KR102648130B1 - Pharmaceutical composition for the prevention and treatment of sepsis comprising LRR domain of NLRX1 protein - Google Patents

Pharmaceutical composition for the prevention and treatment of sepsis comprising LRR domain of NLRX1 protein Download PDF

Info

Publication number
KR102648130B1
KR102648130B1 KR1020210108836A KR20210108836A KR102648130B1 KR 102648130 B1 KR102648130 B1 KR 102648130B1 KR 1020210108836 A KR1020210108836 A KR 1020210108836A KR 20210108836 A KR20210108836 A KR 20210108836A KR 102648130 B1 KR102648130 B1 KR 102648130B1
Authority
KR
South Korea
Prior art keywords
leu
arg
gly
ala
val
Prior art date
Application number
KR1020210108836A
Other languages
Korean (ko)
Other versions
KR20230026793A (en
Inventor
최제민
구자현
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020210108836A priority Critical patent/KR102648130B1/en
Publication of KR20230026793A publication Critical patent/KR20230026793A/en
Application granted granted Critical
Publication of KR102648130B1 publication Critical patent/KR102648130B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics

Abstract

본 발명은 NLRX1 단백질의 LRR 도메인을 기반으로 하는 패혈증 예방 또는 치료용 조성물에 관한 것으로서 패혈증의 질병 중증도를 효과적으로 억제 및 완화시킬 수 있고, 전신의 심각한 염증반응과 비정상이던 생리기능을 회복시키므로, 패혈증 치료 또는 예방 용도로서 유용하게 활용될 수 있다.The present invention relates to a composition for preventing or treating sepsis based on the LRR domain of the NLRX1 protein, which can effectively suppress and alleviate the disease severity of sepsis and restore serious inflammatory responses and abnormal physiological functions in the whole body, thereby treating sepsis. Alternatively, it can be usefully used for preventive purposes.

Description

NLRX1 단백질의 LRR 도메인을 기반으로 하는 패혈증 예방 또는 치료용 조성물{Pharmaceutical composition for the prevention and treatment of sepsis comprising LRR domain of NLRX1 protein}A composition for preventing or treating sepsis based on the LRR domain of NLRX1 protein {Pharmaceutical composition for the prevention and treatment of sepsis comprising LRR domain of NLRX1 protein}

본 발명은 NLRX1 단백질의 LRR 도메인을 기반으로 하는 패혈증 예방 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for preventing or treating sepsis based on the LRR domain of the NLRX1 protein.

패혈증은 중환자 사망의 대부분을 차지하는 질환으로 미국의 경우 매일 2천명의 신환자가 발생하며 사망률이 30~50%로 높은 질환이다. 패혈증은 감염이 의심되거나 증명된 환자에서 전신적인 염증반응 증후군의 진단 기준을 만족시키는 경우를 말하며, 구체적으로 체온 >38˚C 혹은 <36˚C, 심박동수 >90 회/분, 호흡수 >20 회/분 혹은 PaCO2 <32 mmHg, 그리고 백혈구 수가 >12,000 cells/mm3 혹은 <4,000 cells/mm3 혹은 미분화 형태 >10% 중에서 2가지 이상 만족시킬 경우로 정의할 수 있다. 중증 패혈증은 패혈증과 함께 저혈압, 장기부전, 조직관류 저하가 동반될 때로 정의되며, 패혈쇼크는 적절한 수액치료에도 저혈압(수축기 혈압 90 mmHg 이하, 혹은 평균동맥압 65 mmHg 이하)를 동반할 경우를 의미한다.Sepsis is a disease that accounts for the majority of deaths in critically ill patients. In the United States, 2,000 new patients occur every day and the mortality rate is high at 30-50%. Sepsis refers to cases in which patients with suspected or proven infection meet the diagnostic criteria for systemic inflammatory response syndrome, specifically body temperature >38˚C or <36˚C, heart rate >90 beats/min, and respiratory rate >20. It can be defined as meeting two or more of the following: beats/min or PaCO 2 <32 mmHg, white blood cell count >12,000 cells/mm 3 or <4,000 cells/mm 3 or undifferentiated form >10%. Severe sepsis is defined as sepsis accompanied by hypotension, organ failure, and decreased tissue perfusion. Septic shock is defined as hypotension (systolic blood pressure less than 90 mmHg or mean arterial pressure less than 65 mmHg) despite appropriate fluid treatment. .

패혈증은 주로 세균 감염에 의해 유발되며, 인체를 침입하는 모든 병원체 또는 미생물의 성분인 지방, 핵산, 단백질 등의 일정한 패턴(PAMP; pathogen-associated molecular patterns 또는 MAMP: microorganism associated molecular pattern 또는 DAMP; danger-associated molecular patterns)을 PRR(recognized by pattern recognition receptors)에 의해 감지하여 시작된다.Sepsis is mainly caused by bacterial infection, and certain patterns such as fat, nucleic acid, and protein, which are components of all pathogens or microorganisms that invade the human body (PAMP; pathogen-associated molecular patterns, or MAMP; microorganism associated molecular pattern, or DAMP; danger- It begins by detecting associated molecular patterns (recognized by pattern recognition receptors) (PRR).

면역계는 기능과 역할이 서로 다른 선천성(innate)과 적응성(adaptive) 면역계로 나누어진다. 선천성 면역계에는 대식세포(macrophage), 호중구(neutrophil), 보체(complement) 등이 있고, 적응성 면역계는 다양한 종류의 항원 수용체를 갖는 T 림프구와 B 림프구 집단이 있다.The immune system is divided into the innate and adaptive immune systems, which have different functions and roles. The innate immune system includes macrophages, neutrophils, and complement, and the adaptive immune system includes T and B lymphocyte populations with various types of antigen receptors.

대식세포는 패턴인식 수용체를 발현하는 주요한 면역계로, PAMP와 DAMP에 반응하게 되는데, 이때 리간드 인식에 따라 NF-κB 및 인플라마좀 신호전달 경로가 활성화되어 TNFα, IL-1β 및 IL-6을 포함한 전염증성 사이토카인을 생성한다. 상기 대식세포에서의 사이토카인 과다생성은, 심각한 염증반응과 기관의 손상을 유도한다.Macrophages are a major immune system that expresses pattern recognition receptors and respond to PAMPs and DAMPs. Upon recognition of the ligand, the NF-κB and inflammasome signaling pathways are activated, leading to the activation of NF-κB and inflammasome signaling pathways, including TNFα, IL-1β, and IL-6. Produces pro-inflammatory cytokines. Excessive production of cytokines in the macrophages induces serious inflammatory responses and organ damage.

이와 같이 패혈증을 치료하기 위해 다양한 면역조절물질들이 개발 및 연구되었다. 일예로 코르티코스테로이드(corticosteroids), 항-내독소 항체(anti-endotoxin antibody), TNF 길항제, IL-1 수용체 길항제 등의 면역조절제를 이용하여 패혈증을 치료하고자 시도된 바 있으나, 아직까지는 패혈증을 호전시키는 결과를 얻지 못하였고, 일부 연구에서는 부작용에 대한 논란이 있다.In this way, various immunomodulatory substances have been developed and studied to treat sepsis. For example, attempts have been made to treat sepsis using immunomodulators such as corticosteroids, anti-endotoxin antibodies, TNF antagonists, and IL-1 receptor antagonists, but there is still no way to improve sepsis. No results were obtained, and there is controversy about side effects in some studies.

현재 생체적용이 가능한 패혈증 치료제로는 항생제가 유일하나, 면역력 자체가 비정상적으로 작용하는 상태에 대해서는 항생제의 효과가 절반 이하로 감소되어, 단순히 증상완화 정도의 효과만을 나타내기 때문에 완전한 예방 또는 치료가 불가능하다는 문제가 있다. 따라서 패혈증 발명 후 짧은 시간 내에 대식세포의 과도한 염증반응을 억제할 수 있도록, 대식세포를 표적으로 하여 직접적인 치료 효과를 갖는 임상치료 및 세포치료에 안정적으로 적용가능한 신규 패혈증 치료제의 개발이 절실히 요구되고 있는 실정이다.Currently, antibiotics are the only bioapplicable treatment for sepsis. However, for conditions in which the immune system itself functions abnormally, the effectiveness of antibiotics is reduced to less than half, and they only provide symptom relief, making complete prevention or treatment impossible. There is a problem. Therefore, there is an urgent need to develop a new sepsis treatment that can be stably applied to clinical treatment and cell therapy with a direct therapeutic effect by targeting macrophages to suppress the excessive inflammatory response of macrophages within a short period of time after the invention of sepsis. This is the situation.

지금까지 패혈증 치료 전략들은 대부분 TNFα, IL-1R 및 TLR4 들을 표적화하였는데, 이는 대규모 다-기관 임상 시험에서 환자들의 생존을 개선시키지 않는 것으로 밝혀졌다. 암이나 류마티스 질환에서는 면역조절물질이 치료제로써 활발히 개발되어 임상적으로 많이 사용되고 있으나, 패혈증에서는 아직 임상적으로 패혈증의 예후를 호전시킬 만큼의 치료제가 개발되지 못하고 있는 실정이다.To date, most sepsis treatment strategies have targeted TNFα, IL-1R, and TLR4, which were not found to improve patient survival in large multicenter clinical trials. In cancer and rheumatic diseases, immunomodulatory substances are actively developed as treatments and are widely used clinically, but in sepsis, treatments that are clinically sufficient to improve the prognosis of sepsis have not yet been developed.

이에 패혈증의 복잡한 병태생리학적 현상을 조절하는 새로운 표적을 규명할 필요가 있고, 이를 통해 새로운 패혈증 치료제를 개발하는데 이용할 수 있다.Accordingly, there is a need to identify new targets that regulate the complex pathophysiological phenomenon of sepsis, which can be used to develop new sepsis treatments.

본 발명의 목적은 세포투과성 펩티드; 및 서열번호 25로 표시되는 NLRX1 단백질로부터 유래한 LRR 도메인 영역으로 구성된 펩티드;를 포함하는 융합 단백질을 유효성분으로 하는 패혈증의 예방 또는 치료용 약학 조성물을 제공하는데 있다.The object of the present invention is a cell-penetrating peptide; and a peptide consisting of an LRR domain region derived from the NLRX1 protein represented by SEQ ID NO: 25. The purpose of the present invention is to provide a pharmaceutical composition for preventing or treating sepsis, which contains a fusion protein as an active ingredient.

또한 본 발명은 세포투과성 펩티드; 및 서열번호 25로 표시되는 NLRX1 단백질로부터 유래한 LRR 도메인 영역으로 구성된 펩티드;를 포함하는 융합 단백질을 유효성분으로 하는 패혈증 치료 및 예방을 위한 약학적 용도를 제공하기 위한 것이다.Additionally, the present invention provides a cell-penetrating peptide; and a peptide consisting of an LRR domain region derived from the NLRX1 protein represented by SEQ ID NO: 25. The purpose is to provide a pharmaceutical use for the treatment and prevention of sepsis using a fusion protein containing as an active ingredient.

상기 목적을 달성하기 위하여, 본 발명은 세포투과성 펩티드; 및 서열번호 25로 표시되는 NLRX1 단백질로부터 유래한 LRR 도메인 영역으로 구성된 펩티드;를 포함하는 융합 단백질을 유효성분으로 하는 패혈증의 예방 또는 치료용 약학 조성물을 제공한다.In order to achieve the above object, the present invention provides a cell-penetrating peptide; and a peptide consisting of an LRR domain region derived from the NLRX1 protein represented by SEQ ID NO: 25. It provides a pharmaceutical composition for the prevention or treatment of sepsis containing a fusion protein as an active ingredient.

상기 LRR 도메인 영역은 서열번호 3으로 표시되는 아미노산 서열로 이루어진 것일 수 있다.The LRR domain region may be composed of the amino acid sequence represented by SEQ ID NO: 3.

상기 세포투과성 펩티드는 서열번호 1 내지 11로 표시되는 아미노산 서열 중에서 선택되는 어느 하나일 수 있다.The cell-penetrating peptide may be any one selected from the amino acid sequences represented by SEQ ID NOs: 1 to 11.

상기 세포투과성 펩티드는 서열번호 1 내지 7로 표시되는 아미노산 서열 중에서 선택되는 어느 하나일 수 있다.The cell-penetrating peptide may be any one selected from the amino acid sequences represented by SEQ ID NOs: 1 to 7.

상기 세포투과성 펩티드는 서열번호 1로 표시되는 아미노산 서열일 수 있다.The cell-penetrating peptide may be the amino acid sequence represented by SEQ ID NO: 1.

상기 융합 단백질은 서열번호 32, 36 및 39로 표시되는 아미노산 서열 중에서 선택되는 어느 하나로 이루어진 것일 수 있고, 바람직하게는 상기 융합 단백질은 서열번호 35로 표시되는 아미노산 서열로 이루어진 것일 수 있다.The fusion protein may be composed of any one selected from the amino acid sequences represented by SEQ ID NO: 32, 36, and 39, and preferably, the fusion protein may be composed of the amino acid sequence represented by SEQ ID NO: 35.

상기 융합 단백질은 전체 면역세포(전체 수지상세포) 대비 1.5 내지 2배의 대식세포에 전달되는 것일 수 있다.The fusion protein may be delivered to 1.5 to 2 times as many macrophages as total immune cells (total dendritic cells).

상기 융합 단백질은 면역세포 대비 대식세포에 특이적으로 작용하여 NF-κB 신호전달 및 인플라마좀 신호전달의 염증조절복합체 경로 활성화를 억제함으로써, 대식세포의 과염증반응을 억제하는 것일 수 있다.The fusion protein may act specifically on macrophages compared to immune cells to inhibit the activation of the inflammation regulatory complex pathway of NF-κB signaling and inflammasome signaling, thereby suppressing the hyper-inflammatory response of macrophages.

상기 패혈증은 그람음성균에 의한 패혈증일 수 있다.The sepsis may be sepsis caused by gram-negative bacteria.

상기 패혈증은 그람음성균의 세포막을 구성하는 LPS에 의해 유래된 것일 수 있다.The sepsis may be caused by LPS, which constitutes the cell membrane of Gram-negative bacteria.

또한 본 발명은 패혈증 질환 예방 또는 치료용 의약 제조를 위한 세포투과성 펩티드; 및 서열번호 25로 표시되는 NLRX1 단백질로부터 유래한 LRR 도메인 영역으로 구성된 펩티드;를 포함하는 융합 단백질을 유효성분으로 포함하는 약학 조성물의 용도를 제공한다.In addition, the present invention provides a cell-penetrating peptide for manufacturing a medicine for preventing or treating sepsis disease; and a peptide consisting of an LRR domain region derived from the NLRX1 protein represented by SEQ ID NO: 25. It provides a use of a pharmaceutical composition comprising a fusion protein including as an active ingredient.

또한 본 발명은 패혈증 질환 환자에게 세포투과성 펩티드; 및 서열번호 25로 표시되는 NLRX1 단백질로부터 유래한 LRR 도메인 영역으로 구성된 펩티드;를 포함하는 융합 단백질을 유효성분으로 포함하는 약학 조성물을 투여하는 것을 포함하는 패혈증 질환의 치료방법을 제공한다.In addition, the present invention provides a cell-penetrating peptide to patients with sepsis disease; and a peptide consisting of an LRR domain region derived from the NLRX1 protein represented by SEQ ID NO: 25. A method of treating sepsis disease is provided, comprising administering a pharmaceutical composition containing a fusion protein as an active ingredient.

본 발명은 세포투과 펩티드 및 NLRX1 단백질 유래 LRR 도메인 영역을 포함하는 융합 단백질에 관한 것으로, 패혈증의 질병 중증도를 효과적으로 억제 및 완화시킬 수 있고, 전신의 심각한 염증반응과 비정상이던 생리기능을 회복시키므로, 패혈증 치료 또는 예방 용도로서 유용하게 활용될 수 있다.The present invention relates to a fusion protein containing a cell-penetrating peptide and an LRR domain region derived from the NLRX1 protein, which can effectively suppress and alleviate the disease severity of sepsis and restore serious inflammatory reactions and abnormal physiological functions in the whole body, thereby preventing sepsis. It can be useful for therapeutic or preventive purposes.

도 1 및 도 2는 C10-LRR이 패혈증에 작용하는 약리기전을 개략적으로 도시한 도면(도 1)과 매커니즘을 도시한 도면(도 2)이다.
도 3은 건강 또는 패혈증 환자로부터 PBMC 시료에서 NLRX1 발현을 분석한 그래프이다.
도 4는 본 C10-LRR, C10-NBD, C10-EGFP의 재조합 단백질의 약리기전을 개략적으로 도시한 것이다.
도 5는 C10-LRR, C10-NBD, C10-EGFP의 재조합 단백질 인코팅 DNA 구조와, 이를 12% SDS-PAGE로 분석한 결과이다.
도 6은 패혈증 동물모델의 실험 설계를 개략적으로 도시한 도면이다.
도 7은 1군(PBS), 2군(C10-EGFP), 3군(C10-NBD) 및 4군(C10-LRR)으로 구분되는 동물모델의 생존율을 7 일 동안 측정한 결과를 나타낸 그래프이다.
도 8은 1군(PBS), 2군(C10-EGFP), 3군(C10-NBD) 및 4군(C10-LRR)으로 구분되는 동물모델의 무게를 7 일 동안 측정한 결과를 나타낸 그래프이다.
도 9는 2시간 후에 1군(PBS), 2군(C10-EGFP), 3군(C10-NBD) 및 4군(C10-LRR)으로 구분되는 동물모델에 대한 IL-6, TNF-α 및 IL-1β의 발현정도를 ELISA로 측정한 결과 그래프이다.
도 10은 24시간 후에 1군(PBS), 2군(C10-EGFP), 3군(C10-NBD) 및 4군(C10-LRR)으로 구분되는 동물모델에 대한 IL-6, TNF-α 및 IL-1β의 발현정도를 ELISA로 측정한 결과 그래프이다.
도 11은 2시간 후에 1군(PBS), 2군(C10-EGFP), 3군(C10-NBD) 및 4군(C10-LRR)으로 구분되는 동물모델에서 AST 활성을 측정한 결과 그래프이다.
도 12는 4군(C10-LRR)과 5군(C10-LRR 0.2 mg/kg)으로 구분되는 동물모델의 생존율을 6 일 동안 측정하여 나타낸 그래프이다.
도 13 및 14는 복강 대식세포에 LPS와 각 재조합 단백질을 처리한 후, L-6, TNF-α의 수준을 측정한 ELISA 그래프이다.
도 15는 복강 대식세포에 LPS와 각 재조합 단백질을 처리한 후, 세포 생존율을 분석한 그래프이다.
도 16은 복강 대식세포를 1 μM C10-LRR과 1 mg/ml LPS를 처리하고, 15 분과 30 분 동안 배양한 후, 웨스턴 블롯으로 분석한 결과이다.
도 17 및 도 18은 PMA-자극된 THP-1 세포에 C10-LRR과 LPS를 처리하고, IL-6과 TNF-α의 수준을 ELISA로 분석한 결과 그래프이다.
도 19는 THP-1 세포에 1 μM C10-LRR과 1 mg/ml LPS을 30 분 동안 처리하고, 이로부터 발현되는 PlκBα Ser32, IκBα, p65 Ser536, p65 수준을 웨스턴 블롯으로 측정하여 나타낸 결과이다.
도 20은 복강 대식세포에 LPS 및 재조합 단백질(C10-LRR, C10-NBD, C10-EGFP) 또는 니제리신을 첨가하여 배양한 후, IL-1β의 수준을 ELISA로 측정한 그래프이다.
도 21은 복강 대식세포에서 인플라마좀 활성화(inflammasome activation)에 대한 C10-LRR의 저해효과를 확인하기 위한 실험 설계도이다.
도 22는 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-EGFP)을 투여한 복강 대식세포를 대상으로 한 Prim+Stim 그룹, Prim 그룹, Stim 그룹에서의 IL-1β 수준을 ELISA로 분석한 결과 그래프이다.
도 23은 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-EGFP)을 투여한 MEF(murine embryonic fibroblast) 세포를 대상으로 한 Prim+Stim 그룹, Prim 그룹, Stim 그룹에서의 IL-1β 수준을 ELISA로 분석한 결과 그래프이다.
도 24는 LPS와 니제리신으로 염증 유도된 복강 대식세포에 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-EGFP)을 첨가하여 배양한 후, Pro-Casp1, Casp1 P20의 발현 수준을 웨스턴 블롯으로 측정한 결과이다.
도 25는 LPS와 니제리신으로 염증 유도된 미토콘드리아 분획물과 전체세포용해물(Whole cell lysate)에 재조합 단백질(C10-LRR, C10-NBD)을 첨가하여 배양한 후, Pro-Casp1, Casp1 P20의 발현 수준을 웨스턴 블롯으로 측정한 결과이다.
도 26은 일차 복강 대식세포(primary peritoneal macrophages)에 C10-LRR, TAT-LRR, LRR 및 PBS(대조군)을 처리하고 1 시간 배양한 후, 유세포 분석으로 분석한 결과이다.
도 27은 HeLA cell에서 C10-LRR을 처리하였을 때, 세포 내에서의 분포를 공초점 현미경으로 확인한 결과이다.
도 28a는 수지상세포 대비 CD11bhigh 대식세포에서의 상대적 세포내 전달효율을 비교한 그래프이고, 도 28b는 수지상세포 대비 CD11bmed 대식세포에서의 상대적 세포내 전달효율을 비교한 그래프이며, 도 28c는 수지상세포 대비 호중구 세포에서의 상대적 세포내 전달효율을 비교한 그래프이다.
도 29, 도 30은 Jurkat 세포에 실시예 4 내지 9의 재조합 단백질, TAT-EGFP 및 EGFP(대조군)을 처리하고 1 시간 배양한 후, 유세포 분석으로 분석한 결과이다.
도 31, 도 32는 Hela 세포에 실시예 4 내지 9의 재조합 단백질, TAT-EGFP 및 EGFP(대조군)을 처리하고 1 시간 배양한 후, 유세포 분석으로 분석한 결과이다.
도 33은 C10-LRR 재조합 단백질과 αTNFαAb에 따른 패혈증 치료효과를 확인하기 위한 실험 설계를 개략적으로 도시한 것이다.
도 34는 1군(PBS), 2군(C10-LRR), 3군(αTNFαAb) 및 4군(C10-LRR+αTNFαAb)으로 구분되는 동물모델의 생존율을 7 일 동안 측정한 결과를 나타낸 그래프이다.
도 35는 1군(PBS), 2군(C10-LRR), 3군(αTNFαAb) 및 4군(C10-LRR+αTNFαAb)으로 구분되는 동물모델의 무게를 7 일 동안 측정한 결과를 나타낸 그래프이다.
도 36은 C10-LRR 재조합 단백질과 αTNFαAb의 투여횟수를 달리하였을 때, 패혈증 치료효과를 확인하기 위한 실험 설계를 개략적으로 도시한 것이다.
도 37은 1군(PBS), 2군(C10-LRR), 3군(αTNFαAb) 및 4군(C10-LRR+αTNFαAb)으로 구분되는 동물모델의 생존율을 7 일 동안 측정한 결과를 나타낸 그래프이다.
도 38은 1군(PBS), 2군(C10-LRR), 3군(αTNFαAb) 및 4군(C10-LRR+αTNFαAb)으로 구분되는 동물모델의 무게를 7 일 동안 측정한 결과를 나타낸 그래프이다.
Figures 1 and 2 are a diagram schematically showing the pharmacological mechanism by which C10-LRR acts on sepsis (Figure 1) and a diagram showing the mechanism (Figure 2).
Figure 3 is a graph analyzing NLRX1 expression in PBMC samples from healthy or septic patients.
Figure 4 schematically shows the pharmacokinetics of the recombinant proteins C10-LRR, C10-NBD, and C10-EGFP.
Figure 5 shows the DNA structures encoding recombinant proteins of C10-LRR, C10-NBD, and C10-EGFP, and the results of their analysis by 12% SDS-PAGE.
Figure 6 is a diagram schematically showing the experimental design of a sepsis animal model.
Figure 7 is a graph showing the results of measuring the survival rate of animal models divided into group 1 (PBS), group 2 (C10-EGFP), group 3 (C10-NBD), and group 4 (C10-LRR) for 7 days. .
Figure 8 is a graph showing the results of measuring the weight of animal models divided into group 1 (PBS), group 2 (C10-EGFP), group 3 (C10-NBD), and group 4 (C10-LRR) for 7 days. .
Figure 9 shows IL-6, TNF-α and This is a graph showing the results of measuring the expression level of IL-1β using ELISA.
Figure 10 shows IL-6, TNF-α and This is a graph showing the results of measuring the expression level of IL-1β using ELISA.
Figure 11 is a graph showing the results of measuring AST activity in animal models divided into group 1 (PBS), group 2 (C10-EGFP), group 3 (C10-NBD), and group 4 (C10-LRR) after 2 hours.
Figure 12 is a graph showing the survival rate of animal models divided into group 4 (C10-LRR) and group 5 (C10-LRR 0.2 mg/kg) measured for 6 days.
Figures 13 and 14 are ELISA graphs measuring the levels of L-6 and TNF-α after treating peritoneal macrophages with LPS and each recombinant protein.
Figure 15 is a graph analyzing cell survival rate after treating peritoneal macrophages with LPS and each recombinant protein.
Figure 16 shows the results of peritoneal macrophages treated with 1 μM C10-LRR and 1 mg/ml LPS, cultured for 15 and 30 minutes, and analyzed by Western blot.
Figures 17 and 18 are graphs showing the results of treating PMA-stimulated THP-1 cells with C10-LRR and LPS, and analyzing the levels of IL-6 and TNF-α by ELISA.
Figure 19 shows the results of treating THP-1 cells with 1 μM C10-LRR and 1 mg/ml LPS for 30 minutes, and measuring the levels of PlκBα Ser32, IκBα, p65 Ser536, and p65 expressed therefrom by Western blot.
Figure 20 is a graph showing the level of IL-1β measured by ELISA after culturing peritoneal macrophages with LPS and recombinant proteins (C10-LRR, C10-NBD, C10-EGFP) or nigericin.
Figure 21 is an experimental design to confirm the inhibitory effect of C10-LRR on inflammasome activation in peritoneal macrophages.
Figure 22 shows IL in the Prim+Stim group, Prim group, and Stim group targeting peritoneal macrophages administered various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant proteins (C10-LRR, C10-EGFP). This is a graph showing the results of analyzing -1β levels using ELISA.
Figure 23 shows the Prim+Stim group, Prim group, and Stim group for MEF (murine embryonic fibroblast) cells administered various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant proteins (C10-LRR, C10-EGFP). This is a graph showing the results of ELISA analysis of IL-1β levels in the group.
Figure 24 shows Pro-Casp1 after culturing peritoneal macrophages induced with inflammation with LPS and nigericin with various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant proteins (C10-LRR, C10-EGFP). , This is the result of measuring the expression level of Casp1 P20 by Western blot.
Figure 25 shows the expression of Pro-Casp1 and Casp1 P20 after adding recombinant proteins (C10-LRR, C10-NBD) to mitochondrial fractions and whole cell lysates induced by inflammation with LPS and nigericin and culturing them. This is the result of measuring the expression level by Western blot.
Figure 26 shows the results of primary peritoneal macrophages treated with C10-LRR, TAT-LRR, LRR, and PBS (control), cultured for 1 hour, and analyzed by flow cytometry.
Figure 27 shows the results of confirming the distribution within the cell using a confocal microscope when C10-LRR was treated in HeLA cells.
Figure 28a is a graph comparing the relative intracellular delivery efficiency in CD11b high macrophages compared to dendritic cells, Figure 28b is a graph comparing the relative intracellular delivery efficiency in CD11b med macrophages compared to dendritic cells, and Figure 28c is a graph comparing the relative intracellular delivery efficiency in CD11b med macrophages compared to dendritic cells. This is a graph comparing the relative intracellular delivery efficiency in neutrophil cells compared to cells.
Figures 29 and 30 show the results of treating Jurkat cells with the recombinant proteins of Examples 4 to 9, TAT-EGFP and EGFP (control group), culturing them for 1 hour, and analyzing them by flow cytometry.
Figures 31 and 32 show the results of Hela cells treated with the recombinant proteins of Examples 4 to 9, TAT-EGFP and EGFP (control group), cultured for 1 hour, and analyzed by flow cytometry.
Figure 33 schematically shows the experimental design to confirm the sepsis treatment effect of C10-LRR recombinant protein and αTNFαAb.
Figure 34 is a graph showing the results of measuring the survival rate of animal models divided into group 1 (PBS), group 2 (C10-LRR), group 3 (αTNFαAb), and group 4 (C10-LRR+αTNFαAb) for 7 days. .
Figure 35 is a graph showing the results of measuring the weight of animal models divided into group 1 (PBS), group 2 (C10-LRR), group 3 (αTNFαAb), and group 4 (C10-LRR+αTNFαAb) for 7 days. .
Figure 36 schematically shows the experimental design to confirm the sepsis treatment effect when the number of administrations of C10-LRR recombinant protein and αTNFαAb was varied.
Figure 37 is a graph showing the results of measuring the survival rate of animal models divided into group 1 (PBS), group 2 (C10-LRR), group 3 (αTNFαAb), and group 4 (C10-LRR+αTNFαAb) for 7 days. .
Figure 38 is a graph showing the results of measuring the weight of animal models divided into group 1 (PBS), group 2 (C10-LRR), group 3 (αTNFαAb), and group 4 (C10-LRR+αTNFαAb) for 7 days. .

본 발명자들은 종래 패혈증의 예방 또는 치료에 있어서, 한계를 극복하고 이를 대체할 수 있는 효율적인 물질을 개발하고자 노력하였다. 그 결과, NLRX1 단백질에 존재하는 도메인의 기능을 규명하고, 이를 세포 내에 효율적으로 전달되도록 하기 위하여 세포투과 펩티드를 활용한 치료전략을 고안하였고, 이를 이용한 융합 단백질을 처리하였을 때 확실히 예방 또는 치료 효과가 있음을 확인함으로써 본 발명을 완성하였다.The present inventors have tried to develop efficient materials that can overcome and replace conventional limitations in the prevention or treatment of sepsis. As a result, in order to identify the function of the domain present in the NLRX1 protein and ensure its efficient delivery into cells, a treatment strategy using a cell-penetrating peptide was designed, and treatment with a fusion protein using this peptide clearly showed a preventive or therapeutic effect. The present invention was completed by confirming that it exists.

이하, 본 발명의 구성을 구체적으로 설명한다.Hereinafter, the configuration of the present invention will be described in detail.

본 발명은 세포투과성 펩티드 및 서열번호 25로 표시되는 NLRX1 단백질로부터 유래한 LRR 도메인 영역으로 구성된 펩티드를 포함하는 융합 단백질을 유효성분으로 하는 패혈증의 예방 또는 치료용 약학 조성물; 또는 세포투과성 펩티드 및 서열번호 25로 표시되는 NLRX1 단백질로부터 유래한 LRR 도메인 영역으로 구성된 펩티드;를 포함하는 융합 단백질을 인간 또는 인간을 제외한 포유동물에 적용하는 것을 함유하는 패혈증 치료방법을 제공한다.The present invention provides a pharmaceutical composition for preventing or treating sepsis, which contains as an active ingredient a fusion protein containing a cell-penetrating peptide and a peptide consisting of an LRR domain region derived from the NLRX1 protein represented by SEQ ID NO: 25; or a cell-penetrating peptide and a peptide consisting of an LRR domain region derived from the NLRX1 protein represented by SEQ ID NO: 25; It provides a sepsis treatment method comprising applying to a human or a mammal other than a human a fusion protein.

본 발명에서 용어 '펩티드(peptide)'는 펩티드 결합에 의해 4개 내지 1000개의 아미노산 잔기들이 서로 결합되어 형성된 사슬 형태의 고분자를 의미하며, '폴리펩티드'와 상호 혼용 가능한 의미이다.In the present invention, the term 'peptide' refers to a polymer in the form of a chain formed by linking 4 to 1000 amino acid residues together through peptide bonds, and is interchangeable with 'polypeptide'.

또한, 본 발명에서 용어 '폴리뉴클레오티드(polynucleotide)'는 염기, 당, 인산의 세 가지 요소로 구성된 화학적 단량체인 뉴클레오티드가 다수의 인산에스테르 결합을 매개로 사슬 형태로 이어진 고분자 화합물을 의미한다.In addition, in the present invention, the term 'polynucleotide' refers to a polymer compound in which nucleotides, which are chemical monomers composed of three elements: a base, sugar, and phosphoric acid, are connected in a chain form through multiple phosphate ester bonds.

또한, 본 발명에서 용어 '세포투과성 펩티드(cell penetrating peptide, CPP)'는 인 비트로(in vitro) 또는 인 비보(in vivo) 상에서 운반 대상인 카고를 세포 내로 전달할 수 있는 능력을 가진 펩티드를 의미하며, '세포막 투과 도메인' 또는 '세포막 투과 펩티드'와 상호 혼용가능한 의미이다.In addition, in the present invention, the term 'cell penetrating peptide (CPP)' refers to a peptide that has the ability to deliver the cargo to be transported into cells in vitro or in vivo. It is interchangeable with ‘cell membrane penetrating domain’ or ‘cell membrane penetrating peptide’.

NLRX1 단백질(NLR family member X1)은 뉴클레오티드-결합 올리고머화 도메인, X1을 포함하는 류신 풍부 반복구조를 포함는 NLRX1 유전자를 인코딩하는 인간 유래 단백질이다. 이는 NOD-like receptor X1, NLR family X1 등으로 알려져 있다. 이는 N 말단에 미토콘드리아 국소화 신호를 포함하는 이펙터 도메인, NACHT 도메인(NBD), C 말단 류신 풍부 반복(LRR) 도메인으로 구성된다. NLRX1 단백질은 면역 시스템에 아주 중요한 역할을 하며, 구체적으로 미토콘드리아 항바이러스 신호 단백질(MAVS)/레티노산-유도성 유전자 I(RIG-I) 미토콘드리아 항바이러스 경로를 방해하여, 바이러스에 대한 선천성 면역에 영향을 주는 것으로 알려진 바 있다. 또한, NLRX1은 단핵성 식세포(mononuclear phagocytes)에서 세균성 부담과 염증을 조절함으로써, Chlamydia trachomatis과 Helicobacter pylori와 같은 세균 감염동안 숙주 면역에 관여한다. NLRX1 단백질은 아직 구체적으로 밝혀진 바 없으나, 계산 모델링 예측에서 감염 후, 초기 유도된 음성 피드백 회로에 의해 NLRX1 단백질 발현이 제어될 수 있음을 확인한 것이 전부이다. NLRX1 protein (NLR family member This is known as NOD-like receptor X1, NLR family X1, etc. It consists of an effector domain containing a mitochondrial localization signal at the N-terminus, a NACHT domain (NBD), and a C-terminal leucine-rich repeat (LRR) domain. The NLRX1 protein plays a very important role in the immune system and specifically interferes with the mitochondrial antiviral signaling protein (MAVS)/retinoic acid-inducible gene I (RIG-I) mitochondrial antiviral pathway, affecting innate immunity against viruses. It has been known to give . Additionally, NLRX1 is involved in host immunity during bacterial infections such as Chlamydia trachomatis and Helicobacter pylori by regulating bacterial burden and inflammation in mononuclear phagocytes. Although the NLRX1 protein has not yet been specifically identified, computational modeling predictions have confirmed that NLRX1 protein expression can be controlled by an initially induced negative feedback circuit after infection.

본 발명에서는 NLRX1의 각 도메인에 대한 기능을 규명하고, NLRX1 단백질의 LRR 도메인을 세포투과성 펩티드와 융합한 융합 단백질의 경우, 패혈증에 대한 예방 효과뿐만 아니라, 치료 효과까지 가지고 있음을 확인하였다.In the present invention, the function of each domain of NLRX1 was identified, and it was confirmed that a fusion protein obtained by fusing the LRR domain of the NLRX1 protein with a cell-penetrating peptide has not only a preventive effect on sepsis, but also a therapeutic effect.

구체적으로 본원발명의 일 실시예에서는 NLRX1 단백질로부터 LRR 도메인 서열을 확인하고, LRR 도메인에 세푸투과성 펩티드가 결합된 플라스미드 DNA를 설계하였으며, 이를 발현 벡터에 도입한 후, 호스트 균주에 형질도입함으로써, 세포투과성 펩티드와 LRR 도메인 영역이 연결된 융합된 단백질을 제조하였다.Specifically, in one embodiment of the present invention, the LRR domain sequence was confirmed from the NLRX1 protein, a plasmid DNA in which a cephpermeable peptide was bound to the LRR domain was designed, and this was introduced into an expression vector and then transduced into the host strain, thereby producing cells. A fusion protein in which the penetrating peptide and the LRR domain region were linked was prepared.

본 발명은 종래 그 기능이 구체적으로 알려지지 않은 NLRX1 단백질 유래 LRR 도메인과 세포투과성 펩티드가 결합하여 형성된 융합 단백질에 관한 것이다. 후술하는 실험예를 통해, 본 발명의 서열번호 25로 표시되는 NLRX1 단백질 유래 LRR 도메인은, 세포투과성 펩티드와 결합하여, 패혈증에 대한 예방, 치료 또는 개선 효과를 나타내는 것을 확인하였으며, 상기 세포투과성 펩티드가 C10 펩티드인 경우 그 효과가 가장 우수하다는 것을 확인하였다.The present invention relates to a fusion protein formed by combining a cell-penetrating peptide with an LRR domain derived from the NLRX1 protein, the function of which was previously unknown. Through the experimental examples described below, it was confirmed that the LRR domain derived from the NLRX1 protein represented by SEQ ID NO: 25 of the present invention binds to a cell-penetrating peptide and exhibits a prevention, treatment or improvement effect on sepsis, and the cell-penetrating peptide is It was confirmed that the effect was the best in the case of C10 peptide.

상기 NLRX1 단백질 또는 이의 유전자 정보는 NCBI(National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터베이스로부터 얻을 수 있다. 구체적으로, 상기 NLRX1 단백질은 서열번호 23으로 표시되는 NLRX1 단백질일 수 있다. 또한, 상기 NLRX1 단백질로부터 유래된 LRR 도메인은 서열번호 25로 표시되는 NLRX1 단백질의 단편으로, 서열번호 25로 표시되는 아미노산 서열일 수 있다. 보다 구체적인 예로 서열번호 25에 기재된 아미노산 서열, 또는 상기 서열의 활성을 가지면서도 상동성을 가지는 것일 수 있다. 또한, 상기 NLRX1 단백질로부터 유래된 LRR 도메인은 상기 서열번호 25와 적어도 50%, 60%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 또는 99%의 서열 동일성을 가질 수 있다 그러나, 상기 기술된 예에 제한되지 않는다.The NLRX1 protein or its genetic information can be obtained from known databases such as GenBank of the National Center for Biotechnology Information (NCBI). Specifically, the NLRX1 protein may be the NLRX1 protein represented by SEQ ID NO: 23. In addition, the LRR domain derived from the NLRX1 protein is a fragment of the NLRX1 protein represented by SEQ ID NO: 25, and may be the amino acid sequence represented by SEQ ID NO: 25. A more specific example may be the amino acid sequence shown in SEQ ID NO: 25, or one that has the activity and homology to the above sequence. In addition, the LRR domain derived from the NLRX1 protein is at least 50%, 60%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87% of SEQ ID NO: 25, may have a sequence identity of 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%. However, in the examples described above, Not limited.

상기 LRR 도메인 영역은 서열번호 25로 표시되는 아미노산 서열일 수 있다.The LRR domain region may be the amino acid sequence represented by SEQ ID NO: 25.

본 발명에서 사용된 세포투과성 펩티드는 서열번호 1 내지 11로 표시되는 아미노산 서열 중에서 선택되는 어느 하나일 수 있고, 바람직하게는 서열번호 1 내지 7로 표시되는 아미노산 서열 중에서 선택되는 어느 하나일 수 있으며, 가장 바람직하게는 서열번호 1로 표시되는 아미노산 서열 일 수 있다. 상기 세포투과성 펩티드로 서열번호 1로 표시되는 아미노산 서열이 사용될 경우, 상기 융합 단백질은 대식세포에 대해 특이적이고 현저한 전달효율을 가지므로 패혈증에 현저한 예방, 치료 및 개선 효과를 나타낼 수 있으므로, 상기 세포투과성 펩티드는 서열번호 1로 표시되는 아미노산 서열인 것이 가장 바람직하다. 구체적으로 상기 세포투과성 펩티드가 서열번호 1로 표시되는 아미노산 서열일 때 전체 면역세포(전체 수지상세포) 대비 1.5 내지 2배의 대식세포에 전달되는 효과를 가지므로, 가장 바람직하다.The cell-penetrating peptide used in the present invention may be any one selected from the amino acid sequences shown in SEQ ID NOS: 1 to 11, and preferably may be any one selected from the amino acid sequences shown in SEQ ID NOS: 1 to 7, Most preferably, it may be the amino acid sequence represented by SEQ ID NO: 1. When the amino acid sequence represented by SEQ ID NO: 1 is used as the cell-permeable peptide, the fusion protein has a specific and remarkable delivery efficiency for macrophages and can exhibit significant prevention, treatment, and improvement effects on sepsis. Most preferably, the peptide is the amino acid sequence represented by SEQ ID NO: 1. Specifically, it is most preferable when the cell-penetrating peptide has an amino acid sequence represented by SEQ ID NO: 1 because it has the effect of being delivered to 1.5 to 2 times more macrophages than all immune cells (total dendritic cells).

상기 융합 단백질은 서열번호 32, 36 및 39로 표시되는 아미노산 서열 중에서 선택되는 어느 하나로 이루어진 것일 수 있고, 상술한 내용을 종합하면 가장 바람직하게 상기 융합 단백질은 서열번호 32로 표시되는 아미노산 서열로 이루어진 것일 수 있다.The fusion protein may be composed of any one selected from the amino acid sequences represented by SEQ ID NO: 32, 36, and 39. Considering the above, most preferably, the fusion protein is composed of the amino acid sequence represented by SEQ ID NO: 32. You can.

본 발명에 따른 융합 단백질은 종래 생물학적 활성 물질이 쉽게 통과할 수 없었던 세포막을 통과하여 세포 내에 직접 작용할 수 있게 할 뿐만 아니라, 세포 중에서도 대식세포, B 림프구, T 림프구, 비만세포, 단핵구, 수지상 세포, 호산구, 자연살해세포, 호염기구, 및 호중구로 이루어진 군으로부터 선택되는 어느 하나 이상의 면역세포를 타겟으로 하여 생물학적 활성 물질을 면역세포 내에 작용할 수 있도록 전달할 수 있다. 따라서 상기 융합 단백질은 약물전달체계(drug delivery system)의 발전에 획기적인 계기가 될 수 있다.The fusion protein according to the present invention not only allows it to pass through the cell membrane, which conventional biologically active substances could not easily pass through, but also acts directly inside the cell, including macrophages, B lymphocytes, T lymphocytes, mast cells, monocytes, dendritic cells, Biologically active substances can be delivered to act within immune cells by targeting one or more immune cells selected from the group consisting of eosinophils, natural killer cells, basophils, and neutrophils. Therefore, the fusion protein can be a groundbreaking opportunity in the development of drug delivery systems.

본 발명에 따른 융합 단백질은 바람직하게 면역세포 중에서도 대식세포에 친화적으로 작용하므로, 생물학적 활성 물질을 대식세포 내로 특이적이고 효율적으로 전달할 수 있다.The fusion protein according to the present invention preferably acts favorably on macrophages among immune cells, and thus can specifically and efficiently deliver biologically active substances into macrophages.

본 발명에 따른 융합 단백질은 세포 내로 투과성, 특히, 대식세포로 효율적으로 전달되어, LPS 매개 치명적인 내 독소 혈증에 의해 유도된 패혈증 동물모델의 생존을 유의하게 개선하였고, IκB 분해 및 p65 인산화 방지를 통해 복막 대식세포에서 IL-6 생성을 효율적으로 억제하였을 뿐만 아니라 지속적인 미토콘드리아 MAVS 수준으로 caspase-1 활성화를 방지하여 IL-1β 생산을 부정적으로 조절하는 것을 확인하였다.The fusion protein according to the present invention penetrates cells efficiently, especially into macrophages, significantly improving the survival of an animal model of sepsis induced by LPS-mediated lethal endotoxemia, and preventing IκB degradation and p65 phosphorylation. It was confirmed that not only did it efficiently suppress IL-6 production in peritoneal macrophages, but it also negatively regulated IL-1β production by preventing caspase-1 activation with sustained mitochondrial MAVS levels.

따라서 본 발명의 융합 단백질은 패혈증 뿐만 아니라 패혈증성 쇼크 까지 예방 또는 치료할 수 있는 의약품으로 유용하게 사용될 수 있다.Therefore, the fusion protein of the present invention can be useful as a medicine that can prevent or treat not only sepsis but also septic shock.

상기 융합 단백질은 융합 단백질을 핵 내에 위치시키기 위한 핵 위치 신호(nuclear localization signal, NLS)를 더 포함할 수 있다.The fusion protein may further include a nuclear localization signal (NLS) to localize the fusion protein in the nucleus.

상기 융합 단백질은 분리 및/또는 정제에 유리한 태그와 연결될 수 있다. 그 예로, His 태그, Flag 태그, S 태그 등과 같은 작은 펩티드 태그, 또는 GST(Glutathione S-transferase) 태그, MBP(Maltose binding protein) 태그 등을 목적에 따라 연결할 수 있으나, 이에 제한되지 않는다.The fusion protein may be linked to a tag that is advantageous for isolation and/or purification. For example, small peptide tags such as His tag, Flag tag, S tag, etc., GST (Glutathione S-transferase) tag, MBP (Maltose binding protein) tag, etc. may be linked depending on the purpose, but are not limited thereto.

상기 융합 단백질은 천연에서 추출하거나 합성하거나 DNA 서열을 기본으로 하는 유전자 재조합 방법에 의해 제조되는 것일 수 있다.The fusion protein may be extracted from nature, synthesized, or produced by genetic recombination methods based on DNA sequences.

본 발명의 약학 조성물은 약제학적으로 허용되는 담체를 더 포함할 수 있다. 상기 약제학적으로 허용되는 담체는 제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences(19th ed., 1995)에 상세히 기재되어 있다. The pharmaceutical composition of the present invention may further include a pharmaceutically acceptable carrier. The pharmaceutically acceptable carriers are those commonly used for presentation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, poly Includes, but is not limited to, vinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil. In addition to the above ingredients, the pharmaceutical composition of the present invention may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, etc. Suitable pharmaceutically acceptable carriers and agents are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).

본 발명에서 용어, "예방"은 본 발명의 상기 융합 단백질을 유효성분으로 하는 조성물의 투여로 패혈증을 억제 또는 지연시키는 모든 행위를 말한다.In the present invention, the term “prevention” refers to all actions that inhibit or delay sepsis by administering a composition containing the fusion protein of the present invention as an active ingredient.

본 발명에서 용어, "치료"는 본 발명의 상기 융합 단백질을 유효성분으로 하는 조성물의 투여로 패혈증이 호전되거나 이롭게 되는 모든 행위를 말한다.In the present invention, the term “treatment” refers to any action in which sepsis is improved or beneficial by administration of a composition containing the fusion protein of the present invention as an active ingredient.

또한, 본 발명에서 '패혈증'은 미생물에 감염되어 전신에 심각한 염증 반응이 나타나는 상태를 말한다. 체온이 38도 이상으로 올라가는 발열 증상 혹은 36도 이하로 내려가는 저체온증, 호흡수가 분당 24회 이상으로 증가(빈호흡), 분당 90회 이상의 심박수(빈맥), 혈액 검사상 백혈구 수의 증가 혹은 현저한 감소 중 두 가지 이상의 증상을 보이는 경우, 이를 전신성 염증 반응 증후군(systemic inflammatory response syndrome; SIRS)이라고 부른다. 이러한 전신성 염증 반응 증후군이 미생물의 감염에 의한 것일 때 패혈증이라고 한다. 신체의 감염병소에서 병원균이 지속적 또는 단속적으로 혈류에 들어와 여러 장기조직에 정착하여 병소를 만들고 심한 전신 증상을 보이는 것이다. 원인균으로는 포도상구균, 연쇄상구균, 대장균, 녹농균, 결핵균, 폐렴간균, 진균, 혐기성균 등이 있다. 바람직하게 상기 패혈증은 그람음성균에 의한 패혈증일 수 있고, 보다 바람직하게 상기 패혈증은 그람음성균의 세포막을 구성하는 LPS에 의해 유해된 것일 수 있다.Additionally, in the present invention, 'sepsis' refers to a condition in which a serious inflammatory response occurs throughout the body due to infection with microorganisms. Symptoms of fever where body temperature rises above 38 degrees or hypothermia where body temperature drops below 36 degrees, respiratory rate increased above 24 times per minute (tachypnea), heart rate above 90 beats per minute (tachycardia), two of the following: increase or significant decrease in white blood cell count on blood test If more than one symptom is present, it is called systemic inflammatory response syndrome (SIRS). When this systemic inflammatory response syndrome is caused by microbial infection, it is called sepsis. Pathogens enter the bloodstream continuously or intermittently from an infection site in the body and settle in various organ tissues, creating lesions and causing severe systemic symptoms. Causative bacteria include staphylococci, streptococci, Escherichia coli, Pseudomonas aeruginosa, Mycobacterium tuberculosis, Klebsiella pneumoniae, fungi, and anaerobic bacteria. Preferably, the sepsis may be sepsis caused by Gram-negative bacteria, and more preferably, the sepsis may be harmful due to LPS, which constitutes the cell membrane of Gram-negative bacteria.

패혈증 치료는 감영 병소의 관리가 가장 중요하므로, 주로 항생체 또는 항염증 기능을 갖는 약물이 사용되고 있다. 그러나 약제의 분포용적이나 대사, 배설이 정상인과 다르기 때문에 약제의 혈중농도와 효과를 예측하기 어렵고, 패혈증의 원인/원인균이 다양하기 때문에 적합한 항생체 사용이 어려워 치료에 한계가 있다. 이에 여러 가지 사이토카인 억제제들이 개발되었으나, 아직 확실한 치료효능을 보이는 방법으로 인정된 사례는 없으며, 분자 표적 치료법에 대해서는 개발된 바 없다.Since management of infectious lesions is most important in the treatment of sepsis, drugs with antibiotics or anti-inflammatory functions are mainly used. However, because the distribution volume, metabolism, and excretion of the drug are different from those of normal people, it is difficult to predict the blood concentration and effect of the drug, and because the causes/causing bacteria of sepsis are diverse, it is difficult to use appropriate antibiotics, which limits treatment. Accordingly, various cytokine inhibitors have been developed, but none has yet been recognized as a method showing clear therapeutic efficacy, and no molecular target therapy has been developed.

TNFα 표적화하는 항 -TNFα, 항 -TNFR 항체 및 TNFα 억제제는 동물모델에서는 효과적이였으나, 임상 2상과 3상 연구에서 실패하였다. TNFα는 패혈증의 초기 단계에는 주요한 요인이나, 이 외에 다양한 요인이 영향을 미치기 때문에 실질적으로 TNFα만을 억제하는 억제제는 효과가 없는 것으로 여겨진다,Anti-TNFα, anti-TNFR antibodies, and TNFα inhibitors targeting TNFα were effective in animal models, but failed in phase 2 and 3 clinical studies. TNFα is a major factor in the early stages of sepsis, but since various other factors influence it, inhibitors that only inhibit TNFα are considered to be ineffective.

이에 본 발명자들은 패혈증 예방 및 치료제를 개발하기 위하여 연구하던 중, 본 발명의 융합 단백질이 LPS 매개 내독소 혈증 패혈증 동물모델의 생존을 유의하게 개선하고, IκB 분해 및 p65 인산화 방지를 통해 복막 대 식세포에서 IL-6 생성을 효율적으로 억제하였으며, 미토콘드리아 MAVS 수준으로 caspase-1 활성화를 방지하여 IL-1β 생산을 부정적으로 조절하였으므로, 본 발명의 융합 단백질을 패혈증 예방 또는 치료용 약학 조성물의 유효성분으로 유용하게 사용될 수 있음을 확인하였다.Accordingly, while the present inventors were conducting research to develop a sepsis prevention and treatment agent, the fusion protein of the present invention significantly improved the survival of an LPS-mediated endotoxemic sepsis animal model and prevented IκB degradation and p65 phosphorylation in peritoneal macrophages. IL-6 production was efficiently suppressed and IL-1β production was negatively regulated by preventing caspase-1 activation at the mitochondrial MAVS level, making the fusion protein of the present invention useful as an active ingredient in pharmaceutical compositions for preventing or treating sepsis. It was confirmed that it can be used.

즉 본 발명에 따른 조성물은 융합 단백질을 단일 유효성분으로 함유함에도 불구하고, NF-κB 및 염증성 신호 전달을 동시에 효과적으로 제어하여, 패혈증의 전신 염증을 효율적으로 치료할 수 있다.That is, although the composition according to the present invention contains a fusion protein as a single active ingredient, it can effectively control NF-κB and inflammatory signal transduction at the same time, thereby efficiently treating systemic inflammation in sepsis.

또한 본 발명에 따른 조성물은 복합적 염증억제 기전을 갖고 있기 때문에, 패혈증 치료제와의 병용투여를 통해, 약물의 패혈증 치료에 대한 효과를 방해하지 않고 현저히 상승시키는 것을 알 수 있다.In addition, since the composition according to the present invention has a complex anti-inflammatory mechanism, it can be seen that when administered in combination with a sepsis treatment, the effect of the drug in treating sepsis is significantly increased without interfering with the effect.

또한, 본 발명의 패혈증 예방 및 치료용 약학 조성물은 약학적으로 허용 가능한 담체를 포함할 수 있다.Additionally, the pharmaceutical composition for preventing and treating sepsis of the present invention may include a pharmaceutically acceptable carrier.

약학적으로 허용되는 담체로는 예컨대, 경구 투여용 담체 또는 비경구 투여용 담체를 추가로 포함할 수 있다. 경구 투여용 담체는 락토스, 전분, 셀룰로스 유도체, 마그네슘 스테아레이트, 스테아르산 등을 포함할 수 있다. 또한 비경구 투여용 담체는 물, 적합한 오일, 식염수, 수성 글루코스 및 글리콜 등을 포함할 수 있다. 또한, 안정화제 및 보존제를 추가로 포함할 수 있다. 적합한 안정화제로는 아황산수소나트륨, 아황산나트륨 또는 아스코르브산과 같은 항산화제가 있다. 적합한 보존제로는 벤즈알코늄 클로라이드, 메틸- 또는 프로필-파라벤 및 클로로부탄올이 있다. 그 밖의 약학적으로 허용되는 담체로는 다음의 문헌에 기재되어 있는 것을 참고로 할 수 있다(Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995).Pharmaceutically acceptable carriers may further include, for example, carriers for oral administration or carriers for parenteral administration. Carriers for oral administration may include lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, etc. Carriers for parenteral administration may also include water, suitable oils, saline solutions, aqueous glucose and glycols, and the like. Additionally, stabilizers and preservatives may be additionally included. Suitable stabilizers include antioxidants such as sodium bisulfite, sodium sulfite or ascorbic acid. Suitable preservatives include benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol. As for other pharmaceutically acceptable carriers, those described in the following literature may be referred to (Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995).

본 발명의 약학 조성물은 인간을 비롯한 포유동물에 어떠한 방법으로도 투여할 수 있다. 예를 들어, 경구 또는 비경구로 투여할 수 있으며, 비경구적인 투여방법으로는 이에 제한되는 것은 아니나, 정맥내, 근육내, 동맥내, 골수내, 경막내, 심장내, 경피, 피하, 복강내, 비강내, 장관, 국소, 설하 또는 직장내 투여일 수 있다.The pharmaceutical composition of the present invention can be administered to mammals, including humans, by any method. For example, it can be administered orally or parenterally, and the parenteral administration method is not limited to this, but is intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, subcutaneous, and intraperitoneal. , may be administered intranasally, enterally, topically, sublingually, or rectally.

본 발명의 약학 조성물은 상술한 바와 같은 투여 경로에 따라 경구 투여용 또는 비경구 투여용 제제로 제형화 할 수 있다. 제형화할 경우에는 하나 이상의 완충제(예를 들어, 식염수 또는 PBS), 항산화제, 정균제, 킬레이트화제(예를 들어, EDTA 또는 글루타치온), 충진제, 증량제, 결합제, 아쥬반트(예를 들어, 알루미늄 하이드록사이드), 현탁제, 농후제 습윤제, 붕해제 또는 계면활성제, 희석제 또는 부형제를 사용하여 조제될 수 있다.The pharmaceutical composition of the present invention can be formulated into a formulation for oral administration or parenteral administration according to the administration route described above. When formulated, one or more buffers (e.g. saline or PBS), antioxidants, bacteriostatic agents, chelating agents (e.g. EDTA or glutathione), fillers, bulking agents, binders, adjuvants (e.g. aluminum hydroxide) side), suspending agents, thickening agents, wetting agents, disintegrants or surfactants, diluents or excipients.

경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 액제, 겔제, 시럽제, 슬러리제, 현탁액 또는 캡슐제 등이 포함되며, 이러한 고형제제는 본 발명의 약학 조성물에 적어도 하나 이상의 부형제 예를 들면, 전분(옥수수 전분, 밀 전분, 쌀 전분, 감자 전분 등 포함), 칼슘카보네이트(calcium carbonate), 수크로스(sucrose), 락토오스(lactose), 덱스트로오스, 솔비톨, 만니톨, 자일리톨, 에리스리톨 말티톨, 셀룰로즈, 메틸 셀룰로즈, 나트륨 카르복시메틸셀룰로오즈 및 하이드록시프로필메틸-셀룰로즈 또는 젤라틴 등을 섞어 조제될 수 있다. 예컨대, 활성성분을 고체 부형제와 배합한 다음 이를 분쇄하고 적합한 보조제를 첨가한 후 과립 혼합물로 가공함으로써 정제 또는 당의 정제를 수득할 수 있다.Solid preparations for oral administration include tablets, pills, powders, granules, solutions, gels, syrups, slurries, suspensions or capsules, and such solid preparations may contain at least one excipient, for example, in the pharmaceutical composition of the present invention. , starch (including corn starch, wheat starch, rice starch, potato starch, etc.), calcium carbonate, sucrose, lactose, dextrose, sorbitol, mannitol, xylitol, erythritol, maltitol, cellulose. , methyl cellulose, sodium carboxymethyl cellulose, and hydroxypropylmethyl-cellulose or gelatin can be mixed. For example, tablets or sugar tablets can be obtained by combining the active ingredient with a solid excipient, grinding it, adding suitable auxiliaries and processing it into a granule mixture.

단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용된다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제 또는 시럽제 등이 해당되는데 흔히 사용되는 단순 희석제인 물 또는 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제 또는 보존제 등이 포함될 수 있다.In addition to simple excipients, lubricants such as magnesium styrate talc are also used. Liquid preparations for oral use include suspensions, oral solutions, emulsions, or syrups. In addition to the commonly used simple diluents such as water or liquid paraffin, various excipients such as wetting agents, sweeteners, fragrances, or preservatives may be included. .

또한, 경우에 따라 가교결합 폴리비닐피롤리돈, 한천, 알긴산 또는 나트륨 알기네이트 등을 붕해제로 첨가할 수 있으며, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다.In addition, in some cases, cross-linked polyvinylpyrrolidone, agar, alginic acid, or sodium alginate may be added as a disintegrant, and anti-coagulants, lubricants, wetting agents, fragrances, emulsifiers, and preservatives may be additionally included. .

비경구적으로 투여하는 경우 본 발명의 약학 조성물은 적합한 비경구용 담체와 함께 주사제, 경피 투여제 및 비강 흡입제의 형태로 당 업계에 공지된 방법에 따라 제형화될 수 있다. 상기 주사제의 경우에는 반드시 멸균되어야 하며 박테리아 및 진균과 같은 미생물의 오염으로부터 보호되어야 한다. 주사제의 경우 적합한 담체의 예로는 이에 한정되지는 않으나, 물, 에탄올, 폴리올(예를 들어, 글리세롤, 프로필렌 글리콜 및 액체 폴리에틸렌 글리콜 등), 이들의 혼합물 및/또는 식물유를 함유하는 용매 또는 분산매질일 수 있다. 보다 바람직하게는, 적합한 담체로는 행크스 용액, 링거 용액, 트리에탄올 아민이 함유된 PBS (phosphate buffered saline) 또는 주사용 멸균수, 10% 에탄올, 40% 프로필렌 글리콜 및 5% 덱스트로즈와 같은 등장 용액 등을 사용할 수 있다. 상기 주사제를 미생물 오염으로부터 보호하기 위해서는 파라벤, 클로로부탄올, 페놀, 소르빈산, 티메로살 등과 같은 다양한 항균제 및 항진균제를 추가로 포함할 수 있다. 또한, 상기 주사제는 대부분의 경우 당 또는 나트륨 클로라이드와 같은 등장화제를 추가로 포함할 수 있다.When administered parenterally, the pharmaceutical composition of the present invention can be formulated with a suitable parenteral carrier in the form of injections, transdermal administration, and nasal inhalation according to methods known in the art. The above injections must be sterilized and protected from contamination by microorganisms such as bacteria and fungi. For injections, examples of suitable carriers include, but are not limited to, solvents or dispersion media containing water, ethanol, polyols (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, etc.), mixtures thereof, and/or vegetable oils. You can. More preferably, suitable carriers include Hanks' solution, Ringer's solution, phosphate buffered saline (PBS) containing triethanolamine, or isotonic solutions such as sterile water for injection, 10% ethanol, 40% propylene glycol, and 5% dextrose. etc. can be used. In order to protect the injection from microbial contamination, it may additionally contain various antibacterial and antifungal agents such as parabens, chlorobutanol, phenol, sorbic acid, thimerosal, etc. Additionally, in most cases, the injection may additionally contain an isotonic agent such as sugar or sodium chloride.

경피 투여제의 경우 연고제, 크림제, 로션제, 겔제, 외용액제, 파스타제, 리니멘트제, 에어롤제 등의 형태가 포함된다. 상기에서 '경피 투여'는 약학 조성물을 국소적으로 피부에 투여하여 약학 조성물에 함유된 유효한 양의 활성성분이 피부 내로 전달되는 것을 의미한다. In the case of transdermal administration, forms such as ointments, creams, lotions, gels, external solutions, paste preparations, linear preparations, and aerol preparations are included. In the above, 'transdermal administration' means administering a pharmaceutical composition topically to the skin so that an effective amount of the active ingredient contained in the pharmaceutical composition is delivered into the skin.

흡입 투여제의 경우, 본 발명에 따라 사용되는 화합물은 적합한 추진제, 예를 들면, 디클로로플루오로메탄, 트리클로로플루오로메탄, 디클로로테트라플루오로에탄, 이산화탄소 또는 다른 적합한 기체를 사용하여, 가압 팩 또는 연무기로부터 에어로졸 스프레이 형태로 편리하게 전달 할 수 있다. 가압 에어로졸의 경우, 투약 단위는 계량된 양을 전달하는 밸브를 제공하여 결정할 수 있다. 예를 들면, 흡입기 또는 취입기에 사용되는 젤라틴 캡슐 및 카트리지는 화합물, 및 락토즈 또는 전분과 같은 적합한 분말 기제의 분말 혼합물을 함유하도록 제형화할 수 있다. 비경구 투여용 제형은 모든 제약 화학에 일반적으로 공지된 처방서인 문헌(Remington's Pharmaceutical Science, 15th Edition, 1975. Mack Publishing Company, Easton, Pennsylvania 18042, Chapter 87: Blaug, Seymour)에 기재되어 있다.For inhalation administration, the compounds used according to the invention may be packaged in pressurized packs or using a suitable propellant, for example dichlorofluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. It can be conveniently delivered in the form of an aerosol spray from a nebulizer. For pressurized aerosols, the dosage unit can be determined by providing a valve that delivers a metered amount. For example, gelatin capsules and cartridges for use in inhalers or insufflators can be formulated to contain a powder mixture of the compound and a suitable powder base such as lactose or starch. Formulations for parenteral administration are described in Remington's Pharmaceutical Science, 15th Edition, 1975. Mack Publishing Company, Easton, Pennsylvania 18042, Chapter 87: Blaug, Seymour, a text generally known in all pharmaceutical chemistry.

본 발명의 패혈증 예방 및 치료용 약학 조성물은 상기 융합 단백질을 유효량으로 포함할 때 바람직한 패혈증 예방 및 치료 효과를 제공할 수 있다. 본 명세서에서, '유효량'이라 함은 음성 대조군에 비해 그 이상의 반응을 나타내는 양을 말하며 바람직하게는 패혈증을 예방 또는 치료하기에 충분한 양을 말한다. 본 발명의 약학 조성물에 상기 융합 단백질이 0.01 내지 99.99% 포함될 수 있으며, 잔량은 약학적으로 허용 가능한 담체가 차지할 수 있다. 본 발명의 약학 조성물에 포함되는 상기 융합 단백질의 유효량은 조성물이 제품화되는 형태 등에 따라 달라질 것이다.The pharmaceutical composition for preventing and treating sepsis of the present invention can provide desirable sepsis prevention and treatment effects when it contains the fusion protein in an effective amount. In this specification, the term 'effective amount' refers to an amount that shows a greater response than the negative control, and preferably refers to an amount sufficient to prevent or treat sepsis. The pharmaceutical composition of the present invention may contain 0.01 to 99.99% of the fusion protein, and the remaining amount may be comprised of a pharmaceutically acceptable carrier. The effective amount of the fusion protein included in the pharmaceutical composition of the present invention will vary depending on the form in which the composition is commercialized.

본 발명의 약학 조성물의 총 유효량은 단일 투여량(single dose)으로 환자에게 투여될 수 있으며, 다중 투여량(multiple dose)으로 장기간 투여되는 분할 치료 방법(fractionated treatment protocol)에 의해 투여될 수 있다. 본 발명의 약학 조성물은 질환의 정도에 따라 유효성분의 함량을 달리할 수 있다. 비경구 투여시는 상기 융합 단백질을 기준으로 하루에 체중 1 kg당 바람직하게 0.01 내지 50 mg, 더 바람직하게는 0.1 내지 30 mg의 양으로 투여되도록, 그리고 경구 투여시는 상기 융합 단백질을 기준으로 하루에 체중 1 kg당 바람직하게 0.01 내지 100 mg, 더 바람직하게는 0.1 내지 50 mg의 양으로 투여되도록 1 내지 수회에 나누어 투여할 수 있다. 그러나 상기 상기 융합 단백질의 용량은 약학 조성물의 투여 경로 및 치료 횟수뿐만 아니라 환자의 연령, 체중, 건강 상태, 성별, 질환의 중증도, 식이 및 배설율 등 다양한 요인들을 고려하여 환자에 대한 유효 투여량이 결정되는 것이므로, 이러한 점을 고려할 때 당 분야의 통상적인 지식을 가진 자라면 상기 융합 단백질을 패혈증 예방 및 치료를 위한 특정한 용도에 따른 적절한 유효 투여량을 결정할 수 있을 것이다. 본 발명에 따른 약학 조성물은 본 발명의 효과를 보이는 한 그 제형, 투여 경로 및 투여 방법에 특별히 제한되지 아니한다.The total effective amount of the pharmaceutical composition of the present invention can be administered to a patient in a single dose, or can be administered by a fractionated treatment protocol in which multiple doses are administered over a long period of time. The pharmaceutical composition of the present invention may vary the content of the active ingredient depending on the severity of the disease. When administered parenterally, the amount is preferably 0.01 to 50 mg, more preferably 0.1 to 30 mg per kg of body weight per day based on the fusion protein, and when administered orally, the amount is administered per day based on the fusion protein. It can be administered in one to several divided doses, preferably in an amount of 0.01 to 100 mg, more preferably 0.1 to 50 mg per kg of body weight. However, the dose of the fusion protein is determined by taking into account various factors such as the administration route and number of treatments of the pharmaceutical composition, as well as the patient's age, weight, health status, gender, severity of the disease, diet, and excretion rate. Therefore, considering this, a person with ordinary knowledge in the art will be able to determine an appropriate effective dosage of the fusion protein according to a specific use for preventing and treating sepsis. The pharmaceutical composition according to the present invention is not particularly limited in its formulation, administration route, and administration method as long as it exhibits the effects of the present invention.

본 발명의 패혈증 예방 및 치료용 약학 조성물은 단독으로, 또는 수술, 방사선 치료, 호르몬 치료, 화학 치료, 생물학적 반응조절제 또는 패혈증 치료제를 사용하는 방법들과 병용하여 사용할 수 있다.The pharmaceutical composition for preventing and treating sepsis of the present invention can be used alone or in combination with methods using surgery, radiation therapy, hormone therapy, chemical therapy, biological response regulators, or sepsis treatment agents.

특히 본 발명에 따른 융합 단백질은 패혈증 치료제와 병용 투여되는 것을 특징으로 하고, 상기 패혈증 치료제는 항생제, 활성 단백질 C(activated protein C), 글루코코르티코이드, 사이토카인 길항제, 수액, 수혈 등 패혈증 증상을 완화하거나 치료하는 제제 또는 방법이라면 특별히 제한되지 않는다.In particular, the fusion protein according to the present invention is characterized in that it is administered in combination with a sepsis treatment agent, and the sepsis treatment agent alleviates the symptoms of sepsis, such as antibiotics, activated protein C, glucocorticoids, cytokine antagonists, fluids, and blood transfusions. There is no particular limitation as long as it is a treatment agent or method.

상기 항생제는 아미노글리코사이드계(aminoglycosides), 테트라사이클린계(tetracycline), 펩타이드계(peptide) 및 리파마이신계(rifamycin)로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다.The antibiotic may be any one or more selected from the group consisting of aminoglycosides, tetracyclines, peptides, and rifamycins.

본 발명에 있어서, "항생제(antibiotics)"는 세균감염의 치료 및 예방을 위하여 사용되는 물질로서, 미생물의 성장이나 생명을 막는 물질을 의미한다. 상기 항생제에는 세균이나 곰팡이와 같은 미생물에 의해 생성되는 화학물질인 천연 항생제, 천연 항생제의 구조적 형태 등의 변화를 통해 수득된 유도체인 반합성 항생제, 화학적으로 합성된 합성 항생제(항균제) 등이 모두 포함된다.In the present invention, “antibiotics” are substances used for the treatment and prevention of bacterial infections and refer to substances that prevent the growth or life of microorganisms. The above antibiotics include natural antibiotics, which are chemical substances produced by microorganisms such as bacteria and molds, semisynthetic antibiotics, which are derivatives obtained through changes in the structural form of natural antibiotics, and synthetic antibiotics (antibacterial agents) that are chemically synthesized. .

본 발명의 항생제에는 아미노글리코사이드계(aminoglycosides), 페니실린계(penicillin), 세팔로스포린계(cephalosporin), 테트라사이클린계(tetracycline), 마크로라이드계(macrolides), 스트렙토그라민계(streptogramins), 글리코펩타이드계(glycopeptide), 펩타이드계(peptide), 플라보포스폴리폴계(flavophospholipol), 폴리에틸계(polyether), 페니콜계(phenicol), 린코사마이드계(lincosamide), 리파마이신계(rifamycin), 폴리엔계(polynen), 설포나마이드계(sulfonamide), 벤질페리미딘계, 퀴놀론계(quinolone), 플로오로퀴놀론계(fluoroquinolone), 니트로푸란계(nitrofuran) 항생제 등이 포함되며, 이에 제한되지 않는다. 상기 아미노글리코사이드계 항생제에는 겐타마이신, 카나마이신, 리보스타마이신, 토브라마이신, 시소마이신, 아스트로마이신, 이세파마이신, 아베카신, 디베카신, 스펙티노마이신, 네틸마이신, 미크로노마이신, 스트렙토마이신, 디하이드로스트렙토마이신, 아프라마이신, 데스토마이신, 하이그로마이신, 아미카신, 네오마이신 등이 포함되며, 이에 제한되지 않는다. 상기 페니실린계 항생제에는 페니실린, 벤질페니실린, 옥사실린, 클록사실린, 디클록사실린, 플루클록사실린, 나푸실린, 앰피실린, 아목시실린, 카베니실린, 티카실린, 피페라실린 등이 포함되며, 이에 제한되지 않는다. 상기 세팔로스포린계(세펨계) 항생제에는 세파로틴, 세파졸린, 세파로리딘, 세파렉신, 세파세트릴, 세파로니옴, 세폭사졸, 세파피린, 세파드록실, 세파만돌, 세폭시틴, 세푸록심, 세포페라존, 세파메타졸, 세포탁심, 세푸티오퍼 등이 포함되며, 이에 제한되지 않는다. 상기 테트라사이클린계 항생제에는 클로르테트라사이클린, 옥시테트라사이클린, 테트라사이클린, 미노사이클린, 독시사이클린 등이 포함되며, 이에 제한되지 않는다. 상기 마크로라이드계 항생제에는 에리스로마이신, 키타사마이신, 스피라마이신, 올레안도마이신, 조사마이신, 세데카마이신, 타이로신, 록시스로마이신 등이 포함되며, 이에 제한되지 않는다. 상기 스트렙토그라민계 항생제에는 버지니아마이신, 미카마이신 등이 포함되며, 이에 제한되지 않는다. 상기 글리코펩타이드계 항생제에는 아보파신, 반코마이신 등이 포함되며, 이에 제한되지 않는다. 상기 펩타이드계 항생제에는 폴리믹신(예를 들어, 콜리스틴, 폴리믹신B 등), 사이클릭(예를 들어, 바시트라신 등), 사이클릭뎁시(예를 들어, 엔라마이신, 치오펩틴 등) 등이 포함되며, 이에 제한되지 않는다. 상기 플라보포스폴리폴계 항생제에는 밤버마이신, 마카보마이신, 퀘베마이신 등이 포함되며, 이에 제한되지 않는다. 상기 폴리에틸계 항생제에는 모넨신, 살리노마이신, 라사로시드, 나라신마두라마이신 등이 포함되며, 이에 제한되지 않는다. 상기 페니콜계 항생제에는 클로람페니콜, 치암페니콜, 플로르페니콜 등이 포함되며, 이에 제한되지 않는다. 상기 린코사마이드계 항생제에는 린코마이신, 클린다마이신 등이 포함되며, 이에 제한되지 않는다. 상기 리파마이신계 항생제에는 림팜피신 등이 포함되며, 이에 제한되지 않는다. 상기 폴리엔계 항생제에는 나이스타틴, 피마리신, 펜타마이신, 암포테리신B, 트리코마이신, 칸디시딘 등이 포함되며, 이에 제한되지 않는다. 상기 설포나마이드계 항생제에는 설파피리딘, 설파디아진, 설파디미딘, 설파푸라졸, 설파모노메톡 등이 포함되며, 이에 제한되지 않는다. 상기 벤질페리미딘계 항생제에는 트리메토프림, 오메토프림, 테트록소프림 등이 포함되며, 이에 제한되지 않는다. 상기 퀴놀론계 항생제에는 나리디식산, 옥소리닉산, 시녹사신, 아크로소사신 등이 포함되며, 이에 제한되지 않는다. 상기 플로오로퀴놀론계 항생제에는 플루메퀸, 시푸로삭신, 엔노사신, 푸레록사신, 마보플록사신 등이 포함되며, 이에 제한되지 않는다. 상기 니트로푸란계 항생제에는 푸라졸리돈, 푸랄타돈, 니트로빈, 니트로푸라존 등이 포함되며, 이에 제한되지 않는다.Antibiotics of the present invention include aminoglycosides, penicillin, cephalosporin, tetracycline, macrolides, streptogramins, and glycosides. Glycopeptide, peptide, flavophospholipol, polyether, phenicol, lincosamide, rifamycin, polyene These include, but are not limited to, polynene, sulfonamide, benzylperimidine, quinolone, fluoroquinolone, and nitrofuran antibiotics. The aminoglycoside antibiotics include gentamicin, kanamycin, ribostamycin, tobramycin, sisomicin, astromycin, isepamycin, abecacin, dibecasin, spectinomycin, netilmycin, micronomycin, and streptomycin. , dihydrostreptomycin, apramycin, destomycin, hygromycin, amikacin, neomycin, etc., but are not limited thereto. The penicillin antibiotics include penicillin, benzylpenicillin, oxacillin, cloxacillin, dicloxacillin, flucloxacillin, nafucillin, ampicillin, amoxicillin, carbenicillin, ticarcillin, piperacillin, etc., It is not limited to this. The above cephalosporin (cephem) antibiotics include cepharotin, cefazolin, cephaloridin, cephalexin, cefacetril, cephaloniom, cefoxazole, cefaphyrin, cefadroxil, cefamandole, cefoxitin, and cefu. Includes, but is not limited to, Roxime, cefoperazone, cephamethazole, cefotaxime, ceputiofur, etc. The tetracycline-based antibiotics include, but are not limited to, chlortetracycline, oxytetracycline, tetracycline, minocycline, and doxycycline. The macrolide antibiotics include, but are not limited to, erythromycin, kitasamicin, spiramycin, oleandomycin, josamycin, sedecamicin, tyrosin, and roxithromycin. The streptogramin-based antibiotics include, but are not limited to, virginiamycin and micamycin. The glycopeptide antibiotics include, but are not limited to, abopacin and vancomycin. The peptide-based antibiotics include polymyxins (e.g., colistin, polymyxin B, etc.), cyclic (e.g., bacitracin, etc.), and cyclic depsis (e.g., enramycin, thiopeptin, etc.) ), etc. are included, but are not limited thereto. The flavophospholipol-based antibiotics include, but are not limited to, bambermycin, macabomycin, quebemycin, and the like. The polyethyl antibiotics include, but are not limited to, monensin, salinomycin, lasaroside, naracin maduramycin, etc. The phenicol-based antibiotics include, but are not limited to, chloramphenicol, thiamphenicol, and florfenicol. The lincosamide antibiotics include, but are not limited to, lincomycin and clindamycin. The rifamycin-based antibiotics include, but are not limited to, limfampicin. The polyene antibiotics include, but are not limited to, nystatin, pimaricin, pentamycin, amphotericin B, trichomycin, candicidin, etc. The sulfonamide antibiotics include, but are not limited to, sulfapyridine, sulfadiazine, sulfadimidine, sulfafurazole, and sulfamonomethox. The benzylperimidine antibiotics include, but are not limited to, trimethoprim, ometoprim, and tetroxoprim. The quinolone antibiotics include, but are not limited to, naridisic acid, oxolinic acid, cinoxacin, and acrosoxacin. The fluoroquinolone antibiotics include, but are not limited to, flumequin, sipuroxacin, ennoxacin, furoxacin, and mabofloxacin. The nitrofuran-based antibiotics include, but are not limited to, furazolidone, furaltadone, nitrobin, nitrofurazone, etc.

본 발명에 있어서 사이토카인 길항제는 환자 신체에서 하나 이상의 사이토카인의 생물학적 활성의 적어도 하나, 바람직하게는 실질적으로 전체를 감소시키거나 저해하는 임의 물질 또는 임의 물질의 혼합물일 수 있다. 길항 효과는 길항제에 의해 직접적으로, 또는 예로 사이토카인의 생물학적 활성에 효과를 또한 갖는 추가 신호전달 경로를 활성화하거나 저해함으로써 간접적으로 일어날 수 있다. 바람직하게는 사이토카인의 생물학적 활성은 이것이 결합할 수 있는 하나 이상의 수용체와의 상호작용을 차단함으로써 저해된다. 이는, 예를 들어, 해당 수용체(들)에 대한 길항제의 경쟁적 결합에 의해 또는 사이토카인 자체에 대한 길항제의 결합에 의해 달성될 수 있다. In the present invention, a cytokine antagonist may be any substance or mixture of substances that reduces or inhibits at least one, preferably substantially all, biological activities of one or more cytokines in the patient's body. The antagonistic effect may occur directly by the antagonist or indirectly, for example by activating or inhibiting additional signaling pathways that also have an effect on the biological activity of the cytokine. Preferably the biological activity of the cytokine is inhibited by blocking its interaction with one or more receptors to which it can bind. This can be achieved, for example, by competitive binding of the antagonist to the receptor(s) in question or by binding of the antagonist to the cytokine itself.

상기 사이토카인은 TNF-알파 수퍼 패밀리(예컨대, TNF-알파, TNF-C, OX40L, CD154, FasL, LIGHT, TL1A, CD70, Siva, CD153, 4-1BB 리간드, TRAIL, RANKL, TWEAK, APRIL, BAFF, CAMLG, NGF, BDNF, NT-3, NT-4, GITR 리간드, EDA-A, EDA-A2), TGF-베타 수퍼 패밀리, IL-1 패밀리 (예컨대, IL-1 and IL-8), IL-2 패밀리, IL-10 패밀리, IL-17 패밀리, 인터페론 패밀리에 속하는 분자 중에서 하나 이상 선택될 수 있고, 예컨대, TNF-알파, TNF-alpha, IL-1, IL-8, IL-10, IL17, LIGHT, TLIA, Siva, TRAIL, RANKL, TWEAK, APRIL, NGF, BDNF, NT-3, and EDA-A2, TNF-C, OX40L, CD154, FasL, CD70, CD153, 4-1BB 리간드, EDA-A, IL-2, IFN-알파, IFN-베타, IFN-감마, Flt3 리간드, GM-CSF, IL-15, IL-12, fms-related tyrosine kinase 3 리간드(FLT3L) 중에서 하나 이상 선택될 수 있다. The cytokines are members of the TNF-alpha superfamily (e.g., TNF-alpha, TNF-C, OX40L, CD154, FasL, LIGHT, TL1A, CD70, Siva, CD153, 4-1BB Ligand, TRAIL, RANKL, TWEAK, APRIL, BAFF , CAMLG, NGF, BDNF, NT-3, NT-4, GITR ligand, EDA-A, EDA-A2), TGF-beta superfamily, IL-1 family (e.g., IL-1 and IL-8), IL One or more molecules may be selected from molecules belonging to the -2 family, IL-10 family, IL-17 family, and interferon family, such as TNF-alpha, TNF-alpha, IL-1, IL-8, IL-10, and IL17. , LIGHT, TLIA, Siva, TRAIL, RANKL, TWEAK, APRIL, NGF, BDNF, NT-3, and EDA-A2, TNF-C, OX40L, CD154, FasL, CD70, CD153, 4-1BB ligand, EDA-A , IL-2, IFN-alpha, IFN-beta, IFN-gamma, Flt3 ligand, GM-CSF, IL-15, IL-12, and fms-related tyrosine kinase 3 ligand (FLT3L).

상기 사이토카인 길항제는 항체 또는 항체의 항원-결합 절편, 특히 해당 사이토카인 또는 사이토카인 수용체에 결합할 수 있는 항체 또는 항체 절편이거나 이를 포함할 수 있다. 적합한 사이토카인 길항제의 예에는, 인터류킨 길항제, 특히 IL-1Ra와 같은 IL-1 길항제, 종양 괴사 인자(TNF) 길항제, 특히 TNF-α 길항제, 예를 들어, 항TNF-α 항체, 인터페론 길항제 및 케모카인 길항제일 수 있고, 가장 바람직하게는 항TNF-α 항체일 수 있다.The cytokine antagonist may be or include an antibody or antigen-binding fragment of an antibody, particularly an antibody or antibody fragment capable of binding to the corresponding cytokine or cytokine receptor. Examples of suitable cytokine antagonists include interleukin antagonists, especially IL-1 antagonists such as IL-1Ra, tumor necrosis factor (TNF) antagonists, especially TNF-α antagonists, such as anti-TNF-α antibodies, interferon antagonists and chemokines. It may be an antagonist, and most preferably it may be an anti-TNF-α antibody.

앞서 살펴본 바와 같이, 종래 패혈증 치료제는 단독으로는 전혀 효과를 나타내지 못하나, 본 발명의 융합 단백질과 병용투여시, 상승적인 효과를 나타내는 것을 확인할 수 있다.As seen above, conventional sepsis treatments do not show any effect on their own, but when administered in combination with the fusion protein of the present invention, it can be seen that they show a synergistic effect.

본 발명에 따른 융합 단백질은 패혈증 치료제와 병용할 경우 단독 투여에 비해 상승적인 효과를 발휘할 수 있고, 상기 패혈증 치료제와는 동시 또는 독립적으로 투여될 수 있다.When used in combination with a sepsis treatment, the fusion protein according to the present invention can exert a synergistic effect compared to single administration, and can be administered simultaneously or independently of the sepsis treatment.

본 발명에서 "상승적인" 또는 "상승적인 효과"는 본 발명의 융합 단백질과 패혈증 치료제와의 조합으로 달성되거나 및/또는 본 발명의 치료 방법을 통해 달성되는 치료학적 효과를 의미하며; 이는 상기 융합 단백질 및 패혈증 치료제를 단독으로 또는 분리하여 사용함으로써 발생되는 효과들의 합보다 크다는 것을 의미한다. 유익하게는, 치료학적 물질들 간의 이러한 상승작용은 2종의 치료학적 물질들 중 하나 또는 둘 다를 더 적은 양으로 사용가능하게 하거나, 동일한 투여량에서 더 높은 효능을 제공하거나, 및/또는 약물 내성 발생을 방지 또는 지연한다. 상승적인 효과는, 본 발명에 기술된 약학 조성물에 함유된 치료학적 물질의 공동-제형화 (co-formulating)에 의해, 또는 치료학적 물질을 단위 투약 형태를 통해 동시에 투여하거나 또는 동시에 또는 순차적으로 투여되는 분리된 제형들로서 투여함으로써, 달성할 수 있다.In the present invention, “synergistic” or “synergistic effect” means a therapeutic effect achieved by combining the fusion protein of the present invention with a sepsis treatment agent and/or achieved through the treatment method of the present invention; This means that it is greater than the sum of the effects generated by using the fusion protein and the sepsis treatment agent alone or separately. Advantageously, this synergy between therapeutic agents allows one or both of the two therapeutic agents to be used in lower doses, provides higher efficacy at the same dose, and/or reduces drug resistance. Prevent or delay its occurrence. The synergistic effect may be achieved by co-formulating the therapeutic substances contained in the pharmaceutical compositions described herein, or by administering the therapeutic substances simultaneously via unit dosage form, or by administering them simultaneously or sequentially. This can be achieved by administering them as separate dosage forms.

본 발명의 패혈증 예방 및 치료용 약학 조성물은 또한 상기 융합 단백질을 유효성분으로 함유하는 외용제의 제형으로 제공할 수 있다.The pharmaceutical composition for preventing and treating sepsis of the present invention can also be provided in the form of an external preparation containing the fusion protein as an active ingredient.

본 발명의 패혈증 예방 및 치료용 약학 조성물을 피부외용제로 사용하는 경우, 추가로 지방 물질, 유기 용매, 용해제, 농축제 및 겔화제, 연화제, 항산화제, 현탁화제, 안정화제, 발포제(foaming agent), 방향제, 계면활성제, 물, 이온형 유화제, 비이온형 유화제, 충전제, 금속이온봉쇄제, 킬레이트화제, 보존제, 비타민, 차단제, 습윤화제, 필수 오일, 염료, 안료, 친수성 활성제, 친유성 활성제 또는 지질 소낭 등 피부 외용제에 통상적으로 사용되는 임의의 다른 성분과 같은 피부 과학 분야에서 통상적으로 사용되는 보조제를 함유할 수 있다. 또한 상기 성분들은 피부 과학 분야에서 일반적으로 사용되는 양으로 도입될 수 있다.When the pharmaceutical composition for preventing and treating sepsis of the present invention is used as an external skin agent, fatty substances, organic solvents, solubilizers, thickeners and gelling agents, softeners, antioxidants, suspending agents, stabilizers, and foaming agents are added. , fragrance, surfactant, water, ionic emulsifier, non-ionic emulsifier, filler, sequestering agent, chelating agent, preservative, vitamin, blocking agent, wetting agent, essential oil, dye, pigment, hydrophilic activator, lipophilic activator or It may contain adjuvants commonly used in the field of dermatology, such as lipid vesicles or any other ingredients commonly used in topical skin preparations. Additionally, the ingredients may be introduced in amounts commonly used in the field of dermatology.

본 발명의 패혈증 예방 및 치료용 약학 조성물이 피부 외용제로 제공될 경우, 이에 제한되는 것은 아니나, 연고, 패취, 겔, 크림 또는 분무제 등의 제형일 수 있다.When the pharmaceutical composition for preventing and treating sepsis of the present invention is provided as an external skin preparation, it is not limited thereto, but may be in the form of an ointment, patch, gel, cream, or spray.

본 발명의 조성물은 패혈증 예방 또는 개선을 목적으로 사료첨가제 또는 이를 포함하는 사료 조성물에 첨가할 수 있다.The composition of the present invention can be added to a feed additive or a feed composition containing the same for the purpose of preventing or improving sepsis.

본 발명에서 용어, "사료첨가제"는 영양소 보충 및 체중감소 예방, 사료 내 섬유소의 소화 이용성 증진, 유질개선, 번식장애 예방 및 수태율 향상, 하절기 고온 스트레스 예방 등 다양한 효과를 목적으로 사료에 첨가하는 물질을 포함한다. 본 발명의 사료첨가제는 사료관리법상의 보조사료에 해당하며, 탄산수소나트륨, 벤토나이트(bentonite), 산화마그네슘, 복합광물질 등의 광물질제제, 아연, 구리, 코발트, 셀레늄 등의 미량 광물질인 미네랄제제, 케로틴, 비타민 A D, E, 니코틴산, 비타민 B 복합체 등의 비타민제, 메티오닌, 라이신 등의 보호아미노산제, 지방산 칼슘염 등의 보호지방산제, 생균제(유산균제), 효모배양물, 곰팡이 발효물 등의 생균, 효모제 등이 추가로 포함될 수 있다.In the present invention, the term "feed additive" refers to a substance added to feed for the purpose of various effects such as supplementing nutrients and preventing weight loss, improving digestibility of fiber in feed, improving milk quality, preventing reproductive disorders and improving conception rate, and preventing high temperature stress in the summer. Includes. The feed additive of the present invention corresponds to supplementary feed under the Feed Management Act, and includes mineral preparations such as sodium bicarbonate, bentonite, magnesium oxide, and complex minerals, mineral preparations such as trace minerals such as zinc, copper, cobalt, and selenium, and kerotene. , vitamins such as vitamins A, D, E, nicotinic acid, and vitamin B complex, protective amino acids such as methionine and lysine, protective fatty acids such as fatty acid calcium salts, probiotics (lactic acid bacteria), yeast cultures, and live bacteria such as mold fermentation products, Yeast agents, etc. may be additionally included.

본 발명에서 용어 "사료"는, 동물이 먹고, 섭취하며, 소화시키기 위한 또는 이에 적당한 임의의 천연 또는 인공 규정식, 한끼식 등 또는 상기 한끼식의 성분으로, 본 발명에 따른 근육 질환 예방 또는 개선용 조성물을 유효성분으로 푸함하는 사료는 당업계에 공지된 다양한 형태의 사료로 제조가능하며, 바람직하게는 농후 사료, 조사료 및/또는 특수사료가 포함될 수 있으나, 이로 한정되지 않는다.In the present invention, the term "feed" refers to any natural or artificial diet, meal, etc., or an ingredient of the meal, for or suitable for eating, ingestion, and digestion by animals, and to prevent or improve muscle disease according to the present invention. Feed containing the composition as an active ingredient can be manufactured from various types of feed known in the art, and may preferably include concentrated feed, roughage and/or special feed, but is not limited thereto.

농후사료에는 밀, 귀리, 옥수수 등의 곡류를 포함하는 종자열매류, 곡물을 정제하고 얻는 부산물로서 쌀겨, 밀기울, 보릿겨 등을 포함하는 겨류, 콩, 유체, 깨, 아마인, 코코야자 등을 채유하고 얻는 부산물인 깻묵류와 고구마, 감자 등에서 녹말을 뺀 나머지인 녹말찌꺼기의 주성분인 잔존녹말질류 등의 찌꺼기류, 어분, 물고기찌꺼기, 어류에서 얻은 신선한 액상물을 농축시킨 것인 피시솔루블(fish soluble), 육분(肉粉), 혈분, 우모분, 탈지분유, 우유에서 치즈, 탈지유에서 카제인을 제조할 때의 잔액인 훼이(whey)를 건조한 건조훼이 등의 동물질사료, 효모, 클로렐라, 해조류가 있으나 이에 제한되지 않는다.Concentrated feed includes seeds and fruits, including grains such as wheat, oats, and corn; bran, which includes rice bran, bran, and barley bran, which are by-products obtained from refining grains; soybeans; oil, sesame seeds, linseed, and coco oil; Fish soluble (fish solution) is a concentrated product of fresh liquid obtained from fish, fish meal, fish waste, and residual starch, which is the main component of the starch waste that is left after removing the starch from the by-products such as seed jelly, sweet potatoes, and potatoes. There are animal feeds such as meat meal, blood meal, feather meal, skim milk powder, dried whey, which is the residue from milk to cheese, and casein from skim milk, yeast, chlorella, and seaweed. It is not limited to this.

조사료에는 야초, 목초, 풋베기 등의 생초(生草)사료, 사료용 순무, 사료용 비트, 순무의 일종인 루터베어거 등의 뿌리채소류, 생초, 풋베기작물, 곡실(穀實) 등을 사일로에 채워 놓고 젖산발효시킨 저장사료인 사일리지(silage), 야초, 목초를 베어 건조시킨 건초, 종축용(種畜用) 작물의 짚, 콩과 식물의 나뭇잎이 있으며, 이에 제한되지 않는다. 특수사료에는 굴껍데기, 암염 등의 미네랄 사료, 요소나 그 유도체인 디우레이드이소부탄 등의 요소사료, 천연사료원료만을 배합했을 때 부족하기 쉬운 성분을 보충하거나, 사료의 저장성을 높이기 위해서 배합사료에 미량으로 첨가하는 물질인 사료첨가물, 식이보조제가 있으나 이에 제한되지 않는다.Forage includes raw grass feed such as wild grass, grass, and green cuttings, turnips for feed, beets for feed, root vegetables such as rutterbearger, a type of turnip, raw grass, green cuttings, and grains, etc., in silos. These include, but are not limited to, silage, which is stored feed that has been filled and fermented with lactic acid, field grass, hay made by cutting and drying grass, straw from breeding crops, and leaves from legumes. Special feeds include mineral feeds such as oyster shells and rock salt, urea feeds such as urea and its derivative diureide isobutane, and mixed feeds to supplement ingredients that are likely to be lacking when mixing only natural feed ingredients, or to increase the storability of the feed. Substances added in trace amounts include feed additives and dietary supplements, but are not limited to these.

본 발명에 따른 상기 패혈증의 예방 또는 개선용 사료 첨가제는 당업계에 공지된 다양한 사료 제조방법에 따라 적절한 유효 농도 범위에서 상기 융합 단백질을 첨가하여 제조 가능하다.The feed additive for preventing or improving sepsis according to the present invention can be manufactured by adding the fusion protein in an appropriate effective concentration range according to various feed manufacturing methods known in the art.

본 발명에 따른 사료 첨가제는 패혈증의 예방 또는 개선을 목적으로 하는 개체이면 제한 없이 적용가능하다. 예를 들면, 소, 말, 돼지, 염소, 양, 개, 고양이, 토끼 등과 같은 비인간동물, 조류 및 어류 등 어느 개체에도 적용이 가능하다.The feed additive according to the present invention can be applied without limitation to any object aimed at preventing or improving sepsis. For example, it can be applied to any entity, including non-human animals such as cows, horses, pigs, goats, sheep, dogs, cats, rabbits, birds, and fish.

본 발명은 상기 약학 조성물을 투여하는 단계를 포함하는, 패혈증을 예방 또는 치료하는 방법을 제공한다.The present invention provides a method for preventing or treating sepsis, comprising administering the pharmaceutical composition.

본 발명의 방법에 있어서, 상기 동물은 닭, 돼지, 원숭이, 개, 고양이, 토끼, 모르모트, 래트, 마우스, 소, 양, 염소 등과 같은 동물에 제한없이 적용가능하다. 바람직하게는 인간을 제외한 동물이라면 특별히 제한되지 않는다.In the method of the present invention, the animal is applicable to animals such as chicken, pig, monkey, dog, cat, rabbit, guinea pig, rat, mouse, cow, sheep, goat, etc. without limitation. Preferably, there is no particular limitation as long as it is an animal other than a human.

본 발명에서, 상기 투여는 당업계에 알려져 있는 임의의 투여 수단에 의하여 투여될 수 있다. 예를 들면, 상기 투여는 정맥내, 근육내, 복강내, 경구, 경피(transdermal), 점막, 코안(intranasal), 기관내(intratracheal) 또는 피하로 개체로 직접적으로 투여될 수 있다. 상기 투여는 전신적으로 또는 국부적으로 투여되는 것일 수 있다.In the present invention, the administration may be administered by any administration means known in the art. For example, the administration can be administered directly to the subject intravenously, intramuscularly, intraperitoneally, orally, transdermal, mucosally, intranasally, intratracheally or subcutaneously. The administration may be administered systemically or locally.

본 발명의 방법에 있어서, 상기 본 발명의 조성물은 치료학적으로 또는 예방학적으로 유효한 양으로 투여되는 것일 수 있다. 상기 "치료학적으로 또는 예방학적으로 유효한 양"은 당업자라면, 증상의 경중, 개체의 성별, 나이 및 체중 등을 고려하여 적절하게 선택할 수 있다. 상기 치료학적으로 또는 예방학적으로 유효한 양은, 예를 들면 투여되는 개체 1kg 당 0.0001-100 ㎎의 상기 융합 단백질일 수 있다.In the method of the present invention, the composition of the present invention may be administered in a therapeutically or prophylactically effective amount. The “therapeutically or prophylactically effective amount” can be appropriately selected by those skilled in the art, taking into account the severity of symptoms, gender, age, and weight of the individual. The therapeutically or prophylactically effective amount may be, for example, 0.0001-100 mg of the fusion protein per 1 kg of the administered subject.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예 1. C10-LRR 재조합 단백질 제작Example 1. Production of C10-LRR recombinant protein

C10와 LRR 재조합 단백질을 코딩하는 폴리뉴클레오티드 서열 제작Construction of polynucleotide sequences encoding C10 and LRR recombinant proteins

C10-LRR 재조합 단백질을 제조하기 위하여, 하기와 같이 수행하였다. ①NheI 제한효소 인식 부위, ②C10 폴리펩티드(서열번호 1)를 코딩하는 서열번호 12의 폴리뉴클레오티드 서열, ③BamHI 제한효소 인식 부위 및 ④ NLRX1 단백질 N 말단의 2022 bp가 결손된 NRR 도메인(903 bp)의 일부를 코딩하는 폴리뉴클레오티드 서열이 5' → 3' 방향으로 순차 포함된 서열번호 29의 정방향 프라이머를 제작하였고(바이오닉스), ①HindIII 제한효소 인식 부위 및 ②EGFP의 C-말단 일부를 코딩하는 폴리뉴클레오티드 서열이 5' → 3' 방향으로 순차 포함된 서열번호 30의 역방향 프라이머를 제작하였다(바이오닉스). 상기 서열번호 29의 정방향 프라이머에서 ①NheI 제한효소 인식 부위는 DNA 클로닝을 위한 것이고, ③BamHI 제한효소 인식 부위는 상기 ②서열번호 12의 폴리뉴클레오티드 서열과 ④EGFP의 N-말단의 일부를 코딩하는 폴리뉴클레오티드 서열을 연결하기 위한 것이다. 또한, 상기 서열번호 30의 역방향 프라이머의 ①HindIII 제한효소 인식 부위도 DNA 클로닝을 위한 것이다.To prepare C10-LRR recombinant protein, it was performed as follows. ① NheI restriction enzyme recognition site, ② polynucleotide sequence of SEQ ID NO: 12 encoding C10 polypeptide (SEQ ID NO: 1), ③ BamHI restriction enzyme recognition site, and ④ part of NRR domain (903 bp) with 2022 bp of NLRX1 protein N terminus deleted. A forward primer of SEQ ID NO. 29 containing the coding polynucleotide sequence sequentially in the 5' → 3' direction was produced (Bionics), and the polynucleotide sequence encoding ① HindIII restriction enzyme recognition site and ② part of the C-terminus of EGFP was 5'. → A reverse primer of SEQ ID NO: 30 sequentially included in the 3' direction was produced (Bionics). In the forward primer of SEQ ID NO: 29, ① the NheI restriction enzyme recognition site is for DNA cloning, and ③ the BamHI restriction enzyme recognition site includes the polynucleotide sequence of ② SEQ ID NO: 12 and ④ a polynucleotide sequence encoding part of the N-terminus of EGFP. It is for connection. In addition, the ①HindIII restriction enzyme recognition site of the reverse primer of SEQ ID NO: 30 is also for DNA cloning.

EGFP유전자가 포함된 pRSET-b 벡터를 주형으로 하고, 상기 서열번호 29 및 서열번호 30의 프라이머 쌍을 이용하여 PCR 반응을 수행함으로써 인간 IL-10 유래의 C10 폴리펩티드와 LRR 폴리펩티드의 융합 단백질을 코딩하는 서열번호 31의 폴리뉴클레오티드 서열을 제작하였다. 상기 PCR 반응은 95℃에서 3분 동안 초기 열 변성 반응을 한 뒤, 95℃에서 주형의 열 변성으로 20초, 50℃에서 프라이머와 주형의 결합으로 20초, 72℃에서 연장반응으로 30초를 수행하는 것으로 1주기를 설정하여 35주기를 PCR 반응기(Biorad)를 이용하여 수행하였다.Using the pRSET-b vector containing the EGFP gene as a template, a PCR reaction was performed using the primer pair of SEQ ID NO: 29 and SEQ ID NO: 30, thereby encoding a fusion protein of C10 polypeptide derived from human IL-10 and LRR polypeptide. The polynucleotide sequence of SEQ ID NO: 31 was prepared. The PCR reaction includes an initial heat denaturation reaction at 95°C for 3 minutes, followed by heat denaturation of the template at 95°C for 20 seconds, primer and template binding at 50°C for 20 seconds, and extension reaction at 72°C for 30 seconds. One cycle was set to be performed, and 35 cycles were performed using a PCR reactor (Biorad).

재조합 발현벡터 제조Recombinant expression vector production

C10-LRR 융합단백질을 발현시키기 위하여 단백질 발현 벡터인 pRSETb에 상기로부터 제조된 유전자(DNA) 절편을 제한효소로 자른 후 연결효소(ligase)를 이용하여 벡터에 삽입하였다. 증폭된 DNA 절편을 NheI과 HindIII(NEB)를 이용하여 DNA의 5′/ 3′ 말단을 접착성 말단(sticky end)이 되도록 효소 반응시켰다. 한편, 같은 두 개의 제한효소를 이용하여 pRSETb를 효소 반응시켜 NheI, HindIII 삽입 부위를 갖는 선형의 pRSETb 벡터를 만들었다. 각각의 효소 반응 이후에는 PCR 정제 키트(코스모진텍)를 이용하여 분리하였다.To express the C10-LRR fusion protein, the gene (DNA) fragment prepared above was cut into pRSETb, a protein expression vector, with restriction enzymes and then inserted into the vector using ligase. The amplified DNA fragment was subjected to an enzyme reaction using NheI and HindIII (NEB) to transform the 5'/3' ends of the DNA into sticky ends. Meanwhile, pRSETb was subjected to an enzymatic reaction using the same two restriction enzymes to create a linear pRSETb vector with NheI and HindIII insertion sites. After each enzyme reaction, it was separated using a PCR purification kit (Cosmogenetech).

분리된 C10-LRR 융합 단백질 이중사슬 DNA 절편과 pRSET-b 벡터는 25 ℃에서 두 시간 동안 T4 Ligase (NEB)를 이용하여 연결되도록 효소 반응시켰다.The isolated C10-LRR fusion protein double-stranded DNA fragment and the pRSET-b vector were subjected to an enzyme reaction to be linked using T4 Ligase (NEB) for two hours at 25°C.

이렇게 연결시킨 C10-LRR이 삽입된 원형의 pRSETb 벡터를 DH5α 대장균 균주에 형질전환 시켜 항생제인 암피실린 50 μg/㎖이 포함된 LB 평판 배지에 배양하여 콜로니를 형성하는 형질전환 대장균을 선별하였다. 선별된 대장균 콜로니는 다시 암피실린 50 μg/㎖을 포함하는 액체 LB 배지에 접종하여 배양했으며 이후 플라스미드 Mini Preparation키트(코스모진텍)를 이용하여 플라스미드 벡터를 분리하였다.The circular pRSETb vector into which the ligated C10-LRR was inserted was transformed into a DH5α E. coli strain and cultured on LB plate medium containing 50 μg/ml of the antibiotic ampicillin to select transformed E. coli that formed colonies. The selected E. coli colonies were again inoculated into liquid LB medium containing 50 μg/ml of ampicillin and cultured, and then the plasmid vector was isolated using a plasmid Mini Preparation kit (Cosmogenetech).

상기와 같이 제작된 재조합 C10-LRR_pRSET-b 벡터를 주형으로 하고, 상기 서열번호 29 및 서열번호 30의 프라이머 쌍을 이용하여 PCR 반응을 수행함으로써 인간 IL-10 유래의 C10 폴리펩티드와 LRR의 융합 단백질을 코딩하는 폴리뉴클레오티드 서열을 수득하였고, 상기 폴리뉴클레오티드 서열은 코스모진텍에 DNA 서열분석을 의뢰해 벡터가 정확히 제조되었는지 확인하였다.Using the recombinant C10-LRR_pRSET-b vector constructed as above as a template, a PCR reaction was performed using the primer pair of SEQ ID NO: 29 and SEQ ID NO: 30 to produce a fusion protein of C10 polypeptide derived from human IL-10 and LRR. The coding polynucleotide sequence was obtained, and the polynucleotide sequence was submitted to Cosmogenetech for DNA sequence analysis to confirm whether the vector was accurately manufactured.

재조합 단백질 분리 및 정제Recombinant protein isolation and purification

상기 단계를 통해 얻은 대장균으로부터 6-His 태그된 재조합 단백질을 발현시키기 위해, 각각의 콜로니를 암피실린 50 μg/㎖이 포함된 LB 액체배지에 접종하여 37 ℃에서 10 시간 배양하였고, 이를 새로운 LB 액체배지 500 ml에 옮겨 담은 후, IPTG를 농도가 0.2 mM이 되도록 첨가한 후 온도를 20 ℃로 낮추고, 150 rpm으로 14시간을 더 배양하였다. 배양이 완료된 후, 배양액을 회수하였다. In order to express the 6-His tagged recombinant protein from E. coli obtained through the above steps, each colony was inoculated into LB liquid medium containing 50 μg/ml of ampicillin and cultured at 37°C for 10 hours, and then transferred to new LB liquid medium. After transferring to 500 ml, IPTG was added to a concentration of 0.2mM, the temperature was lowered to 20°C, and culture was continued at 150 rpm for an additional 14 hours. After the culture was completed, the culture medium was recovered.

상기 대장균에서 발현된 6-His 태그된 재조합 단백질을 분리정제하기 위하여, Ni-NTA 친화크로마토그래피(affinity chromatography)를 사용하였다. 상기 대장균 배양액을 원심분리하여 펠렛을 얻고, 상기 펠렛에 용해액(lysis buffer)(50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0)을 처리한 다음, 초음파 처리를 통해 세포벽을 파괴하였다. 세포 파쇄액을 원심분리하여 상청액을 회수한 후, Ni-NTA 아가로스(Qiagen) 비드에 배양하였다. To isolate and purify the 6-His tagged recombinant protein expressed in E. coli, Ni-NTA affinity chromatography was used. The E. coli culture was centrifuged to obtain a pellet, the pellet was treated with lysis buffer (50mM NaH2PO4, 300mM NaCl, 10mM imidazole, pH 8.0), and the cell wall was destroyed by sonication. The cell lysate was centrifuged to recover the supernatant, and then cultured on Ni-NTA agarose (Qiagen) beads.

상기 재조합 단백질이 결합된 비드를 wash buffer(50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8.0)로 세척한 후, 용리액(elution buffer)(50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, pH 8.0)으로 처리하고, 회수한 용액은 PD-10 Sephadex G-25 column(GE Healthcare)을 사용하여 탈염해주었다. 정제된 재조합 단백질에서 미생물 엔도톡신 오염정도(contamination)를 측정하기 위해, 상기 탈염된 재조합 단백질을 1% Triton X-114에서 4 ℃, 30 분 동안 배양하였다, 상기 용액에서 응집물을 원심분리를 통해 분리하고, 상기 과정을 4번 반복한 다음, PD-10 Sephadex G-25 column을 사용해 탈염해주었다. 단백질 농도를 Bradford assay를 통해 정량적으로 측정한 후, 실험 전까지 10% glycerol을 포함하는 HBSS 용액에 넣어 ?? 80 ℃에서 보관하였다. The beads to which the recombinant protein was bound were washed with wash buffer (50mM NaH2PO4, 300mM NaCl, 20mM imidazole, pH 8.0), and then washed with eluent buffer (50mM NaH2PO4, 300mM NaCl, 250mM imidazole, pH). 8.0), and the recovered solution was desalted using a PD-10 Sephadex G-25 column (GE Healthcare). To measure the degree of microbial endotoxin contamination in the purified recombinant protein, the desalted recombinant protein was incubated in 1% Triton , the above process was repeated four times, and then desalted using a PD-10 Sephadex G-25 column. After quantitatively measuring protein concentration through Bradford assay, it was placed in HBSS solution containing 10% glycerol until the experiment. Stored at 80°C.

실시예 2. TAT-LRR 재조합 단백질 제작Example 2. Production of TAT-LRR recombinant protein

서열번호 29의 정방향 프라이머와 서열번호 30의 역방향 프라이머 대신에 TAT 세포투과성 펩티드(서열번호 10)를 코딩하는 폴리뉴클레오티드 서열(서열번호 21)이 5'-> 3'방향으로 포함하는 서열번호 33의 정방향 프라이머와 서열번호 34의 역방향 프라이머를 통해 TAT 폴리펩티드와 LRR의 융합 단백질을 코딩하는 서열번호 35의 폴리뉴클레오티드 서열을 제작한 것을 제외하고는 모두 실시예 1과 동일하게 하여 TAT-LRR의 재조합 단백질(서열번호 36)을 얻었다. 상기 재조합 단백질은 12% SDS-PAGE를 통해 확인하였다.Instead of the forward primer of SEQ ID NO: 29 and the reverse primer of SEQ ID NO: 30, the polynucleotide sequence (SEQ ID NO: 21) encoding the TAT cell-penetrating peptide (SEQ ID NO: 10) is included in the 5'-> 3' direction. A recombinant protein of TAT-LRR ( SEQ ID NO: 36) was obtained. The recombinant protein was confirmed through 12% SDS-PAGE.

실시예 3. dNP2-LRR 재조합 단백질 제작Example 3. Production of dNP2-LRR recombinant protein

서열번호 29의 정방향 프라이머와 서열번호 30의 역방향 프라이머 대신에 dNP2 세포투과성 펩티드(서열번호 11)를 코딩하는 폴리뉴클레오티드 서열(서열번호 22)이 5'-> 3'방향으로 포함하는 서열번호 37의 정방향 프라이머와 서열번호 38의 역방향 프라이머를 통해 dNP2 폴리펩티드와 LRR의 융합 단백질을 코딩하는 서열번호 39의 폴리뉴클레오티드 서열을 제작한 것을 제외하고는 모두 실시예 1과 동일하게 하여 dNP2-LRR의 재조합 단백질(서열번호 40)을 얻었다. 상기 재조합 단백질은 12% SDS-PAGE를 통해 확인하였다.Instead of the forward primer of SEQ ID NO: 29 and the reverse primer of SEQ ID NO: 30, the polynucleotide sequence (SEQ ID NO: 22) encoding the dNP2 cell-penetrating peptide (SEQ ID NO: 11) is contained in the 5'-> 3' direction of SEQ ID NO: 37 A recombinant protein of dNP2-LRR ( SEQ ID NO: 40) was obtained. The recombinant protein was confirmed through 12% SDS-PAGE.

비교예 1. C10-NBD 재조합 단백질 제작Comparative Example 1. Production of C10-NBD recombinant protein

서열번호 29의 정방향 프라이머와 서열번호 30의 역방향 프라이머 대신에 NLRX1 단백질 N 말단의 2022 bp가 결손된 NRR 도메인(903 bp)(서열번호 27)을 코딩하는 폴리뉴클레오티드 서열(서열번호 28)이 5'-> 3'방향으로 포함하는 서열번호 41의 정방향 프라이머와 서열번호 42의 역방향 프라이머를 통해 인간 IL-10 유래의 C10 폴리펩티드와 NBD의 융합 단백질을 코딩하는 서열번호 43의 폴리뉴클레오티드 서열을 제작한 것을 제외하고는 모두 실시예 1과 동일하게 하여 C10-NBD의 재조합 단백질(서열번호 44)을 얻었다. 상기 재조합 단백질은 12% SDS-PAGE를 통해 확인하였다.Instead of the forward primer of SEQ ID NO: 29 and the reverse primer of SEQ ID NO: 30, a polynucleotide sequence (SEQ ID NO: 28) encoding the NRR domain (903 bp) (SEQ ID NO: 27), in which 2022 bp of the N-terminus of the NLRX1 protein is deleted, was used in the 5' -> The polynucleotide sequence of SEQ ID NO: 43 encoding the fusion protein of the C10 polypeptide derived from human IL-10 and NBD was produced through the forward primer of SEQ ID NO: 41 and the reverse primer of SEQ ID NO: 42 in the 3' direction. C10-NBD recombinant protein (SEQ ID NO: 44) was obtained in the same manner as in Example 1 except that. The recombinant protein was confirmed through 12% SDS-PAGE.

비교예 2. C10-EGFP 재조합 단백질 제작Comparative Example 2. Production of C10-EGFP recombinant protein

서열번호 29의 정방향 프라이머와 서열번호 30의 역방향 프라이머 대신에 EGFP 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열이 5'-> 3'방향으로 포함하는 서열번호 45의 정방향 프라이머와 서열번호 46의 역방향 프라이머를 통해 인간 IL-10 유래의 C10 폴리펩티드와 EGFP의 융합 단백질을 코딩하는 서열번호 47의 폴리뉴클레오티드 서열을 제작한 것을 제외하고는 모두 실시예 1과 동일하게 하여 C10-EGFP의 재조합 단백질을 얻었다. 상기 재조합 단백질은 12% SDS-PAGE를 통해 확인하였다.Instead of the forward primer of SEQ ID NO: 29 and the reverse primer of SEQ ID NO: 30, the forward primer of SEQ ID NO: 45 and the reverse primer of SEQ ID NO: 46, which contain a polynucleotide sequence encoding the EGFP polypeptide in the 5'-> 3' direction, are used to A recombinant protein of C10-EGFP was obtained in the same manner as in Example 1, except that the polynucleotide sequence of SEQ ID NO: 47 encoding the fusion protein of IL-10 derived C10 polypeptide and EGFP was prepared. The recombinant protein was confirmed through 12% SDS-PAGE.

실험예 1. C10-LRR 융합단백질 설계, 제조 및 정제Experimental Example 1. C10-LRR fusion protein design, production and purification

공개 단일세포 RNA 시퀀싱(Public single-cell RNA sequencing)(scRNA-seq)Public single-cell RNA sequencing (scRNA-seq)

공개 ScRNA-seq 데이터는 식별자 SCP548(subject PBMCs)를 사용하여 Broad Institute Single Cell Portal(https://singlecell.broadinstitute.org/single_cell)로부터 다운받을 수 있다[M. Reyes, M.R. Filbin, R.P. Bhattacharyya, K. Billman, T. Eisenhaure, D.T. Hung, B.D. Levy, R.M. Baron, P.C. Blainey, M.B. Goldberg, N. Hacohen, An immune-cell signature of bacterial sepsis, Nat Med 26(3) (2020) 333-340.]. PBMC 시료는 3개의 코호트(건강한 대조군, n=19; 패혈증, n=4; 패혈증-ICU, n=8)를 사용하여 분석하였다.Public ScRNA-seq data can be downloaded from the Broad Institute Single Cell Portal (https://singlecell.broadinstitute.org/single_cell) using the identifier SCP548 (subject PBMCs) [M. Reyes, M.R. Filbin, R.P. Bhattacharyya, K. Billman, T. Eisenhaure, D.T. Hung, B.D. Levy, R.M. Baron, P.C. Blainey, M.B. Goldberg, N. Hacohen, An immune-cell signature of bacterial sepsis, Nat Med 26(3) (2020) 333-340.]. PBMC samples were analyzed using three cohorts (healthy control, n=19; sepsis, n=4; sepsis-ICU, n=8).

도 3은 건강 또는 패혈증 환자로부터 PBMC 시료에서 NLRX1 발현을 분석한 그래프로, 이는 공개 단일세포 RNA 시퀀싱을 참고하여(Reyes et al., 2020), Single Cell Portal(https://singlecell.broadinstitute.org/single_cell)을 사용하여 분석한 결과이다.Figure 3 is a graph analyzing NLRX1 expression in PBMC samples from healthy or septic patients, referring to public single-cell RNA sequencing (Reyes et al., 2020), Single Cell Portal (https://singlecell.broadinstitute.org) This is the result of analysis using /single_cell).

도 3에 나타난 바와 같이, 공개된 단일세포 RNA 시퀀싱(scRNA-seq) 데이터(PBMC 시료는 3개의 코호트(건강한 대조군, n=19; 패혈증, n=4; 패혈증-ICU, n=8))의 분석을 기반으로, 건강한 대조군에 비해 패혈증 환자에서 NLRX1가 감소되는 것을 확인하였다. 즉 NLRX1은 NF-κB 신호전달과 염증조절복합체(inflammasome) 활성화(activation)에 대해 음성 조절자로 작용한다는 것을 확이할 수 있다.As shown in Figure 3, published single-cell RNA sequencing (scRNA-seq) data (PBMC samples were obtained from three cohorts (healthy control, n = 19; sepsis, n = 4; sepsis-ICU, n = 8)) Based on the analysis, it was confirmed that NLRX1 was decreased in sepsis patients compared to healthy controls. In other words, it can be confirmed that NLRX1 acts as a negative regulator of NF-κB signaling and inflammasome activation.

NLRX1을 세포 내로 효과적으로 전달할 수 있다면, NLRX1이 세포 내에서 NF-κB와 염증조절복합체(inflammasome) 신호를 조절하여, 패혈증 관련 염증반응을 효과적으로 제어할 것이라는 것을 확인할 수 있다. 이에 본 발명에 따른 세포투과성 펩티드와 NLRX1의 융합단백질(재조합 단백질)을 제조하여, 본 발명의 세포투과성 펩티드와 NLRX1의 각 도메인을 결합한 융합단백질이 실제 생체 외, 내에서 세포 내로 효율적으로 전달되는지, 전달된 융합단백질이 실제 효과를 나타내는지를 확인하고자 하였다. 이를 위해 NLRX1(LRR-NBD)의 두 도메인과 C10를 결합시킨 재조합 단백질(C10-LRR, C10-NBD, C10-EGFP)을 인코딩하는 DNA를 설계하였다(도 5). EGFP는 대조군으로 사용하였다. 또한 종래 세포투과성 펩티드와의 결합여부와 효과를 확인하기 위하여 LRR 폴리펩티드와 TAT 및 dNP2 세포투과성 펩티드를 결합시킨 재조합 단백질(dNP2-LRR, TAT-LRR)을 설계하여 실험하였다. 또한 C10 변이체도 세포전달효과를 갖는지 확인하기 위하여 C10 세포투과성 펩티드의 변이체를 설계하여 실험하였다. If NLRX1 can be effectively delivered into cells, it can be confirmed that NLRX1 will effectively control sepsis-related inflammatory responses by regulating NF-κB and inflammasome signals within cells. Accordingly, a fusion protein (recombinant protein) of the cell-penetrating peptide and NLRX1 according to the present invention was prepared to determine whether the fusion protein combining the cell-penetrating peptide of the present invention and each domain of NLRX1 is actually efficiently delivered into cells in vitro and in vivo. We wanted to confirm whether the delivered fusion protein showed actual effects. For this purpose, DNA encoding recombinant proteins (C10-LRR, C10-NBD, C10-EGFP) combining the two domains of NLRX1 (LRR-NBD) and C10 was designed (Figure 5). EGFP was used as a control. In addition, in order to confirm the binding and effect of conventional cell-penetrating peptides, recombinant proteins (dNP2-LRR, TAT-LRR) combining LRR polypeptide with TAT and dNP2 cell-penetrating peptides were designed and tested. Additionally, to confirm whether the C10 variant also has a cell delivery effect, a variant of the C10 cell-penetrating peptide was designed and tested.

도 5는 C10-LRR, C10-NBD, C10-EGFP의 재조합 단백질 인코딩 DNA 구조와, 이를 12% SDS-PAGE로 분석한 결과로, 이에 따르면 C10-LRR, C10-NBD, C10-EGFP 재조합 단백질은 모두 제대로 제작되었음을 확인하였다.Figure 5 shows the DNA structures encoding recombinant proteins of C10-LRR, C10-NBD, and C10-EGFP and the results of analyzing them by 12% SDS-PAGE. According to this, the recombinant proteins C10-LRR, C10-NBD, and C10-EGFP are It was confirmed that everything was manufactured properly.

본 발명의 C10 세포투과성 펩티드와 NLRX1 단백질의 융합단백질의 약리기전에 대해서는 도 4에 개략적으로 도시하였다.The pharmacological mechanism of the fusion protein of C10 cell-penetrating peptide and NLRX1 protein of the present invention is schematically shown in Figure 4.

실험예 2. 패혈증 동물모델에서의 효과 분석Experimental Example 2. Effect analysis in sepsis animal model

NLRX1 단백질의 LRR 도메인 또는 NBD 도메인과 세포투과성 펩티드를 융합시켜 제조된 융합 단백질(C10-LRR, C10-NBD)의, 패혈증 동물모델의 복강주사로 주입하여 질환에 대한 효과를 나타내는지 여부를 확인하였다. 대조군으로 PBS와 C10-EGFP를 사용하였다.Fusion proteins (C10-LRR, C10-NBD) prepared by fusing the LRR domain or NBD domain of the NLRX1 protein with a cell-penetrating peptide were injected intraperitoneally into an animal model of sepsis to determine whether they had an effect on the disease. . PBS and C10-EGFP were used as controls.

실험동물laboratory animals

한양대학교 SPF 사육시설(Specific pathogen free animal facility)에서 사육된 7주령에서 8주령의 수컷 또는 암컷 C57BL/6 마우스를 사용하였으며, 실험전 마우스는 2주간 순화과정을 거쳤다. 마우스는 실험동안 온도 22 ± 2 ℃, 습도는 40-60%로 유지되는 사육실에서 자유식이로 사육되었으며, 명암 주기(Light and dark cycle)는 12시간 간격으로 조절하였다. 모든 동물실험은 한양대학교 동물실험윤리위원회(Institutional Animal Care and Use Committee of Hanyang University)의 동물실험운영규정을 준수하여 수행하였다.Male or female C57BL/6 mice aged 7 to 8 weeks raised at Hanyang University's SPF breeding facility (Specific pathogen free animal facility) were used, and the mice underwent an acclimatization process for 2 weeks before the experiment. Mice were raised on free diet in a breeding room maintained at a temperature of 22 ± 2 °C and humidity of 40-60% during the experiment, and the light and dark cycle was adjusted at 12-hour intervals. All animal experiments were conducted in compliance with the animal experiment operation regulations of the Institutional Animal Care and Use Committee of Hanyang University.

시료의 투여 및 샘플링Administration and sampling of samples

시료의 투여를 위하여 마우스는 무작위로 24마리씩 네 그룹으로 나누어 진행하였다. PBS는 0 시간에 LPS(2 mg/kg)과 PBS(1 mg/kg)를 복강 내로 주사(I.P injection)하고, 5 시간에 LPS(5 mg/kg)과 PBS(1 mg/kg)를 복강 내로 주사 음성대조군이고, C10-EGFP 투여 그룹은 0 시간에 LPS(2 mg/kg)과 C10-EGFP 재조합 단백질(1 mg/kg)을 복강 내로 주사(I.P injection)하고, 5 시간에 LPS(5 mg/kg)과 C10-EGFP 재조합 단백질(1 mg/kg)을 복강 내로 주사하였고, C10-LRR 투여 그룹은 0 시간에 LPS(2 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)을 복강 내로 주사(I.P injection)하고, 5 시간에 LPS(5 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)을 복강 내로 주사하였고, C10-NBD 투여 그룹은 0 시간에 LPS(2 mg/kg)과 C10-NBD 재조합 단백질(1 mg/kg)을 복강 내로 주사(I.P injection)하고, 5 시간에 LPS(5 mg/kg)과 C10-NBD 재조합 단백질(1 mg/kg)을 복강 내로 주사하였다. 추가적으로 C10-LRR 재조합 단백질의 투여용량을 1 mg/kg에서 0.2 mg/kg으로 달리한 C10-LRR 0.2 mg/kg 투여 그룹을 제조하였다. 상기 그룹들은 총 7일 동안 24시간마다 생존율과 무게 변화를 측정하였다. 5 시간에 시료를 주입하고 난 후, 2 시간 또는 24 시간 후에 혈액을 수확하여 사이토카인 수준과 AST 활성을 분석하였다. Sham 군은 아무것도 처리하지 않은 정상군이다.For sample administration, mice were randomly divided into four groups of 24 each. For PBS, LPS (2 mg/kg) and PBS (1 mg/kg) were injected intraperitoneally (I.P.) at 0 hours, and LPS (5 mg/kg) and PBS (1 mg/kg) were injected intraperitoneally at 5 hours. It is an intraperitoneal injection negative control group, and the C10-EGFP administration group was intraperitoneally injected (I.P. injection) with LPS (2 mg/kg) and C10-EGFP recombinant protein (1 mg/kg) at 0 hours, and LPS (5 mg/kg) at 5 hours. mg/kg) and C10-EGFP recombinant protein (1 mg/kg) were injected intraperitoneally, and the C10-LRR administration group was injected with LPS (2 mg/kg) and C10-LRR recombinant protein (1 mg/kg) at 0 hours. was injected intraperitoneally (I.P. injection), and LPS (5 mg/kg) and C10-LRR recombinant protein (1 mg/kg) were injected intraperitoneally at 5 hours. The C10-NBD administration group received LPS (2 mg/kg) at 0 hours. mg/kg) and C10-NBD recombinant protein (1 mg/kg) were injected intraperitoneally (I.P. injection), and at 5 hours, LPS (5 mg/kg) and C10-NBD recombinant protein (1 mg/kg) were intraperitoneally injected. It was injected into my body. Additionally, a C10-LRR 0.2 mg/kg administration group was prepared in which the administration dose of C10-LRR recombinant protein was varied from 1 mg/kg to 0.2 mg/kg. The groups were measured for survival and weight changes every 24 hours for a total of 7 days. After sample injection at 5 hours, blood was harvested 2 or 24 hours later and analyzed for cytokine levels and AST activity. The Sham group is a normal group that has not undergone any treatment.

5개 군의 동물모델Animal models from 5 groups

1군(PBS) : 0 시간에 LPS(2 mg/kg)과 PBS(1 mg/kg)를 복강 내로 투여하고, 5 시간에 LPS(5 mg/kg)과 PBS(1 mg/kg)를 복강 내로 투여Group 1 (PBS): LPS (2 mg/kg) and PBS (1 mg/kg) were administered intraperitoneally at 0 hours, and LPS (5 mg/kg) and PBS (1 mg/kg) were administered intraperitoneally at 5 hours. administered intravenously

2군(C10-EGFP) : 0 시간에 LPS(2 mg/kg)과 C10-EGFP 재조합 단백질(1 mg/kg)을 복강 내로 투여하고, 5 시간에 LPS(5 mg/kg)과 C10-EGFP 재조합 단백질(1 mg/kg)을 복강 내로 투여Group 2 (C10-EGFP): LPS (2 mg/kg) and C10-EGFP recombinant protein (1 mg/kg) were administered intraperitoneally at 0 hours, and LPS (5 mg/kg) and C10-EGFP were administered at 5 hours. Recombinant protein (1 mg/kg) was administered intraperitoneally.

3군(C10-NBD) : 0 시간에 LPS(2 mg/kg)과 C10-NBD 재조합 단백질(1 mg/kg)을 복강 내로 투여하고, 5 시간에 LPS(5 mg/kg)과 C10-NBD 재조합 단백질(1 mg/kg)을 복강 내로 투여Group 3 (C10-NBD): LPS (2 mg/kg) and C10-NBD recombinant protein (1 mg/kg) were administered intraperitoneally at 0 hours, and LPS (5 mg/kg) and C10-NBD were administered at 5 hours. Recombinant protein (1 mg/kg) was administered intraperitoneally.

4군(C10-LRR) : 0 시간에 LPS(2 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)을 복강 내로 투여하고, 5 시간에 LPS(5 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)을 복강 내로 투여Group 4 (C10-LRR): LPS (2 mg/kg) and C10-LRR recombinant protein (1 mg/kg) were administered intraperitoneally at 0 hours, and LPS (5 mg/kg) and C10-LRR were administered at 5 hours. Recombinant protein (1 mg/kg) was administered intraperitoneally.

5군(C10-LRR) : 0 시간에 LPS(2 mg/kg)과 C10-LRR 재조합 단백질(0.2 mg/kg)을 복강 내로 투여, 5 시간에 LPS(5 mg/kg)과 C10-LRR 재조합 단백질(0.2 mg/kg)을 복강 내로 투여Group 5 (C10-LRR): LPS (2 mg/kg) and C10-LRR recombinant protein (0.2 mg/kg) were administered intraperitoneally at 0 hours, and LPS (5 mg/kg) and C10-LRR recombinant protein were administered at 5 hours. Protein (0.2 mg/kg) administered intraperitoneally

ELISAELISA

2 시간 또는 24 시간 후 동물모델로부터 결막하 출혈(eye bleeding)을 통하여 혈액을 채취하였다. 회수한 혈액을 원심분리하여 혈청(serum)을 분리하고, ELISA를 통해 분석하였다. 혈청에서 IL-6, TNFα 및 IL-1β의 수준을 측정하기 위해서, ELISA 키트(BioLegend)를 사용하여 제조사의 프로토콜대로 수행하였다.After 2 or 24 hours, blood was collected from the animal model through subconjunctival hemorrhage (eye bleeding). The recovered blood was centrifuged to separate serum and analyzed through ELISA. To measure the levels of IL-6, TNFα, and IL-1β in serum, an ELISA kit (BioLegend) was used according to the manufacturer's protocol.

통계statistics

실험의 통계분석을 위하여 two-tailed Student's t-test, one-way ANOVA 또는 two-way ANOVA를 사용하여 그룹 간 평균수치 유의차를 확인하였으며, 0.05보다 낮은 p 값을 가질 경우에는 *, 0.01보다 낮은 p 값을 가질 경우에는 **, 0.001보다 낮은 p 값을 가질 경우에는 ***로, 유의적차이가 없는 경우 N.S로 유의적 차이를 표기하였다. MFI는 중앙형광강도(median fluorescence intensity)를 나타내며, 에러바는 S.D를 나타낸다.For statistical analysis of the experiment, two-tailed Student's t-test, one-way ANOVA, or two-way ANOVA were used to confirm the significant difference in mean values between groups. If the p value is lower than 0.05, *, lower than 0.01. If there is a p value, the significant difference is indicated by **, if the p value is lower than 0.001, it is indicated by ***, and if there is no significant difference, the significant difference is indicated by N.S. MFI represents median fluorescence intensity, and error bars represent S.D.

도 6은 패혈증 동물모델의 실험 설계도로, LPS로 유도된 치명적인 패혈증(lethal sepsis) 동물모델을 제조하고, 상기 동물모델에 C10-LRR를 생체 내로 주입하여 효과를 확인하고자 하였다. 염증조절복합체(inflammasome) 신호전달(signaling)과 파이롭토시스(pyroptosis)는 패혈증과 관련된 사망(mortality)의 초기 단계에서 매우 중요하게 작용하는 것으로 알려져 있다. 따라서 본 발명에서도 치명적인 패혈증 동물모델 제조하기 위해, Caspase-11과 Caspase-1에 기반한(mediated) 염증조절복합체(inflammasome) 신호전달(signaling)이 유도되도록 LPS를 일차/자극(prime/challenge) 주사 모델을 사용하여 치명적인 패혈증 동물모델을 제조하였다. 구체적으로 처음 2 mg/kg LPS를 복강 내로 1차 투여하고, 5 mg/kg을 5 시간 뒤에 복강 내로 2차 투여(challenge)하였다. 이 경우 비장, 간, 신장, 폐, 복막(peritoneum)에서 단핵구 대비 대식세포의 활성이 증가하고 외부적 증상 등을 종합하였을 때, 패혈증이 유발되는 것을 확인하였다. 재조합 단백질(1 mg/kg C10-LRR, C10-NBD, C10-EGFP) 또는 PBS를 LPS의 투여와 동일한 시간에 투여하고, 동물모델의 생존율과 무게 등을 모니터링하였다.Figure 6 is an experimental design of a sepsis animal model. An LPS-induced lethal sepsis animal model was prepared, and C10-LRR was injected into the animal model in vivo to confirm the effect. Inflammasome signaling and pyroptosis are known to be very important in the early stages of sepsis-related mortality. Therefore, in order to produce a fatal sepsis animal model in the present invention, LPS was injected as a prime/challenge model to induce Caspase-11 and Caspase-1-mediated inflammation control complex (inflammasome signaling). A fatal sepsis animal model was prepared using . Specifically, 2 mg/kg LPS was first administered intraperitoneally, and 5 mg/kg was administered intraperitoneally 5 hours later for the second time (challenge). In this case, it was confirmed that the activity of macrophages increased compared to monocytes in the spleen, liver, kidneys, lungs, and peritoneum, and when external symptoms were combined, sepsis was induced. Recombinant proteins (1 mg/kg C10-LRR, C10-NBD, C10-EGFP) or PBS were administered at the same time as LPS, and the survival rate and weight of the animal model were monitored.

도 7은 1군(PBS), 2군(C10-EGFP), 3군(C10-NBD) 및 4군(C10-LRR)으로 구분되는 동물모델의 생존율을 7 일 동안 측정한 결과를 나타낸 그래프이고, 도 8은 1군(PBS), 2군(C10-EGFP), 3군(C10-NBD) 및 4군(C10-LRR)으로 구분되는 동물모델의 무게를 7 일 동안 측정한 결과를 나타낸 그래프이다.Figure 7 is a graph showing the results of measuring the survival rate of animal models divided into group 1 (PBS), group 2 (C10-EGFP), group 3 (C10-NBD), and group 4 (C10-LRR) for 7 days. , Figure 8 is a graph showing the results of measuring the weight of animal models divided into group 1 (PBS), group 2 (C10-EGFP), group 3 (C10-NBD), and group 4 (C10-LRR) for 7 days. am.

도 7에 나타난 바와 같이, C10-LRR을 처리한 4군의 경우, C10-EGFP, C10-NBD 대비 유의적으로 생존율이 향상된다는 것을 확인하였다.As shown in Figure 7, it was confirmed that in the 4 groups treated with C10-LRR, the survival rate was significantly improved compared to C10-EGFP and C10-NBD.

도 8에 나타난 바와 같이, C10-LRR을 처리한 4군의 경우, C10-EGFP, C10-NBD와 달리 48시간부터 무게가 유의적으로 회복된다는 것을 확인하였다. 본 발명의 C10-LRR은 LPS에 의해 유도된 패혈증의 심각한 염증반응과 비정상이던 생리기능을 회복시키고 있다는 것을 확인하였다.As shown in Figure 8, in the case of group 4 treated with C10-LRR, it was confirmed that the weight recovered significantly from 48 hours, unlike C10-EGFP and C10-NBD. It was confirmed that C10-LRR of the present invention restores the severe inflammatory response and abnormal physiological function of sepsis induced by LPS.

도 9는 2시간 후에 1군(PBS), 2군(C10-EGFP), 3군(C10-NBD) 및 4군(C10-LRR)으로 구분되는 동물모델에 대한 IL-6, TNF-α 및 IL-1β의 발현정도를 ELISA로 측정한 결과 그래프이고, 도 10은 24시간 후에 1군(PBS), 2군(C10-EGFP), 3군(C10-NBD) 및 4군(C10-LRR)으로 구분되는 동물모델에 대한 IL-6, TNF-α 및 IL-1β의 발현정도를 ELISA로 측정한 결과 그래프이다.Figure 9 shows IL-6, TNF-α and A graph showing the results of measuring the expression level of IL-1β using ELISA, and Figure 10 shows the results of group 1 (PBS), group 2 (C10-EGFP), group 3 (C10-NBD), and group 4 (C10-LRR) after 24 hours. This is a graph showing the results of measuring the expression levels of IL-6, TNF-α, and IL-1β in animal models classified by ELISA.

도 9에 나타난 바와 같이, LPS 5 mg/kg(cahllenge) 주입하고 2 시간이 지난 후, C10-LRR을 처리한 4군이 다른 군들에 비해 유의적으로 혈청 IL-1β 수준이 감소되는 것을 확인하였다.As shown in Figure 9, 2 hours after injection of LPS 5 mg/kg (cahllenge), it was confirmed that the serum IL-1β level of group 4 treated with C10-LRR was significantly reduced compared to the other groups. .

도 10에 나타난 바와 같이, LPS 5 mg/kg(cahllenge) 주입하고 24 시간이 지난 후, C10-LRR을 처리한 4군이 다른 군들에 비해 유의적으로 혈청 IL-6 수준이 감소되는 것을 확인하였다. 본 발명에 따른 C10-LRR 재조합 단백질은 생체 내에서, IL-1β 및 IL-6 수준을 감소시켜 패혈증을 예방 또는 치료하는 효과를 달성할 수 있다는 것을 확인하였다.As shown in Figure 10, 24 hours after injection of LPS 5 mg/kg (cahllenge), it was confirmed that the serum IL-6 level of group 4 treated with C10-LRR was significantly reduced compared to the other groups. . It was confirmed that the C10-LRR recombinant protein according to the present invention can achieve the effect of preventing or treating sepsis by reducing IL-1β and IL-6 levels in vivo.

도 11은 2시간 후에 1군(PBS), 2군(C10-EGFP), 3군(C10-NBD) 및 4군(C10-LRR)으로 구분되는 동물모델에서 AST 활성을 측정한 결과 그래프이다.Figure 11 is a graph showing the results of measuring AST activity in animal models divided into group 1 (PBS), group 2 (C10-EGFP), group 3 (C10-NBD), and group 4 (C10-LRR) after 2 hours.

도 11에 나타난 바와 같이 간 독성 때문에 LPS 5 mg/kg을 주입하면 혈액 내에서 AST의 수준이 상승한다. 그런데 C10-LRR을 처리한 4군은 CAST 수치가 Sham 군(정상군)과 유사한 수준을 유지하고 있다는 것을 확인하였다. 나머지 군들은 Sham(정상군) 대비 AST 수준이 유의적으로 증가하고 있다는 것을 알 수 있다. 따라서 C10-LRR이 다른 재조합 단백질보다 우수한 효과를 나타낸다는 것을 알 수 있다.As shown in Figure 11, the level of AST in the blood increases when 5 mg/kg of LPS is injected due to liver toxicity. However, it was confirmed that the CAST levels of group 4 treated with C10-LRR were maintained at a similar level to the Sham group (normal group). It can be seen that the AST level of the remaining groups significantly increased compared to the Sham (normal group). Therefore, it can be seen that C10-LRR shows a superior effect than other recombinant proteins.

도 12는 4군(C10-LRR)과 5군(C10-LRR 0.2 mg/kg)으로 구분되는 동물모델의 생존율을 6 일 동안 측정하여 나타낸 그래프이다.Figure 12 is a graph showing the survival rate of animal models divided into group 4 (C10-LRR) and group 5 (C10-LRR 0.2 mg/kg) measured for 6 days.

도 12에 나타난 바와 같이, C10-LRR을 서로 다른 투여용량으로 처리한 결과, LPS로 유도된 패혈증 동물모델에서 C10-LRR의 효과는 용량의존적으로 증가하는 것을 확인하였다. As shown in Figure 12, as a result of treating C10-LRR at different doses, it was confirmed that the effect of C10-LRR increased in a dose-dependent manner in the LPS-induced sepsis animal model.

실험예 3. 대식세포의 NF-κB 활성화 및 IL-6 생산에 대한 C10-LRR 저해효과Experimental Example 3. C10-LRR inhibitory effect on NF-κB activation and IL-6 production in macrophages

실험동물 및 복강 대식세포 분리Isolation of experimental animals and peritoneal macrophages

한양대학교 SPF 사육시설(Specific pathogen free animal facility)에서 사육된 7주령에서 8주령의 수컷 또는 암컷 C57BL/6 마우스를 사용하였으며, 실험전 마우스는 2주간 순화과정을 거쳤다. 마우스는 실험동안 온도 22 ± 2 ℃, 습도는 40-60%로 유지되는 사육실에서 자유식이로 사육되었으며, 명암 주기(Light and dark cycle)는 12시간 간격으로 조절하였다. 모든 동물실험은 한양대학교 동물실험윤리위원회(Institutional Animal Care and Use Committee of Hanyang University)의 동물실험운영규정을 준수하여 수행하였다.Male or female C57BL/6 mice aged 7 to 8 weeks raised at Hanyang University's SPF breeding facility (Specific pathogen free animal facility) were used, and the mice underwent an acclimatization process for 2 weeks before the experiment. Mice were raised on free diet in a breeding room maintained at a temperature of 22 ± 2 °C and humidity of 40-60% during the experiment, and the light and dark cycle was adjusted at 12-hour intervals. All animal experiments were conducted in compliance with the animal experiment operation regulations of the Institutional Animal Care and Use Committee of Hanyang University.

상기 마우스로부터 복강 대식세포(peritoneal macrophages)를 분리하기 위해, 마우스 복강내에 PBS 5 ㎖를 투여하고, 복강액을 얻은 후, 배양 플레이트에 분주하고 5% CO2 배양기에서 37 ℃ 조건에서 2 시간동안 배양하였다. 배양이 완료된 후, 상청액을 제거하고, 세포를 PBS로 세척한 다음 미부착 세포를 측정하였다. 부착세포는 일차 복강 대식세포(primary peritoneal macrophages)이다.To isolate peritoneal macrophages from the mouse, 5 ml of PBS was administered into the mouse's abdominal cavity, and peritoneal fluid was obtained, distributed on a culture plate, and cultured in a 5% CO 2 incubator at 37°C for 2 hours. did. After incubation was completed, the supernatant was removed, cells were washed with PBS, and non-adherent cells were measured. Adherent cells are primary peritoneal macrophages.

ELISAELISA

상기 복강 대식세포(Peritoneal macrophages)를 96 웰 플레이트 또는 12 웰 플레이트에 분주하고, 5% CO2 배양기에서 37 ℃ 조건에서 부착할 때까지 배양하였다. 부유세포(Floating cells)를 PBS를 사용하여 제거하고, 부착된 대식세포(macrophages)에 인플라마좀 활성화(inflammasome activation)를 위해 1 mg/ml의 LPS와 함께 분주된 대식세포를 4시간동안 배양하였다. 이때, LPS와 함께 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-NBD, C10-EGFP)을 각각 함께 처리하여 배양하였다. 배양 후(stimulation) 배양 상청액을 ELISA를 위해 회수하였다. 배양 상청액에서 IL-6, TNFα 및 IL-1β의 수준을 측정하기 위해서, ELISA 키트(BioLegend)를 사용하여 제조사의 프로토콜대로 수행하였다.The peritoneal macrophages were dispensed into a 96-well plate or a 12-well plate and cultured in a 5% CO 2 incubator at 37°C until attachment. Floating cells were removed using PBS, and the dispensed macrophages were incubated with 1 mg/ml LPS for inflammasome activation in the attached macrophages for 4 hours. . At this time, various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant proteins (C10-LRR, C10-NBD, C10-EGFP) were treated and cultured together with LPS. After stimulation, the culture supernatant was recovered for ELISA. To measure the levels of IL-6, TNFα, and IL-1β in the culture supernatant, an ELISA kit (BioLegend) was used according to the manufacturer's protocol.

독성 분석(Cytotoxicity assay)Cytotoxicity assay

1 × 105 복강 대식세포를 96 웰 플레이트 상에 분주하고, 1 mg/ml LPS(O55:B5, Sigma L2880)와 함께 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-NBD, C10-EGFP)을 각각 첨가하여 24 시간 배양하였다. 배양 후, CCK-8(cell counting kit-8) 용매(Dojindo) 10 ㎕를 각 웰에 첨가하고, 450 nm의 흡광을 4 시간동안 30분마다 마이크로플레이트 리더기(microplate reader)(iMark, Bio-Rad)를 사용하여 모니터링하였다. 이를 통해 살아있는 세포의 수를 확인하였다.1 × 105 peritoneal macrophages were seeded on 96 well plates and incubated with various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant protein (C10-LRR) along with 1 mg/ml LPS (O55:B5, Sigma L2880). , C10-NBD, and C10-EGFP) were added and cultured for 24 hours. After incubation, 10 ㎕ of CCK-8 (cell counting kit-8) solvent (Dojindo) was added to each well, and absorbance at 450 nm was measured every 30 minutes for 4 hours using a microplate reader (iMark, Bio-Rad). ) was monitored using. Through this, the number of living cells was confirmed.

통계statistics

실험의 통계분석을 위하여 two-tailed Student's t-test, one-way ANOVA 또는 two-way ANOVA를 사용하여 그룹 간 평균수치 유의차를 확인하였으며, 0.05보다 낮은 p 값을 가질 경우에는 *, 0.01보다 낮은 p 값을 가질 경우에는 **, 0.001보다 낮은 p 값을 가질 경우에는 ***로, 유의적차이가 없는 경우 N.S로 유의적 차이를 표기하였다. MFI는 중앙형광강도(median fluorescence intensity)를 나타내며, 에러바는 S.D를 나타낸다.For statistical analysis of the experiment, two-tailed Student's t-test, one-way ANOVA, or two-way ANOVA were used to confirm the significant difference in mean values between groups. If the p value is lower than 0.05, *, lower than 0.01. If there is a p value, the significant difference is indicated by **, if the p value is lower than 0.001, it is indicated by ***, and if there is no significant difference, the significant difference is indicated by N.S. MFI represents median fluorescence intensity, and error bars represent S.D.

앞서 LPS로 유도된 패혈증 동물모델에 C10-LRR을 처리한 경우, IL-6 수준이 감소한 것을 확인하였고, 이를 기반으로 생체 외에서(in vitro) 대식세포의 기능을 평가하고자 하였다.Previously, when an LPS-induced sepsis animal model was treated with C10-LRR, it was confirmed that the level of IL-6 was reduced, and based on this, the function of macrophages was evaluated in vitro .

복강 대식세포를 분리하고, LPS와 각각의 재조합 단백질(C10-LRR, C10-NBD, C10-EGFP)을 함께 첨가하여 4 시간동안 배양하고, 배양 상청액으로부터 IL-6, TNF-α를 측정하였다.Peritoneal macrophages were isolated, LPS and each recombinant protein (C10-LRR, C10-NBD, C10-EGFP) were added together and cultured for 4 hours, and IL-6 and TNF-α were measured from the culture supernatant.

도 13 및 14는 복강 대식세포에 LPS와 각 재조합 단백질을 처리한 후, L-6, TNF-α의 수준을 측정한 ELISA 그래프로, 이에 따르면 C10-LRR을 처리한 경우 IL-6의 수준이 다른 재조합 단백질을 처리하였을 때보다 유의적으로 현저히 감소된 것을 확인하였다.Figures 13 and 14 are ELISA graphs measuring the levels of L-6 and TNF-α after treating peritoneal macrophages with LPS and each recombinant protein. According to this, when treated with C10-LRR, the level of IL-6 was increased. It was confirmed that it was significantly reduced compared to when treated with other recombinant proteins.

TNF-α는 C10-LRR와 다른 재조합 단백질을 처리한 경우 간의 유의적 차이가 관찰되지 않았다.No significant differences in TNF-α were observed between C10-LRR and other recombinant proteins.

도 15는 복강 대식세포에 LPS와 각 재조합 단백질을 처리한 후, 세포 생존율을 분석한 그래프로, C10-LRR, C10-EGFP, C10-NBD 모두 세포에 대한 독성은 나타내지 않는 것을 확인하였다.Figure 15 is a graph analyzing the cell survival rate after treating peritoneal macrophages with LPS and each recombinant protein. It was confirmed that none of C10-LRR, C10-EGFP, and C10-NBD showed toxicity to cells.

실험예 4. 시간과 THP-1에 대한 NF-κB 활성화 및 IL-6 생산에 대한 C10-LRR 저해효과Experimental Example 4. Effect of C10-LRR inhibition on NF-κB activation and IL-6 production in response to time and THP-1

웨스턴 블롯-1Western Blot-1

본 실험에서 사용한 복강 대식세포는 실험예 3과 동일한 방법으로 얻어 사용하였다. 복강 대식세포(Peritoneal macrophages)를 96 웰 플레이트 또는 12 웰 플레이트에 분주하고, 5% CO2 배양기에서 37 ℃ 조건에서 부착할 때까지 배양하였다. 부유세포(Floating cells)를 PBS를 사용하여 제거하고, 부착된 대식세포(macrophages)에 인플라마좀 활성화(inflammasome activation)를 위해 1 mg/ml의 LPS와 함께 분주된 대식세포를 4 시간 동안 배양하였다. 이때, LPS와 함께 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-NBD, C10-EGFP)을 각각 함께 처리하여 배양하였다. 배양 후(stimulation) 4 ℃에서 30 분 동안 세포를 RIPA 완충액(Cell Signaling Technology)로 용해시킨 후, 용해물의 단백질 양을 Pierce BCA protein assay kit(Thermo Fisher Scientific)를 사용하여 제조사의 프로토콜대로 분석하였다. SDS-PAGE 후, 단백질을 PVDF 막(Bio-Rad)에 옮긴 다음, 막을 5% skim milk와 0.1% Tween-20를 포함하는 TBS 완충액(Tris-buffered saline; TBS-T)으로 처리하였다. 그리고 1차 항체와 함께 4 ℃에서 밤새 배양하였다: IκBα(Cell Signaling, 1:1000 diluted) 항체를 사용하였다. 막을 TBS-T로 세척하고 2차 항체로 상온에서 1 시간동안 배양하였다. 막을 TBS-T로 세척하고, EZ-Western Lumi Pico 또는 Femto reagent(DoGen)로 처리하였다. 밴드 세기를 측정하기 위하여 Fusion-Solo software(Vilber)을 사용하여 제조사의 프로토콜대로 분석하였다.Peritoneal macrophages used in this experiment were obtained and used in the same manner as in Experimental Example 3. Peritoneal macrophages were distributed in a 96-well plate or 12-well plate and cultured in a 5% CO 2 incubator at 37°C until attachment. Floating cells were removed using PBS, and the dispensed macrophages were incubated with 1 mg/ml LPS for inflammasome activation in the attached macrophages for 4 hours. . At this time, various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant proteins (C10-LRR, C10-NBD, C10-EGFP) were treated and cultured together with LPS. After incubation (stimulation), cells were lysed with RIPA buffer (Cell Signaling Technology) for 30 minutes at 4°C, and the amount of protein in the lysate was analyzed using the Pierce BCA protein assay kit (Thermo Fisher Scientific) according to the manufacturer's protocol. . After SDS-PAGE, the proteins were transferred to a PVDF membrane (Bio-Rad), and the membrane was treated with TBS buffer (Tris-buffered saline; TBS-T) containing 5% skim milk and 0.1% Tween-20. Then, the cells were incubated overnight at 4°C with the primary antibody: IκBα (Cell Signaling, 1:1000 diluted) antibody was used. The membrane was washed with TBS-T and incubated with secondary antibody for 1 hour at room temperature. Membranes were washed with TBS-T and treated with EZ-Western Lumi Pico or Femto reagent (DoGen). To measure the band intensity, it was analyzed using Fusion-Solo software (Vilber) according to the manufacturer's protocol.

웨스턴 블롯-2Western Blot-2

THP-1 세포는 ATCC로부터 구매하여 사용하였고, DMEM 또는 RPMI(Corning) 배지상에 보관하였다. 10% 소태아혈청(fetal bovine serum)과 1% 페니실린/스트렙토마이신을 포함하는 배양배지를 사용하였다. 세포는 5% CO2 배양기에서 37 ℃ 조건하에서 배양하였다.THP-1 cells were purchased from ATCC and stored in DMEM or RPMI (Corning) medium. Culture medium containing 10% fetal bovine serum and 1% penicillin/streptomycin was used. Cells were cultured at 37°C in a 5% CO 2 incubator.

상기 THP-1 세포를 1 mg/ml LPS(O55:B5, Sigma L2880)로 15분에서 5시간까지 활성화하였다. 이때, LPS와 함께 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-NBD, C10-EGFP)을 각각 함께 처리하여 배양하였다. 4 ℃에서 30 분 동안 세포를 RIPA 완충액(Cell Signaling Technology)로 용해시킨 후, 용해물의 단백질 양을 Pierce BCA protein assay kit(Thermo Fisher Scientific)를 사용하여 제조사의 프로토콜대로 분석하였다. SDS-PAGE 후, 단백질을 PVDF 막(Bio-Rad)에 옮긴 다음, 막을 5% skim milk와 0.1% Tween-20을 포함하는 TBS 완충액(Tris-buffered saline; TBS-T)으로 처리하였다. 그리고 1차 항체와 함께 4 ℃에서 밤새 배양하였다: IκBα(Cell Signaling, 1:1000 diluted), pIκBα Ser32(Cell Signaling, 1:1000 diluted), p65 (Cell Signaling, 1:1000 diluted), p65 Ser536 (Cell Signaling, 1:1000 diluted), PI3K p110β (Cell Signaling, 1:1000 diluted), pAKT Ser473, caspase(Adipogen, 1:1000 diluted), MAVS (Cell Signaling, 1:1000 diluted), NLRP3(Adipogen, 1:1000 diluted), 또는 VDAC (Cell Signaling, 1:1000 diluted) 항체를 사용하였다. 막을 TBS-T로 세척하고 2차 항체로 상온에서 1 시간동안 배양하였다. 막을 TBS-T로 세척하고, EZ-Western Lumi Pico 또는 Femto reagent(DoGen)로 처리하였다. 밴드 세기를 측정하기 위하여 Fusion-Solo software(Vilber)를 사용하여 제조사의 프로토콜대로 분석하였다.The THP-1 cells were activated with 1 mg/ml LPS (O55:B5, Sigma L2880) for 15 minutes to 5 hours. At this time, various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant proteins (C10-LRR, C10-NBD, C10-EGFP) were treated and cultured together with LPS. After lysing the cells with RIPA buffer (Cell Signaling Technology) for 30 minutes at 4°C, the amount of protein in the lysate was analyzed using the Pierce BCA protein assay kit (Thermo Fisher Scientific) according to the manufacturer's protocol. After SDS-PAGE, the proteins were transferred to a PVDF membrane (Bio-Rad), and the membrane was treated with TBS buffer (Tris-buffered saline; TBS-T) containing 5% skim milk and 0.1% Tween-20. And incubated overnight at 4°C with primary antibodies: IκBα (Cell Signaling, 1:1000 diluted), pIκBα Ser32 (Cell Signaling, 1:1000 diluted), p65 (Cell Signaling, 1:1000 diluted), p65 Ser536 ( Cell Signaling, 1:1000 diluted), PI3K p110β (Cell Signaling, 1:1000 diluted), pAKT Ser473, caspase (Adipogen, 1:1000 diluted), MAVS (Cell Signaling, 1:1000 diluted), NLRP3 (Adipogen, 1 :1000 diluted), or VDAC (Cell Signaling, 1:1000 diluted) antibody was used. The membrane was washed with TBS-T and incubated with secondary antibody for 1 hour at room temperature. Membranes were washed with TBS-T and treated with EZ-Western Lumi Pico or Femto reagent (DoGen). To measure the band intensity, it was analyzed using Fusion-Solo software (Vilber) according to the manufacturer's protocol.

ELISAELISA

본 실험에서 사용한 복강 대식세포는 실험예 3과 동일한 방법으로 얻어 사용하였다. 복강 대식세포(Peritoneal macrophages)를 96 웰 플레이트 또는 12 웰 플레이트에 분주하고, 5% CO2 배양기에서 37 ℃ 조건에서 부착할 때까지 배양하였다. 부유세포(Floating cells)를 PBS를 사용하여 제거하고, 부착된 대식세포(macrophages)에 인플라마좀 활성화(inflammasome activation)를 위해 1 mg/ml의 LPS와 함께 분주된 대식세포를 4시간동안 배양하였다. 이때, LPS와 함께 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-NBD, C10-EGFP)을 각각 함께 처리하여 배양하였다. 배양 후(stimulation) 배양 상청액을 ELISA를 위해 회수하였다. 배양 상청액에서 IL-6, TNFα 및 IL-1β의 수준을 측정하기 위해서, ELISA 키트(BioLegend)를 사용하여 제조사의 프로토콜대로 수행하였다.Peritoneal macrophages used in this experiment were obtained and used in the same manner as in Experimental Example 3. Peritoneal macrophages were distributed in a 96-well plate or 12-well plate and cultured in a 5% CO 2 incubator at 37°C until attachment. Floating cells were removed using PBS, and the dispensed macrophages were incubated with 1 mg/ml LPS for inflammasome activation in the attached macrophages for 4 hours. . At this time, various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant proteins (C10-LRR, C10-NBD, C10-EGFP) were treated and cultured together with LPS. After stimulation, the culture supernatant was recovered for ELISA. To measure the levels of IL-6, TNFα, and IL-1β in the culture supernatant, an ELISA kit (BioLegend) was used according to the manufacturer's protocol.

통계statistics

실험의 통계분석을 위하여 two-tailed Student's t-test, one-way ANOVA 또는 two-way ANOVA를 사용하여 그룹 간 평균수치 유의차를 확인하였으며, 0.05보다 낮은 p 값을 가질 경우에는 *, 0.01보다 낮은 p 값을 가질 경우에는 **, 0.001보다 낮은 p 값을 가질 경우에는 ***로, 유의적차이가 없는 경우 N.S로 유의적 차이를 표기하였다. MFI는 중앙형광강도(median fluorescence intensity)를 나타내며, 에러바는 S.D를 나타낸다.For statistical analysis of the experiment, two-tailed Student's t-test, one-way ANOVA, or two-way ANOVA were used to confirm the significant difference in mean values between groups. If the p value is lower than 0.05, *, lower than 0.01. If there is a p value, the significant difference is indicated by **, if the p value is lower than 0.001, it is indicated by ***, and if there is no significant difference, the significant difference is indicated by N.S. MFI represents median fluorescence intensity, and error bars represent S.D.

도 16은 복강 대식세포를 1 μM C10-LRR과 1 mg/ml LPS를 처리하고, 15 분과 30 분 동안 배양한 후, 웨스턴 블롯으로 분석한 결과이다.Figure 16 shows the results of peritoneal macrophages treated with 1 μM C10-LRR and 1 mg/ml LPS, cultured for 15 and 30 minutes, and analyzed by Western blot.

도 16에 나타난 바와 같이, C10-LRR을 처리한 경우에는 시간에 상관없이 유의하게 IκB 분해를 억제하는 것을 확인하였다. 인간 대식세포, 즉 PMA(phorbol 12-myristate 13-acetate)로 자극된 THP-1 세포에서도 확인할 수 있다.As shown in Figure 16, it was confirmed that treatment with C10-LRR significantly inhibited IκB degradation regardless of time. It can also be confirmed in human macrophages, that is, THP-1 cells stimulated with PMA (phorbol 12-myristate 13-acetate).

도 17 및 도 18은 PMA-자극된 THP-1 세포에 C10-LRR과 LPS를 처리하고, IL-6과 TNF-α의 수준을 ELISA로 분석한 결과 그래프이다.Figures 17 and 18 are graphs showing the results of treating PMA-stimulated THP-1 cells with C10-LRR and LPS, and analyzing the levels of IL-6 and TNF-α by ELISA.

도 17, 18에 나타난 바와 같이, C10-LRR을 처리한 경우 IL-6 생산을 유의적으로 현저히 억제하고 있다는 것을 확인하였다. 이에 반해 TNF-α의 생산에 대해서는 유의적인 차이가 관찰되지 않았다. As shown in Figures 17 and 18, it was confirmed that treatment with C10-LRR significantly inhibited IL-6 production. In contrast, no significant differences were observed in the production of TNF-α.

도 19는 THP-1 세포에 1 μM C10-LRR과 1 mg/ml LPS을 30 분 동안 처리하고, 이로부터 발현되는 PlκBα Ser32, IκBα, p65 Ser536, p65 수준을 웨스턴 블롯으로 측정하여 나타낸 결과이다.Figure 19 shows the results of treating THP-1 cells with 1 μM C10-LRR and 1 mg/ml LPS for 30 minutes, and measuring the levels of PlκBα Ser32, IκBα, p65 Ser536, and p65 expressed therefrom by Western blot.

도 19에 나타난 바와 같이, C10-LRR을 처리한 THP-1세포는 lκBα Ser32의 인산화, IκBα의 분해 및 p65 Ser536의 인산화를 포함한 NF-κB 신호전달의 활성화를 현저하게 감소된다는 것을 확인하였다.As shown in Figure 19, it was confirmed that the activation of NF-κB signaling, including phosphorylation of lκBα Ser32, degradation of IκBα, and phosphorylation of p65 Ser536, was significantly reduced in THP-1 cells treated with C10-LRR.

상술한 실험을 통해, C10-LRR은 LPS가 처리된 대식세포에서 IL-6 생성을 억제하고, NF-κB 신호전달을 음성적으로 조절하는 역할을 수행한다는 것을 알 수 있다.Through the above-described experiment, it can be seen that C10-LRR suppresses IL-6 production in LPS-treated macrophages and plays a role in negatively regulating NF-κB signaling.

실험예 5. 대식세포에서 NLRP3-인플라마좀(inflammaseom)에 대한 C10-LRR 저해 효과Experimental Example 5. C10-LRR inhibitory effect on NLRP3-inflammaseom in macrophages

본 실험에서 사용한 복강 대식세포는 실험예 3과 동일한 방법으로 얻어 사용하였다. 복강 대식세포(Peritoneal macrophages)를 96 웰 플레이트 또는 12 웰 플레이트에 분주하고, 5% CO2 배양기에서 37 ℃ 조건에서 부착할 때까지 배양하였다. 부유세포(Floating cells)를 PBS를 사용하여 제거하고, 부착된 세포에 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-NBD, C10-EGFP)을 각각 처리하고 4 시간동안 배양하였다. 배양 후(stimulation), 배양 상청액을 ELISA를 위해 회수하고, 인플라마좀 활성화(inflammasome activation)를 위해 1 mg/ml의 LPS와 함께 분주된 대식세포를 4 시간 동안 1차 배양하였다. 1차 배양 후, 세포를 5 μM 니제리신(nigericin)으로 2 시간 동안 활성화시키고, 상기 배양 상청액을 ELISA를 위해 회수하였다. 배양 상청액에서 IL-6, TNFα 및 IL-1β의 수준을 측정하기 위해서, ELISA 키트(BioLegend)를 사용하여 제조사의 프로토콜대로 수행하였다.Peritoneal macrophages used in this experiment were obtained and used in the same manner as in Experimental Example 3. Peritoneal macrophages were distributed in a 96-well plate or 12-well plate and cultured in a 5% CO 2 incubator at 37°C until attachment. Floating cells were removed using PBS, and the attached cells were treated with various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant proteins (C10-LRR, C10-NBD, C10-EGFP), respectively. Cultured for 4 hours. After stimulation, the culture supernatant was recovered for ELISA, and the dispensed macrophages were primary cultured for 4 hours with 1 mg/ml LPS for inflammasome activation. After primary culture, cells were activated with 5 μM nigericin for 2 hours, and the culture supernatant was recovered for ELISA. To measure the levels of IL-6, TNFα, and IL-1β in the culture supernatant, an ELISA kit (BioLegend) was used according to the manufacturer's protocol.

실험의 통계분석을 위하여 two-tailed Student's t-test, one-way ANOVA 또는 two-way ANOVA를 사용하여 그룹 간 평균수치 유의차를 확인하였으며, 0.05보다 낮은 p 값을 가질 경우에는 *, 0.01보다 낮은 p 값을 가질 경우에는 **, 0.001보다 낮은 p 값을 가질 경우에는 ***로, 유의적 차이가 없는 경우 N.S로 유의적 차이를 표기하였다. MFI는 중앙형광강도(median fluorescence intensity)를 나타내며, 에러바는 S.D를 나타낸다.For statistical analysis of the experiment, two-tailed Student's t-test, one-way ANOVA, or two-way ANOVA were used to confirm the significant difference in mean values between groups. If the p value is lower than 0.05, *, lower than 0.01. If there was a p value, the difference was marked as **, if there was a p value lower than 0.001, it was marked as ***, and if there was no significant difference, the significant difference was marked as N.S. MFI represents median fluorescence intensity, and error bars represent S.D.

도 20은 복강 대식세포에 LPS 및 재조합 단백질(C10-LRR, C10-NBD, C10-EGFP) 또는 니제리신을 첨가하여 배양한 후, IL-1β의 수준을 ELISA로 측정한 그래프이다.Figure 20 is a graph showing the level of IL-1β measured by ELISA after culturing peritoneal macrophages with LPS and recombinant proteins (C10-LRR, C10-NBD, C10-EGFP) or nigericin.

상기 실험에서 패혈증 동물모델에서 감소된 IL-1β가 C10-LRR에 의한 인플라마좀 활성화의 조절과 관련이 있는지 확인하기 위하여, 본 발명에서 LPS으로 priming한 후, 니제리신을 처리하여 대식세포에 IL-1β 변화를 살펴보았다. 그 결과 도 20에서와 같이, LPS만 처리된 경우에는 IL-1β 변화가 유의적인 차이를 나타나지 않았으나, LPS와 니제리신으로 처리한 경우에는 IL-1β 변화가 유의적으로 증가하는 것을 확인하였다. In order to confirm whether IL-1β, which was reduced in the sepsis animal model in the above experiment, is related to the regulation of inflammasome activation by C10-LRR, in the present invention, after priming with LPS and treating nigericin, macrophages were treated with IL-1β. We looked at the -1β change. As a result, as shown in Figure 20, when only LPS was treated, there was no significant difference in IL-1β change, but when treated with LPS and nigericin, IL-1β change was confirmed to significantly increase.

C10-LRR 처리된 경우에는 IL-1β를 유의하게 억제하는 것으로 확인되었다.When treated with C10-LRR, it was confirmed that IL-1β was significantly suppressed.

실험예 6. 대식세포에서 NLRP3-인플라마좀(inflammaseom)에 대한 C10-LRR 저해 효과-1Experimental Example 6. C10-LRR inhibitory effect on NLRP3-inflammaseom in macrophages-1

시료의 투여Administration of samples

시료의 투여를 위하여 아홉 그룹으로 나누어 진행하였다. 복강 대식세포(Peritoneal macrophages) 또는 MEF(murine embryonic fibroblasts)를 96 웰 플레이트 또는 12 웰 플레이트에 분주하고, 5% CO2 배양기에서 37 ℃ 조건에서 부착할 때까지 배양하였다.To administer the samples, they were divided into nine groups. Peritoneal macrophages or MEFs (murine embryonic fibroblasts) were dispensed into 96-well plates or 12-well plates and cultured in a 5% CO 2 incubator at 37°C until attachment.

본 발명의 실험은 프라이밍 단계(LPS 1 mg/ml 복강내 투여, 4 시간), 자극 단계(5 μM 니제리신 복강 내 투여, 2 시간)로 구성된다(도 21). Prim+Stim은 프라이밍 단계와 자극 단계 각각에 동일 농도의 재조합 단백질(C10-LRR 또는 C10-EGFP)을 처리한 후 배양하여 수행한 그룹이다(처리한 농도는 그래프에 표기하였고, prim 단계와 stim 단계에 각각 1회씩(총 2회) 투여하였다-0.2 μM, 0.5 μM, 1 μM).The experiment of the present invention consists of a priming phase (LPS 1 mg/ml intraperitoneal administration, 4 hours) and a stimulation phase (5 μM nigericin intraperitoneal administration, 2 hours) (FIG. 21). Prim+Stim is a group that was cultured after treating the same concentration of recombinant protein (C10-LRR or C10-EGFP) in each of the priming and stimulation stages (the treatment concentration is indicated in the graph, and the prim and stim stages Each was administered once (total of 2 times - 0.2 μM, 0.5 μM, 1 μM).

Prim은 프라이밍 단계에만 해당 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-EGFP)을 함께 처리하여 배양한 그룹이고, Stim은 자극 단계에만 해당 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-EGFP)을 함께 처리하여 배양한 그룹이다.Prim is a group cultured with recombinant proteins (C10-LRR, C10-EGFP) at corresponding concentrations (0.2 μM, 0.5 μM, 1 μM) only during the priming phase, and Stim is a group cultured with corresponding concentrations (0.2 μM, 0.5 μM) only at the stimulation phase. This group was cultured by treating with 1 μM) recombinant proteins (C10-LRR, C10-EGFP).

각각의 시료의 처리 유무는 그래프에서 -(처리 안함)와 +(처리함)로 표기하였다.The presence or absence of treatment of each sample is indicated as - (untreated) and + (treated) in the graph.

ELISAELISA

상기 각각의 시료 투여군으로부터 배양 상청액을 ELISA를 위해 회수하였다. 배양 상청액에서 IL-6, TNFα 및 IL-1β의 수준을 측정하기 위해서, ELISA 키트(BioLegend)를 사용하여 제조사의 프로토콜대로 수행하였다.Culture supernatants from each sample administration group were recovered for ELISA. To measure the levels of IL-6, TNFα, and IL-1β in the culture supernatant, an ELISA kit (BioLegend) was used according to the manufacturer's protocol.

통계statistics

실험의 통계분석을 위하여 two-tailed Student's t-test, one-way ANOVA 또는 two-way ANOVA를 사용하여 그룹 간 평균수치 유의차를 확인하였으며, 0.05보다 낮은 p 값을 가질 경우에는 *, 0.01보다 낮은 p 값을 가질 경우에는 **, 0.001보다 낮은 p 값을 가질 경우에는 ***로, 유의적 차이가 없는 경우 N.S로 유의적 차이를 표기하였다. MFI는 중앙형광강도(median fluorescence intensity)를 나타내며, 에러바는 S.D를 나타낸다.For statistical analysis of the experiment, two-tailed Student's t-test, one-way ANOVA, or two-way ANOVA were used to confirm the significant difference in mean values between groups. If the p value is lower than 0.05, *, lower than 0.01. If there was a p value, the difference was marked as **, if there was a p value lower than 0.001, it was marked as ***, and if there was no significant difference, the significant difference was marked as N.S. MFI represents median fluorescence intensity, and error bars represent S.D.

도 21은 복강 대식세포에서 인플라마좀 활성화(inflammasome activation)에 대한 C10-LRR의 저해효과를 확인하기 위한 실험 설계도이다. 상기 실험은 프라이밍 단계(LPS 1 mg/ml 복강내 투여, 4 시간), 자극 단계(5 μM 니제리신 복강 내 투여, 2 시간)로 구성된다. 본 발명에서 실험은 총 세 가지로 설계하였는데, Prim+Stim은 프라이밍 단계와 자극 단계 모두에서 재조합 단백질을 처리한 그룹이고, Prim은 프라이밍 단계에만 재조합 단백질을 처리한 그룹이며, Stim은 자극 단계에만 재조합 단백질을 처리한 그룹이다. 이때, 재조합 단백질(C10-LRR, C10-NBD, C10-EGFP) 처리시, LPS도 함께 처리하였다. 프라이밍 단계는 NF-κB 활성화가 진행되고 자극 단계는 인플라마좀 활성화가 진행되는 것으로 여겨진다.Figure 21 is an experimental design to confirm the inhibitory effect of C10-LRR on inflammasome activation in peritoneal macrophages. The experiment consists of a priming phase (LPS 1 mg/ml intraperitoneally administered, 4 hours) and a stimulation phase (5 μM nigericin administered intraperitoneally, 2 hours). In the present invention, a total of three experiments were designed: Prim+Stim is a group treated with recombinant protein in both the priming and stimulation stages, Prim is a group treated with recombinant protein only in the priming stage, and Stim is a group treated with recombinant protein only in the stimulation stage. This is the group that processed proteins. At this time, when recombinant proteins (C10-LRR, C10-NBD, C10-EGFP) were treated, LPS was also treated. It is believed that the priming step involves NF-κB activation, and the stimulation step involves inflammasome activation.

도 22는 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-EGFP)을 투여한 복강 대식세포를 대상으로 한 Prim+Stim 그룹, Prim 그룹, Stim 그룹에서의 IL-1β 수준을 ELISA로 분석한 결과 그래프이고, 도 23은 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-EGFP)을 투여한 MEF(murine embryonic fibroblast) 세포를 대상으로 한 Prim+Stim 그룹, Prim 그룹, Stim 그룹에서의 IL-1β 수준을 ELISA로 분석한 결과 그래프이다.Figure 22 shows IL in the Prim+Stim group, Prim group, and Stim group targeting peritoneal macrophages administered various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant proteins (C10-LRR, C10-EGFP). This is a graph showing the results of analyzing -1β levels by ELISA, and Figure 23 shows murine embryonic fibroblast (MEF) cells administered various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant proteins (C10-LRR, C10-EGFP). This is a graph showing the results of ELISA analysis of IL-1β levels in the Prim+Stim group, Prim group, and Stim group.

도 22 및 도 23에 나타난 바와 같이, LPS와 니제리신 처리에 의해 IL-1β의 생산이 유도되는 것을 확인하였다. 또한 C10-LRR 처리할 경우, C10-LRR 용량에 따라 IL-1β 생산이 유의하게 감소하는 것을 확인하였다. As shown in Figures 22 and 23, it was confirmed that the production of IL-1β was induced by treatment with LPS and nigericin. Additionally, when treated with C10-LRR, IL-1β production was confirmed to significantly decrease depending on the C10-LRR dose.

상술한 결과를 통해, C10-LRR은 인플라마좀 신호전달과 NF-κB 신호전달 모두를 저해하는 효과를 갖고 있다는 것을 알 수 있다. 이에 반해 C10-EGFP를 처리한 경우에는 IL-1β 변화에 유의적인 차이가 관찰되지 않았다.From the above results, it can be seen that C10-LRR has the effect of inhibiting both inflammasome signaling and NF-κB signaling. In contrast, when treated with C10-EGFP, no significant difference in IL-1β changes was observed.

실험예 7. 대식세포에서 NLRP3-인플라마좀(inflammaseom)에 대한 C10-LRR 저해 효과-2Experimental Example 7. C10-LRR inhibitory effect on NLRP3-inflammaseom in macrophages-2

미토콘드리아 분획물의 분리(Isolation of mitochondrial fraction)Isolation of mitochondrial fraction

미토콘드리아 분획물(Mitochondrial fraction)은 Qproteome mitochondrial isolation kit(Qiagen)를 사용하여 제조사의 프로토콜대로 분리하였다. 간략하게, 복강 대식세포(peritoneal macrophages)를 용해액(lysis buffer)에서 회수하고, 4 ℃, 1,000 g로 10 분 동안 원심분리 하였다. 상청액(supernatant)을 버리고, 펠렛(pellet)에 23-게이지 바늘로 10 차례 통과시켜(passages) 분쇄한 다음, 4 ℃, 1,000 g로 10 분 동안 원심분리 하였다. 상기 상청액을 4 ℃, 8,000 g로 15 분 동안 원심분리하고, 상기 펠렛을 세척한 뒤, 미토콘드리아 분획물을 얻었다. 비교를 위해 전체세포용해물(Whole cell lysate)도 별도로 회수하여 보관하였다.Mitochondrial fraction was isolated using the Qproteome mitochondrial isolation kit (Qiagen) according to the manufacturer's protocol. Briefly, peritoneal macrophages were recovered from lysis buffer and centrifuged at 4°C and 1,000 g for 10 minutes. The supernatant was discarded, the pellet was crushed by passing it 10 times with a 23-gauge needle, and then centrifuged at 4°C and 1,000 g for 10 minutes. The supernatant was centrifuged at 4°C and 8,000 g for 15 minutes, the pellet was washed, and a mitochondrial fraction was obtained. For comparison, whole cell lysate was also collected and stored separately.

웨스턴 블롯western blot

복강 대식세포 또는 미토콘드리아 분획물 또는 전체세포용해물(Whole cell lysate)을 96 웰 플레이트 또는 12 웰 플레이트에 분주하고, 5% CO2 배양기에서 37 ℃ 조건에서 부착할때까지 배양하였다. 부유세포(Floating cells)를 PBS를 사용하여 제거하고, 부착된 세포에 인플라마좀 활성화(inflammasome activation)를 위해 1 mg/ml의 LPS와 함께 분주된 대식세포를 4 시간 동안 배양하였다. 이때, LPS와 함께 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-NBD, C10-EGFP)을 각각 함께 처리하여 배양하였다. 배양 후, 상기 세포에 니제리신(nigericin) 5 μM을 처리하고 2 시간동안 배양하였다. 4 ℃에서 30 분 동안 세포를 RIPA 완충액(Cell Signaling Technology)로 용해시킨 후, 용해물의 단백질 양을 Pierce BCA protein assay kit(Thermo Fisher Scientific)를 사용하여 제조사의 프로토콜대로 분석하였다. SDS-PAGE 후, 단백질을 PVDF 막(Bio-Rad)에 옮긴 다음, 막을 5% skim milk와 0.1% Tween-20를 포함하는 TBS 완충액(Tris-buffered saline; TBS-T)으로 처리하였다. 그리고 1차 항체와 함께 4 ℃에서 밤새 배양하였다: pro-Casp1(Adipogen, 1:1000 diluted), casp1P20(Adipogen, 1:1000 diluted), MAVS (Cell Signaling, 1:1000 diluted), NLRP3(Adipogen, 1:1000 diluted), 또는 VDAC(Cell Signaling, 1:1000 diluted) 항체를 사용하였다. 막을 TBS-T로 세척하고 2차 항체로 상온에서 1 시간동안 배양하였다. 막을 TBS-T로 세척하고, EZ-Western Lumi Pico 또는 Femto reagent(DoGen)로 처리하였다. 밴드 세기를 측정하기 위하여 Fusion-Solo software(Vilber)을 사용하여 제조사의 프로토콜대로 분석하였다. 본 실험에서 사용한 복강 대식세포는 실험예 3과 동일한 방법으로 얻어 사용하였다.Peritoneal macrophages or mitochondrial fractions or whole cell lysates were dispensed into 96-well plates or 12-well plates and cultured in a 5% CO 2 incubator at 37°C until adhesion. Floating cells were removed using PBS, and the dispensed macrophages were cultured with 1 mg/ml LPS for inflammasome activation on the attached cells for 4 hours. At this time, various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant proteins (C10-LRR, C10-NBD, C10-EGFP) were treated and cultured together with LPS. After culturing, the cells were treated with 5 μM nigericin and cultured for 2 hours. After lysing the cells with RIPA buffer (Cell Signaling Technology) for 30 minutes at 4°C, the amount of protein in the lysate was analyzed using the Pierce BCA protein assay kit (Thermo Fisher Scientific) according to the manufacturer's protocol. After SDS-PAGE, the proteins were transferred to a PVDF membrane (Bio-Rad), and the membrane was treated with TBS buffer (Tris-buffered saline; TBS-T) containing 5% skim milk and 0.1% Tween-20. And incubated overnight at 4°C with primary antibodies: pro-Casp1 (Adipogen, 1:1000 diluted), casp1P20 (Adipogen, 1:1000 diluted), MAVS (Cell Signaling, 1:1000 diluted), NLRP3 (Adipogen, 1:1000 diluted), or VDAC (Cell Signaling, 1:1000 diluted) antibody was used. The membrane was washed with TBS-T and incubated with secondary antibody for 1 hour at room temperature. Membranes were washed with TBS-T and treated with EZ-Western Lumi Pico or Femto reagent (DoGen). To measure the band intensity, it was analyzed using Fusion-Solo software (Vilber) according to the manufacturer's protocol. Peritoneal macrophages used in this experiment were obtained and used in the same manner as in Experimental Example 3.

통계statistics

실험의 통계분석을 위하여 two-tailed Student's t-test, one-way ANOVA 또는 two-way ANOVA를 사용하여 그룹 간 평균수치 유의차를 확인하였으며, 0.05보다 낮은 p 값을 가질 경우에는 *, 0.01보다 낮은 p 값을 가질 경우에는 **, 0.001보다 낮은 p 값을 가질 경우에는 ***로, 유의적차이가 없는 경우 N.S로 유의적 차이를 표기하였다. MFI는 중앙형광강도(median fluorescence intensity)를 나타내며, 에러바는 S.D를 나타낸다.For statistical analysis of the experiment, two-tailed Student's t-test, one-way ANOVA, or two-way ANOVA were used to confirm the significant difference in mean values between groups. If the p value is lower than 0.05, *, lower than 0.01. If there is a p value, the significant difference is indicated by **, if the p value is lower than 0.001, it is indicated by ***, and if there is no significant difference, the significant difference is indicated by N.S. MFI represents median fluorescence intensity, and error bars represent S.D.

도 24는 LPS와 니제리신으로 염증 유도된 복강 대식세포에 다양한 농도(0.2 μM, 0.5 μM, 1 μM)의 재조합 단백질(C10-LRR, C10-EGFP)을 첨가하여 배양한 후, Pro-Casp1, Casp1 P20의 발현 수준을 웨스턴 블롯으로 측정한 결과이다.Figure 24 shows Pro-Casp1 after culturing peritoneal macrophages induced with LPS and nigericin with various concentrations (0.2 μM, 0.5 μM, 1 μM) of recombinant proteins (C10-LRR, C10-EGFP). , This is the result of measuring the expression level of Casp1 P20 by Western blot.

caspase-1 p20은 Pro-IL-1β의 N 말단을 절단하여, 분비가능한 형태의 성숙한(mature) IL-1β를 생성하는 것으로 알려져 있다. 따라서 본 발명에서는 C10-LRR과 caspase-1 p20의 관련성을 분석하고자 하였다.It is known that caspase-1 p20 cleaves the N terminus of Pro-IL-1β, producing mature IL-1β in a secretable form. Therefore, in the present invention, we attempted to analyze the relationship between C10-LRR and caspase-1 p20.

도 24에 나타난 바와 같이, LPS와 니제리신이 처리된 경우 정상군대비 caspase-1 p20의 발현이 유의적으로 증가하는 것을 확인하였다. 이에 반해 C10-LRR을 처리한 경우, LPS와 니제리신에 의해 증가된 caspase-1 p20의 발현수준이 유의적으로 감소하는 것을 확인하였다. 비교군인 C10-EGFP의 경우 LPS와 니제리신이 처리된 군과 유의적 차이가 관찰되지 않았다.As shown in Figure 24, when LPS and nigericin were treated, it was confirmed that the expression of caspase-1 p20 significantly increased compared to the normal group. In contrast, when treated with C10-LRR, the expression level of caspase-1 p20, which was increased by LPS and nigericin, was confirmed to be significantly reduced. In the case of C10-EGFP, the comparison group, no significant difference was observed compared to the group treated with LPS and nigericin.

도 25는 LPS와 니제리신으로 염증 유도된 미토콘드리아 분획물과 전체세포용해물(Whole cell lysate)에 재조합 단백질(C10-LRR, C10-NBD)을 첨가하여 배양한 후, Pro-Casp1, Casp1 P20의 발현 수준을 웨스턴 블롯으로 측정한 결과이다. 'Mito'는 미토콘드리아 분획물이고, WCL은 전체세포용해물(Whole cell lysate)이다.Figure 25 shows the expression of Pro-Casp1 and Casp1 P20 after adding recombinant proteins (C10-LRR, C10-NBD) to mitochondrial fractions and whole cell lysates induced by inflammation with LPS and nigericin and culturing them. This is the result of measuring the expression level by Western blot. 'Mito' is a mitochondrial fraction, and WCL is a whole cell lysate.

MAVS는 미토콘드리아의 외막에서 NLRP3-inflammasome을 조절하는 역할을 수행하는 것으로 널리 알려져 있다. 따라서 C10-LRR을 처리하였을 때 미토콘드리아와 세포질에서 NLRP3 및 MAVS 수준을 조사하였다. MAVS is widely known to play a role in regulating the NLRP3-inflammasome in the outer membrane of mitochondria. Therefore, when treated with C10-LRR, we examined the levels of NLRP3 and MAVS in mitochondria and cytoplasm.

도 25에 나타난 바와 같이, 니제리신과 LPS로 자극된 경우에는 미토콘드리아 MAVS 수준이 유의적으로 증가하였고, MCL에서는 차이가 없는 것을 확인하였다.As shown in Figure 25, when stimulated with nigericin and LPS, the mitochondrial MAVS level increased significantly, and there was no difference in MCL.

C10-LRR을 처리한 경우, 미토콘드리아에서 MAVS 발현이 완전히 저해되는 것을 확인하였고, WCL에서도 MAVS와 NLRP3의 수준이 유의적으로 현저하게 감소되는 것을 확인하였다. 상술한 결과를 통해 C10-LRR은 인플라마좀(inflammasome) 신호와 IL-1β 생산을 부정적으로 조절한다는 것을 알 수 있다.When treated with C10-LRR, it was confirmed that MAVS expression was completely inhibited in mitochondria, and the levels of MAVS and NLRP3 were also significantly reduced in WCL. The above results show that C10-LRR negatively regulates inflammasome signaling and IL-1β production.

실험예 8. C10-LRR 및 TAT-LRR 융합 단백질의 동물 투여시 전달효율Experimental Example 8. Delivery efficiency of C10-LRR and TAT-LRR fusion proteins when administered to animals

실험동물laboratory animals

한양대학교 SPF 사육시설(Specific pathogen free animal facility)에서 사육된 7주령에서 8주령의 수컷 또는 암컷 C57BL/6 마우스를 사용하였으며, 실험전 마우스는 2주간 순화과정을 거쳤다. 마우스는 실험동안 온도 22 ± 2 ℃, 습도는 40-60%로 유지되는 사육실에서 자유식이로 사육되었으며, 명암 주기(Light and dark cycle)는 12시간 간격으로 조절하였다. 모든 동물실험은 한양대학교 동물실험윤리위원회(Institutional Animal Care and Use Committee of Hanyang University)의 동물실험운영규정을 준수하여 수행하였다.Male or female C57BL/6 mice aged 7 to 8 weeks raised at Hanyang University's SPF breeding facility (Specific pathogen free animal facility) were used, and the mice underwent an acclimatization process for 2 weeks before the experiment. Mice were raised on free diet in a breeding room maintained at a temperature of 22 ± 2 °C and humidity of 40-60% during the experiment, and the light and dark cycle was adjusted at 12-hour intervals. All animal experiments were conducted in compliance with the animal experiment operation regulations of the Institutional Animal Care and Use Committee of Hanyang University.

시료의 투여 및 샘플링Administration and sampling of samples

상기 마우스로부터 복강 대식세포(peritoneal macrophages)를 분리하기 위해, 마우스 복강내에 PBS 5 ㎖를 투여하고, 복강액을 얻은 후, 배양 플레이트에 분주하고 5% CO2 배양기에서 37 ℃ 조건에서 2 시간동안 배양하였다. 배양이 완료된 후, 상청액을 제거하고, 세포를 PBS로 세척한 다음 미부착 세포를 측정하였다. 부착세포는 일차 복강 대식세포(primary peritoneal macrophages)이다.To isolate peritoneal macrophages from the mouse, 5 ml of PBS was administered into the mouse's abdominal cavity, and peritoneal fluid was obtained, distributed on a culture plate, and cultured in a 5% CO 2 incubator at 37°C for 2 hours. did. After incubation was completed, the supernatant was removed, cells were washed with PBS, and non-adherent cells were measured. Adherent cells are primary peritoneal macrophages.

상기 과정을 통해 얻은 일차 복강 대식세포(primary peritoneal macrophages)를 96-웰 플레이트 또는 12-웰 플레이트에 2 × 105 cells의 농도로 분주하고, 각 웰에 C10-LRR, TAT-LRR 재조합 단백질, LRR 또는 PBS(대조군)을 2 μM 첨가한 다음 5% CO2 배양기에서 37 ℃ 조건에서 1 시간동안 배양하였다. 배양 후, 원심분리를 통해 세포를 회수하고, PBS 완충액으로 2번 세척하였다. 세포막에 부착된 단백질을 제거하기 위하여, 세포를 37 ℃에서 10분 동안 트립신을 처리하였고, 10% FBS를 포함하는 37 ℃ DMEM 배양배지를 통해 트립신을 중화시켰다. 세포는 PBS로 세척한 후, 유세포분석(flow cytometry)(FACS Canto II, BD Bioscience)을 수행하였다. 데이터는 Flowjo software(Tree Star)를 사용하여 분석하였다.Primary peritoneal macrophages obtained through the above process were distributed at a concentration of 2 × 10 5 cells in 96-well plates or 12-well plates, and C10-LRR, TAT-LRR recombinant protein, and LRR were added to each well. Alternatively, 2 μM of PBS (control) was added and then cultured for 1 hour at 37°C in a 5% CO 2 incubator. After incubation, cells were recovered through centrifugation and washed twice with PBS buffer. To remove proteins attached to the cell membrane, cells were treated with trypsin at 37°C for 10 minutes, and trypsin was neutralized using DMEM culture medium at 37°C containing 10% FBS. After washing the cells with PBS, flow cytometry (FACS Canto II, BD Bioscience) was performed. Data were analyzed using Flowjo software (Tree Star).

통계statistics

실험의 통계분석을 위하여 two-tailed Student's t-test, one-way ANOVA 또는 two-way ANOVA를 사용하여 그룹 간 평균수치 유의차를 확인하였으며, 0.05보다 낮은 p 값을 가질 경우에는 *, 0.01보다 낮은 p 값을 가질 경우에는 **, 0.001보다 낮은 p 값을 가질 경우에는 ***로, 유의적 차이가 없는 경우 N.S로 유의적 차이를 표기하였다. MFI는 중앙형광강도(median fluorescence intensity)를 나타내며, 에러바는 S.D를 나타낸다.For statistical analysis of the experiment, two-tailed Student's t-test, one-way ANOVA, or two-way ANOVA were used to confirm the significant difference in mean values between groups. If the p value is lower than 0.05, *, lower than 0.01. If there was a p value, the difference was marked as **, if there was a p value lower than 0.001, it was marked as ***, and if there was no significant difference, the significant difference was marked as N.S. MFI represents median fluorescence intensity, and error bars represent S.D.

도 26은 일차 복강 대식세포(primary peritoneal macrophages)에 C10-LRR, TAT-LRR, LRR 및 PBS(대조군)을 처리하고 1 시간 배양한 후, 유세포 분석으로 분석한 결과이다.Figure 26 shows the results of primary peritoneal macrophages treated with C10-LRR, TAT-LRR, LRR, and PBS (control), cultured for 1 hour, and analyzed by flow cytometry.

도 26에 나타난 바와 같이, 마우스 복강 대식세포(peritoneal macrophages)에서, LRR 단백질이 효과적으로 C10, TAT 세포투과성 펩티드에 의해 전달되는 것을 확인하였다. As shown in Figure 26, it was confirmed that LRR protein was effectively delivered by C10 and TAT cell-penetrating peptides in mouse peritoneal macrophages.

다만 TAT 세포투과성 펩티드를 사용한 C10-LRR 융합 단백질은 LRR 단백질이 대식세포로 전달되는 효율이 C10 세포투과성 펩티드보다 낮다는 것을 확인하였다. 따라서 C10 세포투과성 펩티드 외에 다른 세포투과성 펩티드를 사용하더라도 충분히 본 발명의 효과를 달성할 수 있으나, C10 세포투과성 펩티드는 대식세포 특이적 세포전달을 유의적으로 행하므로, 패혈증 치료를 위해 가장 바람직하다는 것을 알 수 있다.However, it was confirmed that the efficiency of LRR protein delivery to macrophages for the C10-LRR fusion protein using the TAT cell-penetrating peptide was lower than that of the C10 cell-penetrating peptide. Therefore, the effects of the present invention can be sufficiently achieved even if other cell-penetrating peptides are used in addition to the C10 cell-penetrating peptide. However, the C10 cell-penetrating peptide significantly performs macrophage-specific cell transfer, and is therefore most preferable for the treatment of sepsis. Able to know.

실험예 10. C10-LRR 융합 단백질의 세포 내 전달효율Experimental Example 10. Intracellular delivery efficiency of C10-LRR fusion protein

세포주와 배양Cell lines and culture

HeLa 세포는 ATCC로부터 구매하여 사용하였고, DMEM 또는 RPMI(Corning) 배지상에 보관하였다. 10% 소태아혈청(fetal bovine serum)과 1% 페니실린/스트렙토마이신을 포함하는 배양배지를 사용하였다. 세포는 5% CO2 배양기에서 37 ℃ 조건하에서 배양하였다.HeLa cells were purchased from ATCC and stored in DMEM or RPMI (Corning) medium. Culture medium containing 10% fetal bovine serum and 1% penicillin/streptomycin was used. Cells were cultured at 37°C in a 5% CO 2 incubator.

형광현미경 분석Fluorescence microscopy analysis

Hela 세포를 6웰 플레이트에 2 × 105 세포 농도로 분주하고, C10-LRR을 2 μM 첨가하고, 5% CO2 배양기에서 37 ℃ 조건에서 1 시간동안 배양하였다. 배양 후, 세포를 PBS로 세차례 세척하고, 4% 파라포름알데히드 포스페이트 완충용액(paraformaldehyde phosphate buffer solution)(Wako)으로 10분동안 고정하였다. 핵산(Nuclei)을 0.01% Hoechst를 포함하는 PBS에 10분 동안 염색하고, 세포를 PBS로 두 차례 세척하였다. 세포질(cytoplasm)과 핵(nucleus)에서의 형광신호는 C2si 공초점 현미경(Nikon)으로 분석하였다. 스케일바는 100 ㎛이다.Hela cells were distributed in a 6-well plate at a cell concentration of 2 × 10 5 , 2 μM of C10-LRR was added, and cultured in a 5% CO 2 incubator at 37°C for 1 hour. After incubation, the cells were washed three times with PBS and fixed with 4% paraformaldehyde phosphate buffer solution (Wako) for 10 minutes. Nuclei were stained in PBS containing 0.01% Hoechst for 10 minutes, and the cells were washed twice with PBS. Fluorescent signals in the cytoplasm and nucleus were analyzed using a C2si confocal microscope (Nikon). The scale bar is 100 μm.

도 27은 HeLa 세포에서 C10-LRR을 처리하였을 때, 세포 내에서의 분포를 공초점 현미경으로 확인한 결과로, 적색은 Mitotracker로, 미토콘리아(세포질)에서 형광신호를 나타내고, 푸른색은 Hoechst로, 핵에서 형광신호를 나타내며, 녹색은 anti 6His로, C10-LRR의 형광신호를 나타낸다.Figure 27 shows the results of confirming the distribution within the cell by confocal microscopy when C10-LRR was treated in HeLa cells. Red indicates Mitotracker, fluorescent signal in the mitochondria (cytoplasm), and blue indicates Hoechst. , shows a fluorescence signal in the nucleus, and green is anti 6His, indicating the fluorescence signal of C10-LRR.

도 27에 나타난 바와 같이, C10-LRR은 세포질과 핵 모두에 분포하는 것을 알 수 있다. 이는 엔도시토시스(endocytosis)를 통해 세포내로 C10-LRR이 들어간 후, 확산되어 존재하는 것으로 여겨진다. C10 세포투과성 펩티드와 NRR 단백질의 융합 단백질은 효과적으로 일차 대식세포내로 선택적 전달이 가능하다는 것을 확인할 수 있었다.As shown in Figure 27, C10-LRR can be seen to be distributed in both the cytoplasm and nucleus. It is believed that C10-LRR enters the cell through endocytosis and then spreads to exist. It was confirmed that the fusion protein of C10 cell-penetrating peptide and NRR protein can be effectively and selectively delivered into primary macrophages.

실험예 11. 대식세포에서 재조합 단백질의 전달효율 비교Experimental Example 11. Comparison of delivery efficiency of recombinant proteins in macrophages

앞선 실험들을 통해 NLRX1 단백질 중에서 LRR 도메인이 결합된 융합 단백질이 패혈증에 대한 예방 또는 치료 또는 개선 효과를 나타내는 것을 확인하였다. 이에, C10 세포투과성 펩티드와 다른 세포투과성 펩티드의 전달효율을 비교하고자 하였다.Through previous experiments, it was confirmed that among the NLRX1 proteins, a fusion protein to which the LRR domain is bound has a prevention, treatment, or improvement effect on sepsis. Therefore, we sought to compare the delivery efficiency of C10 cell-penetrating peptide and other cell-penetrating peptides.

dNP2와 TAT에 대한 C10 세포투과성 펩티드의 정확한 세포내 전달효율을 비교하기 위하여, 실험예 3의 결과로부터 수지상세포 대비 대식세포에서의 세포내 전달효율을 상대적으로 분석하여 도 28에 나타내었다.In order to compare the exact intracellular delivery efficiency of the C10 cell-penetrating peptide for dNP2 and TAT, the intracellular delivery efficiency in macrophages compared to dendritic cells was comparatively analyzed from the results of Experimental Example 3, and is shown in Figure 28.

이때, dNP2-EGFP는 서열번호 29의 정방향 프라이머와 서열번호 30의 역방향 프라이머 대신에 dNP2 세포투과성 펩티드(서열번호 11)를 코딩하는 폴리뉴클레오티드 서열(서열번호 22)이 5'-> 3'방향으로 포함되고, EGFP 단백질을 코딩하는 폴리뉴클레오티드 서열이 포함되는 서열번호 48의 정방향 프라이머와 서열번호 49의 역방향 프라이머를 통해 dNP2 폴리펩티드와 EGFP의 융합 단백질을 코딩하는 서열번호 50의 폴리뉴클레오티드 서열을 제작한 것을 제외하고는 모두 실시예 1과 동일하게 하여 dNP2-EGFP의 재조합 단백질을 얻었다. 상기 재조합 단백질은 12% SDS-PAGE를 통해 확인하였다.At this time, dNP2-EGFP has a polynucleotide sequence (SEQ ID NO: 22) encoding dNP2 cell-penetrating peptide (SEQ ID NO: 11) instead of the forward primer of SEQ ID NO: 29 and the reverse primer of SEQ ID NO: 30 in the 5'->3' direction. A polynucleotide sequence of SEQ ID NO: 50 encoding a fusion protein of dNP2 polypeptide and EGFP was produced through the forward primer of SEQ ID NO: 48 and the reverse primer of SEQ ID NO: 49, which includes the polynucleotide sequence encoding the EGFP protein. The recombinant protein of dNP2-EGFP was obtained in the same manner as in Example 1 except that. The recombinant protein was confirmed through 12% SDS-PAGE.

실험의 통계분석을 위하여 two-tailed Student's t-test, one-way ANOVA 또는 two-way ANOVA를 사용하여 그룹 간 평균수치 유의차를 확인하였으며, 0.05보다 낮은 p 값을 가질 경우에는 *, 0.01보다 낮은 p 값을 가질 경우에는 **, 0.001보다 낮은 p 값을 가질 경우에는 ***로, 유의적 차이가 없는 경우 N.S로 유의적 차이를 표기하였다. 에러바는 S.D를 나타낸다.For statistical analysis of the experiment, two-tailed Student's t-test, one-way ANOVA, or two-way ANOVA were used to confirm the significant difference in mean values between groups. If the p value is lower than 0.05, *, lower than 0.01. If there was a p value, the difference was marked as **, if there was a p value lower than 0.001, it was marked as ***, and if there was no significant difference, the significant difference was marked as N.S. Error bars represent S.D.

도 28a는 수지상세포 대비 CD11bhigh 대식세포에서의 상대적 세포내 전달효율을 비교한 그래프이고, 도 28b는 수지상세포 대비 CD11bmed 대식세포에서의 상대적 세포내 전달효율을 비교한 그래프이며, 도 28c는 수지상세포 대비 호중구 세포에서의 상대적 세포내 전달효율을 비교한 그래프이다.Figure 28a is a graph comparing the relative intracellular delivery efficiency in CD11b high macrophages compared to dendritic cells, Figure 28b is a graph comparing the relative intracellular delivery efficiency in CD11b med macrophages compared to dendritic cells, and Figure 28c is a graph comparing the relative intracellular delivery efficiency in CD11b med macrophages compared to dendritic cells. This is a graph comparing the relative intracellular delivery efficiency in neutrophil cells compared to cells.

도 28에 나타난 바와 같이 대식세포에서 dNP2, TAT보다 C10 세포투과성 펩티드의 전달효율이 유의적으로 현저하게 우수하다는 것을 확인하였다. 그러나 호중구에서는 dNP2와 TAT와 C10 세포투과성 펩티드의 전달효율에 유의적 차이가 없다는 것을 확인하였다.As shown in Figure 28, it was confirmed that the delivery efficiency of C10 cell-penetrating peptide was significantly superior to that of dNP2 and TAT in macrophages. However, it was confirmed that there was no significant difference in the delivery efficiency of dNP2, TAT, and C10 cell-penetrating peptide in neutrophils.

상술한 결과를 통해, 본 발명은 C10 세포투과성 펩티드가 종래 세포투과성 펩티드와 달리 대식세포에 대한 유의적으로 높은 선호도를 갖는다는 것을 확인하였다. 따라서 패혈증을 대상으로 LRR과 융합되는 세포투과성 펩티드는 C10 세포투과성 펩티드가 가장 바람직하다는 것을 알 수 있다.Through the above-mentioned results, the present invention confirmed that the C10 cell-penetrating peptide has a significantly higher affinity for macrophages, unlike conventional cell-penetrating peptides. Therefore, it can be seen that C10 cell-penetrating peptide is the most preferable cell-penetrating peptide fused with LRR for sepsis.

실험예 12. C10 변이체에 대한 분석Experimental Example 12. Analysis of C10 variant

앞선 실험들을 통해 NLRX1 단백질 중에서 LRR 도메인이 결합된 융합 단백질이 패혈증에 대한 예방 또는 치료 또는 개선 효과를 나타내는 것을 확인하였다. 이에, 세포투과성 펩티드(C10)를 치환 또는 결손시킨 다양한 변이체들 역시 우수한 전달효율을 유지하는지 확인하기 위하여, 우선 변이체들의 세포에 대한 전달효율을 분석하였다.Through previous experiments, it was confirmed that among the NLRX1 proteins, a fusion protein to which the LRR domain is bound has a prevention, treatment, or improvement effect on sepsis. Accordingly, in order to confirm whether various variants in which the cell-penetrating peptide (C10) was substituted or deleted also maintained excellent delivery efficiency, the delivery efficiency of the variants to cells was first analyzed.

C10 변이체-EGFP의 융합 단백질 제조Preparation of fusion protein of C10 variant-EGFP

먼저 C10을 구성하는 시스테인(C), 류신(L), 아르기닌(R)을 치환하거나 결손시킨 서열번호 2 내지 7의 아미노산 서열로 표시되는 변이체들을 만든 뒤, EGFP와 C10-EGFP, TAT-EGFP를 대조군으로 하여 비교하였고, 그 결과는 도 29 내지 도 32에서 확인할 수 있다.First, mutants represented by the amino acid sequences of SEQ ID NOs. 2 to 7 were created by substituting or deleting cysteine (C), leucine (L), and arginine (R) that constitute C10, and then EGFP, C10-EGFP, and TAT-EGFP were generated. Comparison was made using a control group, and the results can be seen in Figures 29 to 32.

상기 변이체들과 EGFP의 재조합 단백질은 실시예 1에서 ② 대신에 변이체(서열번호 2 내지 7)를 코딩하는 서열번호 13 내지 18의 폴리뉴클레오티드 서열을 이용하며, 이를 위해 서열번호 51, 54, 57, 60, 63, 66의 정방향 프라이머와 서열번호 52, 55, 58, 61, 64, 67의 역방향 프라이머를 사용하여 서열번호 53, 56, 59, 62, 65, 68의 폴리뉴클레오티드 서열을 제작 것을 제외하고는 모두 실시예 1과 동일하게 하여 각각의 변이체-EGFP의 재조합 단백질을 얻었다. 순서대로 C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)-EGFP, C10(L>K)-EGFP로 명명하였다. 상기 재조합 단백질은 12% SDS-PAGE를 통해 확인하였다.The above mutants and the recombinant protein of EGFP were ② in Example 1. Instead, polynucleotide sequences of SEQ ID NOs: 13 to 18 encoding variants (SEQ ID NOs: 2 to 7) are used, and for this purpose, forward primers of SEQ ID NOs: 51, 54, 57, 60, 63, 66 and SEQ ID NOs: 52, 55 , Polynucleotide sequences of SEQ ID NOs: 53, 56, 59, 62, 65, and 68 were produced using reverse primers of 58, 61, 64, and 67, and each variant-EGFP was produced in the same manner as in Example 1. A recombinant protein was obtained. In order: C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)-EGFP, C10(L>K)- It was named EGFP. The recombinant protein was confirmed through 12% SDS-PAGE.

세포주와 배양Cell lines and culture

HeLa 및 Jurkat 세포는 ATCC로부터 구매하여 사용하였고, DMEM 또는 RPMI(Corning) 배지상에 보관하였다. 10% 소태아혈청(fetal bovine serum)과 1% 페니실린/스트렙토마이신을 포함하는 배양배지를 사용하였다. 세포는 5% CO2 배양기에서 37 ℃ 조건하에서 배양하였다.HeLa and Jurkat cells were purchased from ATCC and stored in DMEM or RPMI (Corning) medium. Culture medium containing 10% fetal bovine serum and 1% penicillin/streptomycin was used. Cells were cultured at 37°C in a 5% CO 2 incubator.

유세포 분석(Flow cytometry)Flow cytometry

Jurkat, HeLa 세포를 96-웰 플레이트 또는 12-웰 플레이트에 2 × 105 cells의 농도로 분주하고, 각 웰에 C10 변이체-EGFP 융합 단백질(C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)-EGFP, C10(L>K)-EGFP)을 각각 5 μM 첨가한 다음 5% CO2 배양기에서 37 ℃ 조건에서 1 시간 동안 배양하였다. 배양 후, 원심분리를 통해 세포를 회수하고, PBS 완충액으로 2번 세척하였다. 세척 후, 세포를 37 ℃에서 10분 동안 트립신을 처리하여 세포막에 부착된 단백질을 제거하였다. 다음으로, 트립신을 중화시키기 위해 상기 세포에 10% FBS를 포함하는 DMEM 배양액을 첨가하였다. 세포를 회수한 후, PBS로 세척하고 유세포분석(flow cytometry)(FACS Canto II, BD Bioscience)을 수행하였다. 데이터는 Flowjo software(Tree Star)를 사용하여 분석하였다.Jurkat and HeLa cells were distributed at a concentration of 2 × 10 5 cells in 96-well plates or 12-well plates, and C10 variant-EGFP fusion protein (C10(m)-EGFP, C10(c>A)- was added to each well. 5 μM each of EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)-EGFP, and C10(L>K)-EGFP) were added and incubated in a 5% CO 2 incubator for 37 days. Cultured for 1 hour at ℃ conditions. After incubation, cells were recovered through centrifugation and washed twice with PBS buffer. After washing, the cells were treated with trypsin at 37°C for 10 minutes to remove proteins attached to the cell membrane. Next, DMEM culture medium containing 10% FBS was added to the cells to neutralize trypsin. After recovering the cells, they were washed with PBS and flow cytometry (FACS Canto II, BD Bioscience) was performed. Data were analyzed using Flowjo software (Tree Star).

통계statistics

실험의 통계분석을 위하여 two-tailed Student's t-test, one-way ANOVA 또는 two-way ANOVA를 사용하여 그룹 간 평균수치 유의차를 확인하였으며, 0.05보다 낮은 p 값을 가질 경우에는 *, 0.01보다 낮은 p 값을 가질 경우에는 **, 0.001보다 낮은 p 값을 가질 경우에는 ***로, 유의적 차이가 없는 경우 N.S로 유의적 차이를 표기하였다. MFI는 중앙형광강도(median fluorescence intensity)를 나타내며, 에러바는 S.D를 나타낸다.For statistical analysis of the experiment, two-tailed Student's t-test, one-way ANOVA, or two-way ANOVA were used to confirm the significant difference in mean values between groups. If the p value is lower than 0.05, *, lower than 0.01. If there was a p value, the difference was marked as **, if there was a p value lower than 0.001, it was marked as ***, and if there was no significant difference, the significant difference was marked as N.S. MFI represents median fluorescence intensity, and error bars represent S.D.

도 29, 도 30은 Jurkat 세포에 C10 변이체-EGFP 융합 단백질(C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)-EGFP, C10(L>K)-EGFP), TAT-EGFP 및 EGFP(대조군)을 처리하고 1 시간 배양한 후, 유세포 분석으로 분석한 결과이고, 도 31, 도 32는 Hela 세포에 C10 변이체-EGFP 융합 단백질(C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)-EGFP, C10(L>K)-EGFP), TAT-EGFP 및 EGFP(대조군)을 처리하고 1 시간 배양한 후, 유세포 분석으로 분석한 결과이다. Figures 29 and 30 show C10 variant-EGFP fusion proteins (C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10( The results were analyzed by flow cytometry after treatment with L>R)-EGFP, C10(L>K)-EGFP), TAT-EGFP and EGFP (control) and cultured for 1 hour. Figures 31 and 32 show Hela cells. C10 variant-EGFP fusion proteins (C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)-EGFP, C10 (L>K)-EGFP), TAT-EGFP, and EGFP (control) were treated and cultured for 1 hour, and then analyzed by flow cytometry.

도 29 내지 32에 나타난 바와 같이, Jurkat 세포에서는 C10 변이체-EGFP 융합 단백질(C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)-EGFP, C10(L>K)-EGFP)은 일반적인 세포투과효율을 가지고 있다는 것을 확인하였고, 각각의 재조합 단백질 간의 유의적인 세포투과효율 차이가 관찰되지 않았다. 게다가 Jurkat 세포에서 C10 변이체-EGFP 융합 단백질(C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)-EGFP, C10(L>K)-EGFP)은 종래 세포투과성 펩티드(TAT)와 세포투과효율의 차이가 크지 않은 것을 확인하였다. 반면 Hela 세포에서는 C10 변이체-EGFP 융합 단백질(C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)-EGFP, C10(L>K)-EGFP)이 TAT 세포투과성 펩티드보다 유의적으로 현저히 우수한 세포투과효율을 나타내는 것을 확인하였다.As shown in Figures 29 to 32, in Jurkat cells, C10 variant-EGFP fusion proteins (C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP , C10(L>R)-EGFP, C10(L>K)-EGFP) were confirmed to have general cell penetration efficiency, and no significant differences in cell penetration efficiency were observed between each recombinant protein. Moreover, in Jurkat cells, C10 variant-EGFP fusion proteins (C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)- It was confirmed that the difference in cell penetration efficiency of EGFP, C10(L>K)-EGFP) and the conventional cell-penetrating peptide (TAT) was not significant. On the other hand, in Hela cells, C10 variant-EGFP fusion proteins (C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)- It was confirmed that EGFP, C10(L>K)-EGFP) exhibits significantly better cell penetration efficiency than TAT cell-penetrating peptide.

특히 서열번호 1로 표시되는 C10 세포투과성 펩티드가 이의 변이체들에 비해 세포투과효율이 유의적으로 현저히 증가하는 것을 확인할 수 있다. 구체적으로 C10 변이체-EGFP 융합 단백질(C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)-EGFP, C10(L>K)-EGFP)의 세포투과효율을 살펴보면, 첫 번째 위치하는 류신(leucine) 잔기가 결손(deletion)된 경우, 기존 C10 보다 효율이 가장 감소하는 것으로 보아 C10의 세포내 단백질 전달의 역할에 있어 첫 번째 아미노산 잔기로는 류신이 바람직하다는 것을 확인하였다.In particular, it can be seen that the cell penetration efficiency of the C10 cell-penetrating peptide represented by SEQ ID NO: 1 is significantly increased compared to its variants. Specifically, C10 variant-EGFP fusion proteins (C10(m)-EGFP, C10(c>A)-EGFP, C10(L del)-EGFP, C10(R del)-EGFP, C10(L>R)-EGFP, Looking at the cell penetration efficiency of C10 (L>K)-EGFP), when the first leucine residue is deleted, the efficiency decreases the most compared to the existing C10, indicating that the intracellular protein delivery of C10 is reduced. It was confirmed that leucine is preferable as the first amino acid residue for this role.

또한 첫 번째 아미노산 잔기를 세포투과성 펩티드에 주로 사용되는 아르기닌(R)과 라이신(K)으로 치환한 경우, TAT 세포투과성 펩티드보다 전달 효율이 우수하나, 서열번호 1의 C10 세포투과성 펩티드 보다는 유의적으로 낮은 세포투과효율을 갖고 있는 것을 확인하였다. 이는 류신이 C10에 있어 매우 중요한 기능 및 역할을 하고 있음을 의미하는 것이다.In addition, when the first amino acid residue is replaced with arginine (R) and lysine (K), which are mainly used in cell-penetrating peptides, the delivery efficiency is superior to that of the TAT cell-penetrating peptide, but is significantly lower than that of the C10 cell-penetrating peptide of SEQ ID NO: 1. It was confirmed that it had low cell penetration efficiency. This means that leucine plays a very important function and role in C10.

다음으로, 10 번째 위치하는 아르기닌 잔기가 결손된 경우(서열번호 5), 8 번째 위치하는 시스테인 잔기가 알라닌으로 치환된 경우(서열번호 3), TAT 세포투과성 펩티드 및 서열번호 4, 6, 7의 변이체 보다 세포투과효율은 우수하였으나 서열번호 1의 C10 세포투과성 펩티드 보다는 유의적으로 낮은 세포투과효율을 갖고 있는 것을 확인하였다. 이는 10번째 위치하는 아르기닌과 8번째 위치하는 시스테인이 C10에 있어 두 번째로 중요한 기능 및 역할을 하고 있음을 의미하는 것이다.Next, when the arginine residue at the 10th position is deleted (SEQ ID NO: 5) and the cysteine residue at the 8th position is replaced with alanine (SEQ ID NO: 3), the TAT cell-penetrating peptide and SEQ ID NOS: 4, 6, and 7 It was confirmed that the cell penetration efficiency was superior to that of the variant, but that it had a significantly lower cell penetration efficiency than the C10 cell-penetrating peptide of SEQ ID NO: 1. This means that arginine at the 10th position and cysteine at the 8th position have the second most important functions and roles in C10.

또한 세 번째 위치하는 류신 잔기가 메티오닌으로 치환된 경우(서열번호 2)에는 TAT 세포투과성 펩티드 및 C10의 다른 변이체들 보다 세포투과효율은 우수하였다. 그러나 서열번호 1의 C10 세포투과성 펩티드 보다는 유의적으로 낮은 세포투과효율을 갖고 있으므로 C10에 있어 첫 번째 류신보다는 그 중요성이 낮지만, 세포전달효율에 있어서는 중요한 기능과 역할을 담당하고 있다는 것을 알 수 있다.Additionally, when the leucine residue at the third position was substituted with methionine (SEQ ID NO: 2), the cell penetration efficiency was superior to that of TAT cell-penetrating peptide and other variants of C10. However, since it has a significantly lower cell penetration efficiency than the C10 cell-penetrating peptide of SEQ ID NO: 1, it is less important than the first leucine in C10, but it plays an important function and role in cell transfer efficiency. .

실험예 11. 종래 약물과 C10-LRR의 병용투여에 대한 패혈증 개선 효과 분석-2회 투여Experimental Example 11. Analysis of the effect of improving sepsis on combined administration of conventional drugs and C10-LRR - 2 administrations

실험동물laboratory animals

한양대학교 SPF 사육시설(Specific pathogen free animal facility)에서 사육된 7주령에서 8주령의 수컷 또는 암컷 C57BL/6 마우스를 사용하였으며, 실험전 마우스는 2주간 순화과정을 거쳤다. 마우스는 실험동안 온도 22 ± 2 ℃, 습도는 40-60%로 유지되는 사육실에서 자유식이로 사육되었으며, 명암 주기(Light and dark cycle)는 12시간 간격으로 조절하였다. 모든 동물실험은 한양대학교 동물실험윤리위원회(Institutional Animal Care and Use Committee of Hanyang University)의 동물실험운영규정을 준수하여 수행하였다.Male or female C57BL/6 mice aged 7 to 8 weeks raised at Hanyang University's SPF breeding facility (Specific pathogen free animal facility) were used, and the mice underwent an acclimatization process for 2 weeks before the experiment. Mice were raised on free diet in a breeding room maintained at a temperature of 22 ± 2 °C and humidity of 40-60% during the experiment, and the light and dark cycle was adjusted at 12-hour intervals. All animal experiments were conducted in compliance with the animal experiment operation regulations of the Institutional Animal Care and Use Committee of Hanyang University.

시료의 투여 및 샘플링Administration and sampling of samples

시료의 투여를 위하여 마우스는 무작위로 5마리씩 네 그룹으로 나누어 진행하였다. PBS는 0 시간에 LPS(2 mg/kg)과 PBS(1 mg/kg)를 복강 내로 주사(I.P injection)하고, 5 시간에 LPS(5 mg/kg)과 PBS(1 mg/kg)를 복강 내로 주사 음성대조군이고, C10-LRR 투여 그룹은 0 시간에 LPS(2 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)을 복강 내로 주사(I.P injection)하고, 5 시간에 LPS(5 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)을 복강 내로 주사하였고, αTNFαAb 투여 그룹은 0 시간에 LPS(2 mg/kg)과 αTNFαAb(1 mg/kg)을 복강 내로 주사(I.P injection)하고, 5 시간에 LPS(5 mg/kg)과 αTNFαAb(1 mg/kg)을 복강 내로 주사하였고, C10-LRR+αTNFαAb 투여 그룹은 0 시간에 LPS(2 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)과 αTNFαAb(1 mg/kg)을 복강 내로 주사(I.P injection)하고, 5 시간에 LPS(5 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)과 αTNFαAb(1 mg/kg)을 복강 내로 주사하였다. 상기 그룹들은 총 7일 동안 24시간마다 생존율과 무게 변화를 측정하였다. αTNFαAb는 TNFα 중화항체(TNFα neutralizing antibody)를 의미한다.For sample administration, mice were randomly divided into four groups of five each. For PBS, LPS (2 mg/kg) and PBS (1 mg/kg) were injected intraperitoneally (I.P.) at 0 hours, and LPS (5 mg/kg) and PBS (1 mg/kg) were injected intraperitoneally at 5 hours. It is an intraperitoneal injection negative control group, and the C10-LRR administration group received intraperitoneal injection (I.P. injection) of LPS (2 mg/kg) and C10-LRR recombinant protein (1 mg/kg) at 0 hours, and LPS (5 mg/kg) at 5 hours. mg/kg) and C10-LRR recombinant protein (1 mg/kg) were injected intraperitoneally, and the αTNFαAb administration group was injected intraperitoneally (I.P.) with LPS (2 mg/kg) and αTNFαAb (1 mg/kg) at 0 hours. injection), LPS (5 mg/kg) and αTNFαAb (1 mg/kg) were injected intraperitoneally at 5 hours, and the C10-LRR+αTNFαAb administration group was administered LPS (2 mg/kg) and C10-LRR at 0 hours. Recombinant protein (1 mg/kg) and αTNFαAb (1 mg/kg) were injected intraperitoneally (I.P.), and at 5 hours, LPS (5 mg/kg), C10-LRR recombinant protein (1 mg/kg), and αTNFαAb were administered. (1 mg/kg) was injected intraperitoneally. The groups were measured for survival and weight changes every 24 hours for a total of 7 days. αTNFαAb refers to TNFα neutralizing antibody.

4개 군의 동물모델Animal models from 4 groups

1군(PBS) : 0 시간에 LPS(2 mg/kg)과 PBS(1 mg/kg)를 복강 내로 투여하고, 5 시간에 LPS(5 mg/kg)과 PBS(1 mg/kg)를 복강 내로 투여Group 1 (PBS): LPS (2 mg/kg) and PBS (1 mg/kg) were administered intraperitoneally at 0 hours, and LPS (5 mg/kg) and PBS (1 mg/kg) were administered intraperitoneally at 5 hours. administered intravenously

2군(C10-LRR) : 0 시간에 LPS(2 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)을 복강 내로 투여하고, 5 시간에 LPS(5 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)을 복강 내로 투여Group 2 (C10-LRR): LPS (2 mg/kg) and C10-LRR recombinant protein (1 mg/kg) were administered intraperitoneally at 0 hours, and LPS (5 mg/kg) and C10-LRR were administered at 5 hours. Recombinant protein (1 mg/kg) was administered intraperitoneally.

3군(αTNFαAb) : 0 시간에 LPS(2 mg/kg)과 αTNFαAb(1 mg/kg)을 복강 내로 투여하고, 5 시간에 LPS(5 mg/kg)과 αTNFαAb(1 mg/kg)을 복강 내로 투여Group 3 (αTNFαAb): LPS (2 mg/kg) and αTNFαAb (1 mg/kg) were administered intraperitoneally at 0 hours, and LPS (5 mg/kg) and αTNFαAb (1 mg/kg) were administered intraperitoneally at 5 hours. administered intravenously

4군(C10-LRR+αTNFαAb) : 0 시간에 LPS(2 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)과 αTNFαAb(1 mg/kg)을 복강 내로 투여하고, 5 시간에 LPS(5 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)과 αTNFαAb(1 mg/kg)을 복강 내로 투여Group 4 (C10-LRR+αTNFαAb): LPS (2 mg/kg), C10-LRR recombinant protein (1 mg/kg), and αTNFαAb (1 mg/kg) were administered intraperitoneally at 0 hours, and LPS at 5 hours. (5 mg/kg) and C10-LRR recombinant protein (1 mg/kg) and αTNFαAb (1 mg/kg) were administered intraperitoneally.

앞선 실험을 통해, 본 발명의 C10-LRR은 IL-6 및 IL-1β을 음성으로 조절하는 효과를 나타내는 것을 확인하였다. 나아가 본 발명에서는 C10-LRR를 종래 약물과 병용투여한다면, 상승효과를 유도할 것이라 여겼으며, 이에 대한 실험을 진행하였다.Through previous experiments, it was confirmed that C10-LRR of the present invention exhibits a negative regulating effect on IL-6 and IL-1β. Furthermore, in the present invention, it was believed that a synergistic effect would be induced if C10-LRR was administered in combination with a conventional drug, and an experiment was conducted on this.

도 33은 C10-LRR 재조합 단백질과 αTNFαAb에 따른 패혈증 치료효과를 확인하기 위한 실험 설계를 개략적으로 도시한 것이고, 도 34는 1군(PBS), 2군(C10-LRR), 3군(αTNFαAb) 및 4군(C10-LRR+αTNFαAb)으로 구분되는 동물모델의 생존율을 7 일 동안 측정한 결과를 나타낸 그래프이고, 도 35는 1군(PBS), 2군(C10-LRR), 3군(αTNFαAb) 및 4군(C10-LRR+αTNFαAb)으로 구분되는 동물모델의 무게를 7 일 동안 측정한 결과를 나타낸 그래프이다.Figure 33 schematically shows the experimental design to confirm the sepsis treatment effect according to C10-LRR recombinant protein and αTNFαAb, and Figure 34 shows group 1 (PBS), group 2 (C10-LRR), and group 3 (αTNFαAb). and 4 groups (C10-LRR+αTNFαAb). It is a graph showing the results of measuring the survival rate of animal models for 7 days, and Figure 35 shows the results of group 1 (PBS), group 2 (C10-LRR), and group 3 (αTNFαAb). ) and 4 groups (C10-LRR+αTNFαAb). This is a graph showing the results of measuring the weight of animal models for 7 days.

도 34 및 도 35에 나타난 바와 같이, C10-LRR 또는 αTNFαAb 처리할 경우, 생존율이 크게 향상되는 것을 확인할 수 있다. 또한 C10-LRR 또는 αTNFαAb로 처리한 경우(72 시간), PBS를 처리한 군(120 시간)보다 체중 회복이 유의적으로 빨라지는 것을 확인하였다. 나아가 C10-LRR과 αTNFαAb를 함께 사용하는 경우에는 생존율이 100%로 회복되었으며, 체중 역시 가장 빠른 시간(48 시간)에서 회복되는 것을 확인하였다.As shown in Figures 34 and 35, it can be seen that the survival rate is greatly improved when treated with C10-LRR or αTNFαAb. In addition, it was confirmed that when treated with C10-LRR or αTNFαAb (72 hours), weight recovery was significantly faster than the group treated with PBS (120 hours). Furthermore, when C10-LRR and αTNFαAb were used together, the survival rate recovered to 100%, and body weight was also recovered in the fastest time (48 hours).

따라서 C10-LRR은 단독으로도 유의적으로 우수한 효과를 나타내며, 종래 약물과 병용투여할 경우에는 현저히 우수한 상승효과를 도모할 수 있다는 것을 확인하였다.Therefore, it was confirmed that C10-LRR shows a significantly superior effect even when used alone, and that a significantly superior synergistic effect can be achieved when administered in combination with a conventional drug.

실험예 14. 종래 약물과 C10-LRR의 병용투여에 대한 패혈증 개선 효과 분석-1회 투여Experimental Example 14. Analysis of the effect of improving sepsis on combined administration of conventional drugs and C10-LRR - one-time administration

실험동물laboratory animals

한양대학교 SPF 사육시설(Specific pathogen free animal facility)에서 사육된 7주령에서 8주령의 수컷 또는 암컷 C57BL/6 마우스를 사용하였으며, 실험전 마우스는 2주간 순화과정을 거쳤다. 마우스는 실험동안 온도 22 ± 2 ℃, 습도는 40-60%로 유지되는 사육실에서 자유식이로 사육되었으며, 명암 주기(Light and dark cycle)는 12시간 간격으로 조절하였다. 모든 동물실험은 한양대학교 동물실험윤리위원회(Institutional Animal Care and Use Committee of Hanyang University)의 동물실험운영규정을 준수하여 수행하였다.Male or female C57BL/6 mice aged 7 to 8 weeks raised at Hanyang University's SPF breeding facility (Specific pathogen free animal facility) were used, and the mice underwent an acclimatization process for 2 weeks before the experiment. Mice were raised on free diet in a breeding room maintained at a temperature of 22 ± 2 °C and humidity of 40-60% during the experiment, and the light and dark cycle was adjusted at 12-hour intervals. All animal experiments were conducted in compliance with the animal experiment operation regulations of the Institutional Animal Care and Use Committee of Hanyang University.

시료의 투여 및 샘플링Administration and sampling of samples

시료의 투여를 위하여 마우스는 무작위로 5마리씩 네 그룹으로 나누어 진행하였다. PBS는 0 시간에 LPS(2 mg/kg)을 복강 내로 주사(I.P injection)하고, 5 시간에 LPS(5 mg/kg)과 PBS(1 mg/kg)를 복강 내로 주사 음성대조군이고, C10-LRR 투여 그룹은 0 시간에 LPS(2 mg/kg)를 복강 내로 주사(I.P injection)하고, 5 시간에 LPS(5 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)을 복강 내로 주사하였고, αTNFαAb 투여 그룹은 0 시간에 LPS(2 mg/kg)를 복강 내로 주사(I.P injection)하고, 5 시간에 LPS(5 mg/kg)과 αTNFαAb (1 mg/kg)을 복강 내로 주사하였고, C10-LRR+αTNFαAb 투여 그룹은 0 시간에 LPS(2 mg/kg)를 복강 내로 주사(I.P injection)하고, 5 시간에 LPS(5 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)과 αTNFαAb (1 mg/kg)을 복강 내로 주사하였다. 상기 그룹들은 총 7일 동안 24시간마다 생존율과 무게 변화를 측정하였다. αTNFαAb는 TNFα 중화항체(TNFα neutralizing antibody)를 의미한다.For sample administration, mice were randomly divided into four groups of five each. For PBS, LPS (2 mg/kg) was injected intraperitoneally (I.P.) at 0 hours, and LPS (5 mg/kg) and PBS (1 mg/kg) were injected intraperitoneally at 5 hours. This is a negative control group, and C10- In the LRR administration group, LPS (2 mg/kg) was injected intraperitoneally (I.P. injection) at 0 hours, and LPS (5 mg/kg) and C10-LRR recombinant protein (1 mg/kg) were injected intraperitoneally at 5 hours. In the αTNFαAb administration group, LPS (2 mg/kg) was injected intraperitoneally (I.P.) at 0 hours, and LPS (5 mg/kg) and αTNFαAb (1 mg/kg) were injected intraperitoneally at 5 hours. In the C10-LRR+αTNFαAb administration group, LPS (2 mg/kg) was injected intraperitoneally (I.P. injection) at 0 hours, and LPS (5 mg/kg) and C10-LRR recombinant protein (1 mg/kg) were administered at 5 hours. and αTNFαAb (1 mg/kg) were injected intraperitoneally. The groups were measured for survival and weight changes every 24 hours for a total of 7 days. αTNFαAb refers to TNFα neutralizing antibody.

4개 군의 동물모델Animal models from 4 groups

1군(PBS) : 0 시간에 LPS(2 mg/kg)를 복강 내로 투여하고, 5 시간에 LPS(5 mg/kg)과 PBS(1 mg/kg)를 복강 내로 투여Group 1 (PBS): LPS (2 mg/kg) was administered intraperitoneally at 0 hours, and LPS (5 mg/kg) and PBS (1 mg/kg) were administered intraperitoneally at 5 hours.

2군(C10-LRR) : 0 시간에 LPS(2 mg/kg)를 복강 내로 투여하고, 5 시간에 LPS(5 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)을 복강 내로 투여Group 2 (C10-LRR): LPS (2 mg/kg) was administered intraperitoneally at 0 hours, and LPS (5 mg/kg) and C10-LRR recombinant protein (1 mg/kg) were administered intraperitoneally at 5 hours.

3군(αTNFαAb) : 0 시간에 LPS(2 mg/kg)를 복강 내로 투여하고, 5 시간에 LPS(5 mg/kg)과 αTNFαAb(1 mg/kg)을 복강 내로 투여Group 3 (αTNFαAb): LPS (2 mg/kg) was administered intraperitoneally at 0 hours, and LPS (5 mg/kg) and αTNFαAb (1 mg/kg) were administered intraperitoneally at 5 hours.

4군(C10-LRR+αTNFαAb) : 0 시간에 LPS(2 mg/kg)를 복강 내로 투여하고, 5 시간에 LPS(5 mg/kg)과 C10-LRR 재조합 단백질(1 mg/kg)과 αTNFαAb(1 mg/kg)을 복강 내로 투여Group 4 (C10-LRR+αTNFαAb): LPS (2 mg/kg) was administered intraperitoneally at 0 hours, and LPS (5 mg/kg), C10-LRR recombinant protein (1 mg/kg), and αTNFαAb were administered at 5 hours. (1 mg/kg) administered intraperitoneally

본 발명에서는 투여횟수를 달리하였을 때, 병용투여 효과를 분석하고자 하였다. 도 36은 C10-LRR 재조합 단백질과 αTNFαAb의 투여횟수를 달리하였을 때, 패혈증 치료효과를 확인하기 위한 실험 설계를 개략적으로 도시한 것이고, 도 37은 1군(PBS), 2군(C10-LRR), 3군(αTNFαAb) 및 4군(C10-LRR+αTNFαAb)으로 구분되는 동물모델의 생존율을 7 일 동안 측정한 결과를 나타낸 그래프이고, 도 38은 1군(PBS), 2군(C10-LRR), 3군(αTNFαAb) 및 4군(C10-LRR+αTNFαAb)으로 구분되는 동물모델의 무게를 7 일 동안 측정한 결과를 나타낸 그래프이다.In the present invention, we attempted to analyze the effect of combined administration when the number of administrations was varied. Figure 36 schematically shows the experimental design to confirm the sepsis treatment effect when the number of administrations of C10-LRR recombinant protein and αTNFαAb was varied, and Figure 37 shows group 1 (PBS) and group 2 (C10-LRR). , It is a graph showing the results of measuring the survival rate of animal models divided into groups 3 (αTNFαAb) and 4 (C10-LRR+αTNFαAb) for 7 days, and Figure 38 shows the results of group 1 (PBS) and group 2 (C10-LRR). ), this is a graph showing the results of measuring the weight of animal models divided into groups 3 (αTNFαAb) and 4 (C10-LRR+αTNFαAb) for 7 days.

도 37 및 도 38에 나타난 바와 같이, C10-LRR과 αTNFαAb을 함께 투여한 4군의 경우, 단독으로 투여한 2군 및 3군보다 생존율이 유의적으로 증가하였고, 무게는 유의적으로 빠르게 회복되는 것을 확인하였다. 상기 결과를 통해 LPS 유도된 패혈증을 예방 또는 치료하기 위해서는 C10-LRR과 종래 약물(TNF-α 항체)과의 병용투여가 매우 효과적이라는 것을 나타낸다.As shown in Figures 37 and 38, in the case of group 4 administered with C10-LRR and αTNFαAb, the survival rate was significantly increased compared to groups 2 and 3 administered alone, and weight was recovered significantly faster. confirmed. The above results indicate that combined administration of C10-LRR and a conventional drug (TNF-α antibody) is very effective in preventing or treating LPS-induced sepsis.

본 발명에서 개발된 C10 세포투과성 펩티드는 대식세포에 대한 선택적 전달효과를 가지며, 상기 C10과 LRR의 융합하면 LRR이 대식세포로 효율적으로 전달되는 것을 확인하였다. 상기 C10-LRR은 대식세포에 선택적으로 작용함으로써, NF-κB 및 염증성 신호전달을 조절하여 IL-1β 및 IL-6의 생산을 저해하기 때문에, 패혈증과 같이 전신에 걸쳐 염증반응 연속적으로 야기되는 질환의 치료 또는 예방하는 효과를 성공적으로 나타낸다는 것을 확인하였다. 더 나아가 본 발명의 C10-LRR는 C10 세포투과성 펩티드가 결합되지 않은 종래 약물(αTNFα Ab)과 병용투여될 경우, 패혈증 치료에 대한 상승효과를 유도할 수 있다는 것을 확인하였다.The C10 cell-penetrating peptide developed in the present invention has a selective delivery effect on macrophages, and it was confirmed that the fusion of C10 and LRR efficiently delivers LRR to macrophages. The C10-LRR acts selectively on macrophages to regulate NF-κB and inflammatory signaling, thereby inhibiting the production of IL-1β and IL-6, such as sepsis, a disease that continuously causes inflammatory reactions throughout the body. It was confirmed that the treatment or prevention effect was successful. Furthermore, it was confirmed that the C10-LRR of the present invention can induce a synergistic effect on the treatment of sepsis when administered in combination with a conventional drug (αTNFα Ab) to which C10 cell-penetrating peptide is not bound.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

<110> IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) <120> Pharmaceutical composition for the prevention and treatment of sepsis comprising LRR domain of NLRX1 protein <130> HPC9900 <160> 68 <170> KoPatentIn 3.0 <210> 1 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> C10, h <400> 1 Leu Arg Leu Arg Leu Arg Arg Cys His Arg 1 5 10 <210> 2 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> C10, m <400> 2 Leu Arg Met Arg Leu Arg Arg Cys His Arg 1 5 10 <210> 3 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> C10, C>A <400> 3 Leu Arg Leu Arg Leu Arg Arg Ala His Arg 1 5 10 <210> 4 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> C10, L del <400> 4 Arg Leu Arg Leu Arg Arg Cys His Arg 1 5 <210> 5 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> C10, R del <400> 5 Leu Arg Leu Arg Leu Arg Arg Cys His 1 5 <210> 6 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> C10, L>R <400> 6 Arg Arg Leu Arg Leu Arg Arg Cys His Arg 1 5 10 <210> 7 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> C10, L>K <400> 7 Lys Arg Leu Arg Leu Arg Arg Cys His Arg 1 5 10 <210> 8 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> TP <400> 8 Lys Lys Arg Arg Lys Arg 1 5 <210> 9 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> TB <400> 9 Leu Arg Leu Leu Arg Leu Lys Leu Lys 1 5 <210> 10 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> TAT <400> 10 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg 1 5 10 <210> 11 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> dNP2 <400> 11 Lys Ile Lys Lys Val Lys Lys Lys Gly Arg Lys Gly Ser Lys Ile Lys 1 5 10 15 Lys Val Lys Lys Lys Gly Arg Lys 20 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> C10, h <400> 12 ctcaggctga ggctacggcg ctgtcatcga 30 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> C10, m <400> 13 ctcaggatgc ggctgaggcg ctgtcatcga 30 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> C10, C>A <400> 14 ctcaggctga ggctacggcg cgctcatcga 30 <210> 15 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> C10, L del <400> 15 aggctgaggc tacggcgctg tcatcga 27 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> C10, R del <400> 16 ctcaggctga ggctacggcg ctgtcat 27 <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> C10, L>R <400> 17 aagaggctga ggctacggcg ctgtcat 27 <210> 18 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> C10, L>K <400> 18 cggaggctga ggctacggcg ctgtcat 27 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TP <400> 19 aagaagagga gaaaaaggaa a 21 <210> 20 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> TB <400> 20 ctgcgtctgc tgaggctcaa gttaaaa 27 <210> 21 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> TAT <400> 21 tatggacgca agaagcgccg ccagcgccgc cgc 33 <210> 22 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> dNP2 <400> 22 aaaattaaaa aagtcaagaa gaaaggaaga aaaggatcca aaattaaaaa agtcaagaag 60 aaaggaagaa aa 72 <210> 23 <211> 975 <212> PRT <213> Artificial Sequence <220> <223> NLRX1 <400> 23 Met Arg Trp Gly Cys His Leu Pro Arg Thr Ser Trp Gly Ser Gly Leu 1 5 10 15 Gly Arg Thr Pro Gln Leu Pro Asp Glu His Ile Ser Phe Leu Ile Gln 20 25 30 Trp Ser Trp Pro Phe Lys Gly Val His Pro Leu Arg Pro Pro Arg Ala 35 40 45 Phe Ile Arg Tyr His Gly Asn Ser Ala Asp Ser Ala Pro Pro Pro Gly 50 55 60 Arg His Gly Gln Leu Phe Arg Ser Ile Ser Ala Thr Glu Ala Ile Gln 65 70 75 80 Arg His Arg Arg Asn Leu Thr Glu Trp Phe Ser Arg Leu Pro Arg Glu 85 90 95 Glu Arg Gln Phe Gly Pro Thr Phe Ala Leu Asp Thr Val His Val Asp 100 105 110 Pro Val Ile Arg Glu Ser Thr Pro Asp Glu Leu Leu Arg Pro Ser Thr 115 120 125 Glu Leu Ala Thr Gly His Gln Gln Thr Gln Ala Gly Leu Pro Pro Leu 130 135 140 Ala Leu Ser Gln Leu Phe Asp Pro Asp Ser Cys Gly Arg Arg Val Gln 145 150 155 160 Thr Val Val Leu Tyr Gly Thr Val Gly Thr Gly Lys Ser Thr Leu Val 165 170 175 Arg Lys Met Val Leu Asp Trp Cys Tyr Gly Arg Leu Pro Ala Phe Glu 180 185 190 Leu Leu Ile Pro Phe Ser Cys Glu Asp Leu Ser Ser Leu Gly Ser Thr 195 200 205 Pro Ala Ser Leu Cys Gln Leu Val Thr Gln Arg Tyr Thr Pro Leu Lys 210 215 220 Glu Val Leu Pro Leu Met Thr Ala Ala Gly Ser Arg Leu Leu Phe Val 225 230 235 240 Leu His Gly Leu Glu Arg Leu Asn Leu Asp Phe Arg Leu Ala Gly Thr 245 250 255 Gly Leu Cys Ser Asp Pro Glu Glu Pro Gly Pro Pro Ala Ala Ile Ile 260 265 270 Val Asn Leu Leu Arg Lys Tyr Met Leu Pro Glu Ala Ser Ile Leu Val 275 280 285 Thr Thr Arg Pro Ser Thr Ile Ser Arg Ile Pro Ser Lys Tyr Val Gly 290 295 300 Arg Tyr Gly Glu Ile Cys Gly Phe Ser Asp Thr Asn Leu Gln Lys Leu 305 310 315 320 Tyr Phe Gln Leu Arg Leu Asn Gln Pro Asp Cys Gly Tyr Gly Ala Gly 325 330 335 Gly Ala Ser Val Ser Val Thr Pro Ala Gln Arg Asp Asn Leu Ile Gln 340 345 350 Met Leu Ser Arg Asn Leu Glu Gly His His Gln Ile Ala Ala Ala Cys 355 360 365 Phe Leu Pro Ser Tyr Cys Trp Leu Val Cys Ala Thr Leu His Phe Leu 370 375 380 His Ala Pro Thr Pro Ala Gly Gln Thr Leu Thr Ser Ile Tyr Thr Ser 385 390 395 400 Phe Leu Arg Leu Asn Phe Ser Gly Glu Thr Leu Asp Ser Thr His Thr 405 410 415 Ser Asn Leu Ser Leu Met Ser Tyr Ala Ala Arg Thr Met Gly Lys Leu 420 425 430 Ala Tyr Glu Gly Val Ser Ser Arg Lys Thr Tyr Phe Ser Glu Glu Asp 435 440 445 Val Arg Gly Cys Leu Glu Ala Gly Ile Lys Thr Glu Glu Glu Phe Gln 450 455 460 Leu Leu Gln Ile Phe Arg Arg Asp Ala Leu Arg Phe Phe Leu Ala Pro 465 470 475 480 Cys Val Glu Pro Gly His Leu Gly Thr Phe Val Phe Thr Val Pro Ala 485 490 495 Met Gln Glu Tyr Leu Ala Ala Leu Tyr Ile Val Leu Gly Leu Arg Lys 500 505 510 Thr Ala Leu Gln Arg Val Gly Lys Glu Val Val Glu Phe Val Gly Arg 515 520 525 Val Gly Glu Asp Val Ser Leu Val Leu Gly Ile Val Ala Lys Leu Leu 530 535 540 Pro Leu Arg Ile Leu Pro Leu Leu Phe Asn Leu Leu Lys Val Val Pro 545 550 555 560 Arg Val Phe Gly Arg Met Val Ser Lys Ser Arg Glu Ala Val Ala Gln 565 570 575 Ala Met Val Leu Glu Met Phe Arg Glu Glu Asp Tyr Tyr Asn Asp Asp 580 585 590 Val Leu Asp Gln Met Gly Ala Ser Ile Leu Gly Val Glu Gly Pro Arg 595 600 605 Arg His Pro Asp Glu Pro Ser Glu Asp Glu Val Phe Glu Leu Phe Pro 610 615 620 Met Phe Met Gly Gly Leu Leu Ser Ala His Asn Arg Ala Val Leu Ala 625 630 635 640 Gln Leu Gly Cys Pro Ile Lys Asn Leu Asp Ala Leu Glu Asn Ala Gln 645 650 655 Ala Ile Lys Lys Lys Leu Gly Lys Leu Gly Arg Gln Val Leu Pro Pro 660 665 670 Ser Glu Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe Gln Asn Gln 675 680 685 Arg Phe Ser Ala Glu Val Leu Gly Ser Leu Arg Gln Leu Asn Leu Ala 690 695 700 Gly Val Arg Met Thr Pro Leu Lys Cys Thr Val Val Ala Ser Val Leu 705 710 715 720 Gly Ser Gly Arg His Pro Leu Asp Glu Val Asn Leu Ala Ser Cys Gln 725 730 735 Leu Asp Pro Ala Gly Leu His Thr Leu Met Pro Val Leu Leu Arg Ala 740 745 750 Arg Lys Leu Gly Leu Gln Leu Asn Asn Leu Gly Pro Glu Ala Cys Arg 755 760 765 Asp Leu Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile Thr Thr Leu 770 775 780 Arg Leu Ser Asn Asn Pro Leu Thr Ala Ala Gly Val Gly Leu Leu Met 785 790 795 800 Asp Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu Leu His 805 810 815 Thr Asp Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln Leu Asp 820 825 830 Arg Asn Lys Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly Ala Gly 835 840 845 Asp Thr Val Ala Leu Ala Leu Ala Lys Ala Ala Arg Glu His Pro Ser 850 855 860 Leu Glu Leu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser Glu Gly Arg 865 870 875 880 Gln Val Leu Arg Asp Leu Gly Gly Ser Gly Glu Gly Gly Ala Arg Val 885 890 895 Val Ala Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr Trp Ser Val 900 905 910 Ile Leu Ser Glu Val Gln Arg Asn Val His Ser Trp Asp Pro Leu Arg 915 920 925 Val Gln Arg His Leu Lys Leu Leu Leu Arg Asp Leu Glu Asp Ser Arg 930 935 940 Gly Ala Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu Leu Arg Val Glu 945 950 955 960 Gly Glu Val Lys Thr Leu Leu Glu Gln Leu Gly Gly Ser Gly His 965 970 975 <210> 24 <211> 2928 <212> DNA <213> Artificial Sequence <220> <223> NLRX1 <400> 24 atgaggtggg gctgccattt gcccaggacc tcttggggct ctggcctggg aagaacaccc 60 cagctaccag atgagcatat ctccttcttg atccagtgga gctggccctt taaaggggtg 120 catcccctga ggccccctag ggcctttatc cgttaccatg gaaactcggc agacagtgct 180 cccccaccag ggaggcatgg gcagctgttc aggagcatct ctgccacaga agctatccaa 240 aggcatcgcc ggaacctcac cgagtggttt agccgactgc ccagagagga gcgccagttt 300 ggaccaacct ttgctctaga cacagttcat gttgaccccg tgatccgaga gagcacccca 360 gatgagctgc ttcgcccgtc cacggagctg gccacggggc atcagcaaac ccaggcaggg 420 ctccccccac tggccctgtc tcagcttttt gacccggatt cttgtgggcg ccgcgtgcag 480 accgtggtgt tgtatgggac cgtgggtact ggcaagagca cgttggtacg gaagatggtc 540 ttagactggt gttacgggag actgcctgcc tttgagcttc tcatcccctt ctcctgtgag 600 gacttgtcat ccctgggctc caccccagct tccctgtgcc aacttgtgac ccagcgttac 660 acacccctga aagaggtgtt gcccctgatg actgctgcgg gatcccgcct gctctttgtg 720 ctccatggct tggagcgcct caaccttgac ttccggctgg caggcacagg gctttgcagt 780 gacccggagg aacccgggcc accagctgcc atcatagtca acctgctgcg caaatacatg 840 cttcccgagg ccagcattct ggtaaccacc cggccttcca ccattagccg aatccctagc 900 aagtatgtgg gccgctatgg tgagatctgt ggcttctctg ataccaacct gcagaagctc 960 tacttccagc tccgccttaa ccagcctgac tgtgggtacg gtgctggggg tgccagtgtc 1020 tcagtcacac cagctcagcg cgacaacctg attcaaatgc tctcccggaa cctggagggg 1080 caccaccaga ttgccgcagc ctgctttctg ccttcctatt gctggcttgt ctgtgctact 1140 ttgcacttcc tgcatgctcc cacacctgct ggtcagaccc tcacaagcat ctataccagc 1200 tttctacgcc tgaacttcag tggggaaaca ctggacagca cccacacgtc caatctatcc 1260 ctgatgtcct atgcagcccg gactatgggc aagctggcct acgagggcgt gtcatcccga 1320 aagacctact tctctgaaga ggatgtccgt ggctgcctgg aagctggcat caagacagag 1380 gaagagtttc aactgcttca gatcttccgc agggacgccc tgaggttttt cctggccccg 1440 tgtgtggaac cagggcacct gggtaccttc gtgttcaccg tgcccgccat gcaggagtat 1500 ctggctgccc tctacatcgt gcttggtttg cgcaagacag ccctgcagcg ggtgggcaaa 1560 gaagtggttg aatttgtggg ccgtgttggg gaagatgtca gcctggtatt gggcattgtg 1620 gccaagctgt tgcccctgcg gattctgcct ctgctcttca acttgctcaa ggtagttccg 1680 cgagtgtttg ggcgcatggt gagtaagagc cgggaggcag tggcccaggc catggtgctg 1740 gagatgttcc gggaggaaga ctactacaat gacgatgttc tggatcagat gggtgccagc 1800 atcctgggtg tggagggccc ccggcgccac ccagatgaac cctctgagga tgaagtcttt 1860 gagctcttcc ccatgttcat gggcggactt ctctctgccc acaaccgggc ggtgctggct 1920 cagcttggct gtcccatcaa gaacctggat gccctggaga atgcccaggc catcaagaag 1980 aagctgggga agctgggtcg gcaggtgctg cccccctcgg agcttcttga ccatctcttc 2040 ttccactatg agttccagaa ccagcgcttc tcagctgagg tgctgggctc cctacgccag 2100 ctcaatttag caggggtgcg catgacaccc ctcaagtgca cagtggtagc ctctgtactg 2160 ggaagtggaa ggcaccccct ggatgaggtg aacttggcct cctgccagct ggatcccgct 2220 gggctacaca ctctcatgcc tgtcctcctg cgtgcccgga aactggggtt gcaactcaac 2280 aatctgggcc ccgaggcctg cagagacctc cgagacctgc tcttacacga tcaatgccag 2340 atcaccactc ttaggctctc caacaaccca ctgacagcag ctggtgtggg cttactgatg 2400 gacgggctgg caggaaacac ttcggtgaca cacctgtctc tgctgcacac tgaccttgga 2460 gacgagggac tggaactgct ggctgcccag ctggaccgaa acaaacaact gcaggagctg 2520 aacgtggcct acaacggtgc tggtgacaca gtggctctgg ccttggctaa ggctgctcgg 2580 gagcaccctt ccctggagct gctgcacctc tacttcaatg agctgagttc agagggccgc 2640 caggtcctgc gggatttggg gggctctggt gaaggtggtg cccgggtcgt agcctcgctg 2700 acagaaggga cggcggtgtc tgagtactgg tcagtgatcc ttagtgaagt ccagcgcaac 2760 gtccacagct gggacccgct ccgggtccag aggcatctca agctgctgct ccgtgatctg 2820 gaggacagcc ggggcgccac ccttaatccc tggcgcaagg ctcagcttct gcgagtggag 2880 ggcgaggtca agactcttct ggagcagctg ggaggttctg gacactga 2928 <210> 25 <211> 301 <212> PRT <213> Artificial Sequence <220> <223> LRR <400> 25 Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe Gln Asn Gln Arg Phe 1 5 10 15 Ser Ala Glu Val Leu Gly Ser Leu Arg Gln Leu Asn Leu Ala Gly Val 20 25 30 Arg Met Thr Pro Leu Lys Cys Thr Val Val Ala Ser Val Leu Gly Ser 35 40 45 Gly Arg His Pro Leu Asp Glu Val Asn Leu Ala Ser Cys Gln Leu Asp 50 55 60 Pro Ala Gly Leu His Thr Leu Met Pro Val Leu Leu Arg Ala Arg Lys 65 70 75 80 Leu Gly Leu Gln Leu Asn Asn Leu Gly Pro Glu Ala Cys Arg Asp Leu 85 90 95 Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile Thr Thr Leu Arg Leu 100 105 110 Ser Asn Asn Pro Leu Thr Ala Ala Gly Val Gly Leu Leu Met Asp Gly 115 120 125 Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu Leu His Thr Asp 130 135 140 Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln Leu Asp Arg Asn 145 150 155 160 Lys Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly Ala Gly Asp Thr 165 170 175 Val Ala Leu Ala Leu Ala Lys Ala Ala Arg Glu His Pro Ser Leu Glu 180 185 190 Leu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser Glu Gly Arg Gln Val 195 200 205 Leu Arg Asp Leu Gly Gly Ser Gly Glu Gly Gly Ala Arg Val Val Ala 210 215 220 Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr Trp Ser Val Ile Leu 225 230 235 240 Ser Glu Val Gln Arg Asn Val His Ser Trp Asp Pro Leu Arg Val Gln 245 250 255 Arg His Leu Lys Leu Leu Leu Arg Asp Leu Glu Asp Ser Arg Gly Ala 260 265 270 Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu Leu Arg Val Glu Gly Glu 275 280 285 Val Lys Thr Leu Leu Glu Gln Leu Gly Gly Ser Gly His 290 295 300 <210> 26 <211> 903 <212> DNA <213> Artificial Sequence <220> <223> LRR <400> 26 cttcttgacc atctcttctt ccactatgag ttccagaacc agcgcttctc agctgaggtg 60 ctgggctccc tacgccagct caatttagca ggggtgcgca tgacacccct caagtgcaca 120 gtggtagcct ctgtactggg aagtggaagg caccccctgg atgaggtgaa cttggcctcc 180 tgccagctgg atcccgctgg gctacacact ctcatgcctg tcctcctgcg tgcccggaaa 240 ctggggttgc aactcaacaa tctgggcccc gaggcctgca gagacctccg agacctgctc 300 ttacacgatc aatgccagat caccactctt aggctctcca acaacccact gacagcagct 360 ggtgtgggct tactgatgga cgggctggca ggaaacactt cggtgacaca cctgtctctg 420 ctgcacactg accttggaga cgagggactg gaactgctgg ctgcccagct ggaccgaaac 480 aaacaactgc aggagctgaa cgtggcctac aacggtgctg gtgacacagt ggctctggcc 540 ttggctaagg ctgctcggga gcacccttcc ctggagctgc tgcacctcta cttcaatgag 600 ctgagttcag agggccgcca ggtcctgcgg gatttggggg gctctggtga aggtggtgcc 660 cgggtcgtag cctcgctgac agaagggacg gcggtgtctg agtactggtc agtgatcctt 720 agtgaagtcc agcgcaacgt ccacagctgg gacccgctcc gggtccagag gcatctcaag 780 ctgctgctcc gtgatctgga ggacagccgg ggcgccaccc ttaatccctg gcgcaaggct 840 cagcttctgc gagtggaggg cgaggtcaag actcttctgg agcagctggg aggttctgga 900 cac 903 <210> 27 <211> 482 <212> PRT <213> Artificial Sequence <220> <223> NBD <400> 27 Ala Thr Glu Ala Ile Gln Arg His Arg Arg Asn Leu Thr Glu Trp Phe 1 5 10 15 Ser Arg Leu Pro Arg Glu Glu Arg Gln Phe Gly Pro Thr Phe Ala Leu 20 25 30 Asp Thr Val His Val Asp Pro Val Ile Arg Glu Ser Thr Pro Asp Glu 35 40 45 Leu Leu Arg Pro Ser Thr Glu Leu Ala Thr Gly His Gln Gln Thr Gln 50 55 60 Ala Gly Leu Pro Pro Leu Ala Leu Ser Gln Leu Phe Asp Pro Asp Ser 65 70 75 80 Cys Gly Arg Arg Val Gln Thr Val Val Leu Tyr Gly Thr Val Gly Thr 85 90 95 Gly Lys Ser Thr Leu Val Arg Lys Met Val Leu Asp Trp Cys Tyr Gly 100 105 110 Arg Leu Pro Ala Phe Glu Leu Leu Ile Pro Phe Ser Cys Glu Asp Leu 115 120 125 Ser Ser Leu Gly Ser Thr Pro Ala Ser Leu Cys Gln Leu Val Thr Gln 130 135 140 Arg Tyr Thr Pro Leu Lys Glu Val Leu Pro Leu Met Thr Ala Ala Gly 145 150 155 160 Ser Arg Leu Leu Phe Val Leu His Gly Leu Glu Arg Leu Asn Leu Asp 165 170 175 Phe Arg Leu Ala Gly Thr Gly Leu Cys Ser Asp Pro Glu Glu Pro Gly 180 185 190 Pro Pro Ala Ala Ile Ile Val Asn Leu Leu Arg Lys Tyr Met Leu Pro 195 200 205 Glu Ala Ser Ile Leu Val Thr Thr Arg Pro Ser Thr Ile Ser Arg Ile 210 215 220 Pro Ser Lys Tyr Val Gly Arg Tyr Gly Glu Ile Cys Gly Phe Ser Asp 225 230 235 240 Thr Asn Leu Gln Lys Leu Tyr Phe Gln Leu Arg Leu Asn Gln Pro Asp 245 250 255 Cys Gly Tyr Gly Ala Gly Gly Ala Ser Val Ser Val Thr Pro Ala Gln 260 265 270 Arg Asp Asn Leu Ile Gln Met Leu Ser Arg Asn Leu Glu Gly His His 275 280 285 Gln Ile Ala Ala Ala Cys Phe Leu Pro Ser Tyr Cys Trp Leu Val Cys 290 295 300 Ala Thr Leu His Phe Leu His Ala Pro Thr Pro Ala Gly Gln Thr Leu 305 310 315 320 Thr Ser Ile Tyr Thr Ser Phe Leu Arg Leu Asn Phe Ser Gly Glu Thr 325 330 335 Leu Asp Ser Thr His Thr Ser Asn Leu Ser Leu Met Ser Tyr Ala Ala 340 345 350 Arg Thr Met Gly Lys Leu Ala Tyr Glu Gly Val Pro Ser Arg Lys Thr 355 360 365 Tyr Phe Ser Glu Glu Asp Val Arg Gly Cys Leu Glu Ala Gly Ile Lys 370 375 380 Thr Glu Glu Glu Phe Gln Leu Leu Gln Ile Phe Arg Arg Asp Ala Leu 385 390 395 400 Arg Phe Phe Leu Ala Pro Cys Val Glu Pro Gly His Leu Gly Thr Phe 405 410 415 Val Phe Thr Val Pro Ala Met Gln Glu Tyr Leu Ala Ala Leu Tyr Ser 420 425 430 Val Leu Gly Leu Arg Lys Thr Ala Leu Gln Arg Val Gly Lys Glu Val 435 440 445 Val Glu Phe Val Gly Arg Val Gly Glu Asp Val Ser Leu Val Leu Gly 450 455 460 Ile Val Ala Lys Leu Leu Pro Leu Arg Ile Leu Pro Leu Leu Phe Asn 465 470 475 480 Leu Leu <210> 28 <211> 1446 <212> DNA <213> Artificial Sequence <220> <223> NBD <400> 28 gccacagaag ctatccaaag gcatcgccgg aacctcaccg agtggtttag ccgactgccc 60 agagaggagc gccagtttgg accaaccttt gctctagaca cagttcatgt tgaccccgtg 120 atccgagaga gcaccccaga tgagctgctt cgcccgtcca cggagctggc cacggggcat 180 cagcaaaccc aggcagggct ccccccactg gccctgtctc agctttttga cccggattct 240 tgtgggcgcc gcgtgcagac cgtggtgttg tatgggaccg tgggtactgg caagagcacg 300 ttggtacgga agatggtctt agactggtgt tacgggagac tgcctgcctt tgagcttctc 360 atccccttct cctgtgagga cttgtcatcc ctgggctcca ccccagcttc cctgtgccaa 420 cttgtgaccc agcgttacac acccctgaaa gaggtgttgc ccctgatgac tgctgcggga 480 tcccgcctgc tctttgtgct ccatggcttg gagcgcctca accttgactt ccggctggca 540 ggcacagggc tttgcagtga cccggaggaa cccgggccac cagctgccat catagtcaac 600 ctgctgcgca aatacatgct tcccgaggcc agcattctgg taaccacccg gccttccacc 660 attagccgaa tccctagcaa gtatgtgggc cgctatggtg agatctgtgg cttctctgat 720 accaacctgc agaagctcta cttccagctc cgccttaacc agcctgactg tgggtacggt 780 gctgggggtg ccagtgtctc agtcacacca gctcagcgcg acaacctgat tcaaatgctc 840 tcccggaacc tggaggggca ccaccagatt gccgcagcct gctttctgcc ttcctattgc 900 tggcttgtct gtgctacttt gcacttcctg catgctccca cacctgctgg tcagaccctc 960 acaagcatct ataccagctt tctacgcctg aacttcagtg gggaaacact ggacagcacc 1020 cacacgtcca atctatccct gatgtcctat gcagcccgga ctatgggcaa gctggcctac 1080 gagggcgtgc catcccgaaa gacctacttc tctgaagagg atgtccgtgg ctgcctggaa 1140 gctggcatca agacagagga agagtttcaa ctgcttcaga tcttccgcag ggacgccctg 1200 aggtttttcc tggccccgtg tgtggaacca gggcacctgg gtaccttcgt gttcaccgtg 1260 cccgccatgc aggagtatct ggctgccctc tacagcgtgc ttggtttgcg caagacagcc 1320 ctgcagcggg tgggcaaaga agtggttgaa tttgtgggcc gtgttgggga agatgtcagc 1380 ctggtattgg gcattgtggc caagctgttg cccctgcgga ttctgcctct gctcttcaac 1440 ttgctc 1446 <210> 29 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> forward primer of C10-LRR <400> 29 ctagctagcc tcaggctgag gctacggcgc tgtcatcgag tcgaccttct tgaccatctc 60 60 <210> 30 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of C10-LRR <400> 30 aggttctgga cacgaattcc gg 22 <210> 31 <211> 1065 <212> DNA <213> Artificial Sequence <220> <223> C10-LRR <400> 31 atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60 atggctagcc tcaggctgag gctacggcgc tgtcatcgag tcgaccttct tgaccatctc 120 ttcttccact atgagttcca gaaccagcgc ttctcagctg aggtgctggg ctccctacgc 180 cagctcaatt tagcaggggt gcgcatgaca cccctcaagt gcacagtggt agcctctgta 240 ctgggaagtg gaaggcaccc cctggatgag gtgaacttgg cctcctgcca gctggatccc 300 gctgggctac acactctcat gcctgtcctc ctgcgtgccc ggaaactggg gttgcaactc 360 aacaatctgg gccccgaggc ctgcagagac ctccgagacc tgctcttaca cgatcaatgc 420 cagatcacca ctcttaggct ctccaacaac ccactgacag cagctggtgt gggcttactg 480 atggacgggc tggcaggaaa cacttcggtg acacacctgt ctctgctgca cactgacctt 540 ggagacgagg gactggaact gctggctgcc cagctggacc gaaacaaaca actgcaggag 600 ctgaacgtgg cctacaacgg tgctggtgac acagtggctc tggccttggc taaggctgct 660 cgggagcacc cttccctgga gctgctgcac ctctacttca atgagctgag ttcagagggc 720 cgccaggtcc tgcgggattt ggggggctct ggtgaaggtg gtgcccgggt cgtagcctcg 780 ctgacagaag ggacggcggt gtctgagtac tggtcagtga tccttagtga agtccagcgc 840 aacgtccaca gctgggaccc gctccgggtc cagaggcatc tcaagctgct gctccgtgat 900 ctggaggaca gccggggcgc cacccttaat ccctggcgca aggctcagct tctgcgagtg 960 gagggcgagg tcaagactct tctggagcag ctgggaggtt ctggacacga attcgattac 1020 aaggatgacg atgacaagct cgagcaccac caccaccacc actga 1065 <210> 32 <211> 354 <212> PRT <213> Artificial Sequence <220> <223> C10-LRR <400> 32 Met Gly Ser Ser His His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15 Arg Gly Ser His Met Ala Ser Leu Arg Leu Arg Leu Arg Arg Cys His 20 25 30 Arg Val Asp Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe Gln Asn 35 40 45 Gln Arg Phe Ser Ala Glu Val Leu Gly Ser Leu Arg Gln Leu Asn Leu 50 55 60 Ala Gly Val Arg Met Thr Pro Leu Lys Cys Thr Val Val Ala Ser Val 65 70 75 80 Leu Gly Ser Gly Arg His Pro Leu Asp Glu Val Asn Leu Ala Ser Cys 85 90 95 Gln Leu Asp Pro Ala Gly Leu His Thr Leu Met Pro Val Leu Leu Arg 100 105 110 Ala Arg Lys Leu Gly Leu Gln Leu Asn Asn Leu Gly Pro Glu Ala Cys 115 120 125 Arg Asp Leu Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile Thr Thr 130 135 140 Leu Arg Leu Ser Asn Asn Pro Leu Thr Ala Ala Gly Val Gly Leu Leu 145 150 155 160 Met Asp Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu Leu 165 170 175 His Thr Asp Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln Leu 180 185 190 Asp Arg Asn Lys Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly Ala 195 200 205 Gly Asp Thr Val Ala Leu Ala Leu Ala Lys Ala Ala Arg Glu His Pro 210 215 220 Ser Leu Glu Leu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser Glu Gly 225 230 235 240 Arg Gln Val Leu Arg Asp Leu Gly Gly Ser Gly Glu Gly Gly Ala Arg 245 250 255 Val Val Ala Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr Trp Ser 260 265 270 Val Ile Leu Ser Glu Val Gln Arg Asn Val His Ser Trp Asp Pro Leu 275 280 285 Arg Val Gln Arg His Leu Lys Leu Leu Leu Arg Asp Leu Glu Asp Ser 290 295 300 Arg Gly Ala Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu Leu Arg Val 305 310 315 320 Glu Gly Glu Val Lys Thr Leu Leu Glu Gln Leu Gly Gly Ser Gly His 325 330 335 Glu Phe Asp Tyr Lys Asp Asp Asp Asp Lys Leu Glu His His His His 340 345 350 His His <210> 33 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> forward primer of TAT-LRR <400> 33 ctagctagct atggacgcaa gaagcgccgc cagcgccgcc gcgtcgacct tcttgaccat 60 ctc 63 <210> 34 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of TAT-LRR <400> 34 aggttctgga cacgaattcc gg 22 <210> 35 <211> 1068 <212> DNA <213> Artificial Sequence <220> <223> TAT-LRR <400> 35 atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60 atggctagct atggacgcaa gaagcgccgc cagcgccgcc gcgtcgacct tcttgaccat 120 ctcttcttcc actatgagtt ccagaaccag cgcttctcag ctgaggtgct gggctcccta 180 cgccagctca atttagcagg ggtgcgcatg acacccctca agtgcacagt ggtagcctct 240 gtactgggaa gtggaaggca ccccctggat gaggtgaact tggcctcctg ccagctggat 300 cccgctgggc tacacactct catgcctgtc ctcctgcgtg cccggaaact ggggttgcaa 360 ctcaacaatc tgggccccga ggcctgcaga gacctccgag acctgctctt acacgatcaa 420 tgccagatca ccactcttag gctctccaac aacccactga cagcagctgg tgtgggctta 480 ctgatggacg ggctggcagg aaacacttcg gtgacacacc tgtctctgct gcacactgac 540 cttggagacg agggactgga actgctggct gcccagctgg accgaaacaa acaactgcag 600 gagctgaacg tggcctacaa cggtgctggt gacacagtgg ctctggcctt ggctaaggct 660 gctcgggagc acccttccct ggagctgctg cacctctact tcaatgagct gagttcagag 720 ggccgccagg tcctgcggga tttggggggc tctggtgaag gtggtgcccg ggtcgtagcc 780 tcgctgacag aagggacggc ggtgtctgag tactggtcag tgatccttag tgaagtccag 840 cgcaacgtcc acagctggga cccgctccgg gtccagaggc atctcaagct gctgctccgt 900 gatctggagg acagccgggg cgccaccctt aatccctggc gcaaggctca gcttctgcga 960 gtggagggcg aggtcaagac tcttctggag cagctgggag gttctggaca cgaattcgat 1020 tacaaggatg acgatgacaa gctcgagcac caccaccacc accactga 1068 <210> 36 <211> 355 <212> PRT <213> Artificial Sequence <220> <223> TAT-LRR <400> 36 Met Gly Ser Ser His His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15 Arg Gly Ser His Met Ala Ser Tyr Gly Arg Lys Lys Arg Arg Gln Arg 20 25 30 Arg Arg Val Asp Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe Gln 35 40 45 Asn Gln Arg Phe Ser Ala Glu Val Leu Gly Ser Leu Arg Gln Leu Asn 50 55 60 Leu Ala Gly Val Arg Met Thr Pro Leu Lys Cys Thr Val Val Ala Ser 65 70 75 80 Val Leu Gly Ser Gly Arg His Pro Leu Asp Glu Val Asn Leu Ala Ser 85 90 95 Cys Gln Leu Asp Pro Ala Gly Leu His Thr Leu Met Pro Val Leu Leu 100 105 110 Arg Ala Arg Lys Leu Gly Leu Gln Leu Asn Asn Leu Gly Pro Glu Ala 115 120 125 Cys Arg Asp Leu Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile Thr 130 135 140 Thr Leu Arg Leu Ser Asn Asn Pro Leu Thr Ala Ala Gly Val Gly Leu 145 150 155 160 Leu Met Asp Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu 165 170 175 Leu His Thr Asp Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln 180 185 190 Leu Asp Arg Asn Lys Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly 195 200 205 Ala Gly Asp Thr Val Ala Leu Ala Leu Ala Lys Ala Ala Arg Glu His 210 215 220 Pro Ser Leu Glu Leu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser Glu 225 230 235 240 Gly Arg Gln Val Leu Arg Asp Leu Gly Gly Ser Gly Glu Gly Gly Ala 245 250 255 Arg Val Val Ala Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr Trp 260 265 270 Ser Val Ile Leu Ser Glu Val Gln Arg Asn Val His Ser Trp Asp Pro 275 280 285 Leu Arg Val Gln Arg His Leu Lys Leu Leu Leu Arg Asp Leu Glu Asp 290 295 300 Ser Arg Gly Ala Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu Leu Arg 305 310 315 320 Val Glu Gly Glu Val Lys Thr Leu Leu Glu Gln Leu Gly Gly Ser Gly 325 330 335 His Glu Phe Asp Tyr Lys Asp Asp Asp Asp Lys Leu Glu His His His 340 345 350 His His His 355 <210> 37 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of dNP2-LRR <400> 37 cggctagcaa aattaaaaaa gtcaagaaga aaggaagaaa agtcgacctt cttgaccatc 60 tc 62 <210> 38 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of dNP2-LRR <400> 38 ccggaattcg tgtccagaac ct 22 <210> 39 <211> 981 <212> DNA <213> Artificial Sequence <220> <223> dNP2-LRR <400> 39 aagatcaaga aggttaaaaa aaagggtcgc aagggctcta aaattaaaaa agtcaagaag 60 aaaggaagaa aagtcgacct tcttgaccat ctcttcttcc actatgagtt ccagaaccag 120 cgcttctcag ctgaggtgct gggctcccta cgccagctca atttagcagg ggtgcgcatg 180 acacccctca agtgcacagt ggtagcctct gtactgggaa gtggaaggca ccccctggat 240 gaggtgaact tggcctcctg ccagctggat cccgctgggc tacacactct catgcctgtc 300 ctcctgcgtg cccggaaact ggggttgcaa ctcaacaatc tgggccccga ggcctgcaga 360 gacctccgag acctgctctt acacgatcaa tgccagatca ccactcttag gctctccaac 420 aacccactga cagcagctgg tgtgggctta ctgatggacg ggctggcagg aaacacttcg 480 gtgacacacc tgtctctgct gcacactgac cttggagacg agggactgga actgctggct 540 gcccagctgg accgaaacaa acaactgcag gagctgaacg tggcctacaa cggtgctggt 600 gacacagtgg ctctggcctt ggctaaggct gctcgggagc acccttccct ggagctgctg 660 cacctctact tcaatgagct gagttcagag ggccgccagg tcctgcggga tttggggggc 720 tctggtgaag gtggtgcccg ggtcgtagcc tcgctgacag aagggacggc ggtgtctgag 780 tactggtcag tgatccttag tgaagtccag cgcaacgtcc acagctggga cccgctccgg 840 gtccagaggc atctcaagct gctgctccgt gatctggagg acagccgggg cgccaccctt 900 aatccctggc gcaaggctca gcttctgcga gtggagggcg aggtcaagac tcttctggag 960 cagctgggag gttctggaca c 981 <210> 40 <211> 368 <212> PRT <213> Artificial Sequence <220> <223> dNP2-LRR <400> 40 Met Gly Ser Ser His His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15 Arg Gly Ser His Met Ala Ser Lys Ile Lys Lys Val Lys Lys Lys Gly 20 25 30 Arg Lys Gly Ser Lys Ile Lys Lys Val Lys Lys Lys Gly Arg Lys Val 35 40 45 Asp Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe Gln Asn Gln Arg 50 55 60 Phe Ser Ala Glu Val Leu Gly Ser Leu Arg Gln Leu Asn Leu Ala Gly 65 70 75 80 Val Arg Met Thr Pro Leu Lys Cys Thr Val Val Ala Ser Val Leu Gly 85 90 95 Ser Gly Arg His Pro Leu Asp Glu Val Asn Leu Ala Ser Cys Gln Leu 100 105 110 Asp Pro Ala Gly Leu His Thr Leu Met Pro Val Leu Leu Arg Ala Arg 115 120 125 Lys Leu Gly Leu Gln Leu Asn Asn Leu Gly Pro Glu Ala Cys Arg Asp 130 135 140 Leu Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile Thr Thr Leu Arg 145 150 155 160 Leu Ser Asn Asn Pro Leu Thr Ala Ala Gly Val Gly Leu Leu Met Asp 165 170 175 Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu Leu His Thr 180 185 190 Asp Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln Leu Asp Arg 195 200 205 Asn Lys Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly Ala Gly Asp 210 215 220 Thr Val Ala Leu Ala Leu Ala Lys Ala Ala Arg Glu His Pro Ser Leu 225 230 235 240 Glu Leu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser Glu Gly Arg Gln 245 250 255 Val Leu Arg Asp Leu Gly Gly Ser Gly Glu Gly Gly Ala Arg Val Val 260 265 270 Ala Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr Trp Ser Val Ile 275 280 285 Leu Ser Glu Val Gln Arg Asn Val His Ser Trp Asp Pro Leu Arg Val 290 295 300 Gln Arg His Leu Lys Leu Leu Leu Arg Asp Leu Glu Asp Ser Arg Gly 305 310 315 320 Ala Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu Leu Arg Val Glu Gly 325 330 335 Glu Val Lys Thr Leu Leu Glu Gln Leu Gly Gly Ser Gly His Glu Phe 340 345 350 Asp Tyr Lys Asp Asp Asp Asp Lys Leu Glu His His His His His His 355 360 365 <210> 41 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10-NBD <400> 41 ctagtcgacg ccacagaagc tatccaa 27 <210> 42 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10-NBD <400> 42 ccggaattcg agcaagttga agagcag 27 <210> 43 <211> 1608 <212> DNA <213> Artificial Sequence <220> <223> C10-NBD <400> 43 atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60 atggctagcc tcaggctgag gctacggcgc tgtcatcgag tcgacgccac agaagctatc 120 caaaggcatc gccggaacct caccgagtgg tttagccgac tgcccagaga ggagcgccag 180 tttggaccaa cctttgctct agacacagtt catgttgacc ccgtgatccg agagagcacc 240 ccagatgagc tgcttcgccc gtccacggag ctggccacgg ggcatcagca aacccaggca 300 gggctccccc cactggccct gtctcagctt tttgacccgg attcttgtgg gcgccgcgtg 360 cagaccgtgg tgttgtatgg gaccgtgggt actggcaaga gcacgttggt acggaagatg 420 gtcttagact ggtgttacgg gagactgcct gcctttgagc ttctcatccc cttctcctgt 480 gaggacttgt catccctggg ctccacccca gcttccctgt gccaacttgt gacccagcgt 540 tacacacccc tgaaagaggt gttgcccctg atgactgctg cgggatcccg cctgctcttt 600 gtgctccatg gcttggagcg cctcaacctt gacttccggc tggcaggcac agggctttgc 660 agtgacccgg aggaacccgg gccaccagct gccatcatag tcaacctgct gcgcaaatac 720 atgcttcccg aggccagcat tctggtaacc acccggcctt ccaccattag ccgaatccct 780 agcaagtatg tgggccgcta tggtgagatc tgtggcttct ctgataccaa cctgcagaag 840 ctctacttcc agctccgcct taaccagcct gactgtgggt acggtgctgg gggtgccagt 900 gtctcagtca caccagctca gcgcgacaac ctgattcaaa tgctctcccg gaacctggag 960 gggcaccacc agattgccgc agcctgcttt ctgccttcct attgctggct tgtctgtgct 1020 actttgcact tcctgcatgc tcccacacct gctggtcaga ccctcacaag catctatacc 1080 agctttctac gcctgaactt cagtggggaa acactggaca gcacccacac gtccaatcta 1140 tccctgatgt cctatgcagc ccggactatg ggcaagctgg cctacgaggg cgtgccatcc 1200 cgaaagacct acttctctga agaggatgtc cgtggctgcc tggaagctgg catcaagaca 1260 gaggaagagt ttcaactgct tcagatcttc cgcagggacg ccctgaggtt tttcctggcc 1320 ccgtgtgtgg aaccagggca cctgggtacc ttcgtgttca ccgtgcccgc catgcaggag 1380 tatctggctg ccctctacag cgtgcttggt ttgcgcaaga cagccctgca gcgggtgggc 1440 aaagaagtgg ttgaatttgt gggccgtgtt ggggaagatg tcagcctggt attgggcatt 1500 gtggccaagc tgttgcccct gcggattctg cctctgctct tcaacttgct cgaattcgat 1560 tacaaggatg acgatgacaa gctcgagcac caccaccacc accactga 1608 <210> 44 <211> 1028 <212> PRT <213> Artificial Sequence <220> <223> C10-NBD <400> 44 Met Gly Ser Ser His His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15 Arg Gly Ser His Met Ala Ser Leu Arg Leu Arg Leu Arg Arg Cys His 20 25 30 Arg Val Asp Met Arg Trp Gly Cys His Leu Pro Arg Thr Ser Trp Gly 35 40 45 Ser Gly Leu Gly Arg Thr Pro Gln Leu Pro Asp Glu His Ile Ser Phe 50 55 60 Leu Ile Gln Trp Ser Trp Pro Phe Lys Gly Val His Pro Leu Arg Pro 65 70 75 80 Pro Arg Ala Phe Ile Arg Tyr His Gly Asn Ser Ala Asp Ser Ala Pro 85 90 95 Pro Pro Gly Arg His Gly Gln Leu Phe Arg Ser Ile Ser Ala Thr Glu 100 105 110 Ala Ile Gln Arg His Arg Arg Asn Leu Thr Glu Trp Phe Ser Arg Leu 115 120 125 Pro Arg Glu Glu Arg Gln Phe Gly Pro Thr Phe Ala Leu Asp Thr Val 130 135 140 His Val Asp Pro Val Ile Arg Glu Ser Thr Pro Asp Glu Leu Leu Arg 145 150 155 160 Pro Ser Thr Glu Leu Ala Thr Gly His Gln Gln Thr Gln Ala Gly Leu 165 170 175 Pro Pro Leu Ala Leu Ser Gln Leu Phe Asp Pro Asp Ser Cys Gly Arg 180 185 190 Arg Val Gln Thr Val Val Leu Tyr Gly Thr Val Gly Thr Gly Lys Ser 195 200 205 Thr Leu Val Arg Lys Met Val Leu Asp Trp Cys Tyr Gly Arg Leu Pro 210 215 220 Ala Phe Glu Leu Leu Ile Pro Phe Ser Cys Glu Asp Leu Ser Ser Leu 225 230 235 240 Gly Ser Thr Pro Ala Ser Leu Cys Gln Leu Val Thr Gln Arg Tyr Thr 245 250 255 Pro Leu Lys Glu Val Leu Pro Leu Met Thr Ala Ala Gly Ser Arg Leu 260 265 270 Leu Phe Val Leu His Gly Leu Glu Arg Leu Asn Leu Asp Phe Arg Leu 275 280 285 Ala Gly Thr Gly Leu Cys Ser Asp Pro Glu Glu Pro Gly Pro Pro Ala 290 295 300 Ala Ile Ile Val Asn Leu Leu Arg Lys Tyr Met Leu Pro Glu Ala Ser 305 310 315 320 Ile Leu Val Thr Thr Arg Pro Ser Thr Ile Ser Arg Ile Pro Ser Lys 325 330 335 Tyr Val Gly Arg Tyr Gly Glu Ile Cys Gly Phe Ser Asp Thr Asn Leu 340 345 350 Gln Lys Leu Tyr Phe Gln Leu Arg Leu Asn Gln Pro Asp Cys Gly Tyr 355 360 365 Gly Ala Gly Gly Ala Ser Val Ser Val Thr Pro Ala Gln Arg Asp Asn 370 375 380 Leu Ile Gln Met Leu Ser Arg Asn Leu Glu Gly His His Gln Ile Ala 385 390 395 400 Ala Ala Cys Phe Leu Pro Ser Tyr Cys Trp Leu Val Cys Ala Thr Leu 405 410 415 His Phe Leu His Ala Pro Thr Pro Ala Gly Gln Thr Leu Thr Ser Ile 420 425 430 Tyr Thr Ser Phe Leu Arg Leu Asn Phe Ser Gly Glu Thr Leu Asp Ser 435 440 445 Thr His Thr Ser Asn Leu Ser Leu Met Ser Tyr Ala Ala Arg Thr Met 450 455 460 Gly Lys Leu Ala Tyr Glu Gly Val Ser Ser Arg Lys Thr Tyr Phe Ser 465 470 475 480 Glu Glu Asp Val Arg Gly Cys Leu Glu Ala Gly Ile Lys Thr Glu Glu 485 490 495 Glu Phe Gln Leu Leu Gln Ile Phe Arg Arg Asp Ala Leu Arg Phe Phe 500 505 510 Leu Ala Pro Cys Val Glu Pro Gly His Leu Gly Thr Phe Val Phe Thr 515 520 525 Val Pro Ala Met Gln Glu Tyr Leu Ala Ala Leu Tyr Ile Val Leu Gly 530 535 540 Leu Arg Lys Thr Ala Leu Gln Arg Val Gly Lys Glu Val Val Glu Phe 545 550 555 560 Val Gly Arg Val Gly Glu Asp Val Ser Leu Val Leu Gly Ile Val Ala 565 570 575 Lys Leu Leu Pro Leu Arg Ile Leu Pro Leu Leu Phe Asn Leu Leu Lys 580 585 590 Val Val Pro Arg Val Phe Gly Arg Met Val Ser Lys Ser Arg Glu Ala 595 600 605 Val Ala Gln Ala Met Val Leu Glu Met Phe Arg Glu Glu Asp Tyr Tyr 610 615 620 Asn Asp Asp Val Leu Asp Gln Met Gly Ala Ser Ile Leu Gly Val Glu 625 630 635 640 Gly Pro Arg Arg His Pro Asp Glu Pro Ser Glu Asp Glu Val Phe Glu 645 650 655 Leu Phe Pro Met Phe Met Gly Gly Leu Leu Ser Ala His Asn Arg Ala 660 665 670 Val Leu Ala Gln Leu Gly Cys Pro Ile Lys Asn Leu Asp Ala Leu Glu 675 680 685 Asn Ala Gln Ala Ile Lys Lys Lys Leu Gly Lys Leu Gly Arg Gln Val 690 695 700 Leu Pro Pro Ser Glu Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe 705 710 715 720 Gln Asn Gln Arg Phe Ser Ala Glu Val Leu Gly Ser Leu Arg Gln Leu 725 730 735 Asn Leu Ala Gly Val Arg Met Thr Pro Leu Lys Cys Thr Val Val Ala 740 745 750 Ser Val Leu Gly Ser Gly Arg His Pro Leu Asp Glu Val Asn Leu Ala 755 760 765 Ser Cys Gln Leu Asp Pro Ala Gly Leu His Thr Leu Met Pro Val Leu 770 775 780 Leu Arg Ala Arg Lys Leu Gly Leu Gln Leu Asn Asn Leu Gly Pro Glu 785 790 795 800 Ala Cys Arg Asp Leu Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile 805 810 815 Thr Thr Leu Arg Leu Ser Asn Asn Pro Leu Thr Ala Ala Gly Val Gly 820 825 830 Leu Leu Met Asp Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser 835 840 845 Leu Leu His Thr Asp Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala 850 855 860 Gln Leu Asp Arg Asn Lys Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn 865 870 875 880 Gly Ala Gly Asp Thr Val Ala Leu Ala Leu Ala Lys Ala Ala Arg Glu 885 890 895 His Pro Ser Leu Glu Leu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser 900 905 910 Glu Gly Arg Gln Val Leu Arg Asp Leu Gly Gly Ser Gly Glu Gly Gly 915 920 925 Ala Arg Val Val Ala Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr 930 935 940 Trp Ser Val Ile Leu Ser Glu Val Gln Arg Asn Val His Ser Trp Asp 945 950 955 960 Pro Leu Arg Val Gln Arg His Leu Lys Leu Leu Leu Arg Asp Leu Glu 965 970 975 Asp Ser Arg Gly Ala Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu Leu 980 985 990 Arg Val Glu Gly Glu Val Lys Thr Leu Leu Glu Gln Leu Gly Gly Ser 995 1000 1005 Gly His Glu Phe Asp Tyr Lys Asp Asp Asp Asp Lys Leu Glu His His 1010 1015 1020 His His His His 1025 <210> 45 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10-EGFP <400> 45 ctagctagcc tcaggctgag gctacggcgc tgtcatcgag gatccgtgag caagggcgag 60 60 <210> 46 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10-EGFP <400> 46 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 47 <211> 795 <212> DNA <213> Artificial Sequence <220> <223> C10-EGFP <400> 47 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcctcaggct gaggctacgg 60 cgctgtcatc gaggatccgt gagcaagggc gaggagctgt tcaccggggt ggtgcccatc 120 ctggtcgagc tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag 180 ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc 240 gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac 300 cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag 360 gagcgcacca tcttcttcaa ggacgacggc aactacaaga cccgcgccga ggtgaagttc 420 gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc 480 aacatcctgg ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc 540 gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc 600 agcgtgcagc tcgccgacca ctaccagcag aacaccccca tcggcgacgg ccccgtgctg 660 ctgcccgaca accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag 720 cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac 780 gagctgtaca agtaa 795 <210> 48 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of dNP2-EGFP <400> 48 cggctagcaa aattaaaaaa gtcaagaaga aaggaagaaa agtcgacctt cttgaccatc 60 tc 62 <210> 49 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of dNP2-EGFP <400> 49 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 50 <211> 840 <212> DNA <213> Artificial Sequence <220> <223> dNP2-EGFP <400> 50 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcaaaattaa aaaagtcaag 60 aagaaaggaa gaaaaggatc caaaattaaa aaagtcaaga agaaaggaag aaaagaattc 120 gtgagcaagg gcgaggagct gttcaccggg gtggtgccca tcctggtcga gctggacggc 180 gacgtaaacg gccacaagtt cagcgtgtcc ggcgagggcg agggcgatgc cacctacggc 240 aagctgaccc tgaagttcat ctgcaccacc ggcaagctgc ccgtgccctg gcccaccctc 300 gtgaccaccc tgacctacgg cgtgcagtgc ttcagccgct accccgacca catgaagcag 360 cacgacttct tcaagtccgc catgcccgaa ggctacgtcc aggagcgcac catcttcttc 420 aaggacgacg gcaactacaa gacccgcgcc gaggtgaagt tcgagggcga caccctggtg 480 aaccgcatcg agctgaaggg catcgacttc aaggaggacg gcaacatcct ggggcacaag 540 ctggagtaca actacaacag ccacaacgtc tatatcatgg ccgacaagca gaagaacggc 600 atcaaggtga acttcaagat ccgccacaac atcgaggacg gcagcgtgca gctcgccgac 660 cactaccagc agaacacccc catcggcgac ggccccgtgc tgctgcccga caaccactac 720 ctgagcaccc agtccgccct gagcaaagac cccaacgaga agcgcgatca catggtcctg 780 ctggagttcg tgaccgccgc cgggatcact ctcggcatgg acgagctgta caagtaataa 840 840 <210> 51 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10(m)-EGFP <400> 51 ctagctagcc tcaggatgcg gctgaggcgc tgtcatcgag gatccgtgag caagggcgag 60 60 <210> 52 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10(m)-EGFP <400> 52 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 53 <211> 795 <212> DNA <213> Artificial Sequence <220> <223> C10(m)-EGFP <400> 53 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcctcaggat gaggctacgg 60 cgctgtcatc gaggatccgt gagcaagggc gaggagctgt tcaccggggt ggtgcccatc 120 ctggtcgagc tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag 180 ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc 240 gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac 300 cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag 360 gagcgcacca tcttcttcaa ggacgacggc aactacaaga cccgcgccga ggtgaagttc 420 gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc 480 aacatcctgg ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc 540 gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc 600 agcgtgcagc tcgccgacca ctaccagcag aacaccccca tcggcgacgg ccccgtgctg 660 ctgcccgaca accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag 720 cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac 780 gagctgtaca agtaa 795 <210> 54 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10(C>A)-EGFP <400> 54 ctagctagcc tcaggctgag gctacggcgc gctcatcgag gatccgtgag caagggcgag 60 60 <210> 55 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10(C>A)-EGFP <400> 55 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 56 <211> 795 <212> DNA <213> Artificial Sequence <220> <223> C10(C>A)-EGFP <400> 56 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcctcaggct gaggctacgg 60 cgcgctcatc gaggatccgt gagcaagggc gaggagctgt tcaccggggt ggtgcccatc 120 ctggtcgagc tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag 180 ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc 240 gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac 300 cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag 360 gagcgcacca tcttcttcaa ggacgacggc aactacaaga cccgcgccga ggtgaagttc 420 gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc 480 aacatcctgg ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc 540 gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc 600 agcgtgcagc tcgccgacca ctaccagcag aacaccccca tcggcgacgg ccccgtgctg 660 ctgcccgaca accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag 720 cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac 780 gagctgtaca agtaa 795 <210> 57 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10(L del)-EGFP <400> 57 ctagctagca ggctgaggct acggcgctgt catcgaggat ccgtgagcaa gggcgag 57 <210> 58 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10(L del)-EGFP <400> 58 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 59 <211> 792 <212> DNA <213> Artificial Sequence <220> <223> C10(L del)-EGFP <400> 59 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcaggctgag gctacggcgc 60 tgtcatcgag gatccgtgag caagggcgag gagctgttca ccggggtggt gcccatcctg 120 gtcgagctgg acggcgacgt aaacggccac aagttcagcg tgtccggcga gggcgagggc 180 gatgccacct acggcaagct gaccctgaag ttcatctgca ccaccggcaa gctgcccgtg 240 ccctggccca ccctcgtgac caccctgacc tacggcgtgc agtgcttcag ccgctacccc 300 gaccacatga agcagcacga cttcttcaag tccgccatgc ccgaaggcta cgtccaggag 360 cgcaccatct tcttcaagga cgacggcaac tacaagaccc gcgccgaggt gaagttcgag 420 ggcgacaccc tggtgaaccg catcgagctg aagggcatcg acttcaagga ggacggcaac 480 atcctggggc acaagctgga gtacaactac aacagccaca acgtctatat catggccgac 540 aagcagaaga acggcatcaa ggtgaacttc aagatccgcc acaacatcga ggacggcagc 600 gtgcagctcg ccgaccacta ccagcagaac acccccatcg gcgacggccc cgtgctgctg 660 cccgacaacc actacctgag cacccagtcc gccctgagca aagaccccaa cgagaagcgc 720 gatcacatgg tcctgctgga gttcgtgacc gccgccggga tcactctcgg catggacgag 780 ctgtacaagt aa 792 <210> 60 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10(R del)-EGFP <400> 60 ctagctagcc tcaggctgag gctacggcgc tgtcatggat ccgtgagcaa gggcgag 57 <210> 61 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10(R del)-EGFP <400> 61 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 62 <211> 792 <212> DNA <213> Artificial Sequence <220> <223> C10(R del)-EGFP <400> 62 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcctcaggct gaggctacgg 60 cgctgtcatg gatccgtgag caagggcgag gagctgttca ccggggtggt gcccatcctg 120 gtcgagctgg acggcgacgt aaacggccac aagttcagcg tgtccggcga gggcgagggc 180 gatgccacct acggcaagct gaccctgaag ttcatctgca ccaccggcaa gctgcccgtg 240 ccctggccca ccctcgtgac caccctgacc tacggcgtgc agtgcttcag ccgctacccc 300 gaccacatga agcagcacga cttcttcaag tccgccatgc ccgaaggcta cgtccaggag 360 cgcaccatct tcttcaagga cgacggcaac tacaagaccc gcgccgaggt gaagttcgag 420 ggcgacaccc tggtgaaccg catcgagctg aagggcatcg acttcaagga ggacggcaac 480 atcctggggc acaagctgga gtacaactac aacagccaca acgtctatat catggccgac 540 aagcagaaga acggcatcaa ggtgaacttc aagatccgcc acaacatcga ggacggcagc 600 gtgcagctcg ccgaccacta ccagcagaac acccccatcg gcgacggccc cgtgctgctg 660 cccgacaacc actacctgag cacccagtcc gccctgagca aagaccccaa cgagaagcgc 720 gatcacatgg tcctgctgga gttcgtgacc gccgccggga tcactctcgg catggacgag 780 ctgtacaagt aa 792 <210> 63 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10(L>R)-EGFP <400> 63 ctagctagca agaggctgag gctacggcgc tgtcatggat ccgtgagcaa gggcgag 57 <210> 64 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10(L>R)-EGFP <400> 64 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 65 <211> 795 <212> DNA <213> Artificial Sequence <220> <223> C10(L>R)-EGFP <400> 65 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcaagaggct gaggctacgg 60 cgctgtcatc gaggatccgt gagcaagggc gaggagctgt tcaccggggt ggtgcccatc 120 ctggtcgagc tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag 180 ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc 240 gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac 300 cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag 360 gagcgcacca tcttcttcaa ggacgacggc aactacaaga cccgcgccga ggtgaagttc 420 gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc 480 aacatcctgg ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc 540 gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc 600 agcgtgcagc tcgccgacca ctaccagcag aacaccccca tcggcgacgg ccccgtgctg 660 ctgcccgaca accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag 720 cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac 780 gagctgtaca agtaa 795 <210> 66 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10(L>K)-EGFP <400> 66 ctagctagcc ggaggctgag gctacggcgc tgtcatggat ccgtgagcaa gggcgag 57 <210> 67 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10(L>K)-EGFP <400> 67 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 68 <211> 795 <212> DNA <213> Artificial Sequence <220> <223> C10(L>K)-EGFP <400> 68 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gccggaggct gaggctacgg 60 cgctgtcatc gaggatccgt gagcaagggc gaggagctgt tcaccggggt ggtgcccatc 120 ctggtcgagc tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag 180 ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc 240 gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac 300 cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag 360 gagcgcacca tcttcttcaa ggacgacggc aactacaaga cccgcgccga ggtgaagttc 420 gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc 480 aacatcctgg ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc 540 gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc 600 agcgtgcagc tcgccgacca ctaccagcag aacaccccca tcggcgacgg ccccgtgctg 660 ctgcccgaca accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag 720 cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac 780 gagctgtaca agtaa 795 <110> IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) <120> Pharmaceutical composition for the prevention and treatment of sepsis comprising LRR domain of NLRX1 protein <130> HPC9900 <160> 68 <170> KoPatentIn 3.0 <210> 1 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> C10, h <400> 1 Leu Arg Leu Arg Leu Arg Arg Cys His Arg 1 5 10 <210> 2 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> C10, m <400> 2 Leu Arg Met Arg Leu Arg Arg Cys His Arg 1 5 10 <210> 3 <211> 10 <212> PRT <213> Artificial Sequence < 220> <223> C10, C>A <400> 3 Leu Arg Leu Arg Leu Arg Arg Ala His Arg 1 5 10 <210> 4 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> C10, L del <400> 4 Arg Leu Arg Leu Arg Arg Cys His Arg 1 5 <210> 5 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> C10, R del <400> 5 Leu Arg Leu Arg Leu Arg Arg Cys His 1 5 <210> 6 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> C10, L>R <400> 6 Arg Arg Leu Arg Leu Arg Arg Cys His Arg 1 5 10 <210> 7 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> C10, L>K <400> 7 Lys Arg Leu Arg Leu Arg Arg Cys His Arg 1 5 10 <210> 8 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> TP <400> 8 Lys Lys Arg Arg Lys Arg 1 5 <210> 9 <211> 9 <212> PRT < 213> Artificial Sequence <220> <223> TB <400> 9 Leu Arg Leu Leu Arg Leu Lys Leu Lys 1 5 <210> 10 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> TAT <400> 10 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg 1 5 10 <210> 11 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> dNP2 <400> 11 Lys Ile Lys Lys Val Lys Lys Lys Gly Arg Lys Gly Ser Lys Ile Lys 1 5 10 15 Lys Val Lys Lys Lys Gly Arg Lys 20 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> C10, h <400> 12 ctcaggctga ggctacggcg ctgtcatcga 30 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> C10, m <400> 13 ctcaggatgc ggctgaggcg ctgtcatcga 30 <210> 14 <211 > 30 <212> DNA <213> Artificial Sequence <220> <223> C10, C>A <400> 14 ctcaggctga ggctacggcg cgctcatcga 30 <210> 15 <211> 27 <212> DNA <213> Artificial Sequence <220> < 223> C10, L del <400> 15 aggctgaggc tacggcgctg tcatcga 27 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> C10, R del <400> 16 ctcaggctga ggctacggcg ctgtcat 27 < 210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> C10, L>R <400> 17 aagaggctga ggctacggcg ctgtcat 27 <210> 18 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> C10, L>K <400> 18 cggaggctga ggctacggcg ctgtcat 27 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TP <400> 19 aagaagagga gaaaaaggaa a 21 <210> 20 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> TB <400> 20 ctgcgtctgc tgaggctcaa gttaaaa 27 <210> 21 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> TAT <400> 21 tatggacgca agaagcgccg ccagcgccgc cgc 33 <210> 22 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> dNP2 <400> 22 aaaattaaaa aagtcaagaa gaaaggaaga aaaggatcca aaattaaaaa agtcaagaag 60 aaaggaagaa aa 72 <210> 23 <211> 975 <212> PRT <213> Artificial Sequence <220> <223> NLRX1 <400> 23 Met Arg Trp Gly Cys His Leu Pro Arg Thr Ser Trp Gly Ser Gly Leu 1 5 10 15 Gly Arg Thr Pro Gln Leu Pro Asp Glu His Ile Ser Phe Leu Ile Gln 20 25 30 Trp Ser Trp Pro Phe Lys Gly Val His Pro Leu Arg Pro Pro Arg Ala 35 40 45 Phe Ile Arg Tyr His Gly Asn Ser Ala Asp Ser Ala Pro Pro Pro Gly 50 55 60 Arg His Gly Gln Leu Phe Arg Ser Ile Ser Ala Thr Glu Ala Ile Gln 65 70 75 80 Arg His Arg Arg Asn Leu Thr Glu Trp Phe Ser Arg Leu Pro Arg Glu 85 90 95 Glu Arg Gln Phe Gly Pro Thr Phe Ala Leu Asp Thr Val His Val Asp 100 105 110 Pro Val Ile Arg Glu Ser Thr Pro Asp Glu Leu Leu Arg Pro Ser Thr 115 120 125 Glu Leu Ala Thr Gly His Gln Gln Thr Gln Ala Gly Leu Pro Pro Leu 130 135 140 Ala Leu Ser Gln Leu Phe Asp Pro Asp Ser Cys Gly Arg Arg Val Gln 145 150 155 160 Thr Val Val Leu Tyr Gly Thr Val Gly Thr Gly Lys Ser Thr Leu Val 165 170 175 Arg Lys Met Val Leu Asp Trp Cys Tyr Gly Arg Leu Pro Ala Phe Glu 180 185 190 Leu Leu Ile Pro Phe Ser Cys Glu Asp Leu Ser Ser Leu Gly Ser Thr 195 200 205 Pro Ala Ser Leu Cys Gln Leu Val Thr Gln Arg Tyr Thr Pro Leu Lys 210 215 220 Glu Val Leu Pro Leu Met Thr Ala Ala Gly Ser Arg Leu Leu Phe Val 225 230 235 240 Leu His Gly Leu Glu Arg Leu Asn Leu Asp Phe Arg Leu Ala Gly Thr 245 250 255 Gly Leu Cys Ser Asp Pro Glu Glu Pro Gly Pro Pro Ala Ala Ile Ile 260 265 270 Val Asn Leu Leu Arg Lys Tyr Met Leu Pro Glu Ala Ser Ile Leu Val 275 280 285 Thr Thr Arg Pro Ser Thr Ile Ser Arg Ile Pro Ser Lys Tyr Val Gly 290 295 300 Arg Tyr Gly Glu Ile Cys Gly Phe Ser Asp Thr Asn Leu Gln Lys Leu 305 310 315 320 Tyr Phe Gln Leu Arg Leu Asn Gln Pro Asp Cys Gly Tyr Gly Ala Gly 325 330 335 Gly Ala Ser Val Ser Val Thr Pro Ala Gln Arg Asp Asn Leu Ile Gln 340 345 350 Met Leu Ser Arg Asn Leu Glu Gly His His Gln Ile Ala Ala Ala Cys 355 360 365 Phe Leu Pro Ser Tyr Cys Trp Leu Val Cys Ala Thr Leu His Phe Leu 370 375 380 His Ala Pro Thr Pro Ala Gly Gln Thr Leu Thr Ser Ile Tyr Thr Ser 385 390 395 400 Phe Leu Arg Leu Asn Phe Ser Gly Glu Thr Leu Asp Ser Thr His Thr 405 410 415 Ser Asn Leu Ser Leu Met Ser Tyr Ala Ala Arg Thr Met Gly Lys Leu 420 425 430 Ala Tyr Glu Gly Val Ser Ser Arg Lys Thr Tyr Phe Ser Glu Glu Asp 435 440 445 Val Arg Gly Cys Leu Glu Ala Gly Ile Lys Thr Glu Glu Glu Phe Gln 450 455 460 Leu Leu Gln Ile Phe Arg Arg Asp Ala Leu Arg Phe Phe Leu Ala Pro 465 470 475 480 Cys Val Glu Pro Gly His Leu Gly Thr Phe Val Phe Thr Val Pro Ala 485 490 495 Met Gln Glu Tyr Leu Ala Ala Leu Tyr Ile Val Leu Gly Leu Arg Lys 500 505 510 Thr Ala Leu Gln Arg Val Gly Lys Glu Val Val Glu Phe Val Gly Arg 515 520 525 Val Gly Glu Asp Val Ser Leu Val Leu Gly Ile Val Ala Lys Leu Leu 530 535 540 Pro Leu Arg Ile Leu Pro Leu Leu Phe Asn Leu Leu Lys Val Val Pro 545 550 555 560 Arg Val Phe Gly Arg Met Val Ser Lys Ser Arg Glu Ala Val Ala Gln 565 570 575 Ala Met Val Leu Glu Met Phe Arg Glu Glu Asp Tyr Tyr Asn Asp Asp 580 585 590 Val Leu Asp Gln Met Gly Ala Ser Ile Leu Gly Val Glu Gly Pro Arg 595 600 605 Arg His Pro Asp Glu Pro Ser Glu Asp Glu Val Phe Glu Leu Phe Pro 610 615 620 Met Phe Met Gly Gly Leu Leu Ser Ala His Asn Arg Ala Val Leu Ala 625 630 635 640 Gln Leu Gly Cys Pro Ile Lys Asn Leu Asp Ala Leu Glu Asn Ala Gln 645 650 655 Ala Ile Lys Lys Lys Leu Gly Lys Leu Gly Arg Gln Val Leu Pro Pro 660 665 670 Ser Glu Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe Gln Asn Gln 675 680 685 Arg Phe Ser Ala Glu Val Leu Gly Ser Leu Arg Gln Leu Asn Leu Ala 690 695 700 Gly Val Arg Met Thr Pro Leu Lys Cys Thr Val Val Ala Ser Val Leu 705 710 715 720 Gly Ser Gly Arg His Pro Leu Asp Glu Val Asn Leu Ala Ser Cys Gln 725 730 735 Leu Asp Pro Ala Gly Leu His Thr Leu Met Pro Val Leu Leu Arg Ala 740 745 750 Arg Lys Leu Gly Leu Gln Leu Asn Asn Leu Gly Pro Glu Ala Cys Arg 755 760 765 Asp Leu Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile Thr Thr Leu 770 775 780 Arg Leu Ser Asn Asn Pro Leu Thr Ala Ala Gly Val Gly Leu Leu Met 785 790 795 800 Asp Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu Leu His 805 810 815 Thr Asp Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln Leu Asp 820 825 830 Arg Asn Lys Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly Ala Gly 835 840 845 Asp Thr Val Ala Leu Ala Leu Ala Lys Ala Ala Arg Glu His Pro Ser 850 855 860 Leu Glu Leu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser Glu Gly Arg 865 870 875 880 Gln Val Leu Arg Asp Leu Gly Gly Ser Gly Glu Gly Gly Ala Arg Val 885 890 895 Val Ala Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr Trp Ser Val 900 905 910 Ile Leu Ser Glu Val Gln Arg Asn Val His Ser Trp Asp Pro Leu Arg 915 920 925 Val Gln Arg His Leu Lys Leu Leu Leu Arg Asp Leu Glu Asp Ser Arg 930 935 940 Gly Ala Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu Leu Arg Val Glu 945 950 955 960 Gly Glu Val Lys Thr Leu Leu Glu Gln Leu Gly Gly Ser Gly His 965 970 975 <210> 24 <211> 2928 <212> DNA <213> Artificial Sequence <220> <223> NLRX1 <400> 24 atgaggtggg gctgccattt gcccaggacc tcttggggct ctggcctggg aagaacaccc 60 cagctaccag atgagcatat ctcc ttcttg atccagtgga gctggccctt taaaggggtg 120 catcccctga ggccccctag ggcctttatc cgttaccatg gaaactcggc agacagtgct 180 cccccaccag ggaggcatgg gcagctgttc aggagcatct ctgccacaga agctatccaa 240 aggcatcgcc ggaacctcac cgagtggttt agccgactgc ccagagagga gcgccagttt 300 ggaccaacct ttgctctaga cacagtt cat gttgaccccg tgatccgaga gagcacccca 360 gatgagctgc ttcgcccgtc cacggagctg gccacggggc atcagcaaac ccaggcaggg 420 ctccccccac tggccctgtc tcagcttttt gacccggatt cttgtgggcg ccgcgtgcag 480 accgtggtgt tg tatgggac cgtgggtact ggcaagagca cgttggtacg gaagatggtc 540 ttagactggt gttacgggag actgcctgcc tttgagcttc tcatcccctt ctcctgtgag 600 gacttgtcat ccctgggctc caccccagct tccctgtgcc aacttgtgac ccagcgttac 660 acacccctga aagaggtgtt gcccctgatg actgctgcgg gatcccgcct gctctttgtg 720 ctccatggct tggagcgcct caaccttg ac ttccggctgg caggcacagg gctttgcagt 780 gacccggagg aacccgggcc accagctgcc atcatagtca acctgctgcg caaatacatg 840 cttcccgagg ccagcattct ggtaaccacc cggccttcca ccattagccg aatccctagc 900 aagtatgtgg gccgctatgg tgagatctgt ggcttctctg ataccaacct gcagaagctc 960 tacttccagc tccgccttaa ccagcctgac tgtgggtacg gtgctggggg tgccagtgtc 1020 tcagtcacac cagctcagcg cgacaacctg attcaaatgc tctcccggaa cctggagggg 1080 caccaccaga ttgccgcagc ctgctttctg ccttcctatt gctggcttgt ctgtgctact 1140 ttgcacttcc tgcatgctcc cacacctgct ggt cagaccc tcacaagcat ctataccagc 1200 tttctacgcc tgaacttcag tggggaaaca ctggacagca cccacacgtc caatctatcc 1260 ctgatgtcct atgcagcccg gactatgggc aagctggcct acgagggcgt gtcatcccga 1320 aagacctact tctctgaaga ggatgtccg t ggctgcctgg aagctggcat caagacagag 1380 gaagagtttc aactgcttca gatcttccgc agggacgccc tgaggttttt cctggccccg 1440 tgtgtggaac cagggcacct gggtaccttc gtgttcaccg tgcccgccat gcaggagtat 1500 ctggctgccc tctacatcgt gcttggtttg cgcaagacag ccctgcagcg ggtgggcaaa 1560 gaagtggttg aatttgtggg ccgtgttggg gaagatgtca gcctggtatt gggcattgtg 1620 gccaagctgt tgcccctgcg gattctgcct ctgctcttca acttgctcaa ggtagttccg 1680 cgagtgtttg ggcgcatggt gagtaagagc cgggaggcag tggcccaggc catggtgctg 1740 gagatgttcc gggagga aga ctactacaat gacgatgttc tggatcagat gggtgccagc 1800 atcctgggtg tggagggccc ccggcgccac ccagatgaac cctctgagga tgaagtcttt 1860 gagctcttcc ccatgttcat gggcggactt ctctctgccc acaaccgggc ggtgctggct 1920 cagcttggct gtcccatcaa gaacctggat gccctggaga atgcccaggc catcaagaag 1980 aagctgggga agctgggtcg gcaggtgctg cccccctcgg agcttcttga ccatctcttc 20 40 ttccactatg agttccagaa ccagcgcttc tcagctgagg tgctgggctc cctacgccag 2100 ctcaatttag caggggtgcg catgacaccc ctcaagtgca cagtggtagc ctctgtactg 2160 ggaagtggaa ggcaccccct ggatgaggtg aacttggcct cctgccagct ggatccc gct 2220 gggctacaca ctctcatgcc tgtcctcctg cgtgcccgga aactggggtt gcaactcaac 2280 aatctgggcc ccgaggcctg cagagacctc cgagacctgc tcttacacga tcaatgccag 2340 atcaccactc ttaggctctc caacaaccca ctgacagcag ctggtgtggg cttactgatg 2400 gacgggctgg caggaaacac ttcggtgaca cacctgtctc tgctgcacac tgaccttgga 2460 gacgagggac tggaactgct ggctgcccag ctggaccgaa acaaacaact gcaggagctg 2520 aacgtggcct acaacggtgc tggtgacaca gtggctctgg ccttggctaa ggctgctcgg 2580 gagcaccctt ccctggagct gctgcacctc tacttcaatg agctgagttc agagggccgc 2640 caggtcctgc gggatttggg gggctctggt gaaggtggtg cccgggtcgt agcctcgctg 2700 acagaaggga cggcggtgtc tgagtactgg tcagtgatcc ttagtgaagt ccagcgcaac 2760 gtccacagct gggacccgct ccgggtccag aggcatctca agctgctgct ccgtgatctg 2820 gaggacagcc ggggcgccac ccttaatccc tggcgcaagg ctcagcttct gcgagtggag 2880 ggcgagg tca agactcttct ggagcagctg ggaggttctg gacactga 2928 <210> 25 <211> 301 <212> PRT <213> Artificial Sequence <220> <223> LRR < 400> 25 Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe Gln Asn Gln Arg Phe 1 5 10 15 Ser Ala Glu Val Leu Gly Ser Leu Arg Gln Leu Asn Leu Ala Gly Val 20 25 30 Arg Met Thr Pro Leu Lys Cys Thr Val Val Ala Ser Val Leu Gly Ser 35 40 45 Gly Arg His Pro Leu Asp Glu Val Asn Leu Ala Ser Cys Gln Leu Asp 50 55 60 Pro Ala Gly Leu His Thr Leu Met Pro Val Leu Leu Arg Ala Arg Lys 65 70 75 80 Leu Gly Leu Gln Leu Asn Asn Leu Gly Pro Glu Ala Cys Arg Asp Leu 85 90 95 Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile Thr Leu Arg Leu 100 105 110 Ser Asn Asn Pro Leu Thr Ala Ala Gly Val Gly Leu Leu Met Asp Gly 115 120 125 Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu Leu His Thr Asp 130 135 140 Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln Leu Asp Arg Asn 145 150 155 160 Lys Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly Ala Gly Asp Thr 165 170 175 Val Ala Leu Ala Leu Ala Lys Ala Ala Arg Glu His Pro Ser Leu Glu 180 185 190 Leu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser Glu Gly Arg Gln Val 195 200 205 Leu Arg Asp Leu Gly Gly Ser Gly Glu Gly Gly Ala Arg Val Val Ala 210 215 220 Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr Trp Ser Val Ile Leu 225 230 235 240 Ser Glu Val Gln Arg Asn Val His Ser Trp Asp Pro Leu Arg Val Gln 245 250 255 Arg His Leu Lys Leu Leu Leu Arg Asp Leu Glu Asp Ser Arg Gly Ala 260 265 270 Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu Leu Arg Val Glu Gly Glu 275 280 285 Val Lys Thr Leu Leu Glu Gln Leu Gly Gly Ser Gly His 290 295 300 <210> 26 <211> 903 <212> DNA <213> Artificial Sequence <220> <223> LRR <400> 26 cttcttgacc atctcttctt ccactatgag ttccagaacc agcgcttctc agctga ggtg 60 ctgggctccc tacgccagct caatttagca ggggtgcgca tgacacccct caagtgcaca 120 gtggtagcct ctgtactggg aagtggaagg caccccctgg atgaggtgaa cttggcctcc 180 tgccagctgg atcccgctgg gctacacact ctcatgcctg tcctcctgcg tgcccggaaaa 24 0 ctggggttgc aactcaacaa tctgggcccc gaggcctgca gagacctccg agacctgctc 300 ttacacgatc aatgccagat caccactctt aggctctcca acaacccact gacagcagct 360 ggtgtgggct tactgatgga cgggctggca ggaaacactt cggtgacaca cctgtctctg 420 ctgcacactg accttggaga cgagggactg gaactgctgg ctgcccagct ggaccgaaac 480 aaacaactgc aggagctgaa cgtggcctac aacggtgctg gtgacacagt ggctctggcc 540 ttggctaagg ctgctcggga gcacccttcc ctggagctgc tgcacctcta cttcaatgag 600 ctgagttcag agggccgcca ggtcctgcgg gatttggggg gctctggtga aggtggtgcc 660 cgggtcgtag cctcgctgac agaagggacg gcggtgtctg agtactggtc agtgatcctt 720 agtgaagtcc agcgcaacgt ccacagctgg gacccgctcc gggtccagag gcatctcaag 780 ctgctgctcc gtgatctgga ggacagccgg ggcgccaccc ttaatccctg gcgcaaggct 840 cagcttctgc gagtggaggg cgaggtcaag actcttctgg agcagctggg aggttctgga 900 cac 903 <210> 27 <211> 482 <212> PRT <213> Artificial Sequence <220> <223> NBD <400> 27 Ala Thr Glu Ala Ile Gln Arg His Arg Arg Asn Leu Thr Glu Trp Phe 1 5 10 15 Ser Arg Leu Pro Arg Glu Glu Arg Gln Phe Gly Pro Thr Phe Ala Leu 20 25 30 Asp Thr Val His Val Asp Pro Val Ile Arg Glu Ser Thr Pro Asp Glu 35 40 45 Leu Leu Arg Pro Ser Thr Glu Leu Ala Thr Gly His Gln Gln Thr Gln 50 55 60 Ala Gly Leu Pro Pro Leu Ala Leu Ser Gln Leu Phe Asp Pro Asp Ser 65 70 75 80 Cys Gly Arg Arg Val Gln Thr Val Val Leu Tyr Gly Thr Val Gly Thr 85 90 95 Gly Lys Ser Thr Leu Val Arg Lys Met Val Leu Asp Trp Cys Tyr Gly 100 105 110 Arg Leu Pro Ala Phe Glu Leu Leu Ile Pro Phe Ser Cys Glu Asp Leu 115 120 125 Ser Ser Leu Gly Ser Thr Pro Ala Ser Leu Cys Gln Leu Val Thr Gln 130 135 140 Arg Tyr Thr Pro Leu Lys Glu Val Leu Pro Leu Met Thr Ala Ala Gly 145 150 155 160 Ser Arg Leu Leu Phe Val Leu His Gly Leu Glu Arg Leu Asn Leu Asp 165 170 175 Phe Arg Leu Ala Gly Thr Gly Leu Cys Ser Asp Pro Glu Glu Pro Gly 180 185 190 Pro Pro Ala Ala Ile Ile Val Asn Leu Leu Arg Lys Tyr Met Leu Pro 195 200 205 Glu Ala Ser Ile Leu Val Thr Thr Arg Pro Ser Thr Ile Ser Arg Ile 210 215 220 Pro Ser Lys Tyr Val Gly Arg Tyr Gly Glu Ile Cys Gly Phe Ser Asp 225 230 235 240 Thr Asn Leu Gln Lys Leu Tyr Phe Gln Leu Arg Leu Asn Gln Pro Asp 245 250 255 Cys Gly Tyr Gly Ala Gly Gly Ala Ser Val Ser Val Thr Pro Ala Gln 260 265 270 Arg Asp Asn Leu Ile Gln Met Leu Ser Arg Asn Leu Glu Gly His His 275 280 285 Gln Ile Ala Ala Ala Cys Phe Leu Pro Ser Tyr Cys Trp Leu Val Cys 290 295 300 Ala Thr Leu His Phe Leu His Ala Pro Thr Pro Ala Gly Gln Thr Leu 305 310 315 320 Thr Ser Ile Tyr Thr Ser Phe Leu Arg Leu Asn Phe Ser Gly Glu Thr 325 330 335 Leu Asp Ser Thr His Thr Ser Asn Leu Ser Leu Met Ser Tyr Ala Ala 340 345 350 Arg Thr Met Gly Lys Leu Ala Tyr Glu Gly Val Pro Ser Arg Lys Thr 355 360 365 Tyr Phe Ser Glu Glu Asp Val Arg Gly Cys Leu Glu Ala Gly Ile Lys 370 375 380 Thr Glu Glu Glu Phe Gln Leu Leu Gln Ile Phe Arg Arg Asp Ala Leu 385 390 395 400 Arg Phe Phe Leu Ala Pro Cys Val Glu Pro Gly His Leu Gly Thr Phe 405 410 415 Val Phe Thr Val Pro Ala Met Gln Glu Tyr Leu Ala Ala Leu Tyr Ser 420 425 430 Val Leu Gly Leu Arg Lys Thr Ala Leu Gln Arg Val Gly Lys Glu Val 435 440 445 Val Glu Phe Val Gly Arg Val Gly Glu Asp Val Ser Leu Val Leu Gly 450 455 460 Ile Val Ala Lys Leu Leu Pro Leu Arg Ile Leu Pro Leu Leu Phe Asn 465 470 475 480 Leu Leu <210> 28 <211> 1446 <212> DNA <213> Artificial Sequence <220> <223> NBD <400> 28 gccacagaag ctatccaaag gcatcgccgg aacctcaccg agtggtttag ccgactgccc 60 agagaggagc gccagtttgg accaaccttt gctctagaca cagttcatgt tgaccccgtg 120 atccgagaga gcaccccaga tgagctgctt cgcccgtcca cgg agctggc cacggggcat 180 cagcaaaccc aggcagggct ccccccactg gccctgtctc agctttttga cccggattct 240 tgtgggcgcc gcgtgcagac cgtggtgttg tatgggaccg tgggtactgg caagagcacg 300 ttggtacgga agatggtctt agactggtgt tac gggagac tgcctgcctt tgagcttctc 360 atccccttct cctgtgagga cttgtcatcc ctgggctcca ccccagcttc cctgtgccaa 420 cttgtgaccc agcgttacac acccctgaaa gaggtgttgc ccctgatgac tgctgcggga 480 tcccgcctgc tctttgtgct ccatggcttg gagcgcctca acctt gactt ccggctggca 540 ggcacagggc tttgcagtga cccggaggaa cccgggccac cagctgccat catagtcaac 600 ctgctgcgca aatacatgct tcccgaggcc agcattctgg taaccacccg gccttccacc 660 attagccgaa tccctagcaa gtatgtgggc cgctatggtg agat ctgtgg cttctctgat 720 accaacctgc agaagctcta cttccagctc cgccttaacc agcctgactg tgggtacggt 780 gctgggggtg ccagtgtctc agtcacacca gctcagcgcg acaacctgat tcaaatgctc 840 tcccggaacc tggaggggca ccaccagatt gccgcagcct gctttctgcc ttcctattgc 900 tggcttgtct gtgctacttt gcacttcctg catgctccca cacctgctgg tcagaccctc 960 a caagcatct ataccagctt tctacgcctg aacttcagtg gggaaacact ggacagcacc 1020 cacacgtcca atctatccct gatgtcctat gcagcccgga ctatgggcaa gctggcctac 1080 gagggcgtgc catcccgaaa gacctacttc tctgaagagg atgtccgtgg ctgcctggaa 114 0 gctggcatca agacagagga agagtttcaa ctgcttcaga tcttccgcag ggacgccctg 1200 aggtttttcc tggccccgtg tgtggaacca gggcacctgg gtaccttcgt gttcaccgtg 1260 cccgccatgc aggagtatct ggctgccctc tacagcgtgc ttggtttgcg caagacagcc 1320 ctgcagcggg tgggcaaaga agtggttgaa tttgtgggcc gtgttgggga agatgtca gc 1380 ctggtattgg gcattgtggc caagctgttg cccctgcgga ttctgcctct gctcttcaac 1440 ttgctc 1446 <210> 29 <211> 60 <212> DNA <213> Artificial Sequence <220> <223 > forward primer of C10-LRR <400> 29 ctagctagcc tcaggctgag gctacggcgc tgtcatcgag tcgaccttct tgaccatctc 60 60 <210> 30 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of C10-LRR <400 > 30 aggttctgga cacgaattcc gg 22 <210> 31 <211> 1065 <212> DNA <213> Artificial Sequence <220> <223> C10-LRR <400> 31 atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60 atggctag cc tcaggctgag gctacggcgc tgtcatcgag tcgaccttct tgaccatctc 120 ttcttccact atgagttcca gaaccagcgc ttctcagctg aggtgctggg ctccctacgc 180 cagctcaatt tagcaggggt gcgcatgaca cccctcaagt gcacagtggt agcctctgta 240 ctgggaagtg gaaggcaccc cctggatgag gtgaacttgg cctcctgcca gctggatccc 300 gctgggctac acactctcat gcctgtcctc ctgcgtgccc ggaaactggg gttgcaactc 360 aacaatctgg gccccgaggc ctgcagagac ctccgagacc tgctcttaca cgatcaatgc 420 cagatcacca ctcttaggct ctccaacaac ccactgacag cagctggtgt gggctt actg 480 atggacgggc tggcaggaaa cacttcggtg acacacctgt ctctgctgca cactgacctt 540 ggagacgagg gactggaact gctggctgcc cagctggacc gaaacaaaca actgcaggag 600 ctgaacgtgg cctacaacgg tgctggtgac acagtggctc tggccttggc taaggctgct 660 cgggagcacc cttccctgga gctgctgcac ctctacttca atgagctgag ttcagagggc 720 cgccagg tcc tgcgggattt ggggggctct ggtgaaggtg gtgcccgggt cgtagcctcg 780 ctgacagaag ggacggcggt gtctgagtac tggtcagtga tccttagtga agtccagcgc 840 aacgtccaca gctgggaccc gctccgggtc cagaggcatc tcaagctgct gctccgtgat 900 ctggaggaca gccggggcgc cacccttaat ccctggcgca aggctcagct tctgcgagtg 960 gagggcgagg tcaagactct tctggagcag ctgggaggtt ctggacacga attcgattac 1020 aaggatgacg atgacaagct cgagcaccac caccaccacc actga 1065 <210> 32 <211> 354 <212> PRT <213> Artificial Sequence <220> <223> C10-LRR <400> 32 Met Gly Ser Ser His His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15 Arg Gly Ser His Met Ala Ser Leu Arg Leu Arg Leu Arg Arg Cys His 20 25 30 Arg Val Asp Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe Gln Asn 35 40 45 Gln Arg Phe Ser Ala Glu Val Leu Gly Ser Leu Arg Gln Leu Asn Leu 50 55 60 Ala Gly Val Arg Met Thr Pro Leu Lys Cys Thr Val Val Ala Ser Val 65 70 75 80 Leu Gly Ser Gly Arg His Pro Leu Asp Glu Val Asn Leu Ala Ser Cys 85 90 95 Gln Leu Asp Pro Ala Gly Leu His Thr Leu Met Pro Val Leu Leu Arg 100 105 110 Ala Arg Lys Leu Gly Leu Gln Leu Asn Asn Leu Gly Pro Glu Ala Cys 115 120 125 Arg Asp Leu Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile Thr Thr 130 135 140 Leu Arg Leu Ser Asn Asn Pro Leu Thr Ala Ala Gly Val Gly Leu Leu 145 150 155 160 Met Asp Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu Leu 165 170 175 His Thr Asp Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln Leu 180 185 190 Asp Arg Asn Lys Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly Ala 195 200 205 Gly Asp Thr Val Ala Leu Ala Leu Ala Lys Ala Ala Arg Glu His Pro 210 215 220 Ser Leu Glu Leu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser Glu Gly 225 230 235 240 Arg Gln Val Leu Arg Asp Leu Gly Gly Ser Gly Glu Gly Gly Ala Arg 245 250 255 Val Val Ala Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr Trp Ser 260 265 270 Val Ile Leu Ser Glu Val Gln Arg Asn Val His Ser Trp Asp Pro Leu 275 280 285 Arg Val Gln Arg His Leu Lys Leu Leu Leu Arg Asp Leu Glu Asp Ser 290 295 300 Arg Gly Ala Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu Leu Arg Val 305 310 315 320 Glu Gly Glu Val Lys Thr Leu Leu Glu Gln Leu Gly Gly Ser Gly His 325 330 335 Glu Phe Asp Tyr Lys Asp Asp Asp Asp Lys Leu Glu His His His His 340 345 350 His His <210> 33 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> forward primer of TAT-LRR <400> 33 ctagctagct atggacgcaa gaagcgccgc cagcgccgcc gcgtcgacct tcttgaccat 60 ctc 63 <210> 34 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of TAT-LRR <400> 34 aggttctgga cacgaattcc gg 22 <210 > 35 < 211> 1068 <212> DNA <213> Artificial Sequence <220> <223> TAT-LRR <400> 35 atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60 atggctagct atggacgcaa gaagcgccgc cagcgccgcc gcgtcgacct tcttgaccat 120 ctcttcttcc actatgagtt ccagaaccag cgcttctcag ctgaggtgct gggctcccta 180 cgccagctca atttagcagg ggtgcgcatg acacccctca agtgcacagt ggtagcctct 240 gtactgggaa gtggaaggca ccccctggat gaggtgaact tggcctcctg ccagctggat 300 cccgctgggc tacacactct catgcctgtc ctcctgcgtg cccggaaact ggggttgcaa 360 ctcaacaatc tgggccccga ggcctgcaga g acctccgag acctgctctt acacgatcaa 420 tgccagatca ccactcttag gctctccaac aacccactga cagcagctgg tgtgggctta 480 ctgatggacg ggctggcagg aaacacttcg gtgacacacc tgtctctgct gcacactgac 540 cttggagacg agggactgga actgctggct gcc cagctgg accgaaacaa acaactgcag 600 gagctgaacg tggcctacaa cggtgctggt gacacagtgg ctctggcctt ggctaaggct 660 gctcgggagc acccttccct ggagctgctg cacctctact tcaatgagct gagttcagag 720 ggccgccagg tcctgcggga tttggggggc tctggtgaag gtggtgcccg ggtcgtagcc 780 tcgctgacag aagggacggc ggtgtctgag tactggtcag tgatccttag tgaagtccag 840 cgcaacgtcc acagctggga cccgctccgg gtccagaggc atctcaagct gctgctccgt 900 gatctggagg acagccgggg cgccaccctt aatccctggc gcaaggctca gcttctgcga 960 gtggagggcg aggtcaagac tcttctggag cagctgggag g ttctggaca cgaattcgat 1020 tacaaggatg acgatgacaa gctcgagcac caccaaccacc accactga 1068 <210> 36 <211> 355 <212> PRT <213> Artificial Sequence <220> <223> TAT-LRR <400> 36 Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15 Arg Gly Ser His Met Ala Ser Tyr Gly Arg Lys Lys Arg Arg Gln Arg 20 25 30 Arg Arg Val Asp Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe Gln 35 40 45 Asn Gln Arg Phe Ser Ala Glu Val Leu Gly Ser Leu Arg Gln Leu Asn 50 55 60 Leu Ala Gly Val Arg Met Thr Pro Leu Lys Cys Thr Val Val Ala Ser 65 70 75 80 Val Leu Gly Ser Gly Arg His Pro Leu Asp Glu Val Asn Leu Ala Ser 85 90 95 Cys Gln Leu Asp Pro Ala Gly Leu His Thr Leu Met Pro Val Leu Leu 100 105 110 Arg Ala Arg Lys Leu Gly Leu Gln Leu Asn Leu Gly Pro Glu Ala 115 120 125 Cys Arg Asp Leu Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile Thr 130 135 140 Thr Leu Arg Leu Ser Asn Asn Pro Leu Thr Ala Ala Gly Val Gly Leu 145 150 155 160 Leu Met Asp Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu 165 170 175 Leu His Thr Asp Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln 180 185 190 Leu Asp Arg Asn Lys Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly 195 200 205 Ala Gly Asp Thr Val Ala Leu Ala Leu Ala Lys Ala Ala Arg Glu His 210 215 220 Pro Ser Leu Glu Leu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser Glu 225 230 235 240 Gly Arg Gln Val Leu Arg Asp Leu Gly Gly Ser Gly Glu Gly Gly Ala 245 250 255 Arg Val Val Ala Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr Trp 260 265 270 Ser Val Ile Leu Ser Glu Val Gln Arg Asn Val His Ser Trp Asp Pro 275 280 285 Leu Arg Val Gln Arg His Leu Lys Leu Leu Leu Arg Asp Leu Glu Asp 290 295 300 Ser Arg Gly Ala Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu Leu Arg 305 310 315 320 Val Glu Gly Glu Val Lys Thr Leu Leu Glu Gln Leu Gly Gly Ser Gly 325 330 335 His Glu Phe Asp Tyr Lys Asp Asp Asp Asp Lys Leu Glu His His 340 345 355 <210> 37 <210> 37 <211> 62 <212> DNA <213> Artificial sequence <220> <223> Forward Primer of DNP2-LRR <400> 37 CGGCTAAAAAAAAaaaaaaaaaaaaaaaaaaaaaaaaa of GA aaggaagaa AGTCGACCTT CTTGACCATC 60 TC 62 < 210> 38 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of dNP2-LRR <400> 38 ccggaattcg tgtccagaac ct 22 <210> 39 <211> 981 <212> DNA <213 > Artificial Sequence <220> <223> dNP2-LRR <400> 39 aagatcaaga aggttaaaaa aaagggtcgc aagggctcta aaattaaaaa agtcaagaag 60 aaaggaagaa aagtcgacct tcttgaccat ctcttcttcc actatgagtt ccagaaccag 120 cgcttctcag ctgaggtgct gggctcccta cgccagctca atttagcagg ggtgcgcatg 180 acacccctca agtgcacagt ggtagcctct gtactgggaa gtggaaggca ccccctggat 240 gaggtgaact tggcctcctg ccagctggat cccgctgggc tacacactct catgcctgtc 300 ctcctgcgtg cccggaaact ggggttgcaa ctcaacaatc tgggccccga ggcctgcaga 360 gacctccgag acctgctctt acacgatcaa tgccagatca ccactcttag gctctccaac 420 aacccactga cagcagctgg tgtgggctta ctgatggacg ggctggcagg aa acacttcg 480 gtgacacacc tgtctctgct gcacactgac cttggagacg agggactgga actgctggct 540 gcccagctgg accgaaacaa acaactgcag gagctgaacg tggcctacaa cggtgctggt 600 gacacagtgg ctctggcctt ggctaaggct gctcgggagc acccttccct ggag ctgctg 660 cacctctact tcaatgagct gagttcagag ggccgccagg tcctgcggga tttggggggc 720 tctggtgaag gtggtgcccg ggtcgtagcc tcgctgacag aagggacggc ggtgtctgag 780 tactggtcag tgatccttag tgaagtccag cgcaacgtcc acagctggga cccgctccgg 840 gtccagaggc atctcaagct gctgctccgt gatctggagg acagccgggg cgccaccctt 900 aatccctggc gcaaggctca gcttctgcga gtggagggcg aggtcaagac tcttctggag 960 cagctgggag gttctggaca c 981 <210> 40 <211> 368 <212> PRT <213> Artificial Sequence < 220> <223> dNP2-LRR <400> 40 Met Gly Ser Ser His His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15 Arg Gly Ser His Met Ala Ser Lys Ile Lys Lys Val Lys Lys Lys Gly 20 25 30 Arg Lys Gly Ser Lys Ile Lys Lys Val Lys Lys Lys Gly Arg Lys Val 35 40 45 Asp Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe Gln Asn Gln Arg 50 55 60 Phe Ser Ala Glu Val Leu Gly Ser Leu Arg Gln Leu Asn Leu Ala Gly 65 70 75 80 Val Arg Met Thr Pro Leu Lys Cys Thr Val Val Ala Ser Val Leu Gly 85 90 95 Ser Gly Arg His Pro Leu Asp Glu Val Asn Leu Ala Ser Cys Gln Leu 100 105 110 Asp Pro Ala Gly Leu His Thr Leu Met Pro Val Leu Leu Arg Ala Arg 115 120 125 Lys Leu Gly Leu Gln Leu Asn Asn Leu Gly Pro Glu Ala Cys Arg Asp 130 135 140 Leu Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile Thr Thr Leu Arg 145 150 155 160 Leu Ser Asn Asn Pro Leu Thr Ala Ala Gly Val Gly Leu Leu Met Asp 165 170 175 Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu Leu His Thr 180 185 190 Asp Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln Leu Asp Arg 195 200 205 Asn Lys Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly Ala Gly Asp 210 215 220 Thr Val Ala Leu Ala Leu Ala Lys Ala Ala Arg Glu His Pro Ser Leu 225 230 235 240 Glu Leu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser Glu Gly Arg Gln 245 250 255 Val Leu Arg Asp Leu Gly Gly Ser Gly Glu Gly Gly Ala Arg Val Val 260 265 270 Ala Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr Trp Ser Val Ile 275 280 285 Leu Ser Glu Val Gln Arg Asn Val His Ser Trp Asp Pro Leu Arg Val 290 295 300 Gln Arg His Leu Lys Leu Leu Leu Arg Asp Leu Glu Asp Ser Arg Gly 305 310 315 320 Ala Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu Leu Arg Val Glu Gly 325 330 335 Glu Val Lys Thr Leu Leu Glu Gln Leu Gly Gly Ser Gly His Glu Phe 340 345 350 Asp Tyr Lys Asp Asp Asp Asp Lys Leu Glu His His His His His 355 360 365 <210> 41 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10-NBD <400> 41 ctagtcgacg ccacagaagc tatccaa 27 <210> 42 <211> 27 <212 > DNA <213> Artificial Sequence <220> <223> Forward primer of C10-NBD <400> 42 ccggaattcg agcaagttga agagcag 27 <210> 43 <211> 1608 <212> DNA <213> Artificial Sequence <220> <223> C10-NBD <400> 43 atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60 atggctagcc tcaggctgag gctacggcgc tgtcatcgag tcgacgccac agaagctatc 120 caaaggcatc gccggaacct caccgagtgg tttagccgac tgcccaga ga ggagcgccag 180 tttggaccaa cctttgctct agacacagtt catgttgacc ccgtgatccg agagagcacc 240 ccagatgagc tgcttcgccc gtccacggag ctggccacgg ggcatcagca aacccaggca 300 gggctccccc cactggccct gtctcagctt tttgacccgg at tcttgtgg gcgccgcgtg 360 cagaccgtgg tgttgtatgg gaccgtgggt actggcaaga gcacgttggt acggaagatg 420 gtcttagact ggtgttacgg gagactgcct gcctttgagc ttctcatccc cttctcctgt 480 gaggacttgt catccctggg ctccacccca gcttccctgt gccaacttgt gacccagcgt 540 tacacacccc tgaaagaggt gttgcccctg atgactgctg cgggatcccg cctgctcttt 600 gtgctccatg gcttggagcg cctcaacctt gacttccggc tggcaggcac agggctttgc 660 agtgacccgg aggaacccgg gccaccagct gccatcatag tcaacctgct gcgcaaatac 7 20 atgcttcccg aggccagcat tctggtaacc acccggcctt ccaccattag ccgaatccct 780 agcaagtatg tgggccgcta tggtgagatc tgtggcttct ctgataccaa cctgcagaag 840 ctctacttcc agctccgcct taaccagcct gactgtgggt acggtgctgg gggtgccagt 900 gtctcagtca caccagctca gcgcgacaac ctgattcaaa tgctctcccg gaacctggag 960 gggcaccacc agattg ccgc agcctgcttt ctgccttcct attgctggct tgtctgtgct 1020 actttgcact tcctgcatgc tcccacacct gctggtcaga ccctcacaag catctatacc 1080 agctttctac gcctgaactt cagtggggaa acactggaca gcacccacac gtccaatcta 1140 tccctga tgt cctatgcagc ccggactatg ggcaagctgg cctacgaggg cgtgccatcc 1200 cgaaagacct acttctctga agaggatgtc cgtggctgcc tggaagctgg catcaagaca 1260 gaggaagagt ttcaactgct tcagatcttc cgcagggacg ccctgaggtt tttcctggcc 1320 ccgtgtgtgg aaccagggca cctgggtacc ttcgtgttca ccgtgcccgc catgcaggag 1380 tatctggctg ccctct acag cgtgcttggt ttgcgcaaga cagccctgca gcgggtgggc 1440 aaagaagtgg ttgaatttgt gggccgtgtt ggggaagatg tcagcctggt attgggcatt 1500 gtggccaagc tgttgcccct gcggattctg cctctgctct tcaacttgct cgaattcgat 1560 tacaaggatg acgatgacaa gctcgagcac caccaccacc accactga 1608 <210> 44 < 211> 1028 <212> PRT <213> Artificial Sequence <220> <223> C10-NBD <400> 44 Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15 Arg Gly Ser His Met Ala Ser Leu Arg Leu Arg Leu Arg Arg Cys His 20 25 30 Arg Val Asp Met Arg Trp Gly Cys His Leu Pro Arg Thr Ser Trp Gly 35 40 45 Ser Gly Leu Gly Arg Thr Pro Gln Leu Pro Asp Glu His Ile Ser Phe 50 55 60 Leu Ile Gln Trp Ser Trp Pro Phe Lys Gly Val His Pro Leu Arg Pro 65 70 75 80 Pro Arg Ala Phe Ile Arg Tyr His Gly Asn Ser Ala Asp Ser Ala Pro 85 90 95 Pro Pro Gly Arg His Gly Gln Leu Phe Arg Ser Ile Ser Ala Thr Glu 100 105 110 Ala Ile Gln Arg His Arg Arg Asn Leu Thr Glu Trp Phe Ser Arg Leu 115 120 125 Pro Arg Glu Glu Arg Gln Phe Gly Pro Thr Phe Ala Leu Asp Thr Val 130 135 140 His Val Asp Pro Val Ile Arg Glu Ser Thr Pro Asp Glu Leu Leu Arg 145 150 155 160 Pro Ser Thr Glu Leu Ala Thr Gly His Gln Gln Thr Gln Ala Gly Leu 165 170 175 Pro Pro Leu Ala Leu Ser Gln Leu Phe Asp Pro Asp Ser Cys Gly Arg 180 185 190 Arg Val Gln Thr Val Val Leu Tyr Gly Thr Val Gly Thr Gly Lys Ser 195 200 205 Thr Leu Val Arg Lys Met Val Leu Asp Trp Cys Tyr Gly Arg Leu Pro 210 215 220 Ala Phe Glu Leu Leu Ile Pro Phe Ser Cys Glu Asp Leu Ser Ser Leu 225 230 235 240 Gly Ser Thr Pro Ala Ser Leu Cys Gln Leu Val Thr Gln Arg Tyr Thr 245 250 255 Pro Leu Lys Glu Val Leu Pro Leu Met Thr Ala Ala Gly Ser Arg Leu 260 265 270 Leu Phe Val Leu His Gly Leu Glu Arg Leu Asn Leu Asp Phe Arg Leu 275 280 285 Ala Gly Thr Gly Leu Cys Ser Asp Pro Glu Glu Pro Gly Pro Pro Ala 290 295 300 Ala Ile Ile Val Asn Leu Leu Arg Lys Tyr Met Leu Pro Glu Ala Ser 305 310 315 320 Ile Leu Val Thr Thr Arg Pro Ser Thr Ile Ser Arg Ile Pro Ser Lys 325 330 335 Tyr Val Gly Arg Tyr Gly Glu Ile Cys Gly Phe Ser Asp Thr Asn Leu 340 345 350 Gln Lys Leu Tyr Phe Gln Leu Arg Leu Asn Gln Pro Asp Cys Gly Tyr 355 360 365 Gly Ala Gly Gly Ala Ser Val Ser Val Thr Pro Ala Gln Arg Asp Asn 370 375 380 Leu Ile Gln Met Leu Ser Arg Asn Leu Glu Gly His His Gln Ile Ala 385 390 395 400 Ala Ala Cys Phe Leu Pro Ser Tyr Cys Trp Leu Val Cys Ala Thr Leu 405 410 415 His Phe Leu His Ala Pro Thr Pro Ala Gly Gln Thr Leu Thr Ser Ile 420 425 430 Tyr Thr Ser Phe Leu Arg Leu Asn Phe Ser Gly Glu Thr Leu Asp Ser 435 440 445 Thr His Thr Ser Asn Leu Ser Leu Met Ser Tyr Ala Ala Arg Thr Met 450 455 460 Gly Lys Leu Ala Tyr Glu Gly Val Ser Ser Arg Lys Thr Tyr Phe Ser 465 470 475 480 Glu Glu Asp Val Arg Gly Cys Leu Glu Ala Gly Ile Lys Thr Glu Glu 485 490 495 Glu Phe Gln Leu Leu Gln Ile Phe Arg Arg Asp Ala Leu Arg Phe Phe 500 505 510 Leu Ala Pro Cys Val Glu Pro Gly His Leu Gly Thr Phe Val Phe Thr 515 520 525 Val Pro Ala Met Gln Glu Tyr Leu Ala Ala Leu Tyr Ile Val Leu Gly 530 535 540 Leu Arg Lys Thr Ala Leu Gln Arg Val Gly Lys Glu Val Val Glu Phe 545 550 555 560 Val Gly Arg Val Gly Glu Asp Val Ser Leu Val Leu Gly Ile Val Ala 565 570 575 Lys Leu Leu Pro Leu Arg Ile Leu Pro Leu Leu Phe Asn Leu Leu Lys 580 585 590 Val Val Pro Arg Val Phe Gly Arg Met Val Ser Lys Ser Arg Glu Ala 595 600 605 Val Ala Gln Ala Met Val Leu Glu Met Phe Arg Glu Glu Asp Tyr Tyr 610 615 620 Asn Asp Asp Val Leu Asp Gln Met Gly Ala Ser Ile Leu Gly Val Glu 625 630 635 640 Gly Pro Arg Arg His Pro Asp Glu Pro Ser Glu Asp Glu Val Phe Glu 645 650 655 Leu Phe Pro Met Phe Met Gly Gly Leu Leu Ser Ala His Asn Arg Ala 660 665 670 Val Leu Ala Gln Leu Gly Cys Pro Ile Lys Asn Leu Asp Ala Leu Glu 675 680 685 Asn Ala Gln Ala Ile Lys Lys Lys Leu Gly Lys Leu Gly Arg Gln Val 690 695 700 Leu Pro Pro Ser Glu Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe 705 710 715 720 Gln Asn Gln Arg Phe Ser Ala Glu Val Leu Gly Ser Leu Arg Gln Leu 725 730 735 Asn Leu Ala Gly Val Arg Met Thr Pro Leu Lys Cys Thr Val Val Ala 740 745 750 Ser Val Leu Gly Ser Gly Arg His Pro Leu Asp Glu Val Asn Leu Ala 755 760 765 Ser Cys Gln Leu Asp Pro Ala Gly Leu His Thr Leu Met Pro Val Leu 770 775 780 Leu Arg Ala Arg Lys Leu Gly Leu Gln Leu Asn Asn Leu Gly Pro Glu 785 790 795 800 Ala Cys Arg Asp Leu Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile 805 810 815 Thr Thr Leu Arg Leu Ser Asn Asn Pro Leu Thr Ala Ala Gly Val Gly 820 825 830 Leu Leu Met Asp Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser 835 840 845 Leu Leu His Thr Asp Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala 850 855 860 Gln Leu Asp Arg Asn Lys Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn 865 870 875 880 Gly Ala Gly Asp Thr Val Ala Leu Ala Leu Ala Lys Ala Ala Arg Glu 885 890 895 His Pro Ser Leu Glu Leu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser 900 905 910 Glu Gly Arg Gln Val Leu Arg Asp Leu Gly Gly Ser Gly Glu Gly Gly 915 920 925 Ala Arg Val Val Ala Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr 930 935 940 Trp Ser Val Ile Leu Ser Glu Val Gln Arg Asn Val His Ser Trp Asp 945 950 955 960 Pro Leu Arg Val Gln Arg His Leu Lys Leu Leu Leu Arg Asp Leu Glu 965 970 975 Asp Ser Arg Gly Ala Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu Leu 980 985 990 Arg Val Glu Gly Glu Val Lys Thr Leu Leu Glu Gln Leu Gly Gly Ser 995 1000 1005 Gly His Glu Phe Asp Tyr Lys Asp Asp Asp Asp Lys Leu Glu His His 1010 1015 1020 His His His His 1025 <210> 45 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10-EGFP <400> 45 ctagctagcc tcaggctgag gctacggcgc tgtcatcgag gatccgtgag caagggcgag 60 60 <210> 46 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10-EGFP <400> 46 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 47 <211 > 795 <212> DNA <213> Artificial Sequence <220> <223> C10-EGFP <400> 47 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcctcaggct gaggctacgg 60 cgctgtcatc gaggatccgt gagcaaggc gaggagctgt tcaccggggt ggtgcccatc 120 ctggtc gagc tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag 180 ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc 240 gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac 300 cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag 360 gagcgcacca tcttcttcaa ggacgacggc aactacaaga cccgcgccga ggtgaagt tc 420 gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc 480 aacatcctgg ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc 540 gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc 600 agcgtgcagc tcgccgacca ctaccagcag aacacccca tcggcgacgg ccccgtgctg 660 ctgcccgaca accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag 720 cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac 780 gagctgtaca agtaa 795 <210> 48 <211> 62 <212> DNA <213> Artificial Sequence <2 20> <223> Forward primer of dNP2-EGFP <400> 48 cggctagcaa aattaaaaaa gtcaagaaga aaggaagaaa agtcgacctt cttgaccatc 60 tc 62 <210> 49 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of dNP2-EGFP <400> 49 cccaagcttt tattacttgt acagctcgtc catgccga ga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 50 <211> 840 <212> DNA <213> Artificial Sequence <220> <223> dNP2-EGFP <400> 50 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcaaaattaa aaaagtcaag 60 aagaaaggaa gaaaaggatc caaaattaaa aaagtcaaga agaaaggaag a aaagaattc 120 gtgagcaagg gcgaggagct gttcaccggg gtggtgccca tcctggtcga gctggacggc 180 gacgtaaacg gccacaagtt cagcgtgtcc ggcgagggcg agggcgatgc cacctacggc 240 aagctgaccc tgaagttcat ctgcaccacc ggcaagctgc ccgtgccctg gcccaccctc 300 gtgaccaccc tgacctacgg cgtgcagtgc ttcagccgct a ccccgacca catgaagcag 360 cacgacttct tcaagtccgc catgcccgaa ggctacgtcc aggagcgcac catcttcttc 420 aaggacgacg gcaactacaa gacccgcgcc gaggtgaagt tcgagggcga caccctggtg 480 aaccgcatcg agctgaaggg catcgacttc aaggaggacg gca acatcct ggggcacaag 540 ctggagtaca actacaacag ccacaacgtc tatatcatgg ccgacaagca gaagaacggc 600 atcaaggtga acttcaagat ccgccacaac atcgaggacg gcagcgtgca gctcgccgac 660 cactaccagc agaacacccc catcggcgac ggccccgtgc tgctgcccga caaccactac 720 ctgagcaccc agtccgccct gagcaaagac cccaacgaga agcgcgatca catggtcctg 7 80 ctggagttcg tgaccgccgc cgggatcact ctcggcatgg acgagctgta caagtaataa 840 840 <210> 51 <211> 60 <212> DNA <213> Artificial Sequence <220> < 223> Forward primer of C10(m)-EGFP <400> 51 ctagctagcc tcaggatgcg gctgaggcgc tgtcatcgag gatccgtgag caagggcgag 60 60 <210> 52 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10 (m)-EGFP <400> 52 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 53 <211> 795 <212> DNA <213> Artificial Sequence <220> <223> C10(m)-EGFP <400> 53 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcctcaggat gaggctacgg 60 cgctgtcatc gaggatccgt gagcaagggc gaggagctgt tcaccggggt ggtgcccatc 120 ctggtcgagc tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag 180 ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc 240 gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac 300 cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgt ccag 360 gagcgcacca tcttcttcaa ggacgacggc aactacaaga cccgcgccga ggtgaagttc 420 gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc 480 aacatcctgg ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc 540 gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc 600 agcgt gcagc tcgccgacca ctaccagcag aacacccca tcggcgacgg ccccgtgctg 660 ctgcccgaca accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag 720 cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac 780 gag ctgtaca agtaa 795 <210> 54 < 211> 60 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10(C>A)-EGFP <400> 54 ctagctagcc tcaggctgag gctacggcgc gctcatcgag gatccgtgag caagggcgag 60 60 <210> 55 <211> 69 < 212> DNA <213> Artificial sequence <220> <223> reverse Primer of C10 (C> a) -EGFP <400> 55 CCCAAGCTTTGTCCGTC CATGCGAGA GTGATCGAGA 60 GaactCCAG 69 <210> 56 <211> 795 <212> DNA <213> Artificial Sequence <220> <223> C10(C>A)-EGFP <400> 56 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcctcaggct gaggctacgg 60 cgcgctcatc gaggatccgt gagcaaggc gaggagctgt tcaccggggt ggtgcccatc 120 ctggtcga gc tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag 180 ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc 240 gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac 300 cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag 360 gagcgcacca tcttcttcaa ggacgacggc aactacaaga cccgcgccga gg tgaagttc 420 gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc 480 aacatcctgg ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc 540 gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc 600 agcgtgcagc tcgccgacca ctaccagcag aacacccca tcggcgacgg ccccgtgctg 660 ctgcccgaca accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag 720 cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac 780 gagctgtaca agtaa 795 <210> 57 <211> 57 <212> DNA <213> Art ificial Sequence <220> <223> Forward primer of C10(L del)-EGFP <400> 57 ctagctagca ggctgaggct acggcgctgt catcgaggat ccgtgagcaa gggcgag 57 <210> 58 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10(L del)-EGFP <400> 58 cccaagcttt tattactt gt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 59 <211> 792 <212> DNA <213> Artificial Sequence <220> <223> C10(L del)-EGFP <400> 59 atgcggggtt ctcatcatca tcatcatcat ggtatggcta g caggctgag gctacggcgc 60 tgtcatcgag gatccgtgag caagggcgag gagctgttca ccggggtggt gcccatcctg 120 gtcgagctgg acggcgacgt aaacggccac aagttcagcg tgtccggcga gggcgagggc 180 gatgccacct acggcaagct gaccctgaag ttcatctgca ccaccggcaa gctgcccgtg 240 ccctggccca ccctcgtgac caccctgacc tacggcgtgc agtgcttcag ccgctacccc 300 gaccacatga agcagcacga cttcttcaag tccgccatgc ccgaaggcta cgtccaggag 360 cgcaccatct tcttcaagga cgacggcaac tacaagaccc gcgccgaggt gaagttcgag 420 ggcgacaccc tggtgaaccg catcgagctg aagggcatcg acttca agga ggacggcaac 480 atcctggggc acaagctgga gtacaactac aacagccaca acgtctatat catggccgac 540 aagcagaaga acggcatcaa ggtgaacttc aagatccgcc acaacatcga ggacggcagc 600 gtgcagctcg ccgaccacta ccagcagaac acccccatcg gcgacggccc cgtgctgctg 660 cccgacaacc actacctgag cacccagtcc gccctgagca aagaccccaa cgagaagcgc 720 gatcacat gg tcctgctgga gttcgtgacc gccgccggga tcactctcgg catggacgag 780 ctgtacaagt aa 792 <210> 60 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10(R del)-EGFP <400> 60 ctagctagcc tcaggctgag gctacggcgc tgtcatggat ccgtgagcaa gggcgag 57 <210> 61 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10(R del)-EGFP <400> 61 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 62 <211> 792 <212> DNA <213> Artificial Sequence <220> <223> C10(R del)-EGFP <400> 62 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcctcaggct gaggctacgg 60 cgctgtcatg gatccgtgag caagggcgag gagctgttca ccggggtggt gcccatcctg 120 gtcgagctgg acggcgacgt aaacggccac aagttcagcg tgtccggcga gggcgagggc 180 gatgccacct acggcaagct gaccctgaag ttcatctgca ccaccggcaa gctgcccgtg 240 ccctggccca ccctcgtgac caccctgacc tacggcgtgc agtgcttcag ccgctacccc 300 gaccacatga agcagcacga cttcttcaag tccgccatgc ccgaaggcta cgtccaggag 360 cgcaccatct tcttcaagga cgacggcaac tacaagaccc gcgccgaggt gaagttcgag 420 ggcgacaccc tggtgaaccg catcgagctg aagggcatcg acttcaagga ggacggcaac 480 atcctggggc acaagctgga gtacaactac aacagccaca acgtctatat catggccgac 540 aagcagaaga acggcatcaa ggtgaacttc aagatccgcc a caacatcga ggacggcagc 600 gtgcagctcg ccgaccacta ccagcagaac acccccatcg gcgacggccc cgtgctgctg 660 cccgacaacc actacctgag cacccagtcc gccctgagca aagaccccaa cgagaagcgc 720 gatcacatgg tcctgctgga gttcgtgacc gccgccgg ga tcactctcgg catggacgag 780 ctgtacaagt aa 792 <210 > 63 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10(L>R)-EGFP <400> 63 ctagctagca agaggctgag gctacggcgc tgtcatggat ccgtgagcaa gggcgag 57 <210> 64 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10(L>R)-EGFP <400> 64 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 65 <211> 795 <21 2 > DNA <213> Artificial Sequence <220> <223> C10(L>R)-EGFP <400> 65 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcaagaggct gaggctacgg 60 cgctgtcatc gaggatccgt gagcaaggc gaggagctgt tcaccggggt ggtgcccatc 120 ctggtc gagc tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag 180 ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc 240 gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac 300 cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag 360 gagcgcacca tcttcttcaa ggacgacggc aactac aaga cccgcgccga ggtgaagttc 420 gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc 480 aacatcctgg ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc 540 gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc 600 agcgtgcagc tcgccgacca ctaccagcag aacacccca tcggcgacgg ccccgtgctg 660 ctgcccgaca accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag 720 cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac 780 gagctgtaca agtaa 795 <210> 66 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of C10(L>K )-EGFP <400> 66 ctagctagcc ggaggctgag gctacggcgc tgtcatggat ccgtgagcaa gggcgag 57 <210> 67 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of C10(L>K)-EGFP <400 > 67 cccaagcttt tattacttgt acagctcgtc catgccgaga gtgatcccgg cggcggtcac 60 gaactccag 69 <210> 68 <211> 795 <212> DNA <213> Artificial Sequence <220> <223> C10(L>K)-EGFP <400> 68 atgcggggt t ctcatcatca tcatcatcat ggtatggcta gccggaggct gaggctacgg 60 cgctgtcatc gaggatccgt gagcaagggc gaggagctgt tcaccggggt ggtgcccatc 120 ctggtcgagc tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag 180 ggcgatgcca cctacggcaa gctgaccctg aagt tcatct gcaccaccgg caagctgccc 240 gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac 300 cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag 360 gagcgcacca tcttcttcaa ggacgacggc a actacaaga cccgcgccga ggtgaagttc 420 gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc 480 aacatcctgg ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc 540 gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc 600 agcgtgcagc tcgccgacca ctaccagcag aacaccccca tcggcgacgg cccc gtgctg 660 ctgcccgaca accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag 720 cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac 780gagctgtaca agtaa 795

Claims (11)

서열번호 1 내지 7, 10, 11 중에서 선택되는 어느 하나로 표시되는 세포투과성 펩티드; 및 서열번호 25로 표시되는 LRR 도메인 영역으로 구성된 펩티드;를 포함하는 융합 단백질을 유효성분으로 하는 패혈증의 예방 또는 치료용 약학 조성물.A cell-penetrating peptide represented by any one selected from SEQ ID NOs: 1 to 7, 10, and 11; and a peptide consisting of the LRR domain region represented by SEQ ID NO: 25. A pharmaceutical composition for the prevention or treatment of sepsis containing a fusion protein as an active ingredient. 삭제delete 삭제delete 제1항에 있어서,
상기 세포투과성 펩티드는 서열번호 1 내지 7로 표시되는 아미노산 서열 중에서 선택되는 어느 하나인 것을 특징으로 하는 패혈증 예방 또는 치료용 조성물.
According to paragraph 1,
A composition for preventing or treating sepsis, wherein the cell-penetrating peptide is any one selected from the amino acid sequences represented by SEQ ID NOs: 1 to 7.
제1항에 있어서,
상기 세포투과성 펩티드는 서열번호 1로 표시되는 아미노산 서열인 것을 특징으로 하는 패혈증 예방 또는 치료용 조성물.
According to paragraph 1,
A composition for preventing or treating sepsis, wherein the cell-penetrating peptide has an amino acid sequence represented by SEQ ID NO: 1.
제1항에 있어서,
상기 융합 단백질은 서열번호 32, 36 및 40으로 표시되는 아미노산 서열 중에서 선택되는 어느 하나로 이루어진 것을 특징으로 하는 패혈증의 예방 또는 치료용 약학 조성물.
According to paragraph 1,
A pharmaceutical composition for the prevention or treatment of sepsis, wherein the fusion protein consists of any one selected from the amino acid sequences represented by SEQ ID NOs: 32, 36, and 40.
제1항에 있어서,
상기 융합 단백질은 서열번호 32로 표시되는 아미노산 서열로 이루어진 것을 특징으로 하는 패혈증의 예방 또는 치료용 약학 조성물.
According to paragraph 1,
The fusion protein is a pharmaceutical composition for preventing or treating sepsis, characterized in that it consists of the amino acid sequence represented by SEQ ID NO: 32.
제1항에 있어서,
상기 융합 단백질은 전체 면역세포(전체 수지상세포) 대비 1.5 내지 2배의 대식세포에 전달되는 것을 특징으로 하는 패혈증의 예방 또는 치료용 약학 조성물.
According to paragraph 1,
A pharmaceutical composition for the prevention or treatment of sepsis, characterized in that the fusion protein is delivered to 1.5 to 2 times the number of macrophages compared to total immune cells (total dendritic cells).
제1항에 있어서,
상기 융합 단백질은 면역세포 대비 대식세포에 특이적으로 작용하여 NF-κB 신호전달 및 인플라마좀 신호전달의 염증조절복합체 경로 활성화를 억제함으로써, 대식세포의 과염증반응을 억제하는 것을 특징으로 하는 패혈증의 예방 또는 치료용 약학 조성물.
According to paragraph 1,
Sepsis, characterized in that the fusion protein acts specifically on macrophages compared to immune cells to inhibit the activation of the inflammation regulatory complex pathway of NF-κB signaling and inflammasome signaling, thereby suppressing the hyper-inflammatory response of macrophages. Pharmaceutical composition for prevention or treatment of.
제1항에 있어서,
상기 패혈증은 그람음성균에 의한 패혈증인 것을 특징으로 하는 패혈증 예방 또는 치료용 약학 조성물.
According to paragraph 1,
A pharmaceutical composition for preventing or treating sepsis, wherein the sepsis is sepsis caused by Gram-negative bacteria.
제1항에 있어서,
상기 패혈증은 그람음성균의 세포막을 구성하는 LPS에 의해 유래된 것을 특징으로 하는 패혈증 예방 또는 치료용 약학 조성물.
According to paragraph 1,
A pharmaceutical composition for preventing or treating sepsis, characterized in that the sepsis is derived from LPS constituting the cell membrane of Gram-negative bacteria.
KR1020210108836A 2021-08-18 2021-08-18 Pharmaceutical composition for the prevention and treatment of sepsis comprising LRR domain of NLRX1 protein KR102648130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210108836A KR102648130B1 (en) 2021-08-18 2021-08-18 Pharmaceutical composition for the prevention and treatment of sepsis comprising LRR domain of NLRX1 protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210108836A KR102648130B1 (en) 2021-08-18 2021-08-18 Pharmaceutical composition for the prevention and treatment of sepsis comprising LRR domain of NLRX1 protein

Publications (2)

Publication Number Publication Date
KR20230026793A KR20230026793A (en) 2023-02-27
KR102648130B1 true KR102648130B1 (en) 2024-03-18

Family

ID=85329304

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210108836A KR102648130B1 (en) 2021-08-18 2021-08-18 Pharmaceutical composition for the prevention and treatment of sepsis comprising LRR domain of NLRX1 protein

Country Status (1)

Country Link
KR (1) KR102648130B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040253615A1 (en) 2003-03-05 2004-12-16 Naohiro Inohara NOD nucleic acids and polypeptides
KR101841211B1 (en) 2014-03-10 2018-03-22 한양대학교 산학협력단 Cell penetrating peptide and method for delivery of biologically active materials using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040253615A1 (en) 2003-03-05 2004-12-16 Naohiro Inohara NOD nucleic acids and polypeptides
KR101841211B1 (en) 2014-03-10 2018-03-22 한양대학교 산학협력단 Cell penetrating peptide and method for delivery of biologically active materials using it

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KOO ET AL., MOLECULAR BIOLOGY REPORTS., 41, 8117~8126, 2014.09.10
KOO ET AL., THERANOSTICS., 10(7), 3138~3150, 2020.02.10
NCBI GENBANK ACCESSION NO. AAH50054.1
구자현., 한양대학교 대학원 생명과학과 학위논문(박사)., 2020, 1~233, 2020.08.31

Also Published As

Publication number Publication date
KR20230026793A (en) 2023-02-27

Similar Documents

Publication Publication Date Title
JP2962555B2 (en) Suppression of eukaryotic pathogens and neoplasms by lytic peptides and stimulation of fibroblasts and lymphocytes
JP2006519014A (en) Anti-inflammatory activity from lactic acid bacteria
US9707272B2 (en) Method for the treatment of acne by administering IL-1β antibody
JPH09508359A (en) Anti-gram positive bacteriological methods and substances
JP5394233B2 (en) Evaluation method and screening method for substances having action to activate / inhibit innate immune mechanism, drug for activating / inhibiting innate immune mechanism, food, and production method thereof
KR101341210B1 (en) Novel antimicrobial peptide and use thereof
KR20060017493A (en) Compositions for mucosal and oral administration comprising hcg fragments
JP4932731B2 (en) Signal peptide, nucleic acid molecule and therapeutic method
CN112079933A (en) Polypeptide analogue and application thereof in medicine for intervening and treating cerebral hemorrhage
KR20090030386A (en) Novel bacteriophage having killing activity specific to salmonella selected from infectious bacteriophages of salmonella gallinarum
KR102648130B1 (en) Pharmaceutical composition for the prevention and treatment of sepsis comprising LRR domain of NLRX1 protein
US9339528B2 (en) Methods for treating epithelium trauma of the intestinal mucosa using interleukin-1 receptor antagonist
KR102010853B1 (en) Oxyasin-6 peptide isolated from Oxya chinensis sinuosa and antimicrobial, antimycotic and antiallergic composition comprising it
KR20210070911A (en) Composition comprising peptides or mixture thereof and medical use thereof
US20190201481A1 (en) Protein p8 derived from lactic acid bacteria and its use as anti-cancer agent
KR102010847B1 (en) Oxyasin-5 peptide isolated from Oxya chinensis sinuosa and antimicrobial, antimycotic and antiallergic composition comprising it
EP1080111B1 (en) The induction of antiobiotic peptides by lait (scd14) protein
KR102044421B1 (en) Freeze-dried formulation for stable storage of antibacterial protein having lytic activity specific to bacillus anthracis and method for preparing the same
US11666629B2 (en) Peptide interacting with toll-like receptor 2 and the composition comprising the same
CN111848817B (en) Multifunctional hybrid peptide with antibacterial, antiviral, immunoregulatory and anti-inflammatory activities, and preparation method and application thereof
KR20220161041A (en) Novel Cell Penetrating Peptides and Uses Thereof
Queiroz et al. Pro-inflammatory effect in mice of CvL, a lectin from the marine sponge Cliona varians
KR102470871B1 (en) Composition for anti-inflammation comprising peptide, Periplanetasin-5 isolated from Periplaneta americana
KR102430003B1 (en) Peptide, zophobacin-1 derived from zophobas atratus orientalis and uses thereof
KR20220051083A (en) A psacotheasin 2 peptide isolated from Psacothea hilaris larva and A use of the peptide

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant