013085509A1 (en) Electrode composition for li ion battery
CN115332523B (en) Silicon-carbon negative electrode material derived by using polymer gel as matrix and preparation method thereof
US20230166974A1 (en) Lithium ion battery using high surface area nanotubes
Wang et al. Self-assembly of silicon/carbon hybrids and natural graphite as anode materials for lithium-ion batteries
KR102648840B1 (en) Composite anode material structure and anode active material for lithium secondary batteries including the same
US20200168894A1 (en) Chemical-free production method of graphene-protected porous anode particles for lithium batteries
CN113924667A (en) Silicon dominated battery electrodes
WO2013066593A1 (en) Electrode composition for an electrode
KR101855848B1 (en) Negative active material having expanded graphite and silicon fusions for lithium secondary battery, method for preparing the same and lithium secondary battery comprising thereof
JP2022540368A (en) Composite material containing silicon and graphite and method for producing the same
US20230387395A1 (en) Silicon carbon composite materials and method for making same

Legal Events

Date Code Title Description
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant