KR102644928B1 - Manufacturing method of tofu for preventing or improving muscle disease using mealworm larva protein - Google Patents
Manufacturing method of tofu for preventing or improving muscle disease using mealworm larva protein Download PDFInfo
- Publication number
- KR102644928B1 KR102644928B1 KR1020210119908A KR20210119908A KR102644928B1 KR 102644928 B1 KR102644928 B1 KR 102644928B1 KR 1020210119908 A KR1020210119908 A KR 1020210119908A KR 20210119908 A KR20210119908 A KR 20210119908A KR 102644928 B1 KR102644928 B1 KR 102644928B1
- Authority
- KR
- South Korea
- Prior art keywords
- tofu
- protein
- brown mealworm
- muscle
- brown
- Prior art date
Links
- 235000013527 bean curd Nutrition 0.000 title claims abstract description 223
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 192
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 163
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 208000029578 Muscle disease Diseases 0.000 title claims abstract description 27
- 235000010469 Glycine max Nutrition 0.000 claims abstract description 119
- 244000068988 Glycine max Species 0.000 claims abstract description 111
- 239000000284 extract Substances 0.000 claims abstract description 101
- 230000001418 larval effect Effects 0.000 claims abstract description 72
- 235000013322 soy milk Nutrition 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000701 coagulant Substances 0.000 claims abstract description 14
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 claims abstract description 13
- 108060008539 Transglutaminase Proteins 0.000 claims abstract description 12
- 235000012209 glucono delta-lactone Nutrition 0.000 claims abstract description 12
- 239000000182 glucono-delta-lactone Substances 0.000 claims abstract description 12
- 229960003681 gluconolactone Drugs 0.000 claims abstract description 12
- 102000003601 transglutaminase Human genes 0.000 claims abstract description 12
- 210000003205 muscle Anatomy 0.000 claims description 58
- 201000000585 muscular atrophy Diseases 0.000 claims description 49
- 230000014509 gene expression Effects 0.000 claims description 39
- 206010028289 Muscle atrophy Diseases 0.000 claims description 37
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 35
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 27
- 230000020763 muscle atrophy Effects 0.000 claims description 23
- 102100040669 F-box only protein 32 Human genes 0.000 claims description 16
- 101710191029 F-box only protein 32 Proteins 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 16
- 108010056852 Myostatin Proteins 0.000 claims description 15
- 102000004472 Myostatin Human genes 0.000 claims description 14
- 102100029709 Tripartite motif-containing protein 54 Human genes 0.000 claims description 13
- 101710154817 Tripartite motif-containing protein 54 Proteins 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000012153 distilled water Substances 0.000 claims description 9
- 230000004220 muscle function Effects 0.000 claims description 9
- 230000003247 decreasing effect Effects 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 8
- 239000002244 precipitate Substances 0.000 claims description 8
- 208000001076 sarcopenia Diseases 0.000 claims description 8
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 6
- 102000005158 Subtilisins Human genes 0.000 claims description 5
- 108010056079 Subtilisins Proteins 0.000 claims description 5
- 239000000047 product Substances 0.000 claims description 5
- 239000011541 reaction mixture Substances 0.000 claims description 5
- 208000010693 Charcot-Marie-Tooth Disease Diseases 0.000 claims description 4
- 208000008144 Rigid spine syndrome Diseases 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 201000006956 rigid spine muscular dystrophy 1 Diseases 0.000 claims description 4
- 206010006895 Cachexia Diseases 0.000 claims description 3
- 238000011033 desalting Methods 0.000 claims description 3
- 238000004108 freeze drying Methods 0.000 claims description 3
- 201000006938 muscular dystrophy Diseases 0.000 claims description 3
- 206010028417 myasthenia gravis Diseases 0.000 claims description 3
- 238000010298 pulverizing process Methods 0.000 claims description 3
- 235000019764 Soybean Meal Nutrition 0.000 claims description 2
- 239000004455 soybean meal Substances 0.000 claims description 2
- 235000013312 flour Nutrition 0.000 abstract description 98
- 230000015572 biosynthetic process Effects 0.000 abstract description 30
- 230000000694 effects Effects 0.000 abstract description 19
- 239000004480 active ingredient Substances 0.000 abstract description 6
- 238000005345 coagulation Methods 0.000 abstract description 3
- 230000015271 coagulation Effects 0.000 abstract description 3
- 239000008213 purified water Substances 0.000 abstract description 3
- 235000018102 proteins Nutrition 0.000 description 144
- WCMOHMXWOOBVMZ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 6-[3-(2,5-dioxopyrrol-1-yl)propanoylamino]hexanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCNC(=O)CCN1C(=O)C=CC1=O WCMOHMXWOOBVMZ-UHFFFAOYSA-N 0.000 description 88
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 74
- 229960003957 dexamethasone Drugs 0.000 description 74
- 235000005911 diet Nutrition 0.000 description 50
- 230000037213 diet Effects 0.000 description 49
- 241000699666 Mus <mouse, genus> Species 0.000 description 48
- 239000000499 gel Substances 0.000 description 39
- 239000000843 powder Substances 0.000 description 35
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 34
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 21
- 235000001014 amino acid Nutrition 0.000 description 17
- 229940024606 amino acid Drugs 0.000 description 17
- 150000001413 amino acids Chemical class 0.000 description 16
- 239000002158 endotoxin Substances 0.000 description 16
- 235000013305 food Nutrition 0.000 description 16
- 229920006008 lipopolysaccharide Polymers 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 235000019621 digestibility Nutrition 0.000 description 15
- 238000010172 mouse model Methods 0.000 description 15
- 230000037396 body weight Effects 0.000 description 14
- 238000003860 storage Methods 0.000 description 14
- 241000699670 Mus sp. Species 0.000 description 13
- 238000000338 in vitro Methods 0.000 description 13
- 238000011282 treatment Methods 0.000 description 13
- ZTOJFFHGPLIVKC-YAFCTCPESA-N (2e)-3-ethyl-2-[(z)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound S\1C2=CC(S(O)(=O)=O)=CC=C2N(CC)C/1=N/N=C1/SC2=CC(S(O)(=O)=O)=CC=C2N1CC ZTOJFFHGPLIVKC-YAFCTCPESA-N 0.000 description 12
- 102000004127 Cytokines Human genes 0.000 description 12
- 108090000695 Cytokines Proteins 0.000 description 12
- 230000007423 decrease Effects 0.000 description 12
- 229930003935 flavonoid Natural products 0.000 description 11
- 235000017173 flavonoids Nutrition 0.000 description 11
- 150000002215 flavonoids Chemical class 0.000 description 11
- 230000000770 proinflammatory effect Effects 0.000 description 11
- 230000003078 antioxidant effect Effects 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 230000002292 Radical scavenging effect Effects 0.000 description 9
- 241000238631 Hexapoda Species 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 8
- HHEAADYXPMHMCT-UHFFFAOYSA-N dpph Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1[N]N(C=1C=CC=CC=1)C1=CC=CC=C1 HHEAADYXPMHMCT-UHFFFAOYSA-N 0.000 description 8
- 108090000765 processed proteins & peptides Proteins 0.000 description 8
- 108090001005 Interleukin-6 Proteins 0.000 description 7
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 7
- 102100040247 Tumor necrosis factor Human genes 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 6
- 235000006708 antioxidants Nutrition 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 150000002632 lipids Chemical class 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 5
- 235000019750 Crude protein Nutrition 0.000 description 5
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 5
- -1 IL-1b Proteins 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000003110 anti-inflammatory effect Effects 0.000 description 5
- 150000005693 branched-chain amino acids Chemical class 0.000 description 5
- 235000019784 crude fat Nutrition 0.000 description 5
- 239000003797 essential amino acid Substances 0.000 description 5
- 235000020776 essential amino acid Nutrition 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 239000003531 protein hydrolysate Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 229920001661 Chitosan Polymers 0.000 description 4
- 102100025014 E3 ubiquitin-protein ligase TRIM63 Human genes 0.000 description 4
- 101710164910 E3 ubiquitin-protein ligase TRIM63 Proteins 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- 150000001720 carbohydrates Chemical class 0.000 description 4
- MGJZITXUQXWAKY-UHFFFAOYSA-N diphenyl-(2,4,6-trinitrophenyl)iminoazanium Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1N=[N+](C=1C=CC=CC=1)C1=CC=CC=C1 MGJZITXUQXWAKY-UHFFFAOYSA-N 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 230000037406 food intake Effects 0.000 description 4
- 230000007760 free radical scavenging Effects 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 235000013824 polyphenols Nutrition 0.000 description 4
- 238000001243 protein synthesis Methods 0.000 description 4
- 239000003642 reactive oxygen metabolite Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 239000001606 7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 108010009736 Protein Hydrolysates Proteins 0.000 description 3
- 235000021120 animal protein Nutrition 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000000975 bioactive effect Effects 0.000 description 3
- 244000309466 calf Species 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 210000004969 inflammatory cell Anatomy 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 210000001087 myotubule Anatomy 0.000 description 3
- DFPMSGMNTNDNHN-ZPHOTFPESA-N naringin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](OC=2C=C3O[C@@H](CC(=O)C3=C(O)C=2)C=2C=CC(O)=CC=2)O[C@H](CO)[C@@H](O)[C@@H]1O DFPMSGMNTNDNHN-ZPHOTFPESA-N 0.000 description 3
- 229930019673 naringin Natural products 0.000 description 3
- 229940052490 naringin Drugs 0.000 description 3
- 235000021590 normal diet Nutrition 0.000 description 3
- 235000021067 refined food Nutrition 0.000 description 3
- 210000002027 skeletal muscle Anatomy 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 2
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 2
- 102100037403 Carbohydrate-responsive element-binding protein Human genes 0.000 description 2
- 101710101477 Carbohydrate-responsive element-binding protein Proteins 0.000 description 2
- 229920002101 Chitin Polymers 0.000 description 2
- 208000019505 Deglutition disease Diseases 0.000 description 2
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- 108700039887 Essential Genes Proteins 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 108091092584 GDNA Proteins 0.000 description 2
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 231100000002 MTT assay Toxicity 0.000 description 2
- 238000000134 MTT assay Methods 0.000 description 2
- 208000029301 Mastication disease Diseases 0.000 description 2
- 108010019160 Pancreatin Proteins 0.000 description 2
- 102000057297 Pepsin A Human genes 0.000 description 2
- 108090000284 Pepsin A Proteins 0.000 description 2
- 108010001267 Protein Subunits Proteins 0.000 description 2
- 102000002067 Protein Subunits Human genes 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 108010073771 Soybean Proteins Proteins 0.000 description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- ZQSIJRDFPHDXIC-UHFFFAOYSA-N daidzein Chemical compound C1=CC(O)=CC=C1C1=COC2=CC(O)=CC=C2C1=O ZQSIJRDFPHDXIC-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000007882 dietary composition Nutrition 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 235000021107 fermented food Nutrition 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 208000002551 irritable bowel syndrome Diseases 0.000 description 2
- CJWQYWQDLBZGPD-UHFFFAOYSA-N isoflavone Natural products C1=C(OC)C(OC)=CC(OC)=C1C1=COC2=C(C=CC(C)(C)O3)C3=C(OC)C=C2C1=O CJWQYWQDLBZGPD-UHFFFAOYSA-N 0.000 description 2
- 150000002515 isoflavone derivatives Chemical class 0.000 description 2
- 235000008696 isoflavones Nutrition 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000018984 mastication Effects 0.000 description 2
- 238000010077 mastication Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 239000011785 micronutrient Substances 0.000 description 2
- 235000013369 micronutrients Nutrition 0.000 description 2
- 230000003387 muscular Effects 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229940055695 pancreatin Drugs 0.000 description 2
- 229940111202 pepsin Drugs 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000007065 protein hydrolysis Effects 0.000 description 2
- 239000012474 protein marker Substances 0.000 description 2
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010517 secondary reaction Methods 0.000 description 2
- 239000012064 sodium phosphate buffer Substances 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 210000002435 tendon Anatomy 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 230000006663 ubiquitin-proteasome pathway Effects 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- PZTGRDMCBZUJDL-UHFFFAOYSA-N 1,2-naphthoquinone-4-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC(=O)C(=O)C2=C1 PZTGRDMCBZUJDL-UHFFFAOYSA-N 0.000 description 1
- 101710102211 11S globulin Proteins 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- DGZSVBBLLGZHSF-UHFFFAOYSA-N 4,4-diethylpiperidine Chemical compound CCC1(CC)CCNCC1 DGZSVBBLLGZHSF-UHFFFAOYSA-N 0.000 description 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- 102100030840 AT-rich interactive domain-containing protein 4B Human genes 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 208000031648 Body Weight Changes Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 101000767750 Carya illinoinensis Vicilin Car i 2.0101 Proteins 0.000 description 1
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101000767759 Corylus avellana Vicilin Cor a 11.0101 Proteins 0.000 description 1
- 206010011376 Crepitations Diseases 0.000 description 1
- 101710190853 Cruciferin Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- 235000014820 Galium aparine Nutrition 0.000 description 1
- 240000005702 Galium aparine Species 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 101000792935 Homo sapiens AT-rich interactive domain-containing protein 4B Proteins 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- 101000622316 Juglans regia Vicilin Jug r 2.0101 Proteins 0.000 description 1
- 238000007696 Kjeldahl method Methods 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 208000002720 Malnutrition Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- 102000002568 Multienzyme Complexes Human genes 0.000 description 1
- 108010093369 Multienzyme Complexes Proteins 0.000 description 1
- 108010074084 Muscle Proteins Proteins 0.000 description 1
- 102000008934 Muscle Proteins Human genes 0.000 description 1
- 241000634212 Penia Species 0.000 description 1
- 101000767757 Pinus koraiensis Vicilin Pin k 2.0101 Proteins 0.000 description 1
- 101000767758 Pistacia vera Vicilin Pis v 3.0101 Proteins 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 101710123874 Protein-glutamine gamma-glutamyltransferase Proteins 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 208000034189 Sclerosis Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 206010051379 Systemic Inflammatory Response Syndrome Diseases 0.000 description 1
- 108700012920 TNF Proteins 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 102000006275 Ubiquitin-Protein Ligases Human genes 0.000 description 1
- 108010083111 Ubiquitin-Protein Ligases Proteins 0.000 description 1
- 229930003270 Vitamin B Natural products 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- ZTOJFFHGPLIVKC-CLFAGFIQSA-N abts Chemical compound S/1C2=CC(S(O)(=O)=O)=CC=C2N(CC)C\1=N\N=C1/SC2=CC(S(O)(=O)=O)=CC=C2N1CC ZTOJFFHGPLIVKC-CLFAGFIQSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003276 anti-hypertensive effect Effects 0.000 description 1
- 230000000433 anti-nutritional effect Effects 0.000 description 1
- 230000002785 anti-thrombosis Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 230000004579 body weight change Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 235000007240 daidzein Nutrition 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 210000003194 forelimb Anatomy 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000006539 genistein Nutrition 0.000 description 1
- TZBJGXHYKVUXJN-UHFFFAOYSA-N genistein Natural products C1=CC(O)=CC=C1C1=COC2=CC(O)=CC(O)=C2C1=O TZBJGXHYKVUXJN-UHFFFAOYSA-N 0.000 description 1
- 229940045109 genistein Drugs 0.000 description 1
- ZCOLJUOHXJRHDI-CMWLGVBASA-N genistein 7-O-beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=C2C(=O)C(C=3C=CC(O)=CC=3)=COC2=C1 ZCOLJUOHXJRHDI-CMWLGVBASA-N 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 108010083391 glycinin Proteins 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000003505 heat denaturation Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000008975 immunomodulatory function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 235000021097 low calorie intake Nutrition 0.000 description 1
- 210000003750 lower gastrointestinal tract Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000001055 magnesium Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 230000037257 muscle growth Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- 235000018343 nutrient deficiency Nutrition 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000008935 nutritious Nutrition 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 229940055726 pantothenic acid Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 235000017807 phytochemicals Nutrition 0.000 description 1
- 229930000223 plant secondary metabolite Natural products 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000004845 protein aggregation Effects 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 235000021075 protein intake Nutrition 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 235000017709 saponins Nutrition 0.000 description 1
- 235000021003 saturated fats Nutrition 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229940001941 soy protein Drugs 0.000 description 1
- 235000019710 soybean protein Nutrition 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000019156 vitamin B Nutrition 0.000 description 1
- 239000011720 vitamin B Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 208000016261 weight loss Diseases 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L11/00—Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
- A23L11/40—Pulse curds
- A23L11/45—Soy bean curds, e.g. tofu
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L3/00—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
- A23L3/40—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
- A23L3/44—Freeze-drying
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L35/00—Food or foodstuffs not provided for in groups A23L5/00 – A23L33/00; Preparation or treatment thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2200/00—Function of food ingredients
- A23V2200/30—Foods, ingredients or supplements having a functional effect on health
- A23V2200/316—Foods, ingredients or supplements having a functional effect on health having an effect on regeneration or building of ligaments or muscles
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2300/00—Processes
- A23V2300/14—Extraction
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2300/00—Processes
- A23V2300/24—Heat, thermal treatment
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2300/00—Processes
- A23V2300/28—Hydrolysis, degree of hydrolysis
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2300/00—Processes
- A23V2300/31—Mechanical treatment
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Mycology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Agronomy & Crop Science (AREA)
- Botany (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 갈색거저리 유충 단백질, 갈색거저리 유충 단백질의 추출물 또는 갈색거저리 유충 단백질 추출물의 가수분해물을 유효성분으로 포함하는 근육 질환의 예방 또는 개선용 두부 제조방법에 관한 것이다. 본 발명의 두부 제조방법은 콩가루, 갈색거저리 유충 단백질 및 정제수 혼합액의 pH를 9.0로 조정한 후 일정 시간 반응시킨 다음 두유액을 분리함으로써 갈색거저리 유충 단백질이 응고시 두부 내에 잘 섞여(융화되어) 품질이 향상되는 효과를 갖는다. 또한, 본 발명에서는 콩가루와 더불어 갈색거저리 유충 단백질을 유효성분으로 포함함에 따라 콩의 겔을 형성 온도에서의 가열 단계와는 별도로 갈색거저리 유충 단백질의 겔 형성 온도에서의 가열 단계를 추가적으로 거침으로써 두유액에서 겔(gel) 형성을 효과적으로 이끌어낼 수 있다. 또한, 본 발명에서는 응고제로 글루코노델타락톤 및 트랜스글루타미나제를 함께 사용함으로써 단백질의 분자량이 매우 작아(갈색거저리 유충 단백질 추출물의 가수분해물) 응고가 되지 않는 두유의 응고를 효과적으로 이끌어낼 수 있다.The present invention relates to a method of producing tofu for preventing or improving muscle disease comprising brown mealworm larval protein, brown mealworm larval protein extract, or hydrolyzate of brown mealworm larval protein extract as an active ingredient. The tofu manufacturing method of the present invention adjusts the pH of the mixture of soybean flour, brown mealworm larval protein, and purified water to 9.0, reacts for a certain period of time, and then separates the soy milk, so that the brown mealworm larval protein is well mixed (integrated) into the tofu when coagulated, thereby improving the quality. This has an improving effect. In addition, in the present invention, since brown mealworm larval protein is included as an active ingredient in addition to soybean flour, a heating step at the gel formation temperature of the brown mealworm larva protein is additionally performed separately from the heating step at the gel formation temperature of the soybeans, thereby producing soymilk. can effectively lead to gel formation. In addition, in the present invention, by using gluconodelta lactone and transglutaminase together as coagulants, the coagulation of soymilk, which does not coagulate, can be effectively induced because the molecular weight of the protein is very small (hydrolyzate of protein extract of brown mealworm larvae). .
Description
본 발명은 갈색거저리 유충 단백질, 갈색거저리 유충 단백질의 추출물 또는 갈색거저리 유충 단백질 추출물의 가수분해물을 유효성분으로 포함하는 근육 질환의 예방 또는 개선용 두부 제조방법에 관한 것이다.The present invention relates to a method of producing tofu for preventing or improving muscle disease comprising brown mealworm larval protein, brown mealworm larval protein extract, or hydrolyzate of brown mealworm larval protein extract as an active ingredient.
근감소증(Sarcopenia)이란 근육(Sarx)의 소실(penia), 즉 골격근육의 양 및 근력이 전반적으로 점차 소실되어 삶의 질을 떨어뜨리고 신체활동의 제한을 일으키는 증후군이며, 미국에서는 근감소증에 2016년 질병코드(ICD-10 code)를 부여하였다. 근육의 감소는 정상적인 일상 생활 기능 수행에 상당한 장애를 일으키며, 만성질환의 증가에도 영향을 미친다. 또한, 노화에 따른 근감소증은 우리나라 노인 5명 중 1명이 겪고 있는 질환이다.Sarcopenia is a syndrome in which the loss (penia) of muscles (Sarx), that is, the overall amount and strength of skeletal muscles is gradually lost, which reduces the quality of life and limits physical activity. In the United States, sarcopenia is diagnosed in 2016. A disease code (ICD-10 code) was assigned. Muscle loss causes significant impairment in performing normal daily life functions and also contributes to the increase in chronic diseases. In addition, sarcopenia due to aging is a disease that affects one in five elderly people in Korea.
근위축증 (Muscle atrophy)은 영양결핍이나 장기간 근육을 사용하지 않은 경우에 유발되는데, 정상적인 단백질의 합성과 분해의 균형이 붕괴되어 단백질이 분해됨으로서 나타나게 된다.Muscle atrophy is caused by nutritional deficiency or lack of use of muscles for a long period of time. It occurs when the balance between normal protein synthesis and breakdown is disrupted and protein is broken down.
세계 인구의 지속적인 증가함에 따라 새로운 식량 급원이 필요하여, 식용곤충이 가장 적합한 단백질 급원으로 주목받고 있으며, 이에 따른 고단백 고영양식품에 대한 요구가 늘어나고 있다.As the world's population continues to increase, new food sources are needed, and edible insects are attracting attention as the most suitable protein source, and the demand for high-protein, high-nutrition foods is increasing accordingly.
식용곤충은 2013년에 국제식량 농업기구(FAO)에서 미래 식량자원으로 식용곤충에 대한 활성화 방안을 발표하며 앞으로 다가올 식량부족 문제를 해결하기 위한 정책 중 하나로 꼽고 있으며 이에 발맞춰 국내에서는 2014년에 식품의약품안전처에서 갈색거저리유충을 새로운 식품원료로 인정하였다.In 2013, the Food and Agriculture Organization of the International Organization (FAO) announced a plan to revitalize edible insects as a future food resource, citing it as one of the policies to solve the upcoming food shortage problem. In line with this, in Korea, in 2014, edible insects were introduced. The Ministry of Drug Safety recognized brown mealworm larvae as a new food ingredient.
식용곤충인 갈색거저리 유충은 식량자원으로써의 충분한 에너지양과 고단백질, 불포화지방산, 미량 영양소(구리, 철, 마그네슘, 망간, 비오틴, 판토텐산 등)가 다량 함유되어 있으며 대량으로 사육하고 공급할 수 있는 시스템이 체계적으로 구축되어 있어 추후 예측되는 식량난을 해결할 고영양 식량자원으로서의 가치가 높다.Brown mealworm larvae, which are edible insects, contain sufficient energy as a food resource and a large amount of high protein, unsaturated fatty acids, and micronutrients (copper, iron, magnesium, manganese, biotin, pantothenic acid, etc.), and there is a system for raising and supplying them in large quantities. Because it is systematically constructed, it has high value as a highly nutritious food resource to solve the food shortage predicted in the future.
단백질의 가수분해를 통해 얻는 생리활성 펩타이드(Bioactive peptides)는 일반적으로 생리적 활성을 가지는 분자량이 작은 펩타이드로 정의되는데, 보통 3~20개의 아미노산으로 구성되어 있고 아미노산의 조성이나 서열에 따라 펩타이드의 활성이 다양하다. 또한, 크기가 작아 생체 내로 쉽게 흡수될 수 있으며, 다양한 기능적 특성을 갖는 장점이 있다.Bioactive peptides obtained through hydrolysis of proteins are generally defined as peptides with low molecular weight and physiological activity. They are usually composed of 3 to 20 amino acids, and the activity of the peptide varies depending on the composition or sequence of the amino acids. Varies. In addition, it has the advantage of being small in size, easily absorbed into the body, and having various functional properties.
한편, 콩 (대두)은 양질의 식물성 단백질 소재로서의 가치가 높고, 높은 불포화지방산 비율과 식이섬유소 등 영양학적으로 우수한 식량 자원이다. 또한, 이소플라본, 페놀, 사포닌과 같은 파이토케미컬을 다량 함유하고 있어 생리적 기능도 주목받고 있다.Meanwhile, soybeans have high value as a high-quality vegetable protein material and are a nutritionally excellent food resource due to their high unsaturated fatty acid ratio and dietary fiber. In addition, it contains a large amount of phytochemicals such as isoflavones, phenols, and saponins, so its physiological functions are also receiving attention.
대두 가공식품은 발효와 비(非)발효 식품으로 나뉘며, 대표적 비발효 식품인 두부는 필수아미노산, 칼슘의 함량이 높고, 비타민 B와 같은 미량 영양소가 풍부하다는 장점이 있다. 또한, 두부는 한국에서 60세 이상 노인들의 섭취가 늘어나는 식품 중 3위를 차지할 만큼, 고령자들에게 친숙한 식품이다. 또한 두부는 부드러운 식감을 갖고 소화율이 높아 치아와 소화능이 약한 노인들에게 선호된다.Soybean processed foods are divided into fermented and non-fermented foods, and tofu, a representative non-fermented food, has the advantage of being high in essential amino acids and calcium, and rich in micronutrients such as vitamin B. In addition, tofu is a food familiar to the elderly, ranking third among the foods consumed by those aged 60 or older in Korea. In addition, tofu has a soft texture and is highly digestible, so it is preferred by elderly people with weak teeth and digestion.
하지만 식물성 단백질은 동물성 단백질에 비해 칼로리 섭취량, 콜레스테롤, 포화지방 섭취가 적은 반면, 단백질 합성에 필수인 분지 아미노산 (BCAA)의 함량이 적고, 체내 흡수량이 낮은 제한점이 있다. 또한, 필수 아미노산의 함량도 동물성 단백질에 비해 낮아 두 단백질 급원을 혼합하여 섭취하는 것이 균형잡힌 아미노산 섭취와 효율적인 단백질 섭취에 도움을 줄 수 있다.However, while vegetable protein has lower calorie intake, cholesterol, and saturated fat intake than animal protein, it has limitations such as low content of branched amino acids (BCAA), which are essential for protein synthesis, and low absorption in the body. In addition, the content of essential amino acids is lower than that of animal protein, so consuming a mixture of the two protein sources can help achieve balanced amino acid intake and efficient protein intake.
그러나, 지금까지 연구된 가공 식품의 근위축 예방 효과는 미비하고, 특히 생리활성 펩타이드의 효과에 있어서는 우유단백질 가수분해물의 체내 항산화 기능 향상과 가공 식품에서의 산화반응 방지, 달걀흰자 가수분해물의 새로운 항균 펩타이드, 항고혈압, 항혈전, 면역조절 기능에 관한 연구 등이 있지만, 근감소증에 효과가 있는 단백질 가수분해물 제조 및 이를 적용한 제품 개발의 측면에서는 연구가 미비한 실정이다.However, the effect of processed foods studied so far on preventing muscle atrophy is minimal, and in particular, the effects of bioactive peptides include improving the antioxidant function of milk protein hydrolyzate in the body, preventing oxidation reactions in processed foods, and developing new antibacterial properties of egg white hydrolyzate. Although there are studies on peptides, antihypertensive, antithrombotic, and immunomodulatory functions, there is insufficient research in terms of manufacturing protein hydrolysates that are effective in sarcopenia and developing products using them.
이러한 배경 하에, 본 발명자는 갈색거저리 유충 단백질, 갈색거저리 유충 단백질의 추출물 또는 갈색거저리 유충 단백질 추출물의 가수분해물을 유효성분으로 이 포함하는 두부를 제조하였으며, 상기 두부의 경우 항산화 및 항염증 활성이 우수하고 근위축을 효과적으로 개선시킬 수 있음을 확인하였다. 또한, 본 발명의 두부의 경우 근위축 개선 효과와 더불어, 위장 소화율이 우수하고 겔(gel) 강도가 낮기 때문에 음식 섭취가 어려운 노인이나 저작 또는 연하 장애를 갖는 환자를 위한 맞춤형 식품으로 유용하게 사용될 수 있음을 확인함으로써 본 발명을 완성하였다. Under this background, the present inventor prepared tofu containing brown mealworm larval protein, an extract of brown mealworm larva protein, or a hydrolyzate of a brown mealworm larval protein extract as an active ingredient, and the tofu had excellent antioxidant and anti-inflammatory activities. It was confirmed that muscle atrophy can be effectively improved. In addition, in the case of the tofu of the present invention, in addition to the effect of improving muscle atrophy, it has excellent gastrointestinal digestibility and low gel strength, so it can be useful as a customized food for elderly people who have difficulty eating food or patients with mastication or swallowing disorders. The present invention was completed by confirming that it exists.
따라서 본 발명의 목적은 갈색거저리 유충 단백질을 이용하여 근육 질환을 효과적으로 예방 또는 개선할 수 있는 두부 제조방법을 제공하는 것이다.Therefore, the purpose of the present invention is to provide a tofu manufacturing method that can effectively prevent or improve muscle disease using brown mealworm larval protein.
상기와 같은 본 발명의 목적을 달성하기 위해서,In order to achieve the purpose of the present invention as described above,
본 발명은 a) 콩가루에 갈색거저리 유충 단백질, 갈색거저리 유충 단백질의 추출물 또는 갈색거저리 유충 단백질 추출물의 가수분해물을 1:1의 중량비로 혼합하고 여기에 증류수를 첨가하여 혼합하는 단계; b) 혼합액의 pH를 9.0으로 조절한 후 30분 내지 60분 동안 혼합한 다음 비지와 두유액으로 분리하는 단계; c) 분리된 두유액의 pH를 7.0으로 조절한 후 70℃에서 1차 가열하는 단계; d) 1차 가열된 두유액을 95℃에서 2차 가열하는 단계; e) 2차 가열된 두유액을 50℃가 되도록 냉각시킨 후 응고제를 첨가하여 혼합하는 단계; f) 혼합물을 50℃에서 1차 반응시키는 단계; 및 g) 1차 반응시킨 혼합물을 85℃에서 2차 반응시킨 후 상온에서 냉각하는 단계를 포함하는, 근육 질환의 예방 또는 개선용 두부 제조방법을 제공한다.The present invention relates to the following steps: a) mixing brown mealworm larval protein, extract of brown mealworm larval protein, or hydrolyzate of brown mealworm larval protein extract with soybean flour at a weight ratio of 1:1 and adding distilled water to the mixture; b) adjusting the pH of the mixed solution to 9.0, mixing for 30 to 60 minutes, and then separating into okara and soymilk; c) adjusting the pH of the separated soymilk to 7.0 and then first heating it at 70°C; d) second heating the first heated soymilk liquid at 95°C; e) Cooling the second heated soy milk liquid to 50°C and then adding and mixing a coagulant; f) subjecting the mixture to a primary reaction at 50°C; and g) subjecting the primary reaction mixture to a secondary reaction at 85°C and then cooling it to room temperature. It provides a method of producing tofu for preventing or improving muscle disease.
본 발명의 일실시예에 있어서, 상기 갈색거저리 유충 단백질의 추출물은 ⅰ) 갈색거저리 유충 건조물을 분쇄하는 단계; ⅱ) 분쇄물에 에탄올을 첨가하여 탈지시키는 단계; ⅲ) 탈지된 갈색거저리 유충에 수산화나트륨을 첨가 혼합한 후 원심분리하여 침전물을 수득하는 단계; 및 ⅳ) 수득한 침전물을 탈염한 후 동결건조하는 단계를 포함하는 과정을 통해 제조될 수 있다.In one embodiment of the present invention, the extract of brown mealworm larvae protein is prepared by: i) pulverizing dried brown mealworm larvae; ii) adding ethanol to the ground product to degrease it; ⅲ) adding sodium hydroxide to the defatted brown mealworm larvae, mixing them and centrifuging them to obtain a precipitate; and iv) desalting the obtained precipitate and then freeze-drying it.
본 발명의 일실시예에 있어서, 상기 갈색거저리 유충 단백질 추출물의 가수분해물은 갈색거저리 유충 단백질의 추출물에 알칼라아제 및 플라보르자임을 순차적으로 처리하여 가수분해시킴으로써 제조될 수 있다.In one embodiment of the present invention, the hydrolyzate of the protein extract of brown mealworm larvae can be prepared by sequentially treating the extract of brown mealworm larvae protein with alcalase and flavorzyme to hydrolyze it.
본 발명의 일실시예에 있어서, 상기 b) 단계를 통해 콩과 갈색거저리 유충 속의 단백질을 추출할 수 있다.In one embodiment of the present invention, proteins in soybean and brown mealworm larvae can be extracted through step b).
본 발명의 일실시예에 있어서, 상기 c) 단계를 통해 갈색거저리 유충 단백질의 겔(gel)을 형성시킬 수 있다.In one embodiment of the present invention, a gel of protein from brown mealworm larvae can be formed through step c).
본 발명의 일실시예에 있어서, 상기 e) 단계에서 응고제는 글루코노델타락톤 및 트랜스글루타미나제일 수 있다.In one embodiment of the present invention, the coagulant in step e) may be gluconodeltalactone and transglutaminase.
본 발명의 일실시예에 있어서, 상기 두부는 근육 감소와 관련한 유전자의 발현을 억제시킬 수 있다.In one embodiment of the present invention, the tofu can suppress the expression of genes related to muscle loss.
본 발명의 일실시예에 있어서, 상기 근육 감소와 관련한 유전자는 마이오스타틴(Myostatin), MuRF 1 및 Atrogin-1로 이루어진 군으로부터 선택될 수 있다.In one embodiment of the present invention, the gene related to muscle loss may be selected from the group consisting of Myostatin, MuRF 1, and Atrogin-1.
본 발명의 일실시예에 있어서, 상기 근육 질환은 근 기능 저하, 근육 감소, 근육 위축, 근육 소모 또는 근육 퇴화로 인한 근육 질환일 수 있다.In one embodiment of the present invention, the muscle disease may be a muscle disease caused by decreased muscle function, muscle loss, muscle atrophy, muscle wasting, or muscle degeneration.
본 발명의 일실시예에 있어서, 상기 근육 질환은 긴장감퇴증(atony), 근위축증(muscular atrophy), 근이영양증(muscular dystrophy), 근무력증, 악액질(cachexia), 경직성 척추 증후군(rigid spinesyndrome), 근위축성 측삭경화증(루게릭병, amyotrophic lateral sclerosis), 샤르코-마리-투스병(Charcot-Marie-Tooth disease) 및 근감소증(sarcopenia)으로 이루어진 군으로부터 선택될 수 있다.In one embodiment of the present invention, the muscle disease is atony, muscular atrophy, muscular dystrophy, myasthenia gravis, cachexia, rigid spine syndrome, and amyotrophic lateral cord syndrome. It may be selected from the group consisting of sclerosis (amyotrophic lateral sclerosis), Charcot-Marie-Tooth disease, and sarcopenia.
본 발명의 두부 제조방법은 콩가루, 갈색거저리 유충 단백질 및 정제수 혼합액의 pH를 9.0로 조정한 후 일정 시간 반응시킨 다음 두유액을 분리함으로써 갈색거저리 유충 단백질이 응고시 두부 내에 잘 섞여(융화되어) 품질이 향상되는 효과를 갖는다. 또한, 본 발명에서는 콩가루와 더불어 갈색거저리 유충 단백질을 유효성분으로 포함함에 따라 콩의 겔 형성 온도에서의 가열 단계와는 별도로 갈색거저리 유충 단백질의 겔 형성 온도에서의 가열 단계를 추가적으로 거침으로써 두유액에서 겔(gel) 형성을 효과적으로 이끌어낼 수 있다. 또한, 본 발명에서는 응고제로 글루코노델타락톤 및 트랜스글루타미나제를 함께 사용함으로써 단백질의 분자량이 매우 작아(갈색거저리 유충 단백질 추출물의 가수분해물) 응고가 되지 않는 두유의 응고를 효과적으로 이끌어낼 수 있다.The tofu manufacturing method of the present invention adjusts the pH of the mixture of soybean flour, brown mealworm larval protein, and purified water to 9.0, reacts for a certain period of time, and then separates the soy milk, so that the brown mealworm larval protein is well mixed (integrated) into the tofu when coagulated, thereby improving the quality. This has an improving effect. In addition, in the present invention, since brown mealworm larvae protein is included as an active ingredient in addition to soybean flour, a heating step at the gel formation temperature of the brown mealworm larvae protein is additionally performed separately from the heating step at the gel formation temperature of the soybeans. It can effectively lead to gel formation. In addition, in the present invention, by using gluconodelta lactone and transglutaminase together as coagulants, the coagulation of soymilk, which does not coagulate, can be effectively induced because the molecular weight of the protein is very small (hydrolyzate of protein extract of brown mealworm larvae). .
한편, 본 발명의 방법으로 제조된 두부는 갈색거저리 유충 단백질, 갈색거저리 유충 단백질의 추출물 또는 갈색거저리 유충 단백질 추출물의 가수분해물을 유효성분으로 포함함으로써 항산화 및 항염증 활성이 우수하고 근위축을 효과적으로 개선시킬 수 있다. 특히, 본 발명의 두부는 근육 감소와 관련한 유전자인 마이오스타틴(Myostatin), MuRF 1 및 Atrogin-1의 발현 억제 효과가 우수한바, 근 기능 저하, 근육 감소, 근육 위축, 근육 소모 또는 근육 퇴화로 인하여 발생되는 다양한 근육 질환을 예방하거나 개선시키는 기능성 식품으로 유용하게 사용될 수 있다. 뿐만 아니라, 본 발명의 두부의 경우 근위축 개선 효과와 더불어, 위장 소화율이 우수하고 겔(gel) 강도가 낮기 때문에 음식 섭취가 어려운 노인이나 저작 또는 연하 장애를 갖는 환자를 위한 맞춤형 식품으로 유용하게 사용될 수 있다.On the other hand, tofu produced by the method of the present invention contains brown mealworm larval protein, brown mealworm larval protein extract, or hydrolyzate of brown mealworm larva protein extract as an active ingredient, so it has excellent antioxidant and anti-inflammatory activity and effectively improves muscle atrophy. You can do it. In particular, the tofu of the present invention has an excellent effect of suppressing the expression of Myostatin, MuRF 1, and Atrogin-1, which are genes related to muscle loss, and can prevent muscle function decline, muscle loss, muscle atrophy, muscle wasting, or muscle degeneration. It can be useful as a functional food to prevent or improve various muscle diseases caused by muscle tissue. In addition, in the case of the tofu of the present invention, in addition to the effect of improving muscle atrophy, it has excellent gastrointestinal digestibility and low gel strength, so it can be useful as a customized food for elderly people who have difficulty eating food or patients with mastication or swallowing disorders. You can.
도 1은 본 발명에 따른 갈색거저리 유충 단백질 추출물(MPI) 및 이의 가수분해물(MPH)의 제조 공정도를 나타낸 것이다.
도 2a는 본 발명에 따른 갈색거저리 유충 단백질 추출물(MPI)의 저장 탄성률(G’) 및 손실 탄성률(G”)을 나타낸 것이고, 2b는 갈색거저리 유충 단백질 추출물(MPI)의 손실 계수(tan δ)를 나타낸 것이다.
도 3은 본 발명에 따른 두유 및 두부의 제조 공정도를 나타낸 것이다.
도 4는 본 발명에 따른 두유 및 두부의 단백질 소단위 변화를 추적하기 위해 SDS-PAGE를 수행한 결과이다(M: 단백질 마커, 1: 100% 콩가루로 제조된 두유, 2: 50% 콩가루와 50% 갈색거저리 유충 분말로 제조된 두유, 3: 콩가루 50% 및 갈색거저리 유충 단백질 추출물 50%로 제조된 두유, 4: 콩가루 50% 및 갈색거저리 유충 단백질 추출물의 가수분해물 50%로 제조된 두유, 5: 100% 콩가루으로 제조된 두부, 6: 콩가루 50% 및 갈색거저리 유충 분말 50%로 제조된 두부, 7: 콩가루 50% 및 갈색거저리 유충 단백질 추출물 50%로 제조된 두부, 8: 콩가루 50% 및 갈색거저리 유충 단백질 추출물의 가수분해물 50%로 제조된 두부).
도 5는 본 발명에 따른 두부의 저장 기간별 pH 변화를 나타낸 것이다(S: 100% 콩가루로 제조된 두부, SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부, SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부, SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부).
도 6은 본 발명에 따른 두부의 인 비트로(In vitro) 회장 소화율을 나타낸 것이다(S: 100% 콩가루로 제조된 두부, SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부, SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부, SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부).
도 7은 본 발명에 따른 두부의 겔 강도를 나타낸 것이다(S: 100% 콩가루로 제조된 두부, SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부, SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부, SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부).
도 8a 및 8b는 각각 본 발명에 따른 두부의 저장 탄성률(G') 및 손실 탄성률(G”)을 나타낸 것이다(S: 100% 콩가루로 제조된 두부, SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부, SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부, SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부).
도 9는 본 발명에 따른 두부의 손실 계수(tan δ)를 나타낸 것이다(S: 100% 콩가루로 제조된 두부, SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부, SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부, SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부).
도 10은 주파수에 따른 두부의 저장 탄성률 (G’)과 손실 탄성률 (G“)을 나타낸 것이다(S: 100% 콩가루로 제조된 두부, SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부, SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부, SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부).
도 11은 본 발명에 따른 두부의 화학 구조를 FTIR 분광광도법을 사용하여 측정한 것이다(S: 100% 콩가루로 제조된 두부, SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부, SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부, SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부, (1): 3274 cm-1, (2): 2916 cm-1, (3): 2849 cm-1, (4): 1742 cm-1, (5): 1628 cm-1, (6): 1541 cm-1, (7) 1039 cm-1).
도 12는 본 발명에 따른 두부 표면의 미세 구조를 보여주는 SEM 이미지이다(S: 100% 콩가루로 제조된 두부, SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부, SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부, SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부).
도 13은 본 발명에 따른 두부의 총 페놀 및 총 플라보노이드 함량을 나타낸 것이다(S: 100% 콩가루로 제조된 두부, SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부, SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부, SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부).
도 14는 본 발명에 따른 두부의 ABTS+ 및 DPPH 라디칼 소거 활성을 나타낸 것이다(S: 100% 콩가루로 제조된 두부, SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부, SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부, SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부).
도 15는 본 발명에 따른 두부 추출물의 농도별(0 ~ 2000 μg/ml) 처리에 따른 세포 생존율을 측정한 것이다(S: 100% 콩가루로 제조된 두부, SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부, SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부, SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부).
도 16은 본 발명에 따른 두부 추출물(200 μg/mL)의 처리에 따른 LPS-유도된 전염증성 사이토카인(TNF-α, IL-1b, IL-6)의 억제 효과를 나타낸 것이다(S: 100% 콩가루로 제조된 두부, SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부, SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부, SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부).
도 17은 덱사메타손으로 유발된 근위축 마우스 모델에서 본 발명의 두부 섭취에 따른 마우스의 체중 변화를 확인한 것이다(DMSO con: DMSO 처리된 일반식이 마우스 그룹, DEXA con: 덱사메타손 처리된 일반식이 마우스 그룹, DEXA-S: 덱사메타손 처리된 S 식이 마우스 그룹, DEXA-SM: 덱사메타손 처리된 SM 식이 마우스 그룹, DEXA-SMPI: 덱사메타손 처리된 SMPI 식이 마우스 그룹, DEXA-SMPH: 덱사메타손 처리된 SMPH 식이 마우스 그룹).
도 18은 덱사메타손으로 유발된 근위축 마우스 모델에서 본 발명의 두부 섭취에 따른 마우스의 악력을 확인한 것이다(DMSO con: DMSO 처리된 일반식이 마우스 그룹, DEXA con: 덱사메타손 처리된 일반식이 마우스 그룹, DEXA-S: 덱사메타손 처리된 S 식이 마우스 그룹, DEXA-SM: 덱사메타손 처리된 SM 식이 마우스 그룹, DEXA-SMPI: 덱사메타손 처리된 SMPI 식이 마우스 그룹, DEXA-SMPH: 덱사메타손 처리된 SMPH 식이 마우스 그룹).
도 19는 덱사메타손으로 유발된 근위축 마우스 모델에서 본 발명의 두부 섭취에 따른 마우스 근섬유의 근단면적을 확인한 것이다(DMSO con: DMSO 처리된 일반식이 마우스 그룹, DEXA con: 덱사메타손 처리된 일반식이 마우스 그룹, DEXA-S: 덱사메타손 처리된 S 식이 마우스 그룹, DEXA-SM: 덱사메타손 처리된 SM 식이 마우스 그룹, DEXA-SMPI: 덱사메타손 처리된 SMPI 식이 마우스 그룹, DEXA-SMPH: 덱사메타손 처리된 SMPH 식이 마우스 그룹).
도 20은 덱사메타손으로 유발된 근위축 마우스 모델에서 본 발명의 두부 섭취에 따른 근육 감소 관련된 유전자(Myostatin, MuRF 1, Atrogin-1)의 발현 수준을 측정한 것이다(DMSO con: DMSO 처리된 일반식이 마우스 그룹, DEXA con: 덱사메타손 처리된 일반식이 마우스 그룹, DEXA-S: 덱사메타손 처리된 S 식이 마우스 그룹, DEXA-SM: 덱사메타손 처리된 SM 식이 마우스 그룹, DEXA-SMPI: 덱사메타손 처리된 SMPI 식이 마우스 그룹, DEXA-SMPH: 덱사메타손 처리된 SMPH 식이 마우스 그룹).
도 21은 덱사메타손으로 유발된 근위축 마우스 모델에서 본 발명의 두부 섭취에 따른 근육 합성 관련된 유전자(MyHC1, MyHC2A, MyHC2X, MyHC2B)의 발현 수준을 측정한 것이다(DMSO con: DMSO 처리된 일반식이 마우스 그룹, DEXA con: 덱사메타손 처리된 일반식이 마우스 그룹, DEXA-S: 덱사메타손 처리된 S 식이 마우스 그룹, DEXA-SM: 덱사메타손 처리된 SM 식이 마우스 그룹, DEXA-SMPI: 덱사메타손 처리된 SMPI 식이 마우스 그룹, DEXA-SMPH: 덱사메타손 처리된 SMPH 식이 마우스 그룹).
도 22는 덱사메타손으로 유발된 근위축 마우스 모델에서 본 발명의 두부(SMPH) 및 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 식이에 따른 마우스의 악력을 확인한 것이다(SMPH+Dexa: 덱사메타손 처리된 SMPH 식이 마우스 그룹, MPH+Dexa: 덱사메타손 처리된 MPH 식이 마우스 그룹).
도 23은 덱사메타손으로 유발된 근위축 마우스 모델에서 본 발명의 두부(SMPH) 및 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 식이에 따른 근육 감소 관련된 유전자의 발현 수준을 측정한 것이다(SMPH+Dexa: 덱사메타손 처리된 SMPH 식이 마우스 그룹, MPH+Dexa: 덱사메타손 처리된 MPH 식이 마우스 그룹).Figure 1 shows a manufacturing process diagram of brown mealworm larval protein extract (MPI) and its hydrolyzate (MPH) according to the present invention.
Figure 2a shows the storage modulus (G') and loss modulus (G") of the brown mealworm larval protein extract (MPI) according to the present invention, and 2b shows the loss coefficient (tan δ) of the brown mealworm larval protein extract (MPI). It represents.
Figure 3 shows a manufacturing process diagram of soymilk and tofu according to the present invention.
Figure 4 shows the results of SDS-PAGE to track changes in protein subunits of soymilk and tofu according to the present invention (M: protein marker, 1: soymilk made with 100% soybean flour, 2: 50% soybean flour and 50% soybean flour) Soymilk made from brown mealworm larva powder, 3: Soymilk made with 50% soybean flour and 50% brown mealworm larva protein extract, 4: Soymilk made with 50% soybean flour and 50% hydrolyzate of brown mealworm larva protein extract, 5: Tofu made with 100% soybean flour, 6: Tofu made with 50% soybean flour and 50% brown mealworm larva powder, 7: Tofu made with 50% soybean flour and 50% brown mealworm larva protein extract, 8: 50% soybean flour and brown. Tofu made with 50% hydrolyzate of mealworm larva protein extract).
Figure 5 shows the pH change by storage period of tofu according to the present invention (S: tofu made with 100% soybean flour, SM: tofu made with 50% soybean flour and 50% brown mealworm larva powder, SMPI: 50% soybean flour and Tofu made with 50% brown mealworm larval protein extract (MPI), SMPH: tofu made with 50% soybean flour and 50% hydrolyzate of brown mealworm larva protein extract (MPH)).
Figure 6 shows the in vitro ileal digestibility of tofu according to the present invention (S: tofu made with 100% soybean flour, SM: tofu made with 50% soybean flour and 50% brown mealworm larva powder, SMPI: Tofu made with 50% soybean flour and 50% brown mealworm larval protein extract (MPI), SMPH: tofu made with 50% soybean flour and 50% hydrolyzate of brown mealworm larval protein extract (MPH)).
Figure 7 shows the gel strength of tofu according to the present invention (S: tofu made with 100% soybean flour, SM: tofu made with 50% soybean flour and 50% brown mealworm larva powder, SMPI: 50% soybean flour and brown mealworm larvae powder Tofu made with 50% larval protein extract (MPI), SMPH: Tofu made with 50% soybean flour and 50% hydrolyzate of brown mealworm larval protein extract (MPH)).
Figures 8a and 8b show the storage modulus (G') and loss modulus (G") of tofu according to the present invention, respectively (S: tofu made with 100% soybean flour, SM: 50% soybean flour and brown mealworm larva powder 50% Tofu made with %, SMPI: Tofu made with 50% soybean flour and 50% brown mealworm larval protein extract (MPI), SMPH: Tofu made with 50% soybean flour and 50% hydrolyzate of brown mealworm larval protein extract (MPH). ).
Figure 9 shows the loss coefficient (tan δ) of tofu according to the present invention (S: tofu made with 100% soybean flour, SM: tofu made with 50% soybean flour and 50% brown mealworm larva powder, SMPI: soybean flour 50% % and tofu made with 50% brown mealworm larval protein extract (MPI), SMPH: tofu made with 50% soybean flour and 50% hydrolyzate of brown mealworm larva protein extract (MPH)).
Figure 10 shows the storage modulus (G') and loss modulus (G") of tofu according to frequency (S: tofu made with 100% soybean flour, SM: made with 50% soybean flour and 50% brown mealworm larva powder) Tofu, SMPI: Tofu prepared from 50% soybean flour and 50% brown mealworm larval protein extract (MPI), SMPH: Tofu prepared from 50% soybean flour and 50% hydrolyzate of brown mealworm larval protein extract (MPH)).
Figure 11 shows the chemical structure of tofu according to the present invention measured using FTIR spectrophotometry (S: tofu made with 100% soybean flour, SM: tofu made with 50% soybean flour and 50% brown mealworm larva powder, SMPI : Tofu made with 50% soybean flour and 50% brown mealworm larval protein extract (MPI), SMPH: Tofu made with 50% soybean flour and 50% hydrolyzate of brown mealworm larva protein extract (MPH), (1): 3274 cm -1 , (2): 2916 cm -1 , (3): 2849 cm -1 , (4): 1742 cm -1 , (5): 1628 cm -1 , (6): 1541 cm -1 , (7 ) 1039 cm -1 ).
Figure 12 is an SEM image showing the microstructure of the tofu surface according to the present invention (S: tofu made with 100% soybean flour, SM: tofu made with 50% soybean flour and 50% brown mealworm larva powder, SMPI: 50% soybean flour and tofu prepared with 50% brown mealworm larval protein extract (MPI), SMPH: tofu prepared with 50% soybean flour and 50% hydrolyzate of brown mealworm larval protein extract (MPH)).
Figure 13 shows the total phenol and total flavonoid content of tofu according to the present invention (S: tofu made with 100% soybean flour, SM: tofu made with 50% soybean flour and 50% brown mealworm larva powder, SMPI: soybean flour 50% % and tofu made with 50% brown mealworm larval protein extract (MPI), SMPH: tofu made with 50% soybean flour and 50% hydrolyzate of brown mealworm larva protein extract (MPH)).
Figure 14 shows the ABTS+ and DPPH radical scavenging activity of tofu according to the present invention (S: tofu made with 100% soybean flour, SM: tofu made with 50% soybean flour and 50% brown mealworm larva powder, SMPI: soybean flour 50% % and tofu made with 50% brown mealworm larval protein extract (MPI), SMPH: tofu made with 50% soybean flour and 50% hydrolyzate of brown mealworm larva protein extract (MPH)).
Figure 15 is a measurement of cell survival rate according to treatment at different concentrations (0 ~ 2000 μg/ml) of tofu extract according to the present invention (S: tofu made with 100% soybean flour, SM: 50% soybean flour and brown mealworm larva powder Tofu made with 50% soybean flour, SMPI: Tofu made with 50% soybean flour and 50% brown mealworm larval protein extract (MPI), SMPH: made with 50% soybean flour and 50% hydrolyzate of brown mealworm larval protein extract (MPH). tofu).
Figure 16 shows the inhibitory effect of LPS-induced pro-inflammatory cytokines (TNF-α, IL-1b, IL-6) according to treatment with tofu extract (200 μg/mL) according to the present invention (S: 100 % Tofu made from soybean flour, SM: Tofu made from 50% soybean flour and 50% brown mealworm larva powder, SMPI: Tofu made from 50% soybean flour and 50% brown mealworm larva protein extract (MPI), SMPH: 50% soybean flour. and tofu prepared with 50% hydrolyzate (MPH) of protein extract of brown mealworm larvae).
Figure 17 confirms the change in body weight of mice according to ingestion of tofu of the present invention in the dexamethasone-induced muscular atrophy mouse model (DMSO con: DMSO-treated regular diet mouse group, DEXA con: dexamethasone-treated regular diet mouse group, DEXA -S: dexamethasone-treated S diet mouse group, DEXA-SM: dexamethasone-treated SM diet mouse group, DEXA-SMPI: dexamethasone-treated SMPI diet mouse group, DEXA-SMPH: dexamethasone-treated SMPH diet mouse group).
Figure 18 shows the grip strength of mice according to ingestion of tofu of the present invention in a mouse model of muscle atrophy induced by dexamethasone (DMSO con: DMSO-treated regular diet mouse group, DEXA con: dexamethasone-treated regular diet mouse group, DEXA- S: dexamethasone treated S diet mouse group, DEXA-SM: dexamethasone treated SM diet mouse group, DEXA-SMPI: dexamethasone treated SMPI diet mouse group, DEXA-SMPH: dexamethasone treated SMPH diet mouse group).
Figure 19 shows the periapical cross-sectional area of mouse muscle fibers according to ingestion of tofu of the present invention in the dexamethasone-induced muscular atrophy mouse model (DMSO con: DMSO-treated regular diet mouse group, DEXA con: dexamethasone-treated regular diet mouse group, DEXA-S: dexamethasone-treated S diet mouse group, DEXA-SM: dexamethasone-treated SM diet mouse group, DEXA-SMPI: dexamethasone-treated SMPI diet mouse group, DEXA-SMPH: dexamethasone-treated SMPH diet mouse group).
Figure 20 shows the measurement of the expression levels of genes (Myostatin, MuRF 1, Atrogin-1) related to muscle loss following ingestion of tofu of the present invention in a dexamethasone-induced muscular atrophy mouse model (DMSO con: DMSO-treated normal diet mouse) Group, DEXA con: dexamethasone treated normal diet mouse group, DEXA-S: dexamethasone treated S diet mouse group, DEXA-SM: dexamethasone treated SM diet mouse group, DEXA-SMPI: dexamethasone treated SMPI diet mouse group, DEXA -SMPH: dexamethasone treated SMPH diet mouse group).
Figure 21 shows the measurement of the expression levels of genes related to muscle synthesis (MyHC1, MyHC2A, MyHC2X, MyHC2B) according to the tofu intake of the present invention in the dexamethasone-induced muscular atrophy mouse model (DMSO con: DMSO-treated regular diet mouse group) , DEXA con: dexamethasone-treated normal diet mouse group, DEXA-S: dexamethasone-treated S diet mouse group, DEXA-SM: dexamethasone-treated SM diet mouse group, DEXA-SMPI: dexamethasone-treated SMPI diet mouse group, DEXA- SMPH: dexamethasone-treated SMPH diet mouse group).
Figure 22 shows the grip strength of mice according to the tofu (SMPH) and hydrolyzate of brown mealworm larval protein extract (MPH) diet of the present invention in a dexamethasone-induced muscular atrophy mouse model (SMPH+Dexa: dexamethasone-treated SMPH diet Mouse group, MPH+Dexa: dexamethasone-treated MPH diet mouse group).
Figure 23 is a measurement of the expression level of genes related to muscle loss according to the tofu (SMPH) and hydrolyzate (MPH) diet of the protein extract of brown mealworm larvae of the present invention in a dexamethasone-induced muscular atrophy mouse model (SMPH+Dexa: Dexamethasone-treated SMPH diet mouse group, MPH+Dexa: dexamethasone-treated MPH diet mouse group).
본 발명은 a) 콩가루에 갈색거저리 유충 단백질, 갈색거저리 유충 단백질의 추출물 또는 갈색거저리 유충 단백질 추출물의 가수분해물을 1:1의 중량비로 혼합하고 여기에 증류수를 첨가하여 혼합하는 단계; b) 혼합액의 pH를 9.0으로 조절한 후 30분 내지 60분 동안 혼합한 다음 비지와 두유액으로 분리하는 단계; c) 분리된 두유액의 pH를 7.0으로 조절한 후 70℃에서 1차 가열하는 단계; d) 1차 가열된 두유액을 95℃에서 2차 가열하는 단계; e) 2차 가열된 두유액을 50℃가 되도록 냉각시킨 후 응고제를 첨가하여 혼합하는 단계; f) 혼합물을 50℃에서 1차 반응시키는 단계; 및 g) 1차 반응시킨 혼합물을 85℃에서 2차 반응시킨 후 상온에서 냉각하는 단계를 포함하는, 근육 질환의 예방 또는 개선용 두부 제조방법에 관한 것이다.The present invention relates to the following steps: a) mixing brown mealworm larval protein, extract of brown mealworm larval protein, or hydrolyzate of brown mealworm larval protein extract with soybean flour at a weight ratio of 1:1 and adding distilled water to the mixture; b) adjusting the pH of the mixed solution to 9.0, mixing for 30 to 60 minutes, and then separating into okara and soymilk; c) adjusting the pH of the separated soymilk to 7.0 and then first heating it at 70°C; d) second heating the first heated soymilk liquid at 95°C; e) Cooling the second heated soymilk liquid to 50°C and then adding and mixing a coagulant; f) subjecting the mixture to a primary reaction at 50°C; and g) subjecting the primary reaction mixture to a secondary reaction at 85°C and then cooling it to room temperature. It relates to a method of producing tofu for preventing or improving muscle disease.
본 발명에서 사용되는 용어 "예방"이란, 상기 두부를 개체가 섭취하는 경우 근육 질환의 발병을 억제시키거나 지연시키는 모든 행위를 의미한다.The term “prevention” used in the present invention refers to all actions that suppress or delay the onset of muscle disease when an individual consumes the tofu.
본 발명에서 사용되는 용어 "개선"이란, 상기 두부를 개체가 섭취하는 경우 근육 질환의 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.The term “improvement” used in the present invention refers to any action in which the symptoms of a muscle disease are improved or beneficially changed when an individual consumes the tofu.
본 발명에서 사용되는 용어 “갈색거저리 유충 단백질”은 갈색거저리의 유충으로부터 유래된 단백질로, 갈색거저리 유충 분말을 의미한다.The term “brown mealworm larval protein” used in the present invention refers to protein derived from brown mealworm larvae and brown mealworm larva powder.
본 발명에서 사용되는 용어 “갈색거저리 유충 단백질의 추출물”은 갈색거저리의 유충에 용매를 가하여 추출된 추출물을 의미한다.The term “extract of protein from brown mealworm larvae” used in the present invention refers to an extract extracted by adding a solvent to brown mealworm larvae.
본 발명에서 사용되는 용어 “갈색거저리 유충 단백질 추출물의 가수분해물”은 갈색거저리 유충 단백질의 추출물에 가수분해효소를 처리한 후 가수분해시켜 제조되는 물질을 의미한다.The term “hydrolyzate of brown mealworm larval protein extract” used in the present invention refers to a substance prepared by treating an extract of brown mealworm larval protein with a hydrolytic enzyme and then hydrolyzing it.
본 발명의 일구체예에서, 상기 갈색거저리 유충 단백질의 추출물은 ⅰ) 갈색거저리 유충 건조물을 분쇄하는 단계; ⅱ) 분쇄물에 에탄올을 첨가하여 탈지시키는 단계; ⅲ) 탈지된 갈색거저리 유충에 수산화나트륨을 첨가 혼합한 후 원심분리하여 침전물을 수득하는 단계; 및 ⅳ) 수득한 침전물을 탈염한 후 동결건조하는 단계를 포함하는 과정을 통해 제조될 수 있다.In one embodiment of the present invention, the extract of brown mealworm larvae protein is prepared by: i) pulverizing dried brown mealworm larvae; ii) adding ethanol to the ground product to degrease it; ⅲ) adding sodium hydroxide to the defatted brown mealworm larvae, mixing them and centrifuging them to obtain a precipitate; and iv) desalting the obtained precipitate and then freeze-drying it.
본 발명의 다른 구체예에서, 상기 갈색거저리 유충 단백질 추출물의 가수분해물은 갈색거저리 유충 단백질의 추출물에 알칼라아제 및 플라보르자임을 순차적으로 처리하여 가수분해시킴으로써 제조될 수 있다.In another embodiment of the present invention, the hydrolyzate of the protein extract of brown mealworm larvae can be prepared by sequentially treating the extract of brown mealworm larvae protein with alcalase and flavorzyme to hydrolyze it.
본 발명의 두부 제조방법에서 상기 a) 단계는 콩가루와 갈색거저리 유충 단백질이 혼합된 혼합액을 제조하는 단계로서, 자세하게는 콩가루에 갈색거저리 유충 단백질, 갈색거저리 유충 단백질의 추출물 또는 갈색거저리 유충 단백질 추출물의 가수분해물을 1:1의 중량비로 혼합한 다음 여기에 증류수를 첨가하여 혼합하는 단계이다.In the tofu manufacturing method of the present invention, step a) is a step of preparing a mixed solution of soybean flour and brown mealworm larval protein. Specifically, soybean flour is mixed with brown mealworm larval protein, brown mealworm larva protein extract, or brown mealworm larval protein extract. This is the step of mixing the hydrolyzate at a weight ratio of 1:1 and then adding and mixing distilled water.
본 발명의 두부 제조방법에서 상기 b) 단계는 혼합액에서 단백질을 추출하고 이러한 단백질이 포함된 두유액을 분리하는 단계로서, 자세하게는 상기 a) 단계를 통해 수득한 혼합액의 pH를 9.0으로 조절한 후 30분 내지 60분 동안 혼합한 다음 거름포를 이용하여 비지와 두유액으로 분리하는 단계이다.In the tofu manufacturing method of the present invention, step b) is a step of extracting proteins from the mixed solution and separating the soy milk containing these proteins. Specifically, after adjusting the pH of the mixed solution obtained through step a) to 9.0, This is the step of mixing for 30 to 60 minutes and then separating into okara and soymilk using a filter cloth.
갈색거저리 유충 단백질은 pH 9에서 용해도가 가장 높기 때문에, 상기 a) 단계를 통해 수득한 혼합액의 pH를 9.0으로 조절함으로써 갈색거저리 유충 단백질이 용액에 녹아 두유가 될 수 있다.Since brown mealworm larval protein has the highest solubility at pH 9, by adjusting the pH of the mixed solution obtained through step a) to 9.0, the brown mealworm larval protein can be dissolved in the solution and become soy milk.
종래 곤충 분말을 이용하여 두부를 제조하는 경우 두유(두유액)을 먼저 제고하고 여기에 곤충 분말을 첨가하는 형태로 두부를 제조함으로써, 두유가 응고되는 경우 두부 내에 분말이 까글거리고 곤충 분말이 잘 섞이지 않은 문제점이 있다.Conventionally, when tofu is manufactured using insect powder, soymilk (soymilk liquid) is first made and then insect powder is added to it. When the soymilk coagulates, the powder inside the tofu crackles and the insect powder does not mix well. There is a problem that is not there.
본 발명에서는 상기 a) 및 b) 단계를 통해 콩가루, 갈색거저리 유충 단백질 및 정제수 혼합액의 pH를 9.0로 조정한 후 일정 시간 반응시킨 다음 두유액을 분리함으로써 갈색거저리 유충 단백질이 응고시 두부 내에 잘 섞여(융화되어) 품질이 향상되는 효과를 도출할 수 있다.In the present invention, the pH of the mixture of soybean flour, brown mealworm larvae protein, and purified water is adjusted to 9.0 through steps a) and b) above, then reacted for a certain period of time, and then the soymilk is separated, so that the brown mealworm larvae protein is well mixed in the tofu when coagulated. (By harmonizing), the effect of improving quality can be derived.
본 발명의 두부 제조방법에서 상기 c) 단계는 두유액을 1차 가열하는 단계로서, 자세하게는 상기 b) 단계를 통해 분리한 두유액의 pH를 7.0으로 조절한 후 69℃ 내지 70℃에서 1차 가열하여 5분 내지 15분간 유지하는 단계이다.In the tofu manufacturing method of the present invention, step c) is a step of first heating the soy milk. Specifically, the pH of the soy milk separated through step b) is adjusted to 7.0, and then the first heat is heated at 69°C to 70°C. This is the step of heating and maintaining for 5 to 15 minutes.
본 발명에서는 갈색거저리 유충 단백질을 포함한 두부를 제조함에 있어서, 갈색거저리 유충 단백질의 겔 형성을 위한 온도 설정을 선행하였으며, 그 결과 69.8℃ 부근에서 저장 탄성률(G’)과 손실 탄성률(G”)의 점접을 형성함으로써 겔 형성 온도(gel point)가 되는 것을 확인하였다.In the present invention, in manufacturing tofu containing brown mealworm larval protein, temperature setting for gel formation of brown mealworm larval protein was preceded, and as a result, the storage modulus (G') and loss modulus (G") were changed around 69.8°C. It was confirmed that the gel formation temperature (gel point) was reached by forming a point contact.
이에, 본 발명의 두부 제조방법에서는 콩의 겔 형성 온도에서의 가열 단계와는 별도로 갈색거저리 유충 단백질의 겔 형성 온도에서의 가열 단계를 추가적으로 포함한다.Accordingly, the tofu manufacturing method of the present invention additionally includes a heating step at the gel formation temperature of brown mealworm larval protein, separately from the heating step at the gel formation temperature of soybeans.
본 발명의 두부 제조방법에서 상기 d) 단계는 두유액을 2차 가열하는 단계로서, 자세하게는 상기 c) 단계를 통해 수득한 1차 가열된 두유액을 95℃에서 2차 가열하여 5분 내지 15분간 유지하는 단계이다.In the tofu manufacturing method of the present invention, step d) is a step of secondary heating the soy milk liquid. Specifically, the primary heated soy milk liquid obtained through step c) is secondarily heated at 95° C. for 5 to 15 minutes. This is a stage that is maintained for a minute.
본 발명의 상기 d) 단계를 통해 콩의 겔(gel)을 형성시킬 수 있다.A soybean gel can be formed through step d) of the present invention.
본 발명의 두부 제조방법에서 상기 e) 단계는 가열된 두유액을 냉각시킨 후 응고제를 첨가하여 혼합하는 단계로서, 자세하게는 상기 d) 단계를 통해 수득한 2차 가열된 두유액을 50℃가 되도록 냉각시킨 후 응고제로서 글루코노델타락톤 및 트랜스글루타미나제를 첨가하여 혼합시키는 단계이다.In the tofu manufacturing method of the present invention, step e) is a step of cooling the heated soymilk and then adding and mixing a coagulant. Specifically, the second heated soymilk obtained through step d) is heated to 50°C. After cooling, glucono delta lactone and transglutaminase are added and mixed as coagulants.
본 발명에서는 응고제로 글루코노델타락톤 및 트랜스글루타미나제를 함께 사용함으로써 단백질의 분자량이 매우 작아(갈색거저리 유충 단백질 추출물의 가수분해물) 응고가 되지 않는 두유의 응고를 효과적으로 이끌어낼 수 있다.In the present invention, by using gluconodelta lactone and transglutaminase together as coagulants, it is possible to effectively coagulate soymilk that does not coagulate because the molecular weight of the protein is very small (hydrolyzate of brown mealworm larval protein extract).
본 발명의 일구체예에서, 상기 글루코노델타락톤은 두유액의 2%(w/v) 농도로 첨가할 수 있으며, 트랜스글루타미나제(Transglutaminase, Tgase)를 5U/g protein이 되도록 첨가할 수 있다.In one embodiment of the present invention, the glucono delta lactone can be added at a concentration of 2% (w/v) of soymilk, and transglutaminase (Tgase) can be added to achieve 5U/g protein. You can.
본 발명의 두부 제조방법에서 상기 f) 단계는 두유액에 응고제를 첨가한 혼합물을 50℃에서 1차 반응시키는 단계로서, 자세하게는 상기 e) 단계를 통해 수득한 혼합물을 50℃에서 4시간 동안 반응시킴으로써 응고제인 트랜스글루타미나제를 활성화시켜 단백질 교차결합반응을 일으킬 수 있다.In the tofu manufacturing method of the present invention, step f) is the first step of reacting a mixture of soy milk with a coagulant at 50°C. Specifically, the mixture obtained through step e) is reacted at 50°C for 4 hours. By doing so, transglutaminase, a coagulant, can be activated to cause a protein cross-linking reaction.
본 발명의 두부 제조방법에서 상기 g) 단계는 1차 반응시킨 혼합물을 85℃에서 2차 반응시킨 후 상온에서 냉각하는 단계로서, 자세하게는 상기 f) 단계를 통해 수득한 1차 반응 혼합물을 85℃에서 30분 동안 반응시킴으로써 트랜스글루타미나제를 불활성화시키고 다른 응고제인 글루코노델타락톤를 활성화시킨 다음 최종적으로 상온에서 냉각함으로써 압착하지 않은 두부를 제조하는 단계이다.In the tofu manufacturing method of the present invention, step g) is a step of subjecting the first reaction mixture to a second reaction at 85°C and then cooling it at room temperature. Specifically, the first reaction mixture obtained through step f) above is reacted at 85°C. This is the step of producing non-pressed tofu by reacting for 30 minutes to inactivate transglutaminase, activating gluconodeltalactone, another coagulant, and finally cooling at room temperature.
본 발명의 상기 a) 내지 g) 단계를 순차적으로 진행하여 제조된 두부는 마이오스타틴(Myostatin), MuRF 1 및 Atrogin-1 등과 같은 근육 감소와 관련한 유전자의 발현을 억제시킴으로써 근육 질환을 예방하거나 또는 개선시키는 효과를 나타낼 수 있다.Tofu prepared by sequentially proceeding with steps a) to g) of the present invention prevents muscle disease by suppressing the expression of genes related to muscle loss such as Myostatin, MuRF 1, and Atrogin-1, or It can have an improving effect.
본 발명에서 사용되는 용어 “마이오스타틴(Myostatin)”은 근육성장을 조절하는 단백질로서 TGF-β(transforming growth factor-β) 계열에 속하고 성장분화 인자 (growth and differentiation factor-8, GDF-8)이다.The term “Myostatin” used in the present invention is a protein that regulates muscle growth, belongs to the TGF-β (transforming growth factor-β) family, and is a growth and differentiation factor (GDF-8). )am.
본 발명에서 사용되는 용어 “MuRF 1”은 E3 유비퀴틴-단백질 리가아제 TRIM63으로도 알려져 있으며, 근위축과 관련된 단백질 마커로서 Muscle RING Finger 1의 약자이다.The term “MuRF 1” used in the present invention, also known as E3 ubiquitin-protein ligase TRIM63, is an abbreviation for Muscle RING Finger 1, a protein marker related to muscle atrophy.
본 발명에서 사용되는 용어 “Atrogin-1”은 상기 MuRF 1와 더불어 근육위축을 유발하는 UPP(ubiquitin proteasome pathway)의 구성요소로서 E3 유비퀴틴 리가아제이며, 근육위축의 초기과정에서 유도되어 근육량의 감소에 선행하여 증가하는 것으로 알려져 있다.The term “Atrogin-1” used in the present invention is an E3 ubiquitin ligase that, along with MuRF 1, is a component of the UPP (ubiquitin proteasome pathway) that causes muscle atrophy. It is induced in the early process of muscle atrophy and causes a decrease in muscle mass. It is known to increase in advance.
본 발명에서 사용되는 용어 “근육 질환”은 근 기능 저하, 근육 감소, 근육 위축, 근육 소모 또는 근육 퇴화로 인해 유발되는 질환을 의미한다.The term “muscle disease” used in the present invention refers to a disease caused by decreased muscle function, muscle loss, muscle atrophy, muscle wasting, or muscle degeneration.
본 발명에서 사용되는 용어 “근”은 심줄, 근육, 건을 포괄적으로 지칭하고, “근 기능”은 근육의 수축에 의해 힘을 발휘하는 능력을 의미하며, 근육이 저항을 이겨내기 위하여 최대한으로 수축력을 발휘할 수 있는 능력인 근력, 근육이 주어진 중량에 얼마나 오랫동안 또는 얼마나 여러 번 수축과 이완을 반복할 수 있는지를 나타내는 능력인 근지구력, 단시간 내에 강한 힘을 발휘하는 능력인 순발력을 포함한다. 이러한 “근 기능”은 근육량에 비례하고, “근 기능 개선”은 근 기능을 더 좋게 향상시키는 것을 의미한다.The term “muscle” used in the present invention comprehensively refers to tendons, muscles, and tendons, and “muscle function” refers to the ability to exert force by muscle contraction, and the muscle has the maximum contractile force to overcome resistance. These include muscular strength, which is the ability to exert force, muscular endurance, which is the ability to express how long or how many times a muscle can repeat contraction and relaxation with a given weight, and quickness, which is the ability to exert strong force in a short period of time. This “muscle function” is proportional to muscle mass, and “improving muscle function” means improving muscle function for the better.
본 발명의 일구체예에서, 상기 근육 질환은 긴장감퇴증(atony), 근위축증(muscular atrophy), 근이영양증(muscular dystrophy), 근무력증, 악액질(cachexia), 경직성 척추 증후군(rigid spinesyndrome), 근위축성 측삭경화증(루게릭병, amyotrophic lateral sclerosis), 경직성 척추 증후군(rigid spinsesyndrome), 샤르코-마리-투스병(Charcot-Marie-Tooth disease) 및 근감소증(sarcopenia)으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것이 바람직하나, 이에 제한되지 않는다. 또한, 상기 근육 소모 또는 퇴화는 전적 요인, 후천적 요인, 노화 등을 원인으로 발생하며, 근육 소모는 근육량의 점진적 손실, 근육, 특히 골격근 또는 수의근 및 심장근육의 약화 및 퇴행을 특징으로 한다.In one embodiment of the present invention, the muscle disease is atony, muscular atrophy, muscular dystrophy, myasthenia gravis, cachexia, rigid spine syndrome, and amyotrophic lateral sclerosis. (Lou Gehrig's disease, amyotrophic lateral sclerosis), rigid spine syndrome (rigid spinsesyndrome), Charcot-Marie-Tooth disease (Charcot-Marie-Tooth disease), and sarcopenia (sarcopenia). It is not limited to this. In addition, the muscle wasting or degeneration occurs due to inherited factors, acquired factors, aging, etc., and muscle wasting is characterized by gradual loss of muscle mass and weakening and degeneration of muscles, especially skeletal muscles, voluntary muscles, and cardiac muscles.
본 발명자는 상기 a) 내지 g) 단계를 순차적으로 진행하여 두부를 제조하였으며, 그 결과 상기 두부가 항산화 및 항염 활성이 우수할 뿐 아니라, 근육 감소 유전자의 발현 감소를 통해 근위축을 효과적으로 개선시킬 수 있음을 확인하였다.The present inventor produced tofu by sequentially performing the steps a) to g) above, and as a result, the tofu not only has excellent antioxidant and anti-inflammatory activities, but can also effectively improve muscle atrophy by reducing the expression of muscle loss genes. It was confirmed that it exists.
자세하게는, 본 발명의 상기 a) 내지 g) 단계를 순차적으로 진행하여 제조된 두부는 총 페놀 및 총 플라보노이드 함량이 높고, ABTS+ 및 DPPH 라디칼 소거 활성이 우수하였다(도 13 및 14 참조). 또한, 본 발명의 상기 a) 내지 g) 단계를 순차적으로 진행하여 제조된 두부는 LPS로 유발된 전염증성 사이토카인(IL-6, TNF-a, IL-1b)의 발현을 효과적으로 억제시켰다(도 16 참조). 참고로, 전염증성 사이토카인은 근원섬유단백질의 분해를 촉진하여 단백질 합성을 감소시키고, 결과적으로 직접적인 근육 소모를 유발할 수 있다. 이에, 전염증성 사이토카인의 발현을 효과적으로 억제시킬 수 있는 경우 근육 분해를 방지할 수 있다.In detail, tofu prepared by sequentially proceeding with steps a) to g) of the present invention had high total phenol and total flavonoid contents and excellent ABTS+ and DPPH radical scavenging activities (see FIGS. 13 and 14). In addition, the tofu prepared by sequentially proceeding with steps a) to g) of the present invention effectively suppressed the expression of pro-inflammatory cytokines (IL-6, TNF-a, IL-1b) induced by LPS (Figure 16). For reference, pro-inflammatory cytokines promote the breakdown of myofibrillar proteins, thereby reducing protein synthesis and, as a result, can directly cause muscle wasting. Accordingly, if the expression of pro-inflammatory cytokines can be effectively suppressed, muscle breakdown can be prevented.
또한, 본 발명의 상기 a) 내지 g) 단계를 순차적으로 진행하여 제조된 두부는 덱사메타손으로 유발된 근위축 마우스 모델에 급이하는 경우 마우스의 악력을 증대시키고(도 18 참조), 근육 감소와 관련한 유전자인 Myostatin, MuRF 1, Atrogin-1의 mRNA 발현을 효과적으로 감소시켰다(도 20 참조). 상기에서도 살펴본 바와 같이, 마이오스타틴은 근육 발달을 억제하고, MuRF 1 및 Atrogin-1은 근육위축을 유발하는 유비퀴틴 효소 복합체의 구성요소에 해당하는바, 이들 유전자의 발현을 감소시킬 수 있는 경우 근육 위축을 방지할 수 있다.In addition, the tofu prepared by sequentially proceeding with steps a) to g) of the present invention increases the grip strength of the mouse when fed to a mouse model of muscular atrophy induced by dexamethasone (see FIG. 18), and has It effectively reduced the mRNA expression of the genes Myostatin, MuRF 1, and Atrogin-1 (see Figure 20). As seen above, myostatin inhibits muscle development, and MuRF 1 and Atrogin-1 are components of the ubiquitin enzyme complex that causes muscle atrophy. If the expression of these genes can be reduced, muscle It can prevent atrophy.
그러므로 본 발명의 상기 a) 내지 g) 단계를 순차적으로 진행하여 제조된 두부는 근감소 및 근위축과 같은 근육 관련 질환을 효과적으로 예방 또는 개선할 수 있다.Therefore, tofu prepared by sequentially proceeding with steps a) to g) of the present invention can effectively prevent or improve muscle-related diseases such as muscle loss and muscle atrophy.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are for illustrating the present invention in more detail, and the scope of the present invention is not limited to these examples.
<실시예><Example>
1. 재료 및 방법1. Materials and Methods
<1-1> 재료 준비<1-1> Material preparation
콩(Glycine max, L.) 가루는 영월농협(영월군, 한국)에서 구입하였다. 갈색거저리 유충은 ㈜이더블 버그(Edible bug Co., 서울, 한국)에서 건조물로 구입하였고, 분쇄 후 1.4mm의 체를 이용하여 파우더 형태로 제조하였다. Glucono-δ-lactone(GDL)은 대정화금(시흥, 한국)에서 구입하였다. 미생물 트랜스글루타미나제(Biobong TG-WM; 100 U/g activity) 분말은 Kinry Food Ingredients Co., Ltd.(Shanghai, China)에서 구입하였다.Soybean (Glycine max, L.) powder was purchased from Yeongwol Agricultural Cooperative (Yeongwol-gun, Korea). Brown mealworm larvae were purchased in dried form from Edible Bug Co. (Seoul, Korea), ground, and prepared in powder form using a 1.4 mm sieve. Glucono-δ-lactone (GDL) was purchased from Daejeong Chemical (Siheung, Korea). Microbial transglutaminase (Biobong TG-WM; 100 U/g activity) powder was purchased from Kinry Food Ingredients Co., Ltd. (Shanghai, China).
<1-2> 갈색거저리 유충 단백질 추출물(Mealworm Protein Isolate: MPI) 제조<1-2> Manufacture of Mealworm Protein Isolate (MPI)
갈색거저리 유충에 99.5% 에탄올을 1:5(w/v) 비율로 넣은 후 40℃에서 60분간 shaking bath(VS-1205SW1, Vision Scientific Co., Ltd, Daejeon, Korea)에서 추출하는 과정을 통해 탈지하였다. 이 과정을 2번 반복한 후 12시간 동안 에탄올을 휘발·건조하였다. 탈지된 갈색거저리 유충에 0.25M NaOH을 1:15(w/v)의 비율로 넣은 후, 40℃에서 60분 동안 hot plate & magnetic stirrer(Vision Science Co., Korea)를 이용하여 혼합하였다. 이후 원심분리기(VS-24SMTi, Vision Science Co., Ltd, Korea)를 이용하여 4℃에서 4200rpm으로 15분 동안 원심분리하고 상층액을 모아 pH를 4.5로 조정하였다. 이어서, 4℃에서 4200rpm으로 15분 동안 원심분리하여 침전물을 수득하였다. 수득한 침전물은 투석백(12KDa MWCO; Sigma-Aldrich Chemical Co., St. Louis, MO, USA)에 넣어 12시간동안 탈염하였다. 이후 36시간 동안 동결건조하여 본 발명의 갈색거저리 유충 단백질 추출물(이하 간략하게 ‘MPI’라 약칭함)을 수득하였다. 갈색거저리 유충 단백질 추출물(MPI)의 제조 공정은 도 1에서 자세히 나타내었다.After adding 99.5% ethanol to brown mealworm larvae at a ratio of 1:5 (w/v), they were degreased through extraction in a shaking bath (VS-1205SW1, Vision Scientific Co., Ltd, Daejeon, Korea) at 40°C for 60 minutes. did. After repeating this process twice, the ethanol was volatilized and dried for 12 hours. 0.25M NaOH was added to the defatted brown mealworm larvae at a ratio of 1:15 (w/v) and mixed using a hot plate & magnetic stirrer (Vision Science Co., Korea) at 40°C for 60 minutes. Afterwards, it was centrifuged at 4200 rpm at 4°C for 15 minutes using a centrifuge (VS-24SMTi, Vision Science Co., Ltd, Korea), the supernatant was collected, and the pH was adjusted to 4.5. Then, the precipitate was obtained by centrifugation at 4200 rpm for 15 minutes at 4°C. The obtained precipitate was placed in a dialysis bag (12KDa MWCO; Sigma-Aldrich Chemical Co., St. Louis, MO, USA) and desalted for 12 hours. Afterwards, it was freeze-dried for 36 hours to obtain the protein extract of brown mealworm larvae of the present invention (hereinafter simply abbreviated as ‘MPI’). The manufacturing process of brown mealworm larval protein extract (MPI) is shown in detail in Figure 1.
<1-3> 갈색거저리 유충 단백질 추출물의 가수분해물(Mealworm larvae protein hydrolysate, MPH) 제조<1-3> Preparation of hydrolyzate of brown mealworm larvae protein extract (Mealworm larvae protein hydrolysate, MPH)
먼저, 갈색거저리 유충 단백질 추출물의 가수분해물의 최적 제조 조건 확립을 위해 기질 농도, 효소 농도, pH, 반응 온도, 반응 시간의 조건을 기존 선행 연구를 참고하여 다음과 같이 설정하였다. 기질 농도 (1%(w/v)), 효소/기질 농도 (알칼라아제 & 플라보르자임 1%(w/v)), pH (8), 반응 온도 (55℃), 반응 시간 (각 효소별 12시간, 총 24시간).First, in order to establish the optimal production conditions for the hydrolyzate of brown mealworm larval protein extract, the conditions of substrate concentration, enzyme concentration, pH, reaction temperature, and reaction time were set as follows with reference to previous research. Substrate concentration (1% (w/v)), enzyme/substrate concentration (Alcalase & Flavorzyme 1% (w/v)), pH (8), reaction temperature (55℃), reaction time (each enzyme 12 hours per star, 24 hours total).
1%(w/v) MPI를 pH 8.0 완충용액(삼천화학(주); 평택, 한국)에 분산시키고, 85℃에서 20분간 가열하고, 55℃로 냉각시켰다. 분산액 pH를 0.1N NaOH 및 0.1N HCl을 사용하여 8.0으로 조정하였다. 이어서, 분산액 g당 알칼라아제 5mg(Novozymes, Bagsvaerd, Denmark)을 첨가하고 12시간 동안 교반하였다(20L stirring water bath; SWB-20L03; Cleaver Scientific Ltd.; Warwickshire, UK). 그런 다음 플라보르자임 5mg(Novozymes, Bagsvaerd, Denmark)을 첨가하고 55℃에서 12시간 동안 pH 8을 유지하며 가수분해하였다. 이후, 가수분해된 분산액을 효소의 불활성화를 위해 100℃에서 10분 동안 가열하고 4℃에서 4200rpm으로 10분 동안 원심분리하여 상층액을 수득한 다음, 상층액을 진공 동결 건조기를 사용하여 동결건조하여 본 발명의 갈색거저리 유충 단백질 추출물의 가수분해물(이하 간략하게 ‘MPH’라 약칭함)을 제조하였다. 이렇제 제조된 MPH는 -20℃에서 보관하였다. 갈색거저리 유충 단백질 추출물의 가수분해물(MPH)의 제조 공정은 도 1에서 자세히 나타내었다.1% (w/v) MPI was dispersed in pH 8.0 buffer solution (Samcheon Chemical Co., Ltd.; Pyeongtaek, Korea), heated at 85°C for 20 minutes, and cooled to 55°C. The dispersion pH was adjusted to 8.0 using 0.1N NaOH and 0.1N HCl. Subsequently, 5 mg of Alcalase (Novozymes, Bagsvaerd, Denmark) per g of dispersion was added and stirred for 12 hours (20 L stirring water bath; SWB-20L03; Cleaver Scientific Ltd.; Warwickshire, UK). Then, 5 mg of flavorzyme (Novozymes, Bagsvaerd, Denmark) was added and hydrolyzed while maintaining pH 8 at 55°C for 12 hours. Afterwards, the hydrolyzed dispersion was heated at 100°C for 10 minutes to inactivate the enzyme, centrifuged at 4200rpm for 10 minutes at 4°C to obtain a supernatant, and the supernatant was freeze-dried using a vacuum freeze dryer. Thus, a hydrolyzate (hereinafter simply abbreviated as 'MPH') of the protein extract of brown mealworm larvae of the present invention was prepared. MPH prepared in this way was stored at -20°C. The manufacturing process of hydrolyzate (MPH) of brown mealworm larvae protein extract is shown in detail in Figure 1.
<1-4> MPI의 겔 형성 온도 포인트 도출<1-4> Derivation of gel formation temperature point of MPI
MPI 용액을 증류수를 이용하여 15% (w/v)의 농도로 제조한 뒤 30분 동안 혼합하였다. 이후 0.1M NaOH, 0.1M HCl 용액을 이용하여 pH를 7로 조정한 뒤, rotational rheometer (AR1500ex, TA Instruments, USA)를 이용, temperature sweep을 아래와 같은 temperature ramp 조건으로 측정하였다.The MPI solution was prepared at a concentration of 15% (w/v) using distilled water and mixed for 30 minutes. Afterwards, the pH was adjusted to 7 using a 0.1M NaOH, 0.1M HCl solution, and the temperature sweep was measured using a rotational rheometer (AR1500ex, TA Instruments, USA) under the temperature ramp conditions below.
조건: 20℃에서 90℃으로 가열 (1℃/분) -> 90℃에서 5분Conditions: Heating from 20℃ to 90℃ (1℃/min) -> 5 minutes at 90℃
참고로, 본 발명의 갈색거저리 유충을 포함한 두부를 제조함에 있어서 갈색거저리 유충 단백질의 겔 형성을 위한 온도 설정이 선행되어야 한다. 이렇게 도출된 MPI의 겔 형성 온도를 적용하여 본 발명의 두부를 제조하였다.For reference, when producing tofu containing brown mealworm larvae of the present invention, temperature setting for gel formation of brown mealworm larva protein must be set in advance. The tofu of the present invention was manufactured by applying the gel formation temperature of MPI derived in this way.
<1-5> 두부 제조<1-5> Tofu production
두부 제조를 위한 원료로서 콩가루(Soy), 갈색거저리 유충분말(M), 갈색거저리 유충 단백질 추출물(MPI) 및 갈색거저리 유충 단백질 추출물의 가수분해물(MPH)은 4℃에서 냉장 저장하며 사용하였다. 콩가루(Soy)에 거저리 유충분말(M), MPI, MPH 각각을 1:1 비율(w/w)로 혼합하고 증류수에 1:6 비율로 섞어 30분 동안 혼합하였다. 혼합액의 pH를 0.1N NaOH로 9.0으로 조절한 후 30분 동안 혼합하며 콩과 갈색거저리 유충 속의 단백질을 추출하였다. 이후, 거름포를 이용하여 비지와 두유액을 분리하였다. 분리된 두유액은 pH를 0.1N HCl로 7.0으로 조절하고, 갈색거저리 유충 단백질의 겔 형성 온도인 70℃로 가열하여 10분간 유지한 후, 콩의 겔 형성 온도인 95℃로 재가열하여 10분간 유지하였다. 이후, 두유액을 50℃가 되도록 냉각하고, 글루코노-델타-락톤(Glucono-delta-lactone, GDL)을 두유액의 2%(w/v)로 첨가하고, 트랜스글루타미나제(Transglutaminase, Tgase)를 5U Tgase/g protein soy milk가 되도록 첨가하여 2분간 혼합하였다. 혼합물은 50℃에서 4시간 동안 반응(Tgase 반응 온도)시킨 후, 85℃에서 30분 동안 반응(Tgase 불활성화 및 GDL 활성 온도)시켰다. 모든 반응이 끝난 뒤, 실온에서 30분간 휴지하여 압착하지 않은 두부를 얻었다. 본 발명의 두부 제조 과정은 도 3에서 자세히 나타내었으며, 하기 표 1에서 본 실험을 통해 제조된 갈색거저리 유충 두부 제조를 정리하였다.As raw materials for tofu production, soybean flour (Soy), brown mealworm larva powder (M), brown mealworm larva protein extract (MPI), and hydrolyzate of brown mealworm larva protein extract (MPH) were used and stored refrigerated at 4°C. Mealworm larvae powder (M), MPI, and MPH were mixed in soy flour (Soy) at a 1:1 ratio (w/w), and mixed with distilled water at a 1:6 ratio and mixed for 30 minutes. The pH of the mixed solution was adjusted to 9.0 with 0.1N NaOH and mixed for 30 minutes to extract proteins in soybean and brown mealworm larvae. Afterwards, the okara and soy milk were separated using a filter cloth. The pH of the separated soymilk was adjusted to 7.0 with 0.1N HCl, heated to 70°C, the gel formation temperature of brown mealworm larval protein, and held for 10 minutes, then reheated to 95°C, the gel formation temperature of soybeans, and held for 10 minutes. did. Afterwards, the soy milk was cooled to 50°C, glucono-delta-lactone (GDL) was added at 2% (w/v) of the soy milk, and transglutaminase (Transglutaminase, Tgase) was added to make 5U Tgase/g protein soy milk and mixed for 2 minutes. The mixture was reacted at 50°C for 4 hours (Tgase reaction temperature) and then at 85°C for 30 minutes (Tgase inactivation and GDL activation temperature). After all reactions were completed, the tofu was left at room temperature for 30 minutes to obtain unpressed tofu. The tofu production process of the present invention is shown in detail in Figure 3, and Table 1 below summarizes the production of brown mealworm larva tofu produced through this experiment.
<1-6> 일반성분 분석<1-6> General ingredient analysis
제조된 두부별 일반성분 함량은 AOAC법에 따라 분석하였다. 조수분 함량은 각 두부 시료를 105℃의 오븐에서 밤새 가열하여 조사하였으며, 건조물은 일반성분 분석에 사용되었다. 조회분 함량은 각 두부 시료를 머플로에서 600℃에서 5시간 동안 소각하여 결정되었다. 조지방 함량은 auto extractor(HSOX-6; Hanil Co., Seoul, Korea)를 이용하여 속슬렛법(Soxhlet method)에 따라 측정하였고, 조단백질 함량은 auto digestor(HDG-P, Hanil Co.) 및 증류 장치(HKD-P, Hanil Co.)를 이용하여 6.25N factor로 켈달법(Kjeldahl method)에 따라 추정하였다. 탄수화물 함량은 100%에서 조수분, 조회분, 조단백질 및 조지방 함량을 제외한 값을 정량하였다.The general ingredient content of each manufactured tofu was analyzed according to the AOAC method. The crude water content was investigated by heating each tofu sample in an oven at 105°C overnight, and the dried product was used for general component analysis. Ash content was determined by incinerating each tofu sample at 600°C for 5 hours in a muffle furnace. The crude fat content was measured according to the Soxhlet method using an auto extractor (HSOX-6; Hanil Co., Seoul, Korea), and the crude protein content was measured using an auto digestor (HDG-P, Hanil Co.) and a distillation device ( It was estimated according to the Kjeldahl method with a factor of 6.25N using HKD-P, Hanil Co.). Carbohydrate content was quantified at 100% excluding crude oil, ash, crude protein, and crude fat content.
<1-7> 구성 아미노산 함량 측정<1-7> Measurement of amino acid content
동결건조된 두부 시료는 아미노산 함량 측정에 사용하였다. 즉, 동결건조된 두부 파우더 0.05 g를 vacuum hydrolysis tube(Thermo Fisher Scientific)에 넣고 6N HCl 2 mL를 가한 다음 24시간 동안 dry oven에서 가열하였다(105℃). 24시간 후 여과 및 100배 희석한 것을 고성능액체크로마토그래피(HPLC; YL 9100, YL instrument; Anyang, Korea)로 분석하였다(표 2 참조). 결정은 250 nm 여기 파장(Ex) 및 395 nm 방출 파장(Em)을 사용하여 37℃에서 형광 검출에 의해 모니터링되었다. 용리를 위해 사용된 이동상 A 및 B는 각각 10%(v/v) 용리액 A 완충액(Waters) 및 60%(v/v) 아세토니트릴(HPLC 등급; Burdick & Jackson; Muskegon, MI, USA)이었다. 각 두부 시료의 아미노산 농도는 표준 아미노산(Waters)으로 보정하여 측정하였다.Freeze-dried tofu samples were used to measure amino acid content. That is, 0.05 g of freeze-dried tofu powder was placed in a vacuum hydrolysis tube (Thermo Fisher Scientific), 2 mL of 6N HCl was added, and then heated in a dry oven for 24 hours (105°C). After 24 hours, it was filtered and diluted 100 times and analyzed by high-performance liquid chromatography (HPLC; YL 9100, YL instrument; Anyang, Korea) (see Table 2). Crystals were monitored by fluorescence detection at 37°C using 250 nm excitation wavelength (Ex) and 395 nm emission wavelength (Em). Mobile phases A and B used for elution were 10% (v/v) eluent A buffer (Waters) and 60% (v/v) acetonitrile (HPLC grade; Burdick &Jackson; Muskegon, MI, USA), respectively. The amino acid concentration of each tofu sample was measured by correcting with standard amino acids (Waters).
<1-8> 소듐 도데실 설페이트-폴리아크릴아미드 겔 전기영동(SDS-PAGE)<1-8> Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
SDS-PAGE는 Kao, Su, and Lee(2003)가 설명한 방법에 따라 두유와 두부에 존재하는 단백질을 일부 수정하여 분석하는데 사용되었다(Effect of calcium sulfate concentration in soymilk on the microstructure of firm tofu and the protein constitutions in tofu whey. Journal of Agricultural and Food Chemistry, 51(21), 6211-6216.). 간략하게는, 50mg의 동결건조된 두부 시료를 1mL의 Tris-glycine 버퍼(86mM Tris-90mM 글리신-4mM Na2EDTA, pH 8.0)에 분산시키고 단백질 추출을 위해 초음파 처리 수조(JAC Ultrasonic 2010P; (주)진우엔지니어링; 경기도)에서 1시간 동안 초음파 처리하였다. 그런 다음, 추출물을 12,000×g 및 4℃에서 20분 동안 원심분리하였다. 상등액의 단백질 농도는 비신코닌산(bicinchoninic acid, BCA) 분석(Thermo Fisher Scientific)을 사용하여 추정하였다. 연속 완충 시스템(0.025 M Tris-HCl [Sigma-Aldrich Chemical Co.; St. Louis, MO, USA], 0.192 M glycine [Daejung], 및 0.1% w/v SDS [Bio-Rad Laboratories Inc.; Hercules, California, USA], pH 8.3)에서 4-20% 프리캐스트 젤(Luminano; Seoul, Korea)을 사용하여 전기영동을 수행하였다. 환원 조건에서 단백질 추출물(35μg 단백질 함유)을 제조하였다. 6-170 kDa 마커(GenDEPOT; Barker, TX, USA)를 사용하여 단백질 분자량을 추정하였다. 전기영동은 125V에서 80분간 수행하였다. 분리된 단백질 밴드를 Coomassie Brilliant Blue R-250 염색 용액(Bio-Rad Laboratories Inc.)으로 밤새 염색한 후 50%(v/v) 메탄올과 10%(v/v) 아세트산이 포함된 탈색 용액으로 탈색하였다.SDS-PAGE was used to analyze proteins present in soymilk and tofu according to the method described by Kao, Su, and Lee (2003) with some modifications (Effect of calcium sulfate concentration in soymilk on the microstructure of firm tofu and the protein constitutions in tofu whey. Journal of Agricultural and Food Chemistry, 51(21), 6211-6216.). Briefly, 50 mg of lyophilized tofu sample was dispersed in 1 mL of Tris-glycine buffer (86mM Tris-90mM glycine-4mM Na2EDTA, pH 8.0) and placed in an ultrasonic bath (JAC Ultrasonic 2010P; Jinwoo Co., Ltd.) for protein extraction. Engineering; Gyeonggi-do) and sonicated for 1 hour. The extract was then centrifuged at 12,000 × g and 4°C for 20 min. Protein concentration of the supernatant was estimated using bicinchoninic acid (BCA) assay (Thermo Fisher Scientific). A continuous buffer system (0.025 M Tris-HCl [Sigma-Aldrich Chemical Co.; St. Louis, MO, USA], 0.192 M glycine [Daejung], and 0.1% w/v SDS [Bio-Rad Laboratories Inc.; Hercules; California, USA], pH 8.3), electrophoresis was performed using 4-20% precast gel (Luminano; Seoul, Korea). Protein extracts (containing 35 μg protein) were prepared under reducing conditions. Protein molecular weight was estimated using the 6-170 kDa marker (GenDEPOT; Barker, TX, USA). Electrophoresis was performed at 125V for 80 minutes. The isolated protein bands were stained with Coomassie Brilliant Blue R-250 staining solution (Bio-Rad Laboratories Inc.) overnight and then destained with a destaining solution containing 50% (v/v) methanol and 10% (v/v) acetic acid. did.
<1-9> 저장 기간 동안 pH 변화<1-9> pH change during storage period
저장 기간 중 두부에서는 부패 및 미생물에 의한 분해 작용으로 유기산과 아세트산이 생성된다. 이는 두부 침지액의 pH를 낮추며, 이로 인해 동일 기간 내 pH 감소 정도는 두부의 유통기한과 관련이 있다. 해당 실험에서는 두부 2 g을 20 mL의 증류수에 침지시킨 후 4℃에서 18일 간 보관하며, pH 미터(720 p Istek Co.; Seoul, Korea)를 사용하여 침지액의 pH를 측정하였다.During the storage period, organic acids and acetic acid are produced in tofu due to decay and decomposition by microorganisms. This lowers the pH of the tofu soaking liquid, and the degree of pH decrease within the same period is related to the shelf life of the tofu. In this experiment, 2 g of tofu was immersed in 20 mL of distilled water and stored at 4°C for 18 days, and the pH of the immersion solution was measured using a pH meter (720 p Istek Co.; Seoul, Korea).
<1-10> 인 비트로(<1-10> In vitro ( In vitroIn vitro ) 회장 소화율) Ileal digestibility
두부의 소화율은 Recharla et al.에 의해 기술된 인비트로(In vitro) 회장 소화율의 방법으로 측정하였다(Recharla, N., Kim, D., Ramani, S., Song, M., Park, J., Balasubramanian, B., . . . Park, S. (2019). Dietary multi-enzyme complex improves in vitro nutrient digestibility and hind gut microbial fermentation of pigs. PLoS One, 14(5), e0217459.). 자세하게는, 시료 건물(dry matter, DM) 1 g에 25mL 인산나트륨 완충액(0.1M, pH 6.0)와 10mL 0.2M HCl 용액을 섞은 후, pH 2로 혼합액의 pH를 조정하였다(펩신 활성 pH). 이후 펩신 용액(10 mg/mL, Sigma-Aldrich Chemical Co.)과 클로람페니콜 용액(0.5 g/100 mL with 99.5% ethanol, Sigma-Aldrich Chemical Co.)을 첨가한 후 39℃에서 6시간 반응시켰다. 이후 인산나트륨 완충액(0.2M, pH 6.8)과 0.6M NaOH 용액을 첨가한 뒤 혼합액의 pH를 6.8로 조절한(판크레아틴 활성 pH) 후, 1mL 돼지 판크레아틴 용액(50mg/mL, Sigma-Aldrich Chemical Co.)을 플라스크에 첨가하였다. 39℃에서 18시간 동안 반응시킨 후, 20% 설포살리실산 용액을 첨가하고 실온에서 30분 동안 반응시켰다. 이후, 시료를 500 mg 셀라이트(Celite)를 함유하는 도가니형 글라스 필터(FN1200-2G; Corning Life Science Co.; Oneonta, NY, USA)를 통해 여과하였다. 각 시험 플라스크를 1% 설포살리실산 용액, 95% 에탄올 및 99.5% 아세톤으로 세척하고, 잔류물을 도가니 부어주었다. 마지막으로, 도가니를 100℃에서 하룻밤 가열한 뒤 방냉하여 잔류물을 칭량하였으며, 다음 식을 사용하여 소화율을 계산하였다.The digestibility of tofu was measured by the in vitro ileal digestibility method described by Recharla et al. (Recharla, N., Kim, D., Ramani, S., Song, M., Park, J. , Balasubramanian, B., . . . Park, S. (2019). Dietary multi-enzyme complex improves in vitro nutrient digestibility and hind gut microbial fermentation of pigs. PLoS One, 14(5), e0217459.). In detail, 1 g of sample dry matter (DM) was mixed with 25 mL sodium phosphate buffer (0.1 M, pH 6.0) and 10 mL 0.2 M HCl solution, and then the pH of the mixture was adjusted to pH 2 (pepsin activity pH). Afterwards, pepsin solution (10 mg/mL, Sigma-Aldrich Chemical Co.) and chloramphenicol solution (0.5 g/100 mL with 99.5% ethanol, Sigma-Aldrich Chemical Co.) were added and reacted at 39°C for 6 hours. Afterwards, sodium phosphate buffer (0.2M, pH 6.8) and 0.6M NaOH solution were added, the pH of the mixture was adjusted to 6.8 (pancreatin activity pH), and then 1mL porcine pancreatin solution (50mg/mL, Sigma-Aldrich Chemical) was added. Co.) was added to the flask. After reacting at 39°C for 18 hours, 20% sulfosalicylic acid solution was added and reacted at room temperature for 30 minutes. Thereafter, the sample was filtered through a crucible-type glass filter (FN1200-2G; Corning Life Science Co.; Oneonta, NY, USA) containing 500 mg Celite. Each test flask was washed with 1% sulfosalicylic acid solution, 95% ethanol, and 99.5% acetone, and the residue was poured into a crucible. Finally, the crucible was heated at 100°C overnight and left to cool to weigh the residue, and the digestion rate was calculated using the following equation.
<1-11> 겔 강도 및 유동특성 변화 측정<1-11> Measurement of changes in gel strength and flow characteristics
두부의 겔 강도는 texture analyzer(COMPAC-100Ⅱ, Sun Sci. Co., Ltd.; Tokyo, Japan)을 이용하여 측정하였다. 두부는 원통형 스테인리스 스틸 컵(직경 38mm, 높이 68mm)에 준비하였다. 겔 강도 측정 조건은 다음과 같다; adaptor No. 25 (dia: 20 mm), distance 7 mm, table speed 60 mm/min, replicate. 실온에서 각 시료에 대해 3회 반복 테스트를 수행하였다. 두부의 제조 시간별 유동특성을 측정하기 위해 temperature sweep test를 실시하였다. 두유액에 2종의 응고제 (Tgase, GDL)를 넣은 후, rotational rheometer (Anton Paar MCR 302 rheometer)를 이용하여 저장 탄성률 (G’)과 손실 탄성률 (G”)을 측정하였다. 손실 계수(loss factor)인 tan δ는 비율 (G”/G’)로 나타내었다. 온도는 50℃에서 4시간 유지 후 85℃까지 5℃/min으로 가열하고, 30분동안 유지하였다. 이후 25℃까지 5℃/min의 속도로 냉각하였다. 또한 제조된 두부의 frequency sweep test를 통해 일정한 변형률 (0.5% strain) 에서의 주파수 (1-100 Hz)에 따른 탄성률을 관찰하였다.The gel strength of tofu was measured using a texture analyzer (COMPAC-100Ⅱ, Sun Sci. Co., Ltd.; Tokyo, Japan). Tofu was prepared in a cylindrical stainless steel cup (diameter 38 mm, height 68 mm). The gel strength measurement conditions were as follows; adapter No. 25 (dia: 20 mm), distance 7 mm, table speed 60 mm/min, replicate. Three repeated tests were performed on each sample at room temperature. A temperature sweep test was conducted to measure the flow characteristics of tofu by manufacturing time. After adding two types of coagulants (Tgase, GDL) to the soy milk, the storage modulus (G') and loss modulus (G") were measured using a rotational rheometer (Anton Paar MCR 302 rheometer). The loss factor, tan δ, is expressed as a ratio (G”/G’). The temperature was maintained at 50°C for 4 hours, then heated to 85°C at 5°C/min and maintained for 30 minutes. Afterwards, it was cooled to 25°C at a rate of 5°C/min. In addition, the elastic modulus according to frequency (1-100 Hz) at a constant strain rate (0.5% strain) was observed through a frequency sweep test of the manufactured tofu.
<1-12> 푸리에 변환 적외선 분광법<1-12> Fourier transform infrared spectroscopy
동결 건조된 두부 시료의 적외선 스펙트럼은 FTIR 분광법(Cary 630; Agilent Inc.; Santa Clara, CA, USA)을 사용하여 얻었다. 세척된 크리스탈 위에 시료를 놓고 DialPath를 회전시켜 시료와 접촉시켰다. 400-4000 cm-1에서 40 scans/min의 누적으로부터 스펙트럼을 얻었다. Resolution Pro Software(Agilent Technologies, 버전 5.2.0(CD 846)) 및 MicroLab PC 소프트웨어(Agilent Technologies)를 사용하여 데이터를 분석하였다.Infrared spectra of freeze-dried tofu samples were obtained using FTIR spectroscopy (Cary 630; Agilent Inc.; Santa Clara, CA, USA). The sample was placed on the cleaned crystal and the DialPath was rotated to make contact with the sample. Spectra were obtained from an accumulation of 40 scans/min at 400-4000 cm -1 . Data were analyzed using Resolution Pro Software (Agilent Technologies, version 5.2.0 (CD 846)) and MicroLab PC software (Agilent Technologies).
<1-13> 주사전자현미경(SEM)<1-13> Scanning electron microscope (SEM)
전계방출형 주사전자현미경(Quanta 650 FEG; Eindhoven, The Netherlands)을 사용하여 두부 시표 표면의 미세 구조를 평가하였다. 동결건조된 두부 시료는 절단하여 2mm 미만의 정육면체 모양으로 만들어 백금으로 코팅하였다(208 HR; Cressington, England). 미세구조를 10kV 가속전압에서 100×, 500×, 1000×, 5000×에서 관찰하였다.The microstructure of the head target surface was evaluated using a field emission scanning electron microscope (Quanta 650 FEG; Eindhoven, The Netherlands). Freeze-dried tofu samples were cut into cubes less than 2 mm and coated with platinum (208 HR; Cressington, England). The microstructure was observed at 100×, 500×, 1000×, and 5000× at an acceleration voltage of 10 kV.
<1-14> 항산화 활성 평가<1-14> Antioxidant activity evaluation
[총 페놀 함량 및 플라보노이드 함량 측정][Measurement of total phenol content and flavonoid content]
두부 시료의 총 페놀 함량(total phenolic content, TPC)은 Folin-Ciocalteau 시약을 사용하여 측정되었다(Dixit, Bhatnagar, Kumar, Rani, Manjaya, & Bhatnagar, 2010). 자세하게는, 각각의 1 mg/mL 시료를 실온에서 70%(v/v) 에탄올을 사용하여 추출하고 Whatman No. 4 여과지를 통해 여과하였다. 그런 다음 30 μL 시료 추출물을 120 μL 증류수, 30 μL Folin's 시약 및 70 μL 10% 탄산나트륨 용액에 첨가하였다. 균질액을 20℃에서 2시간 동안 인큐베이션한 후, microplate reader(Multiskan, Thermo Fisher Scientific)를 사용하여 725 nm에서의 흡광도를 모니터링하였다. 총 페놀 함량(TPC)은 동결건조된 시료 g당 갈산 당량(GAE)으로 표현되었다.The total phenolic content (TPC) of tofu samples was measured using the Folin-Ciocalteau reagent (Dixit, Bhatnagar, Kumar, Rani, Manjaya, & Bhatnagar, 2010). In detail, each 1 mg/mL sample was extracted using 70% (v/v) ethanol at room temperature and purified using Whatman No. 4 Filtered through filter paper. Then, 30 μL sample extract was added to 120 μL distilled water, 30 μL Folin's reagent, and 70 μL 10% sodium carbonate solution. After the homogenate was incubated at 20°C for 2 hours, the absorbance at 725 nm was monitored using a microplate reader (Multiskan, Thermo Fisher Scientific). Total phenolic content (TPC) was expressed as gallic acid equivalents (GAE) per gram of lyophilized sample.
총 플라보노이드 함량(Total flavonoid content, TFC)은 Kim, Choi, Yu, Kim, Lee, Lee(2012)가 설명한 방법을 약간 변형하여 측정되었다. 자세하게는, 0.2g 시료를 80%(v/v) 에탄올에 분산시키고 교반하였다. 분산액을 Whatman No. 4 필터를 통해 여과하였다. 그런 다음, 0.5mL 시료 추출물을 5mL 90%(v/v) 디에틸렌 글리콜 및 0.5mL 1N NaOH와 혼합하였다. 혼합물을 볼텍싱하고 주위 온도(25℃)에서 60분 동안 유지하였다. 그런 다음 UV/가시광선 분광광도계(Ultrospec 2100 pro.; Amersham Biosciences Co.; Piscataway, NJ, USA)를 사용하여 420 nm에서 흡광도를 측정하였다. 총 플라보노이드 함량(TFC)은 나린진(naringin, Sigma-Aldrich Chemical Co.)을 사용하여 표준검량곡선을 작성하여 mg naringin mg equivalents/시료 g로 나타내었다.Total flavonoid content (TFC) was measured by slightly modifying the method described by Kim, Choi, Yu, Kim, Lee, and Lee (2012). In detail, 0.2 g sample was dispersed in 80% (v/v) ethanol and stirred. The dispersion was treated with Whatman No. Filtered through 4 filters. Then, 0.5 mL sample extract was mixed with 5 mL 90% (v/v) diethylene glycol and 0.5 mL 1N NaOH. The mixture was vortexed and kept at ambient temperature (25°C) for 60 minutes. The absorbance was then measured at 420 nm using a UV/visible spectrophotometer (Ultrospec 2100 pro.; Amersham Biosciences Co.; Piscataway, NJ, USA). Total flavonoid content (TFC) was expressed as mg naringin mg equivalents/g sample by creating a standard calibration curve using naringin (Sigma-Aldrich Chemical Co.).
[DPPH 및 ABTS+ 라디칼 소거능][DPPH and ABTS+ radical scavenging ability]
항산화능은 ABTS+(2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) 및 DPPH(2,2-diphenyl-1-picrylhydrazyl) 라디칼 소거능을 통해 측정되었다. ABTS+ 라디칼 소거능은 70%(v/v) 에탄올로 추출된 시료 추출액 20 uL과 ABTS+ 용액(Sigma-Aldrich Chemical Co.) 180 uL을 혼합하여 10분 동안 암소에서 방치한 뒤 734 nm에서 흡광도를 측정하였다. DPPH 라디칼 소거능은 70%(v/v) 에탄올로 추출된 시료 추출액 200 uL과 50 uL의 DPPH 용액 (0.005 g/100mL 99.5 (v/v) ethanol, Sigma-Aldrich Chemical Co.)을 혼합하여 30분 동안 암소에서 방치한 뒤 520 nm에서 흡광도를 측정하였다. 라디칼 소거능은 아래의 식으로 계산하였다.Antioxidant activity was measured through ABTS+ (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity. ABTS+ radical scavenging activity was 70% ( v/v) 20 uL of sample extract extracted with ethanol and 180 uL of ABTS+ solution (Sigma-Aldrich Chemical Co.) were mixed, left in the dark for 10 minutes, and absorbance was measured at 734 nm. DPPH radical scavenging ability was 70%. (v/v) 200 uL of sample extract extracted with ethanol and 50 uL of DPPH solution (0.005 g/100mL 99.5 (v/v) ethanol, Sigma-Aldrich Chemical Co.) were mixed and left in the dark for 30 minutes. Absorbance was measured at 520 nm, and radical scavenging ability was calculated using the formula below.
여기서 Abssample은 실험 샘플의 흡광도, Absblank는 블랭크의 흡광도, Abscontrol은 대조군의 흡광도를 나타낸다. 결과는 50% 억제에 필요한 샘플 농도(IC50)로 표시되었다. 아스코르브산(Sigma-Aldrich Chemical Co.)을 양성 대조군으로 사용하였다.Here, Abs sample represents the absorbance of the experimental sample, Abs blank represents the absorbance of the blank, and Abs control represents the absorbance of the control group. Results were expressed as the sample concentration required for 50% inhibition (IC 50 ). Ascorbic acid (Sigma-Aldrich Chemical Co.) was used as a positive control.
<1-15> 항염증 활성 평가<1-15> Evaluation of anti-inflammatory activity
[3-(4,5-디메틸아졸-2-일)-2,5-디페닐 테트라졸륨 브로마이드(MTT) 분석][3-(4,5-dimethylazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) analysis]
동결건조된 두부 시료는 Hong, Yang, Kim, Eom, Lew, and Kang(2012)이 기술한 방법에 따라 실온에서 48시간 동안 증류수(10 mg/mL)를 사용하여 추출하였다(Hong, J.-W., Yang, G.-E., Kim, Y. B., Eom, S. H., Lew, J.-H., & Kang, H. (2012). Anti-inflammatory activity of cinnamon water extract in vivo and in vitro LPS-induced models. BMC Complementary and Alternative Medicine, 12(1), 1-8.). Whatman No. 4 여과지로 여과한 후 추출물을 분석에 사용하였다. 세포생존율은 MTT assay를 이용하여 측정하였다. 자세하게는, C2C12 세포(5 x 104 cells/well)를 96-웰 플레이트에 접종하고 37℃에서 24시간 동안 인큐베이션하였다. 이어서, 상이한 농도의 추출물을 배양 배지와 함께 각 웰에 첨가하였다. 37℃에서 12시간 동안 배양한 후, 배양 배지를 제거하였다. 0.5 mg/mL MTT 시약(Sigma-Aldrich Chemical Co.)이 포함된 신선한 배양 배지(Hyclone; Logan, UT, USA)를 첨가하고 37℃에서 4시간 동안 반응시켰다. 그런 다음 배지를 제거하고 50 μL 디메틸 설폭사이드(DMSO)를 첨가하여 보라색 포르마잔 결정을 가용화시켰다. 흡광도는 마이크로플레이트 리더(SPL; Seoul, Korea)를 사용하여 540 nm에서 측정하였다.Freeze-dried tofu samples were extracted using distilled water (10 mg/mL) at room temperature for 48 hours according to the method described by Hong, Yang, Kim, Eom, Lew, and Kang (2012) (Hong, J.- W., Yang, G.-E., Kim, YB, Eom, SH, Lew, J.-H., & Kang, H. (2012). Anti-inflammatory activity of cinnamon water extract in vivo and in vitro LPS -induced models. BMC Complementary and Alternative Medicine, 12(1), 1-8.). Whatman No. 4 After filtering with filter paper, the extract was used for analysis. Cell viability was measured using MTT assay. In detail, C2C12 cells (5 x 10 4 cells/well) were seeded in a 96-well plate and incubated at 37°C for 24 hours. Different concentrations of extract were then added to each well along with the culture medium. After culturing at 37°C for 12 hours, the culture medium was removed. Fresh culture medium (Hyclone; Logan, UT, USA) containing 0.5 mg/mL MTT reagent (Sigma-Aldrich Chemical Co.) was added and reacted at 37°C for 4 hours. Then, the medium was removed and 50 μL dimethyl sulfoxide (DMSO) was added to solubilize the purple formazan crystals. Absorbance was measured at 540 nm using a microplate reader (SPL; Seoul, Korea).
[인 비트로(In vitro) LPS 처치 및 효소 결합 면역흡착 분석(ELISA)][ In vitro LPS treatment and enzyme-linked immunosorbent assay (ELISA)]
C2C12 세포는 10% 소태아혈청(Hyclone)과 1% 페니실린-스트렙토마이신(Hyclone)이 보충된 Dulbecco의 변형된 Eagle 배지(Hyclone)에서 유지되었다. 3×105 cells/well을 96-웰 플레이트에 접종한 후, 200ng/mL LPS와 함께 30시간 동안 반응시켜 염증을 유도하였다. 염증이 있는 세포를 200μg/mL 시료 추출물과 함께 18시간 동안 배양하고 세포 배양 배지에서 TNF-α, IL-1β 및 IL-6 수준을 ELISA 키트(TNF-α, IL-1β, and IL-6 mouse ELISA kits; Komabiotech; Seoul, Korea)를 사용하여 평가하였다.C2C12 cells were maintained in Dulbecco's modified Eagle's medium (Hyclone) supplemented with 10% fetal bovine serum (Hyclone) and 1% penicillin-streptomycin (Hyclone). After inoculating 3×10 5 cells/well in a 96-well plate, inflammation was induced by reacting with 200ng/mL LPS for 30 hours. Inflammatory cells were cultured with 200 μg/mL sample extract for 18 hours, and the levels of TNF-α, IL-1β, and IL-6 in the cell culture medium were measured using an ELISA kit (TNF-α, IL-1β, and IL-6 mouse). It was evaluated using ELISA kits; Komabiotech; Seoul, Korea).
<1-16> 덱사메타손으로 유발된 근위축 마우스 모델에서 염증 세포 발현 억제 효과<1-16> Inhibitory effect on inflammatory cell expression in dexamethasone-induced muscular atrophy mouse model
[덱사메타손으로 유발된 근위축 마우스 모델][Dexamethasone-induced muscular atrophy mouse model]
8 주령의 수컷 마우스(C57BL, ~25g)를 상온 및 12/12시간 명/암 사이클 조건 하에 사육하며 주 3회 덱사메타손(DEXA)을 30 uL씩 주입하여 근위축을 유발하였다. 식이는 Purina mouse diet chow (ND)와 ND에 15%를 동결건조 두부 시료로 대체한 식이를 공급하였으며, 식수와 함께 자유롭게 섭취하도록 하였다(ad libitum). 마우스는 하기 표와 같이 무작위로 여섯군으로 나뉘었다.8-week-old male mice (C57BL, ~25g) were housed under room temperature and 12/12 hour light/dark cycle conditions, and muscle atrophy was induced by injecting 30 uL of dexamethasone (DEXA) three times a week. The diet was supplied with Purina mouse diet chow (ND) and a diet in which 15% of ND was replaced with freeze-dried tofu samples, and were allowed to be freely consumed along with drinking water ( ad libitum ). Mice were randomly divided into six groups as shown in the table below.
[체중 및 악력 테스트][Weight and grip test]
마우스의 체중은 첫날과 마지막날 (희생되는 날)의 차이를 측정하여 나타내었다. 근육량의 지표가 될 수 있는 마우스의 악력 (단위: N)은 Bioseb grip strength meter (BIO-GS3; BIOScience and Experimental Biology; Largo, FL, USA)를 이용하여 희생되는 마지막날 측정되었으며, 이를 체중으로 나누어 N/g body weight으로 계산하였다.The body weight of the mouse was expressed by measuring the difference between the first and last day (the day of sacrifice). The mouse's grip strength (unit: N), which can be an indicator of muscle mass, was measured on the last day of sacrifice using a Bioseb grip strength meter (BIO-GS3; BIOScience and Experimental Biology; Largo, FL, USA), divided by body weight. Calculated as N/g body weight.
[조직학적 염색 및 단면적 측정][Histological staining and cross-sectional area measurements]
희생된 마우스의 장딴지 근육(calf muslce)을 10% 포르말린 용액으로 고정한 뒤 파라핀을 이용 포매(embedding)하여 박절하였다. 이를 글래스 슬라이드(glass slide)로 옮겨 헤마톡실린 및 에오신(H&E, Sigma-Aldrich Chemical Co.)으로 염색한 뒤 현미경을 통해 관찰하였다. 이미지는 Image J 소프트웨어 (version 1.43, National Institute of Health; Bethesda, MD, USA)를 이용하여 분석하였다. 10개의 근섬유 면적을 측정하여 평균값을 계산하였다.The calf muscle of the sacrificed mouse was fixed with a 10% formalin solution, embedded in paraffin, and sectioned. This was transferred to a glass slide, stained with hematoxylin and eosin (H&E, Sigma-Aldrich Chemical Co.), and observed through a microscope. Images were analyzed using Image J software (version 1.43, National Institute of Health; Bethesda, MD, USA). The area of 10 muscle fibers was measured and the average value was calculated.
[실시간 중합효소 연쇄반응(PCR)][Real-time polymerase chain reaction (PCR)]
RT-qPCR은 이전에 설명한 대로 수행되었다(Oh et al., 2018; ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome. Metabolism, 85, 286-297.). 자세하게는, RNAiso Plus 시약(Takara; Shiga, Japan)을 사용하여 종아리 근육 또는 C2C12 세포에서 총 RNA를 분리하고, RNA의 양을 분광광도계(SPL)로 측정하였다. 그런 다음 gDNA Eraser(Takara)가 포함된 PrimScriptTM RT 시약 키트를 사용하여 cDNA를 합성한 다음, 특정 프라이머인 SYBR Premix Ex TaqTM Ⅱ, ROX Plus와 혼합하였다. 근육 분해 관련 유전자(myostatin, MuRF 1, Atrogin-1) 및 근육 합성 관련 유전자(MyCH isofomers)의 상대적 발현은 2-ΔΔCt 방법을 이용하여 하우스키핑 유전자 (internal control)인 GAPDH 발현량과의 상대적 정량화를 통해 계산하였다.RT-qPCR was performed as previously described (Oh et al., 2018; ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome. Metabolism , 85, 286-297.). In detail, total RNA was isolated from calf muscle or C2C12 cells using RNAiso Plus reagent (Takara; Shiga, Japan), and the amount of RNA was measured spectrophotometrically (SPL). Then, cDNA was synthesized using the PrimScriptTM RT reagent kit containing gDNA Eraser (Takara) and then mixed with specific primers, SYBR Premix Ex TaqTM II and ROX Plus. The relative expression of muscle breakdown-related genes (myostatin, MuRF 1, Atrogin-1) and muscle synthesis-related genes (MyCH isofomers) was quantified relative to the expression level of GAPDH, a housekeeping gene (internal control), using the 2 -ΔΔ Ct method. It was calculated through
<1-17> 덱사메타손으로 유발된 근위축 마우스 모델에서 SMPH 및 MPH 식이에 따른 악력과 근육 감소 관련 유전자의 발현량 측정<1-17> Measurement of expression levels of genes related to grip strength and muscle loss according to SMPH and MPH diet in dexamethasone-induced muscular atrophy mouse model
[덱사메타손으로 유발된 근위축 마우스 모델][Dexamethasone-induced muscular atrophy mouse model]
8 주령의 수컷 마우스(C57BL, ~25g)를 상온 및 12/12시간 명/암 사이클 조건 하에 사육하며 주 3회 덱사메타손(DEXA)을 30 uL씩 주입하여 근위축을 유발하였다. 식이는 Purina mouse diet chow (ND)와 ND에 15%를 동결건조 두부 시료로 대체한 식이를 공급하였으며, 식수와 함께 자유롭게 섭취하도록 하였다(ad libitum). 마우스는 하기 표와 같이 무작위로 2군으로 나뉘었다.8-week-old male mice (C57BL, ~25g) were housed under room temperature and 12/12 hour light/dark cycle conditions, and muscle atrophy was induced by injecting 30 uL of dexamethasone (DEXA) three times a week. The diet was supplied with Purina mouse diet chow (ND) and a diet in which 15% of ND was replaced with freeze-dried tofu samples, and were allowed to be freely consumed along with drinking water ( ad libitum ). Mice were randomly divided into two groups as shown in the table below.
[악력 테스트][Grip strength test]
SMPH 두부 파우더 15%가 첨가된 식이를 섭취한 마우스 그룹 (SMPH+Dexa)과 MPH 파우더 15%가 첨가된 식이를 섭취한 마우스 그룹 (MPH+Dexa)의 악력을 Bioseb grip strength meter (BIO-GS3; BIOScience and Experimental Biology; Largo, FL, USA)를 이용하여 마우스가 희생되기 직전 측정하였다. 악력은 grid를 잡은 마우스를 당겼을 때 grip를 놓치기 직전의 힘(N)을 체중으로 나눈 값 (N/g body weight)으로 나타내었다.The grip strength of the mouse group (SMPH+Dexa) fed a diet supplemented with 15% of SMPH tofu powder and the mouse group (MPH+Dexa) fed with a diet supplemented with 15% of MPH powder were measured using a Bioseb grip strength meter (BIO-GS3; BIOScience and Experimental Biology; Largo, FL, USA) was used to measure mice before they were sacrificed. Grip strength was expressed as the force (N) just before losing the grip when pulling the mouse holding the grid divided by the body weight (N/g body weight).
[실시간 중합효소 연쇄반응(PCR)][Real-time polymerase chain reaction (PCR)]
RT-qPCR은 이전에 설명한 대로 수행되었다(Oh et al., 2018; ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome. Metabolism, 85, 286-297.). 자세하게는, RNAiso Plus 시약(Takara; Shiga, Japan)을 사용하여 SMPH+Dexa 및 MPH+Dexa 그룹의 마우스 종아리 근육에서 총 RNA를 분리하고, RNA의 양을 분광광도계(SPL)로 측정하였다. 그런 다음 gDNA Eraser(Takara)가 포함된 PrimScriptTM RT 시약 키트를 사용하여 cDNA를 합성한 다음, 특정 프라이머인 SYBR Premix Ex TaqTM Ⅱ, ROX Plus와 혼합하였다. 근육 분해 관련 유전자(myostatin, MuRF 1, Atrogin-1)의 상대적 발현은 2-ΔΔCt 방법을 이용하여 하우스키핑 유전자 (internal control)인 GAPDH 발현량과의 상대적 정량화를 통해 계산하였다.RT-qPCR was performed as previously described (Oh et al., 2018; ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome. Metabolism , 85, 286-297.). In detail, total RNA was isolated from the calf muscles of mice in the SMPH+Dexa and MPH+Dexa groups using RNAiso Plus reagent (Takara; Shiga, Japan), and the amount of RNA was measured spectrophotometrically (SPL). Then, cDNA was synthesized using the PrimScriptTM RT reagent kit containing gDNA Eraser (Takara) and then mixed with specific primers, SYBR Premix Ex TaqTM II and ROX Plus. The relative expression of muscle breakdown-related genes (myostatin, MuRF 1, Atrogin-1) was calculated by relative quantification with the expression level of GAPDH, a housekeeping gene (internal control), using the 2 -ΔΔ Ct method.
<1-18> 통계 분석<1-18> Statistical analysis
SDS-PAGE, 유변학적 측정, FTIR 스펙트럼 분석 및 SEM을 제외한 모든 분석은 3반복 수행되었다. 데이터는 SPSS statistical package(SPSS 24.0; IBM; Chicago, IL, USA)를 사용하여 분석되었다. p<0.05에서 일원 분산 분석(ANOVA)을 사용하여 데이터 간의 유의한 차이를 테스트하고, Duncan의 다중 범위 테스트를 사용하여 사후 비교를 수행하였다. 두 그룹 간의 비교는 독립적인 2-표본 t-검정을 사용하여 수행되었다.All analyzes except SDS-PAGE, rheological measurements, FTIR spectral analysis, and SEM were performed in triplicate. Data were analyzed using the SPSS statistical package (SPSS 24.0; IBM; Chicago, IL, USA). Significant differences between data were tested using one-way analysis of variance (ANOVA) at p<0.05, and post hoc comparisons were performed using Duncan's multiple range test. Comparisons between two groups were performed using an independent two-sample t-test.
2. 결과2. Results
<2-1> MPI의 겔(gel) 형성 온도 설정<2-1> Setting the gel formation temperature of MPI
MPI의 겔 형성 온도를 측정하기 위해 temperature sweep test를 실시하였다. 저장 탄성률과 손실 탄성률의 점접이 겔 형성 온도 (gel point)가 되며, 손실 계수 (loss factor)인 tan δ는 비율 (G”/G’)로 나타내어지므로, tan δ의 값이 1보다 작아지는 지점이 겔 형성 온도이기도 하다. 그 결과 도 2에서 나타낸 바와 같이, MPI는 69.8℃ 부근에서 G’와 G”이 교차하고(도 2a 참조), tan δ가 1보다 작아지므로 gel point를 확인할 수 있었다(도 2b 참조).A temperature sweep test was performed to measure the gel formation temperature of MPI. The point of contact between the storage modulus and the loss modulus becomes the gel formation temperature (gel point), and the loss factor, tan δ, is expressed as a ratio (G”/G'), so the point at which the value of tan δ becomes less than 1. This is also the gel formation temperature. As a result, as shown in Figure 2, in MPI, G' and G" intersect around 69.8°C (see Figure 2a), and tan δ becomes less than 1, so the gel point was confirmed (see Figure 2b).
<2-2> 두부의 일반성분 함량<2-2> General ingredient content of tofu
두부의 대략적인 조성은 하기 표 5에서 자세히 나타내었다. SM은 S에 비해 수분(85.34%)과 조지방(0.85%) 함량이 높았으나 조단백질(4.22%), 조회분(0.55%), 탄수화물(9.04%) 함량이 낮게 나타났다. SM은 거저리 유충이 다량의 조지방(건조 중량의 약 33%)을 함유하기 때문에 조지방 함량이 가장 높게 나타났다. SMPI는 조단백질(10.99%) 함량이 가장 높게 나타났다. SMPH의 조단백질(6.63%) 함량은 SMPI 보다 낮았고, SMPH의 조회분(3.10%) 함량이 높게 나타났는데, 이는 가수분해 과정에서 pH를 조절하기 위해 산이나 염기를 첨가한 것에 기인한 것으로 사료된다. 이러한 결과는 두부를 제조하는 동안 거저리 유충, MPI 및 MPH로 50% 콩가루 대체가 주요 구성, 특히 단백질 및 지질 함량에 유의한 영향을 미친다는 것을 시사한다(p<0.05).The approximate composition of tofu is shown in detail in Table 5 below. Compared to S, SM had higher moisture (85.34%) and crude fat (0.85%) content, but lower crude protein (4.22%), ash (0.55%), and carbohydrate (9.04%) content. SM showed the highest crude fat content because mealworm larvae contain a large amount of crude fat (about 33% of dry weight). SMPI showed the highest crude protein (10.99%) content. The crude protein (6.63%) content of SMPH was lower than that of SMPI, and the ash content (3.10%) of SMPH was higher, which is believed to be due to the addition of acid or base to adjust pH during the hydrolysis process. These results suggest that 50% soybean meal replacement with mealworm larvae, MPI and MPH during tofu manufacturing had a significant effect on the main composition, especially protein and lipid content (p<0.05).
SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부;
SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부;
SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부.S: Tofu made from 100% soybean flour;
SM: Tofu made from 50% soybean flour and 50% brown mealworm larva powder;
SMPI: Tofu made with 50% soybean flour and 50% brown mealworm larval protein extract (MPI);
SMPH: Tofu made from 50% soybean flour and 50% hydrolyzate of brown mealworm larvae protein extract (MPH).
<2-3> 구성 아미노산 함량<2-3> Component amino acid content
두부에서 17개의 아미노산이 검출되었다(표 6 참조). S와 SM의 필수아미노산, 분지쇄 아미노산, 총 아미노산 함량은 유의한 차이가 없는 것으로 나타났다(p>0.05). 그러나 SMPI(63.82g/100g 시료) 및 SMPH(46.97g/100g 시료)의 총 아미노산 함량은 상당히 높은 것으로 나타났다. 또한 SMPI(24.28g/100g 시료)와 SMPH(18.22g/100g 시료)의 필수아미노산 함량은 S(10.52g/100g 시료)보다 유의하게 높았다. 또한, SMPI(9.92g/100g 시료) 및 SMPH(7.81g/100g 시료)의 분지쇄 아미노산 함량은 S(4.14g/100g 시료)보다 더 높았다. 이러한 결과는 두부를 제조할 때 콩가루를 MPI 또는 MPH로 대체하면 두부의 아미노산 함량을 향상시킬 수 있음을 나타낸다. 대두 단백질과 같은 식물성 단백질의 메티오닌 및 시스테인 함량은 고품질로 간주되는 거저리 유충 단백질과 같은 동물성 단백질보다 일반적으로 낮다. 실제로 S는 SM, SMPI, SMPH에 비해 메티오닌, 시스테인 등의 황 아미노산 함량이 가장 낮았다. 또한 곤충(특히 거저리 유충)은 분지쇄 아미노산 함량이 높아 근육 소모나 분해를 방지하는데 도움이 된다. 이는 류신, 이소류신, 발린과 같은 분지쇄 아미노산이 풍부한 두부가 근육 손실이 있는 노인층에게 도움이 될 것임을 시사한다.Seventeen amino acids were detected in tofu (see Table 6). There was no significant difference in the essential amino acid, branched chain amino acid, and total amino acid contents of S and SM (p>0.05). However, the total amino acid content of SMPI (63.82 g/100 g sample) and SMPH (46.97 g/100 g sample) was found to be significantly high. Additionally, the essential amino acid content of SMPI (24.28 g/100 g sample) and SMPH (18.22 g/100 g sample) was significantly higher than that of S (10.52 g/100 g sample). Additionally, the branched-chain amino acid content of SMPI (9.92 g/100 g sample) and SMPH (7.81 g/100 g sample) was higher than that of S (4.14 g/100 g sample). These results indicate that replacing soybean flour with MPI or MPH when manufacturing tofu can improve the amino acid content of tofu. The methionine and cysteine content of plant-based proteins, such as soy protein, is generally lower than that of animal-based proteins, such as mealworm larval protein, which are considered high quality. In fact, S had the lowest content of sulfur amino acids such as methionine and cysteine compared to SM, SMPI, and SMPH. Additionally, insects (especially mealworm larvae) are high in branched chain amino acids, which helps prevent muscle wasting and breakdown. This suggests that tofu, which is rich in branched-chain amino acids such as leucine, isoleucine, and valine, may be helpful for elderly people with muscle loss.
2)분지쇄 아미노산
S: 100% 콩가루로 제조된 두부;
SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부;
SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부;
SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부.
a-dDuncan의 다중 범위 테스트(p<0.05)에 따라 각 처리구간 서로 다른 머릿글자는 유의적인 차이가 있음 1) Essential Amino Acids
2) branched chain amino acids
S: Tofu made from 100% soybean flour;
SM: Tofu made from 50% soybean flour and 50% brown mealworm larva powder;
SMPI: Tofu made with 50% soybean flour and 50% brown mealworm larval protein extract (MPI);
SMPH: Tofu made from 50% soybean flour and 50% hydrolyzate of brown mealworm larvae protein extract (MPH).
According to ad Duncan's multiple range test (p<0.05), there is a significant difference between different initials in each treatment section.
<2-4> SDS-PAGE<2-4> SDS-PAGE
두유와 두부의 단백질 소단위 변화를 추적하기 위해 SDS-PAGE를 수행하였다.SDS-PAGE was performed to track changes in protein subunits of soy milk and tofu.
그 결과 도 4에서 나타낸 바와 같이, 겔화 및 단백질 네트워크 형성에 중요한 역할을 하는 7S 글로불린(β-코글리시닌)과 11S 글로불린(글리시닌)의 두 가지 주요 단백질 분획이 두유에서 검출되었다(lanes 1-4). 두유를 가열하고 응고시킨 후 SMPH를 제외하고 7S와 11S를 나타내는 밴드의 강도가 급격히 감소하였다. 이것은 큰 단백질이 응집되고 AB 소단위가 산성과 염기성 폴리펩티드 사이의 SS 다리에 의해 형성됨을 시사한다. 그러나 SMPH의 응집 강도는 lane 8의 하단에서 감지되는 저분자량으로 인해 상대적으로 낮았다.As a result, as shown in Figure 4, two major protein fractions, 7S globulin (β-coglycinin) and 11S globulin (glycinin), which play an important role in gelation and protein network formation, were detected in soy milk (lanes 1-4). After heating and coagulating soy milk, the intensity of the bands representing 7S and 11S decreased rapidly, except for SMPH. This suggests that large proteins aggregate and AB subunits are formed by SS bridges between acidic and basic polypeptides. However, the aggregation strength of SMPH was relatively low due to its low molecular weight detected at the bottom of lane 8.
<2-5> 저장기간 동안 pH 변화<2-5> pH change during storage period
18일 보관 후 pH 변화를 도 5에서 나타내었다. 두부의 pH는 보관 기간 경과에 따라 지속적으로 감소하는 것으로 나타났다(0일 4.42~4.45, 18일 3.81~4.20). 보관에 따른 pH의 감소는 미생물 분해에 의해 생성되는 젖산, 초산과 같은 유기산의 증가에 기인할 수 있다. S와 SMPI의 pH는 0일에 4.45에서 18일에 각각 4.01 및 3.94로 변화하였다. SM은 0일부터 18일까지 pH의 가장 큰 하락을 보였으며(4.42-3.81), 반면에 SMPH의 pH 값은 0일부터 18일까지 가장 적은 감소를 보였주었다(4.43-4.20).The pH change after 18 days of storage is shown in Figure 5. The pH of tofu was found to continuously decrease as the storage period elapsed (4.42~4.45 on day 0, 3.81~4.20 on day 18). The decrease in pH due to storage may be due to an increase in organic acids such as lactic acid and acetic acid produced by microbial decomposition. The pH of S and SMPI changed from 4.45 on day 0 to 4.01 and 3.94 on day 18, respectively. SM showed the greatest decrease in pH from day 0 to day 18 (4.42-3.81), while SMPH showed the least decrease in pH value from day 0 to day 18 (4.43-4.20).
<2-6> 인 비트로(<2-6> In vitro ( In vitroIn vitro ) 회장 소화율) Ileal digestibility
두부의 소화율은 도 6에서 나타내었다. 모든 시료의 인 비트로(In vitro) 회장 소화율은 유의한 차이를 보였다(p<0.05). S는 피테이트, 트립신 억제제, 탄닌 또는 단백질 결합 전분을 포함한 항-영양 성분으로 인해 가장 낮은 소화율(58.35%)를 보였다. SM은 식물 단백질(대두)보다 동물성 단백질(거저리 유충)의 소화율이 높기 때문에 S보다 소화율이 더 높은 것으로 나타났다(64.61%). SM의 키틴 수준이 SMPI의 키틴 수준보다 높고 키틴이 시험관 내 소화율을 감소시키기 때문에 SMPI는 SM보다 소화가 더 잘되는 것으로 나타났다. 특히, SMPH 시료가 다른 시료 대비 두드러지게 우수한 소화율을 보여주었다.The digestibility of tofu is shown in Figure 6. The in vitro ileal digestibility of all samples showed significant differences (p<0.05). S showed the lowest digestibility (58.35%) due to anti-nutritional components including phytate, trypsin inhibitor, tannin, or protein-bound starch. SM was found to have a higher digestibility than S (64.61%) because the digestibility of animal protein (mealworm larvae) is higher than that of plant protein (soybeans). SMPI appeared to be more digestible than SM because the chitin level in SM was higher than that in SMPI and chitin reduced in vitro digestibility. In particular, SMPH samples showed significantly better digestibility than other samples.
<2-7> 겔 강도 및 유변학적 특성<2-7> Gel strength and rheological properties
두부의 겔 강도는 도 7에서 자세히 나타내었다. SM(135.0g/cm2)의 겔 강도는 S(504.3g/cm2)보다 현저히 낮은 것으로 측정되었다. 열 유도 겔의 겔화 특성은 단백질 소수성의 영향을 받으며 지질은 단백질-단백질 중합체 상호작용의 간섭으로 인해 단백질 겔화를 억제할 수 있다. 또한 이는 지질 산화로 인한 티올기 함량의 감소로 설명될 수 있다. 한편, SMPI(927.9g/cm2)는 단백질 농도가 가장 높기 때문에 젤 강도가 가장 높게 나타났다. 높은 단백질 농도는 열 변성 동안 소수성 영역 및 설프히드릴(sulfhydryl) 그룹의 노출 정도와 관련이 있으며, 이는 결과적으로 두유 응고를 촉진한다. 반대로 SMPH(32.0g/cm2)는 낮은 분자량과 같은 MPH 고유의 특성으로 인해 겔 형성 정도가 낮기 때문에 겔 강도가 가장 낮게 나타났다. 두부 제조 과정 중 유변학적 변화는 두부의 품질을 결정하는 요인이 될 수 있다. 도 8 및 9에 나타난 바와 같이, 저장탄성계수(G'), 손실 탄성률(G”), 손실계수(tan δ)의 시간 및 온도 의존적 변동 패턴은 유사하였다. 50℃에서 가열한 후 모든 샘플의 점탄성(G' 및 G")은 TGase에 의해 형성된 가교 네트워크로 점차 향상되었다. 초기 가열 단계에서 G'가 급격히 증가하는 것은 겔 네트워크 발생 및 겔 형성을 시사한다. S에 비해 SMPI에서, G', G"가 더 빠르게 증가하였다. 또한 SM 및 SMPH에서 천천히 증가하여 겔 형성 개시 속도 순서를 나타낸다. 50℃에서 85℃로 가열하는 동안 고온에서 비공유 결합 파괴로 인해 점탄성이 감소하였다. 또한 G'와 G"는 모든 샘플에서 크게 증가하였는데, 이는 냉각 단계에서 겔 네트워크 강화를 시사한다. Tan δ는 가열 첫 몇 분 동안 모든 샘플에서 감소하여 견고하고 탄력 있는 단백질 네트워크를 나타낸다. Tan δ의 값은 작을수록 고체 특성에 가깝고, 클수록 액체 특성에 가깝다. 따라서, 제조된 두부의 G”/G’인 Tan δ의 값이 SMPH > SM > S > SMPI인 것을 알 수 있었으며, SMPI는 가장 고체에 가깝고, SMPH는 가장 액체에 가까운 것을 확인할 수 있었다.The gel strength of tofu is shown in detail in Figure 7. The gel strength of SM (135.0 g/cm 2 ) was measured to be significantly lower than that of S (504.3 g/cm 2 ). The gelation properties of heat-induced gels are affected by protein hydrophobicity, and lipids can inhibit protein gelation due to interference with protein-protein polymer interactions. This can also be explained by a decrease in thiol group content due to lipid oxidation. Meanwhile, SMPI (927.9g/cm 2 ) showed the highest gel strength because it had the highest protein concentration. High protein concentration is related to the degree of exposure of hydrophobic regions and sulfhydryl groups during heat denaturation, which ultimately promotes soymilk coagulation. On the contrary, SMPH (32.0 g/cm 2 ) showed the lowest gel strength because the degree of gel formation was low due to MPH's unique characteristics such as low molecular weight. Rheological changes during the tofu manufacturing process can be a factor in determining the quality of tofu. As shown in Figures 8 and 9, the time- and temperature-dependent variation patterns of storage modulus (G'), loss modulus (G"), and loss modulus (tan δ) were similar. After heating at 50 °C, the viscoelasticity (G' and G") of all samples gradually improved with the cross-linked network formed by TGase. The rapid increase in G' in the initial heating stage suggests the generation of a gel network and gel formation. Compared to S, in SMPI, G' and G" increased faster. It also increases slowly in SM and SMPH, indicating the order of gel formation onset rates. During heating from 50°C to 85°C, the viscoelasticity decreased due to non-covalent bond destruction at high temperature. Additionally, G' and G" increased significantly in all samples, suggesting gel network strengthening during the cooling step. Tan δ decreased in all samples during the first few minutes of heating, indicating a rigid and elastic protein network. Tan δ of The smaller the value, the closer it is to solid properties, and the larger it is, the closer it is to liquid properties. Therefore, it was found that the value of Tan δ, which is G”/G’ of the manufactured tofu, was SMPH > SM > S > SMPI, with SMPI being the closest to solid. It was close, and SMPH was confirmed to be closest to liquid.
또한 제조된 두부의 frequency sweep test를 통해 일정한 변형률 (0.5% strain) 에서의 주파수 (1-100 Hz)에 따른 탄성률을 관찰하였다(도 10 참조). frequency sweep은 일정한 변형률 하에서 샘플의 점성 및 탄성 프로파일에 대한 정보를 제공한다. 그 결과 도 10에서 나타낸 바와 같이, G’과 G“이 SMPI > S > SM > SMPH인 것을 알 수 있었다. 주파수에 따른 G’, G”는 클수록 고체 특성에 가깝고, 작을수록 액체 특성에 가까운바, 상기와 같은 결과는 도 9에서의 경향과 일치함을 알 수 있다.In addition, the elastic modulus according to frequency (1-100 Hz) at a constant strain rate (0.5% strain) was observed through a frequency sweep test of the manufactured tofu (see Figure 10). A frequency sweep provides information about the viscous and elastic profile of a sample under constant strain. As a result, as shown in Figure 10, it was found that G' and G" were SMPI > S > SM > SMPH. The larger G' and G" according to frequency, the closer to solid characteristics, and the smaller, closer to liquid characteristics. It can be seen that the above results are consistent with the trend in FIG. 9.
<2-8> FTIR 스펙트라<2-8> FTIR spectra
두부 샘플의 화학 구조는 FTIR 분광광도법을 사용하여 결정하였으며, 그 결과는 도 11에서 자세히 나타내었다. 3500~3200cm-1 사이의 넓은 밴드는 수산기(-OH) 그룹에 해당하고 3274cm-1(peak No. 1) 주변 밴드는 모든 두부에서 발견되는 수산기(-OH) 신축 진동 때문일 수 있다. 2916 cm-1 및 2849 cm-1(peaks 2 및 3)의 피크는 알데히드 C-H 신축 진동에 해당하며, 이는 단백질, 탄수화물 및 지질과 같은 세포 성분에서 존재하는 메틸 그룹(-CH3) 및 메틸렌 그룹(-CH2-)에 기인할 수 있다. 1742 cm-1의 피크(peak 4)는 에스테르 카르보닐 작용기에 해당한다. peak 2, 3, 4는 트리글리세리드 함량으로 인해 S 및 SM 샘플에 존재하는 반면, SMPI 및 SMPH에는 지방 제거로 인해 지질 함량이 낮기 때문에 peak 2, 3 및 4가 존재하지 않는다. 1628 cm-1 및 1541 cm-1(peaks 5 and 6)의 피크는 주로 C=O 결합 진동 굽힘에 기인하는 아미드 I에 해당하며, 이는 다양한 단백질 단편 2차 구조를 나타내는 여러 접힌 구성 요소 밴드를 초래하고, 아미드 II는 각각 NH 굽힘에 기인한다. 아미드 I 밴드 스펙트럼은 α-나선(1650-1660 cm-1), β-시트(1618-1640 cm-1 및 1670-1690 cm-1), β-turn(1660-1670 cm-1) 및 랜덤 코일(1690-1700 cm-1); α-나선 및 β-턴 함량은 효소 가수분해 후 감소하였다. 더욱이, 주로 면내 N-H 굽힘과 C-N 스트레칭의 혼합물인 아미드 II 밴드도 펩타이드 백본의 효소 분해와 함께 일관되게 감소하였다. 따라서 SMPH는 가장 낮은 피peak 5 및 6 강도를 갖는 것으로 나타났다. 1039 cm-1의 피크(peak 7)는 대부 단백질의 카르복실기(-COO-)와 키토산의 아민기(-NH3+) 사이의 정전기적 상호작용에 의해 복합체가 형성되었음을 나타내며, 대두 단백질-키토산 상호작용에서도 수소 결합이 발생한다. 이는 SM의 거저리 유충 껍데기에서 추출한 키토산이 1039 cm-1에서 피크 강도에 영향을 미치므로 SM이 키토산 진동으로 인해 1039 cm-1에서 가장 높은 강도를 나타냄을 시사한다.The chemical structure of the tofu sample was determined using FTIR spectrophotometry, and the results are shown in detail in Figure 11. The broad band between 3500 and 3200 cm -1 corresponds to the hydroxyl (-OH) group, and the band around 3274 cm -1 (peak No. 1) may be due to the hydroxyl (-OH) stretching vibration found in all tofu. The peaks at 2916 cm -1 and 2849 cm -1 (peaks 2 and 3) correspond to aldehyde CH stretching vibrations, which are associated with methyl groups (-CH3) and methylene groups (-CH3) present in cellular components such as proteins, carbohydrates and lipids. It can be attributed to CH2-). The peak at 1742 cm -1 (peak 4) corresponds to the ester carbonyl functional group. Peaks 2, 3, and 4 are present in S and SM samples due to triglyceride content, whereas peaks 2, 3, and 4 are absent in SMPI and SMPH due to low lipid content due to fat removal. The peaks at 1628 cm -1 and 1541 cm -1 (peaks 5 and 6) correspond to amide I, mainly due to C=O bond vibrational bending, resulting in several folded component bands representing various protein fragment secondary structures. and amide II, respectively, are due to NH bending. Amide I band spectra are α-helix (1650-1660 cm -1 ), β-sheet (1618-1640 cm -1 and 1670-1690 cm -1 ), β-turn (1660-1670 cm -1 ) and random coil. (1690-1700 cm -1 ); The α-helix and β-turn content decreased after enzymatic hydrolysis. Moreover, the amide II band, which is mainly a mixture of in-plane NH bending and CN stretching, also decreased consistently with enzymatic digestion of the peptide backbone. Therefore, SMPH appeared to have the lowest peak 5 and 6 intensities. The peak at 1039 cm -1 (peak 7) indicates that a complex was formed by electrostatic interaction between the carboxyl group (-COO-) of soybean protein and the amine group (-NH3+) of chitosan, and also in the soy protein-chitosan interaction. Hydrogen bonding occurs. This suggests that chitosan extracted from the shell of mealworm larvae affects the peak intensity at 1039 cm -1 of SM, so SM shows the highest intensity at 1039 cm -1 due to chitosan vibration.
<2-9> 두부의 미세구조<2-9> Microstructure of tofu
두부의 구조적 특성을 확인하기 위해 500-5000배 배율의 표면 이미지를 SEM을 사용하여 시각화하였으며, 그 결과는 도 12에서 자세히 나타내었다. S는 다른 샘플보다 훨씬 더 조밀하고 균일한 구조를 가지고 있는 것으로 나타났다. SM은 S에 비하여 지방구가 분산되어 있어 벌집 (honey-comb) 모양의 구멍을 가지고 있는 것으로 나탄났다. 한편, SMPI는 단백질 응집으로 인해 큰 구멍(cavity)과 거친 구조를 나타내었으며, SMPH는 가수분해물이 단백질 응집체에 고르게 분산되어 있어 조밀하고 균질한 작은 구멍을 가지는 특징을 보여주었다.To confirm the structural characteristics of the head, surface images at 500-5000 times magnification were visualized using SEM, and the results are shown in detail in Figure 12. S appeared to have a much more dense and uniform structure than other samples. SM was found to have honeycomb-shaped pores because the fat globules were more dispersed compared to S. On the other hand, SMPI showed large cavities and a rough structure due to protein aggregation, while SMPH showed the characteristics of having dense and homogeneous small cavities due to the hydrolyzate being evenly dispersed in the protein aggregates.
<2-10> 총 페놀 함량 및 총 플라보노이드 함량<2-10> Total phenol content and total flavonoid content
SM, SMPI 및 SMPH의 총 페놀 함량 및 총 플라보노이드 함량은 사용된 거저리 유충 단백질 유형에 다르게 측정되었다.The total phenolic content and total flavonoid content of SM, SMPI and SMPH were determined differently depending on the type of mealworm larval protein used.
그 결과 도 13 및 표 7-8에서 나타낸 바와 같이, S(8.27 mg GAE/g)와 비교하여 SM, SMPI 및 SMPH는 거저리 유충의 높은 페놀 함량으로 인해 총 페놀 함량이 유의하게 높은 것으로 나타났다(12.83-22.66 mg GAE/g). SMPH는 가수분해를 통해 결합된 폴리페놀을 유리 상태로 방출하기 때문에 총 페놀 함량이 가장 높게 나타났다(22.66 mg GAE/g). 반면에, S는 시료 중 총 플라보노이드 함량이 가장 높았고(0.72 mg NE/g), SMPI와 SMPH는 총 플라보노이드 함량이 가장 낮게 나타났다(각각 0.40 및 0.47 mg NE/g). 이것은 대두에 제인스테인(genistein)과 다이제인(daidzein)을 포함한 이소플라본이 풍부하기 때문일 수 있다. 한편, SMPH는 SMPI보다 더 많은 양의 총 플라보노이드 함량을 가지는 것으로 조사되었다. As a result, as shown in Figure 13 and Table 7-8, compared to S (8.27 mg GAE/g), SM, SMPI and SMPH showed significantly higher total phenol content due to the high phenol content of mealworm larvae (12.83 -22.66 mg GAE/g). SMPH had the highest total phenol content (22.66 mg GAE/g) because it released bound polyphenols in a free state through hydrolysis. On the other hand, S had the highest total flavonoid content among the samples (0.72 mg NE/g), and SMPI and SMPH had the lowest total flavonoid content (0.40 and 0.47 mg NE/g, respectively). This may be because soybeans are rich in isoflavones, including genistein and daidzein. Meanwhile, SMPH was found to have a higher total flavonoid content than SMPI.
SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부;
SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부;
SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부.S: Tofu made from 100% soybean flour;
SM: Tofu made from 50% soybean flour and 50% brown mealworm larva powder;
SMPI: Tofu made with 50% soybean flour and 50% brown mealworm larval protein extract (MPI);
SMPH: Tofu made from 50% soybean flour and 50% hydrolyzate of brown mealworm larvae protein extract (MPH).
SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부;
SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부;
SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부.S: Tofu made from 100% soybean flour;
SM: Tofu made from 50% soybean flour and 50% brown mealworm larva powder;
SMPI: Tofu made with 50% soybean flour and 50% brown mealworm larval protein extract (MPI);
SMPH: Tofu made from 50% soybean flour and 50% hydrolyzate of brown mealworm larvae protein extract (MPH).
<2-11> ABTS+ 및 DPPH 자유 라디칼 소거 활성<2-11> ABTS+ and DPPH free radical scavenging activity
두부의 항산화능은 양성대조군(아스코르빈산)과 비교하여 ABTS+와 DPPH 자유라디칼 소거능에 따라 결정되었다. 아스코르빈산에 대한 IC50 값은 각각 0.02 μg/ml 및 0.03 μg/ml이다.The antioxidant capacity of tofu was determined based on ABTS+ and DPPH free radical scavenging abilities compared to the positive control (ascorbic acid). The IC 50 values for ascorbic acid are 0.02 μg/ml and 0.03 μg/ml, respectively.
그 결과 도 14 및 표 9-10에서 나타낸 바와 같이, S, SM, SMPI 및 SMPH의 ABTS+ 자유 라디칼 소거 활성에 대한 IC50 값은 각각 7.00, 5.00, 2.31 및 1.56 μg/mL로 측정되었다. 또한 DPPH 자유 라디칼 소거 활성도 ABTS+와 유사한 경향을 보였다. SMPH는 ABTS+와 DPPH 활성 모두에서 IC50 값이 가장 낮았다(p<0.05). 이는 단백질 가수분해를 통해 생체 활성 펩타이드의 반응성 그룹이 노출되어 항산화 활성이 증가하기 때문일 수 있다. 항산화 능력은 총 페놀 함량과 관련이 있으며 동일한 경향을 따르는 것으로 나타났다(도 13 참조). 페놀 화합물은 항산화 효과가 있는 2차 대사산물이기 때문이다. As a result, as shown in Figure 14 and Tables 9-10, the IC 50 values for ABTS+ free radical scavenging activity of S, SM, SMPI, and SMPH were measured to be 7.00, 5.00, 2.31, and 1.56 μg/mL, respectively. Additionally, DPPH free radical scavenging activity showed a similar trend to ABTS+. SMPH had the lowest IC 50 value for both ABTS+ and DPPH activities (p<0.05). This may be because the reactive groups of bioactive peptides are exposed through protein hydrolysis, thereby increasing antioxidant activity. Antioxidant capacity was found to be related to total phenol content and follow the same trend (see Figure 13). This is because phenolic compounds are secondary metabolites with antioxidant effects.
SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부;
SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부;
SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부.S: Tofu made from 100% soybean flour;
SM: Tofu made from 50% soybean flour and 50% brown mealworm larva powder;
SMPI: Tofu made with 50% soybean flour and 50% brown mealworm larval protein extract (MPI);
SMPH: Tofu made from 50% soybean flour and 50% hydrolyzate of brown mealworm larvae protein extract (MPH).
SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부;
SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부;
SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부.S: Tofu made from 100% soybean flour;
SM: Tofu made from 50% soybean flour and 50% brown mealworm larva powder;
SMPI: Tofu made with 50% soybean flour and 50% brown mealworm larval protein extract (MPI);
SMPH: Tofu made from 50% soybean flour and 50% hydrolyzate of brown mealworm larvae protein extract (MPH).
<2-12> 세포 생존율<2-12> Cell viability
두부의 세포독성을 확인하기 위해 C2C12 세포에 두부 추출물을 0 ~ 2000 μg/ml 농도로 24시간 동안 처리한 후 MTT assay를 수행하였다.To confirm the cytotoxicity of tofu, C2C12 cells were treated with tofu extract at a concentration of 0 to 2000 μg/ml for 24 hours and then MTT assay was performed.
그 결과 도 15에서 나타낸 바와 같이, 0-200 μg/mL의 농도 범위에서는 생존률의 유의한 차이가 나타나지 않았다. 이에 200 μg/mL의 농도로 염증성 사이토카인 발현 억제 실험을 진행하였다. 한편, 1000-2000 μg/mL 농도 범위에서는 SMPH 처리군이 세포 생존율이 가장 높았으나, 다른 처리와 유의한 차이는 없었다(p>0.05).As a result, as shown in Figure 15, there was no significant difference in survival rate in the concentration range of 0-200 μg/mL. Accordingly, an experiment to inhibit inflammatory cytokine expression was conducted at a concentration of 200 μg/mL. Meanwhile, in the concentration range of 1000-2000 μg/mL, the SMPH treatment group had the highest cell survival rate, but there was no significant difference from other treatments (p>0.05).
<2-13> LPS-유도된 세포사멸 억제 효과<2-13> LPS-induced apoptosis inhibitory effect
시료의 염증 세포 발현 억제율을 알아보기 위해 C2C12 세포에 리포폴리사카타이드(Lipopolysaccharide, LPS)를 이용하여 혈중 염증 유발 사이토카인인 IL-6, TNF-a, IL-1b의 발현 정도를 관찰하였다.To determine the inhibition rate of inflammatory cell expression in the sample, lipopolysaccharide (LPS) was used in C2C12 cells to observe the expression level of IL-6, TNF-a, and IL-1b, which are pro-inflammatory cytokines in the blood.
참고로, TNF-α, IL-1b, IL-6과 같은 전염증성 사이토카인의 생성은 전신 염증 반응 증후군으로 발전할 수 있는 초기 염증을 결정하는데 필수적이다. 또한, LPS는 생체 내 및 시험관 내에서 타고난 면역 세포로 기능하는 대식세포의 강력한 염증 유발 활성제이다. 혈중 염증 유발 사이토카인은 근원섬유단백질의 분해를 촉진하여 단백질 합성을 감소하고, 결과적으로 직접적인 근육 소모를 유발한다.Of note, the production of pro-inflammatory cytokines such as TNF-α, IL-1b, and IL-6 is essential for determining the initial inflammation that can develop into systemic inflammatory response syndrome. Additionally, LPS is a potent pro-inflammatory activator of macrophages, which function as innate immune cells in vivo and in vitro. Inflammatory cytokines in the blood promote the breakdown of myofibrillar proteins, thereby reducing protein synthesis and ultimately causing direct muscle wasting.
그 결과 도 16 및 표 11에 나타낸 바와 같이, LPS 처리시 세포에서 전염증성 사이토카인의 발현이 두드러지게 증대하였으며, 두부 추출물을 함께 처리하는 경우 증대된 전염증성 사이토카인의 발현이 두드러지게 감소하는 것을 확인할 수 있었다. 특히 SM, SMPI, SMPH 처리는 S에 비해 전염증성 사이토카인의 발현을 유의하게 감소시키는 것으로 나타났다. 이러한 결과는, S 대비 SM, SMPI, SMPH가 LPS로 유도된 TNF-α에 대한 억제능이 더 높음을 시사한다.As a result, as shown in Figure 16 and Table 11, the expression of pro-inflammatory cytokines in cells was significantly increased when treated with LPS, and when treated with tofu extract, the expression of the increased pro-inflammatory cytokines was significantly reduced. I was able to confirm. In particular, SM, SMPI, and SMPH treatments were shown to significantly reduce the expression of proinflammatory cytokines compared to S. These results suggest that SM, SMPI, and SMPH have a higher inhibitory ability against LPS-induced TNF-α compared to S.
SM: 콩가루 50%와 갈색거저리 유충 분말 50%로 제조된 두부;
SMPI: 콩가루 50% 및 갈색거저리 유충 단백질 추출물(MPI) 50%로 제조된 두부;
SMPH: 콩가루 50%와 갈색거저리 유충 단백질 추출물의 가수분해물(MPH) 50%로 제조된 두부.S: Tofu made from 100% soybean flour;
SM: Tofu made from 50% soybean flour and 50% brown mealworm larva powder;
SMPI: Tofu made with 50% soybean flour and 50% brown mealworm larval protein extract (MPI);
SMPH: Tofu made from 50% soybean flour and 50% hydrolyzate of brown mealworm larvae protein extract (MPH).
<2-14> 체중변화<2-14> Weight change
덱사메타손(DEXA)으로 유발된 근위축 마우스 모델에서 두부 섭취에 따른 마우스의 체중 변화를 측정하였다.In a mouse model of muscular atrophy induced by dexamethasone (DEXA), the change in body weight of mice according to tofu intake was measured.
참고로, 합성 글루코코르티코이드인 덱사메타손을 투여하면 근육 단백질이 분해되어 체중이 감소한다. 많은 연구에서 덱사메타손으로 처리된 마우스가 체중과 근육 손실을 경험하는 것으로 나타났다. 덱사메타손은 생체 내 및 시험관 내에서 활성산소(ROS) 생성을 자극하며, ROS는 노화 관련 ROS 과잉 생산에 의한 근육의 산화적 손상에 기인하는 근육 손실 유도에 필수적인 역할을 할 수 있는 요인 중 하나이다.For reference, when dexamethasone, a synthetic glucocorticoid, is administered, muscle proteins are broken down and weight loss occurs. Many studies have shown that mice treated with dexamethasone experience weight and muscle loss. Dexamethasone stimulates the production of reactive oxygen species (ROS) in vivo and in vitro, and ROS is one of the factors that may play an essential role in the induction of muscle loss due to oxidative damage to muscle caused by age-related ROS overproduction.
그 결과 도 17에서 나타낸 바와 같이, DEXA-SM(-0.07kg) 및 DEXA-SMPH(-0.39kg) 그룹을 제외하고 덱사메타손 처리 후 마우스의 체중이 유의하게 낮아지는 것으로 나타났다. SM과 SMPH 섭취군은 덱사메타손을 처치하였음에도 DMSO 대조군과 체중 변화에서 유의적인 차이가 없는 것을 확인할 수 있었다. 상기와 같은 결과를 통해, SM과 SMPH 섭취가 마우스에서 덱사메타손으로 인한 근육 위축을 완화시키는 것을 알 수 있었다.As a result, as shown in Figure 17, the body weight of mice was found to be significantly lower after dexamethasone treatment, except for the DEXA-SM (-0.07kg) and DEXA-SMPH (-0.39kg) groups. Even though the SM and SMPH intake groups were treated with dexamethasone, it was confirmed that there was no significant difference in body weight change from the DMSO control group. Through the above results, it was found that SM and SMPH intake alleviated muscle atrophy caused by dexamethasone in mice.
<2-15> 악력 강도 및 근단면적<2-15> Grip strength and root cross-sectional area
덱사메타손(DEXA)으로 유발된 근위축 마우스 모델에서 두부 섭취가 근육 기능을 향상시키는지 알아보기 위해 앞다리의 악력을 비교하였다.Forelimb grip strength was compared to determine whether tofu consumption improves muscle function in a mouse model of dexamethasone (DEXA)-induced muscular atrophy.
그 결과 도 18에서 나타낸 바와 같이, DEXA-SMPH(0.044 N/g 체중)군을 제외한 DEXA 투여군은 쥐는 힘이 유의하게 감소하는 것으로 나타났으며, 그 중에서 DEXA-SMPI군이 가장 낮았다(0.030 N/g 체중).As a result, as shown in Figure 18, the DEXA-administered group, excluding the DEXA-SMPH (0.044 N/g body weight) group, showed a significant decrease in grip strength, and among them, the DEXA-SMPI group had the lowest (0.030 N/g body weight). g body weight).
또한 도 19에서 나타낸 바와 같이, 근섬유의 근단면적은 DMSO 대조군(1562.70 μm2) 대비 DEXA 처리군(1562.70 μm2)에서 유의하게 낮은 것으로 나타났으며, 처치군 중 SM 처리군(1378.33 μm2)에서 근단면적 감소가 가장 낮았고, S(1283.80 μm2), SMPH( 1259.83 μm2) 및 SMPI(1169.37 μm2) 순으로 근단면적 감소가 낮아지는 것으로 나타났다. 이러한 결과는 SM 및 SMPH 섭취가 덱사메타손으로 인한 근육 위축을 완화시킨다는 것을 시사한다.Additionally, as shown in Figure 19, the apical cross-sectional area of muscle fibers was found to be significantly lower in the DEXA-treated group (1562.70 μm 2 ) compared to the DMSO control group (1562.70 μm 2 ), and among the treatment groups, it was found to be significantly lower in the SM-treated group (1378.33 μm 2 ). The decrease in root cross-sectional area was the lowest, and the decrease in root cross-sectional area was found to be lower in that order: S (1283.80 μm 2 ), SMPH (1259.83 μm 2 ), and SMPI (1169.37 μm 2 ). These results suggest that consumption of SM and SMPH alleviates dexamethasone-induced muscle atrophy.
<2-16> 근육 감소 및 합성과 관련된 유전자 발현에 미치는 영향<2-16> Effects on gene expression related to muscle loss and synthesis
근육 분해 메커니즘을 조사하기 위해 근육 감소와 관련한 유전자 (Myostatin, MuRF 1, Atrogin-1)와 근육 합성과 관련된 유전자(MyHC1, MyHC2A, MyHC2X, MyHC2B)의 발현량을 RT(real time)-PCR을 이용하여 측정하였다.To investigate the mechanism of muscle breakdown, the expression levels of genes related to muscle loss (Myostatin, MuRF 1, Atrogin-1) and genes related to muscle synthesis (MyHC1, MyHC2A, MyHC2X, MyHC2B) were measured using RT (real time)-PCR. It was measured.
그 결과 도 20 및 표 12에서 나타난 바와 같이, 덱사메타손을 처리한 경우 근육 감소와 관련한 유전자인 Myostatin, MuRF 1, Atrogin-1의 mRNA 발현이 두드러지게 증대되었으나, 두부 섭취에 따라 상기 유전자의 발현이 유의하게 감소하는 것으로 나타났다(SM의 Atrogin-1 발현량 제외).As a result, as shown in Figure 20 and Table 12, when treated with dexamethasone, the mRNA expression of Myostatin, MuRF 1, and Atrogin-1, which are genes related to muscle loss, was significantly increased, but the expression of these genes was significant depending on tofu intake. It was found to decrease significantly (except for the expression level of Atrogin-1 in SM).
또한, 도 21 및 표 13에서 나타낸 바와 같이, 덱사메타손을 처리한 경우 근육 합성과 관련된 유전자인 MyHC2A, MyHC2X 및 MyHC2B mRNA 발현 수준이 유의하게 감소되었다(MyHC1 제외). 그러나 두부 섭취군 간에 발현량에는 유의한 차이가 없는 것으로 나타났다.In addition, as shown in Figure 21 and Table 13, when treated with dexamethasone, the mRNA expression levels of MyHC2A, MyHC2X, and MyHC2B, genes related to muscle synthesis, were significantly reduced (except for MyHC1). However, there was no significant difference in expression level between tofu consumption groups.
이러한 결과를 통해, 두부의 섭취는 근육 합성에 유의적 효과가 없지만 갈색거저리 대체 두부 중 SM, SMPH의 섭취는 근육 감소 유전자의 mRNA 발현량을 낮춤으로서 근위축을 억제하는 효과가 있음을 확인할 수 있었다.Through these results, it was confirmed that consumption of tofu had no significant effect on muscle synthesis, but consumption of SM and SMPH, a substitute for brown mealworm tofu, had the effect of suppressing muscle atrophy by lowering the mRNA expression level of muscle loss genes. .
<2-17> SMPH 및 MPH 식이에 따른 악력과 근육 감소 관련 유전자의 발현량<2-17> Expression level of genes related to grip strength and muscle loss according to SMPH and MPH diets
덱사메타손으로 유발된 근위축 마우스 모델에서 SMPH 및 MPH 식이에 따른 악력과 근육 감소 관련 유전자의 발현량 비교하였다.The expression levels of genes related to grip strength and muscle loss according to SMPH and MPH diets were compared in a dexamethasone-induced muscular atrophy mouse model.
그 결과 도 22 및 표 14에서 나타낸 바와 같이, 악력은 SMPH+Dexa 그룹의 경우 0.044±0.0022 N/g body weight, MPH+Dexa 그룹의 경우 0.030±0.0011 N/g body weight으로 나타나, SMPH 식이를 진행한 마우스에서 상대적으로 높은 악력을 보여주었다.As a result, as shown in Figure 22 and Table 14, the grip strength was 0.044±0.0022 N/g body weight in the SMPH+Dexa group and 0.030±0.0011 N/g body weight in the MPH+Dexa group, resulting in the SMPH diet. One mouse showed relatively high grip strength.
또한, 도 23 및 표 15에서 나타낸 바와 같이, 근육 감소와 관련한 유전자인 Myostatin, MuRF-1, Atrogin-1의 발현량을 비교하였을 때, SMPH+Dexa 그룹이 MPH+Dexa 그룹에 비해 모든 인자에서 현저하게 낮은 수치를 나타내었다.In addition, as shown in Figure 23 and Table 15, when comparing the expression levels of Myostatin, MuRF-1, and Atrogin-1, which are genes related to muscle loss, the SMPH+Dexa group was significantly more significant in all factors than the MPH+Dexa group. It showed a very low value.
상기와 같은 결과를 통해, 단순히 거저리 유충 단백질 가수분해물(MPH)을 섭취하는 것 보다 이를 두부에 첨가하여 두부 형태의 섭취하는 경우 근위축을 효과적으로 개선시킬 수 있음을 확인할 수 있었다.Through the above results, it was confirmed that muscle atrophy can be effectively improved by adding mealworm larva protein hydrolyzate (MPH) to tofu and consuming it in the form of tofu rather than simply consuming it.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on its preferred embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.
Claims (10)
b) 혼합액의 pH를 9.0으로 조절한 후 30분 내지 60분 동안 혼합한 다음 비지와 두유액으로 분리하는 단계;
c) 분리된 두유액의 pH를 7.0으로 조절한 후 70℃에서 1차 가열하는 단계;
d) 1차 가열된 두유액을 95℃에서 2차 가열하는 단계;
e) 2차 가열된 두유액을 50℃가 되도록 냉각시킨 후 응고제를 첨가하여 혼합하는 단계;
f) 혼합물을 50℃에서 1차 반응시키는 단계; 및
g) 1차 반응시킨 혼합물을 85℃에서 2차 반응시킨 후 상온에서 냉각하는 단계를 포함하는, 근육 질환의 예방 또는 개선용 두부 제조방법.a) mixing soybean meal with brown mealworm larval protein, extract of brown mealworm larval protein, or hydrolyzate of brown mealworm larval protein extract at a weight ratio of 1:1 and adding distilled water to the mixture;
b) adjusting the pH of the mixed solution to 9.0, mixing for 30 to 60 minutes, and then separating into okara and soymilk;
c) adjusting the pH of the separated soymilk to 7.0 and then first heating it at 70°C;
d) second heating the first heated soymilk liquid at 95°C;
e) Cooling the second heated soy milk liquid to 50°C and then adding and mixing a coagulant;
f) subjecting the mixture to a primary reaction at 50°C; and
g) A method of producing tofu for preventing or improving muscle disease, comprising the step of subjecting the first reaction mixture to a second reaction at 85°C and then cooling it at room temperature.
상기 갈색거저리 유충 단백질의 추출물은 ⅰ) 갈색거저리 유충 건조물을 분쇄하는 단계; ⅱ) 분쇄물에 에탄올을 첨가하여 탈지시키는 단계; ⅲ) 탈지된 갈색거저리 유충에 수산화나트륨을 첨가 혼합한 후 원심분리하여 침전물을 수득하는 단계; 및 ⅳ) 수득한 침전물을 탈염한 후 동결건조하는 단계를 포함하는 과정을 통해 제조되는 것을 특징으로 하는, 근육 질환의 예방 또는 개선용 두부 제조방법.According to paragraph 1,
The extract of the protein of brown mealworm larvae includes the steps of i) pulverizing dried brown mealworm larvae; ii) adding ethanol to the ground product to degrease it; ⅲ) adding sodium hydroxide to the defatted brown mealworm larvae, mixing them and centrifuging them to obtain a precipitate; and iv) a method of producing tofu for preventing or improving muscle disease, characterized in that it is manufactured through a process comprising desalting the obtained precipitate and then freeze-drying it.
상기 갈색거저리 유충 단백질 추출물의 가수분해물은 갈색거저리 유충 단백질의 추출물에 알칼라아제 및 플라보르자임을 순차적으로 처리하여 가수분해시킴으로써 제조되는 것을 특징으로 하는, 근육 질환의 예방 또는 개선용 두부 제조방법.According to paragraph 1,
The hydrolyzate of the protein extract of brown mealworm larvae is a method of producing tofu for preventing or improving muscle disease, characterized in that it is produced by sequentially treating the extract of brown mealworm larval protein with alcalase and flavorzyme to hydrolyze it.
상기 b) 단계를 통해 콩과 갈색거저리 유충 속의 단백질을 추출하는 특징으로 하는, 근육 질환의 예방 또는 개선용 두부 제조방법.According to paragraph 1,
A tofu manufacturing method for preventing or improving muscle disease, characterized in that the protein in soybeans and brown mealworm larvae is extracted through step b).
상기 c) 단계를 통해 갈색거저리 유충 단백질의 겔(gel)을 형성시키는 것을 특징으로 하는, 근육 질환의 예방 또는 개선용 두부 제조방법.According to paragraph 1,
A method of producing tofu for preventing or improving muscle disease, characterized in that a gel of brown mealworm larval protein is formed through step c).
상기 e) 단계에서 응고제는 글루코노델타락톤 및 트랜스글루타미나제인 것을 특징으로 하는, 근육 질환의 예방 또는 개선용 두부 제조방법.According to paragraph 1,
A method of producing tofu for preventing or improving muscle disease, wherein the coagulant in step e) is gluconodelta lactone and transglutaminase.
상기 두부는 근육 감소와 관련한 유전자의 발현을 억제시키는 것을 특징으로 하는, 근육 질환의 예방 또는 개선용 두부 제조방법.According to paragraph 1,
A method of producing tofu for preventing or improving muscle disease, characterized in that the tofu suppresses the expression of genes related to muscle loss.
상기 근육 감소와 관련한 유전자는 마이오스타틴(Myostatin), MuRF 1 및 Atrogin-1로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 근육 질환의 예방 또는 개선용 두부 제조방법.In clause 7,
A method of producing tofu for preventing or improving muscle disease, wherein the gene related to muscle loss is selected from the group consisting of Myostatin, MuRF 1, and Atrogin-1.
상기 근육 질환은 근 기능 저하, 근육 감소, 근육 위축, 근육 소모 또는 근육 퇴화로 인한 근육 질환인 것을 특징으로 하는, 근육 질환의 예방 또는 개선용 두부 제조방법.According to any one of claims 1 to 8,
A method of producing tofu for preventing or improving muscle disease, characterized in that the muscle disease is a muscle disease caused by decreased muscle function, muscle loss, muscle atrophy, muscle wasting, or muscle degeneration.
상기 근육 질환은 긴장감퇴증(atony), 근위축증(muscular atrophy), 근이영양증(muscular dystrophy), 근무력증, 악액질(cachexia), 경직성 척추 증후군(rigid spinesyndrome), 근위축성 측삭경화증(루게릭병, amyotrophic lateral sclerosis), 샤르코-마리-투스병(Charcot-Marie-Tooth disease) 및 근감소증(sarcopenia)으로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 근육 질환의 예방 또는 개선용 두부 제조방법.According to clause 9,
The muscle diseases include atony, muscular atrophy, muscular dystrophy, myasthenia gravis, cachexia, rigid spine syndrome, and amyotrophic lateral sclerosis (Lou Gehrig's disease). , Charcot-Marie-Tooth disease, and sarcopenia.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210119908A KR102644928B1 (en) | 2021-09-08 | 2021-09-08 | Manufacturing method of tofu for preventing or improving muscle disease using mealworm larva protein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210119908A KR102644928B1 (en) | 2021-09-08 | 2021-09-08 | Manufacturing method of tofu for preventing or improving muscle disease using mealworm larva protein |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230036871A KR20230036871A (en) | 2023-03-15 |
KR102644928B1 true KR102644928B1 (en) | 2024-03-06 |
Family
ID=85642143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210119908A KR102644928B1 (en) | 2021-09-08 | 2021-09-08 | Manufacturing method of tofu for preventing or improving muscle disease using mealworm larva protein |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102644928B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102076459B1 (en) | 2019-10-29 | 2020-02-13 | 주식회사 한미양행 | Composition containing enzyme treatmented Tenebrio molitor for muscle mass enhancement and restorative rejuvenation of recovering patients or elderly patients |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200004161A (en) * | 2018-07-03 | 2020-01-13 | 윤명중 | Method for producing high protein bean curd using edible insect |
KR20210012963A (en) | 2019-07-25 | 2021-02-03 | 고려대학교 산학협력단 | Method for preparing Gryllus bimaculatus powder or extract thereof, food composition comprising the same and utilization thereof |
KR102309947B1 (en) | 2019-11-26 | 2021-10-07 | 경희대학교 산학협력단 | Composition for improving muscle function, comprising grub extract |
KR102572979B1 (en) * | 2020-02-28 | 2023-08-31 | 건국대학교 글로컬산학협력단 | Composition for preventing of treating sarcopenia or muscular dystrophy containing Tenbrio molitor and balloon-flower extract |
-
2021
- 2021-09-08 KR KR1020210119908A patent/KR102644928B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102076459B1 (en) | 2019-10-29 | 2020-02-13 | 주식회사 한미양행 | Composition containing enzyme treatmented Tenebrio molitor for muscle mass enhancement and restorative rejuvenation of recovering patients or elderly patients |
Non-Patent Citations (1)
Title |
---|
Journal of Life Science 2019 Vol. 29. No. 8. 854~860 |
Also Published As
Publication number | Publication date |
---|---|
KR20230036871A (en) | 2023-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Processing, nutrition, and functionality of hempseed protein: A review | |
Fukushima | Recent progress in research and technology on soybeans | |
Ding et al. | The physicochemical properties and gastrointestinal fate of oleosomes from non-heated and heated soymilk | |
Zhu et al. | Effect of microbial transglutaminase cross-linking on the quality characteristics and potential allergenicity of tofu | |
KR100862979B1 (en) | Composition of Collagen Peptides for Cosmetics and Method Thereof | |
JP2005080668A (en) | Soluble soybean protein having excellent functional characteristic | |
WO2011152330A1 (en) | Soybean protein hydrolysate-containing antioxidant and use thereof | |
JP2007523045A (en) | Bioactive peptide derived from egg white protein by enzymatic hydrolysis | |
AU2003221982B2 (en) | Oil body associated protein compositions and methods of use thereof for reducing the risk of cardiovascular disease | |
KR20200124053A (en) | Low MW soy protein isolate improved on sensual bitter, fishy taste and digestibility, and preparation method of the same | |
Lafarga | Potential applications of plant‐derived proteins in the food industry | |
Aderinola et al. | Production, health‐promoting properties and characterization of bioactive peptides from cereal and legume grains | |
Islam et al. | Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property | |
Liu et al. | Fortification of yogurt with oyster hydrolysate and evaluation of its in vitro digestive characteristics and anti-inflammatory activity | |
KR101173546B1 (en) | An anti-obesity composition containing fat-removed silkworm pupa hydrolysate and its manufacturing method | |
JP4461680B2 (en) | Composition for reducing blood neutral fat | |
Nirmal et al. | Plant protein-derived peptides: frontiers in sustainable food system and applications | |
KR102644928B1 (en) | Manufacturing method of tofu for preventing or improving muscle disease using mealworm larva protein | |
Ratnayani et al. | Effect of in vitro gastrointestinal digestion on the Angiotensin Converting Enzyme (ACE) inhibitory activity of pigeon pea protein isolate. | |
Agyei et al. | Bioactivity profiling of peptides from food proteins | |
CA2732614A1 (en) | Obtaining cocoa extracts rich in bioactive peptides with ace and pep enzyme inhibitory activity | |
KR20230036870A (en) | Tofu for the prevention or improvement of muscle disease using mealworm larvae protein | |
STODOLAK et al. | Effect of flaxseed oil-cake addition on the nutritional value of grass pea tempeh | |
WO2022168413A1 (en) | Method for producing deprestatin-containing composition | |
JP2006129703A (en) | Vegetable protein food material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |