KR102637535B1 - Method for producing high soluble cellulose using 4,6-alpha-glucanotransferase and alpha-amylase complex enzyme reaction - Google Patents

Method for producing high soluble cellulose using 4,6-alpha-glucanotransferase and alpha-amylase complex enzyme reaction Download PDF

Info

Publication number
KR102637535B1
KR102637535B1 KR1020210156493A KR20210156493A KR102637535B1 KR 102637535 B1 KR102637535 B1 KR 102637535B1 KR 1020210156493 A KR1020210156493 A KR 1020210156493A KR 20210156493 A KR20210156493 A KR 20210156493A KR 102637535 B1 KR102637535 B1 KR 102637535B1
Authority
KR
South Korea
Prior art keywords
alpha
asn
reaction
glucanotransferase
asp
Prior art date
Application number
KR1020210156493A
Other languages
Korean (ko)
Other versions
KR20220065718A (en
Inventor
박종태
정구영
전서현
신동호
신수진
Original Assignee
충남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교 산학협력단 filed Critical 충남대학교 산학협력단
Publication of KR20220065718A publication Critical patent/KR20220065718A/en
Application granted granted Critical
Publication of KR102637535B1 publication Critical patent/KR102637535B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/16Preparation of compounds containing saccharide radicals produced by the action of an alpha-1, 6-glucosidase, e.g. amylose, debranched amylopectin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 4,6-알파-글루카노트랜스퍼라아제 및 알파-아밀라아제의 복합 효소반응을 이용하는 고수용성 섬유소의 제조 방법에 관한 것으로, 상세하게는 덱스트린을 기질로 하는 당전이 효소 및 가수분해 효소를 복합처리하여 고수용성 섬유소를 제조하는 방법에 관한 것이다. 본 발명의 제조방법으로 생산된 섬유소는 α-1,6 결합이 87%까지 증가하였고, 글루코스 중합도가 10을 초과하는 생성물의 비율이 79%까지 증가하였으며, 물에 대한 수용성이 증진된 것이다. The present invention relates to a method for producing highly soluble fiber using a complex enzymatic reaction of 4,6-alpha-glucanotransferase and alpha-amylase, and specifically, glycosyltransferase and hydrolytic enzymes using dextrin as a substrate. It relates to a method of producing highly soluble fiber through composite processing. The fiber produced by the production method of the present invention had α-1,6 bonds increased to 87%, the proportion of products with a degree of glucose polymerization exceeding 10 increased to 79%, and water solubility was improved.

Description

4,6-알파-글루카노트랜스퍼라아제 및 알파-아밀라아제의 복합 효소반응을 이용하는 고수용성 섬유소의 제조 방법{Method for producing high soluble cellulose using 4,6-alpha-glucanotransferase and alpha-amylase complex enzyme reaction}Method for producing high soluble cellulose using 4,6-alpha-glucanotransferase and alpha-amylase complex enzyme reaction}

본 발명은 4,6-알파-글루카노트랜스퍼라아제 및 알파-아밀라아제의 복합 효소반응을 이용하는 고수용성 섬유소의 제조 방법에 관한 것이다.The present invention relates to a method for producing highly soluble fiber using a complex enzymatic reaction of 4,6-alpha-glucanotransferase and alpha-amylase.

덱스트린은 녹말보다 분자량이 작은 다당류를 총칭한다. 녹말을 약간 분해한 고분자량에서 아이오딘-녹말반응을 보이지 않는 저분자량의 것까지 넓은 범위의 것을 말한다. 가용성 녹말도 덱스트린의 일종이다. 생체 내에서는 침(타액)과 소장 내의 세균에 의해 녹말에서 덱스트린을 생성하는 반응이 이루어진다. 녹말을 산·열·효소 등으로 가수분해시킬 때 녹말에서 말토스에 이르는 중간단계에서 생기는 여러가지 가수분해 산물이다. 사무용 풀, 수성도료, 제과의 조합용이나 약품의 부형제 등으로 쓰이고 있다. Dextrin is a general term for polysaccharides with a molecular weight smaller than starch. It refers to a wide range from high molecular weight that slightly decomposes starch to low molecular weight that does not show iodine-starch reaction. Soluble starch is also a type of dextrin. In the living body, a reaction occurs to produce dextrin from starch by saliva and bacteria in the small intestine. These are various hydrolysis products that occur in the intermediate stage from starch to maltose when starch is hydrolyzed with acid, heat, enzymes, etc. It is used as office glue, water-based paint, confectionery composition, and as an excipient for pharmaceuticals.

한편, 당전이 효소는 당잔기(글리코실기) 전이에 관여하는 전이 효소의 총칭으로 다당류, 소당류, 배당체 등 각 당류의 합성, 분해에 관여한다. 일반적으로 효소 작용을 받는 결합에 직접 관여하는 당의 종류와 입체 구조에 따라 특이성이 다른데, 말토오스포스포릴라아제나 셀로비오스포스포릴라아제와 같이 글루코실 공여체와 전이 생성물에서 아노머 구조의 역전을 일으키는 것도 있다. 비교적 에너지 준위가 높은 글리코시드 결합을 가진 당 또는 유도체(자당과 글리코실인산 등)를 공여체로 하는 것이 많고, 생체 내의 당류 생합성에서 작용한다. 전이기에 따라서 1) 트랜스글루코실라아제(글루코실 전이 효소) : 수크로오스포스포릴라아제(α-글루코실 전이 효소의 일종) 등, 2) 트랜스프룩토실라아제 : 레반수크라아제 등, 3) 트랜스리보실라아제 : 뉴클레오시드포스포릴라아제 등, 4) 트랜스글루쿠로닐라아제 : 우리딘이인산글루쿠론산 트랜스글루쿠로닐라아제 등으로 나뉜다.Meanwhile, glycosyltransferase is a general term for transferases involved in the transfer of sugar residues (glycosyl groups) and is involved in the synthesis and decomposition of sugars such as polysaccharides, oligosaccharides, and glycosides. In general, the specificity varies depending on the type and three-dimensional structure of the sugar directly involved in the bond subjected to enzyme action. Like maltose phosphorylase or cellobiose phosphorylase, it causes inversion of the anomeric structure in the glucosyl donor and transfer product. There is also something. Sugars or derivatives (such as sucrose and glycosyl phosphate) with a glycosidic bond at a relatively high energy level are often used as donors, and they function in saccharide biosynthesis within the living body. Depending on the transfer stage, 1) transglucosylase (glucosyl transferase): sucrosephosphorylase (a type of α-glucosyl transferase), etc., 2) transfructosylase: levansucrase, etc., 3) trans Ribosylase: Nucleoside phosphorylase, etc., 4) Transglucuronylase: Uridine diphosphate glucuronic acid transglucuronylase, etc.

한국등록특허 제2167849호에 알파-1,6 당전이 효소를 활용한 글루코실 스테비오사이드 제조방법이 개시되어 있으나, 본 발명의 4,6-알파-글루카노트랜스퍼라아제 및 알파-아밀라아제의 복합 효소반응을 이용하는 고수용성 섬유소의 제조 방법에 대해 개시된 바 없다.Korean Patent No. 2167849 discloses a method for producing glucosyl stevioside using alpha-1,6 glycosyltransferase, but the complex enzyme of 4,6-alpha-glucanotransferase and alpha-amylase of the present invention There has been no disclosure regarding a method for producing highly soluble fiber using reaction.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명은 4,6-알파-글루카노트랜스퍼라아제 및 알파-아밀라아제의 복합 효소반응을 이용하는 고수용성 섬유소의 제조 방법을 제공하고, 본 발명의 제조방법으로 생산된 섬유소는 α-1,6 결합이 87%까지 증가하였고, 글루코스 중합도가 10을 초과하는 생성물의 비율이 79%까지 증가하였으며, 물에 대한 수용성이 증진되었다는 것을 확인함으로써, 본 발명을 완성하였다.The present invention was derived from the above needs, and the present invention provides a method for producing highly soluble fiber using a complex enzymatic reaction of 4,6-alpha-glucanotransferase and alpha-amylase, and the present invention The fiber produced by the manufacturing method had α-1,6 bonds increased to 87%, the proportion of products with a degree of glucose polymerization exceeding 10 increased to 79%, and water solubility was improved, thereby confirming the present invention. was completed.

상기 목적을 달성하기 위하여, 본 발명은 (1) 말토덱스트린에 4,6-알파-글루카노트랜스퍼라아제(4,6αGT, 4,6-α-glucanotransferase)를 처리하여 당전이 반응을 유도하는 단계; 및In order to achieve the above object, the present invention includes the steps of (1) treating maltodextrin with 4,6-alpha-glucanotransferase (4,6αGT, 4,6-α-glucanotransferase) to induce a glycosyltransferase reaction; ; and

(2) 상기 단계 (1)의 당전이 반응 후에, 가수분해 효소를 첨가하여 α-1,4 결합의 비환원성 말단을 형성시켜 상기 4,6-알파-글루카노트랜스퍼라아제에 의한 당전이 반응을 추가로 유도하는 단계;를 포함하는 고수용성 섬유소의 제조 방법을 제공한다.(2) After the glycosyltransferase reaction of step (1), a hydrolytic enzyme is added to form a non-reducing end of the α-1,4 bond, resulting in a glycosyltransferase reaction using the 4,6-alpha-glucanotransferase. It provides a method for producing highly soluble fiber comprising the step of further inducing.

또한, 본 발명은 상기 제조방법에 의해 제조된 고수용성 섬유소를 제공한다.Additionally, the present invention provides highly soluble fiber produced by the above production method.

또한, 본 발명은 상기 고수용성 섬유소를 포함하는 식품을 제공한다.Additionally, the present invention provides a food containing the high soluble fiber.

본 발명은 4,6-알파-글루카노트랜스퍼라아제 및 알파-아밀라아제의 복합 효소반응을 이용하는 고수용성 섬유소의 제조 방법에 관한 것으로, 상세하게는 덱스트린을 기질로 하는 당전이 효소 및 가수분해 효소를 복합처리하여 고수용성 섬유소를 제조하는 방법에 관한 것이다. 본 발명의 제조방법으로 생산된 섬유소는 α-1,6 결합이 87%까지 증가하였고, 글루코스 중합도가 10을 초과하는 생성물의 비율이 79%까지 증가하였으며, 물에 대한 수용성이 증진된 효과가 있는 것이다.The present invention relates to a method for producing highly soluble fiber using a complex enzymatic reaction of 4,6-alpha-glucanotransferase and alpha-amylase, and specifically, glycosyltransferase and hydrolytic enzymes using dextrin as a substrate. It relates to a method of producing highly soluble fiber through composite processing. The fiber produced by the manufacturing method of the present invention has α-1,6 bonds increased to 87%, the proportion of products with a degree of glucose polymerization exceeding 10 increased to 79%, and water solubility is improved. will be.

도 1은 당전이 효소(4,6-알파-글루카노트랜스퍼라아제) 및 가수분해 효소(알파-아밀라아제) 처리 시간 및 조건을 나타낸 것이다.
도 2는 본 발명의 제조방법의 조건에 따라 제조한 섬유소의 1H-NMR 분석결과이다. (a)는 당전이 반응에 사용한 기질인 말토덱스트린의 1H-NMR 분석결과이고, (b)는 당전이 효소 반응만 24시간 동안 수행한 후, 생성물의 1H-NMR 분석결과이며, (c)는 당전이 효소 반응만 72시간 동안 수행한 후, 생성물의 1H-NMR 분석결과이고, (d)는 당전이 효소 반응만 72시간 동안 수행한 후, 알파-아밀라아제 처리하여 추가로 당전이 반응을 수행한 후 생성물의 1H-NMR 분석결과이다.
도 3은 본 발명의 제조방법으로 제조된 반응산물(섬유소)의 중합도를 확인하기 위한 고성능 음이온 교환 크로마토그래피 분석결과로, 도 1에서의 조건 A~G에 따른 결과이며, 상단의 G1~G9는 글루코스 중합도를 나타낸 것이다.
도 4는 본 발명의 방법으로 제조된 72시간 반응산물의 α-1,4 결합, α-1,3 결합 및 α-1,6 결합의 비율을 1H-NMR 분석으로 확인한 결과이다. (a)는 5% G10의 기질을 사용한 경우이고, (b)는 20% G10의 기질을 사용한 경우이며, (c)는 30% G10의 기질을 사용한 경우이다.
Figure 1 shows the glycosyltransferase (4,6-alpha-glucanotransferase) and hydrolytic enzyme (alpha-amylase) treatment times and conditions.
Figure 2 shows the results of 1 H-NMR analysis of fiber produced according to the conditions of the production method of the present invention. (a) is the 1 H-NMR analysis result of maltodextrin, the substrate used in the glycosyltransferase reaction, (b) is the 1 H-NMR analysis result of the product after only the glycosyltransferase reaction was performed for 24 hours, and (c) ) is the result of 1 H-NMR analysis of the product after performing only the glycosyltransferase reaction for 72 hours, and (d) is the result of 1 H-NMR analysis of the product after performing only the glycosyltransferase reaction for 72 hours, followed by treatment with alpha-amylase for an additional glycosyltransfer reaction This is the result of 1 H-NMR analysis of the product after performing.
Figure 3 is the result of high-performance anion exchange chromatography analysis to confirm the degree of polymerization of the reaction product (cellulose) prepared by the production method of the present invention. The results are according to conditions A to G in Figure 1, and G1 to G9 at the top are It shows the degree of glucose polymerization.
Figure 4 shows the results of 1 H-NMR analysis confirming the ratio of α-1,4 bond, α-1,3 bond, and α-1,6 bond of the reaction product prepared by the method of the present invention for 72 hours. (a) is a case of using a 5% G10 substrate, (b) is a case of using a 20% G10 substrate, and (c) is a case of using a 30% G10 substrate.

본 발명은 (1) 말토덱스트린에 4,6-알파-글루카노트랜스퍼라아제(4,6αGT, 4,6-α-glucanotransferase)를 처리하여 당전이 반응을 유도하는 단계; 및The present invention includes the steps of (1) treating maltodextrin with 4,6-alpha-glucanotransferase (4,6αGT, 4,6-α-glucanotransferase) to induce a glycosyltransferase reaction; and

(2) 상기 단계 (1)의 당전이 반응 24~48시간 후에, 가수분해 효소를 첨가하여 α-1,4 결합의 비환원성 말단을 형성시켜 상기 4,6-알파-글루카노트랜스퍼라아제에 의한 당전이 반응을 추가로 유도하는 단계;를 포함하는 고수용성 섬유소의 제조 방법에 관한 것이다.(2) 24 to 48 hours after the glycotransferase reaction of step (1), a hydrolytic enzyme is added to form the non-reducing end of the α-1,4 bond to the 4,6-alpha-glucanotransferase. It relates to a method for producing highly soluble fiber comprising the step of further inducing a glycosyltransferase reaction.

일반적으로, 알파-글루카노트랜스퍼라제는 공여분자의 비환원성 말단으로부터 수여분자의 비환원성 말단에 글루코오스 단위로 전이하는 효소로서 아밀로오스와 아밀로펙틴의 긴 가지들을 가수분해하고, 동시에 가수분해된 저분자의 글루칸을 α-1,4, α-1,6 결합으로 당전이하여 아밀로펙틴 가지들을 재구성시키는 효소이다.본 발명의 4,6-α-글루카노트랜스퍼라제는 (1→4)-α-D-글루코-올리고사카라이드를 연속의 (α1→6) 글루코시드 결합을 가지는 선형의 α-글루칸을 생성할 수 있다. 상기 효소는 (1→4)-α-D-글루코-올리고사카라이드의 비환원성 글루코오스 성분을 절단하고, 이 글루코오스 성분을 다른 글루칸 체인의 비환원성 말단에 (α1→6) 결합으로 붙인다. 이러한 효소 반응을 반복하여 연속의 (α1→6) 결합을 가지는 α-글루칸을 생성할 수 있다. 본 발명의 일 구현 예에 따른 방법에서, 상기 4,6-α-글루카노트랜스퍼라제는 서열번호 1의 아미노산 서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다. In general, alpha-glucanotransferase is an enzyme that transfers glucose units from the non-reducing end of the donor molecule to the non-reducing end of the recipient molecule. It hydrolyzes the long branches of amylose and amylopectin, and at the same time hydrolyzes the hydrolyzed low molecular weight glucan. It is an enzyme that reorganizes amylopectin branches by carrying out glycotransferase to α-1,4 and α-1,6 bonds. 4,6-α-glucanotransferase of the present invention is (1→4)-α-D-gluco- Oligosaccharides can produce linear α-glucans with consecutive (α1→6) glucosidic linkages. The enzyme cleaves the non-reducing glucose component of (1→4)-α-D-gluco-oligosaccharide and attaches this glucose component to the non-reducing end of another glucan chain through a (α1→6) bond. By repeating this enzymatic reaction, α-glucan with a continuous (α1→6) bond can be produced. In the method according to one embodiment of the present invention, the 4,6-α-glucanotransferase may consist of the amino acid sequence of SEQ ID NO: 1, but is not limited thereto.

상기 말토덱스트린은 글루코스 중합도가 2~20인 것일 수 있으나, 이에 제한되지 않는다. The maltodextrin may have a degree of glucose polymerization of 2 to 20, but is not limited thereto.

상기 단계 (2)의 가수분해 효소는 알파-아밀라아제(α-amylase)인 것일 수 있으나, 이에 제한되지 않는다.The hydrolytic enzyme in step (2) may be alpha-amylase, but is not limited thereto.

상기 4,6-알파-글루카노트랜스퍼라아제는 (1) 말토오스 결합 단백질 코딩 유전자와 락토바실러스 루테리(Lactobacillus reuteri)에서 유래된 4,6-α-글루카노트랜스퍼라제 단백질을 코딩하는 유전자를 포함하는 재조합 벡터를 제조하는 단계;The 4,6-alpha-glucanotransferase includes (1) a gene encoding a maltose binding protein and a gene encoding a 4,6-α-glucanotransferase protein derived from Lactobacillus reuteri . Preparing a recombinant vector;

(2) 상기 제조된 재조합 벡터를 대장균에 형질전환시키는 단계; 및 (2) transforming the prepared recombinant vector into E. coli; and

(3) 상기 형질전환된 대장균으로부터 말토오스 결합 단백질 융합 4,6-α-글루카노트랜스퍼라제 효소를 분리 및 정제하는 단계;를 포함하는 제조방법으로 제조된 것일 수 있으나, 이에 제한되지 않는다. (3) isolating and purifying the maltose-binding protein fusion 4,6-α-glucanotransferase enzyme from the transformed E. coli; but is not limited thereto.

상기 반응 온도는 37~42℃이고, 반응의 pH는 4.7~5.3인 것일 수 있으나, 이에 제한되지 않는다.The reaction temperature may be 37-42°C, and the pH of the reaction may be 4.7-5.3, but is not limited thereto.

또한, 본 발명은 상기 제조방법에 의해 제조된 고수용성 섬유소에 관한 것이다.Additionally, the present invention relates to highly soluble fiber produced by the above production method.

상기 고수용성 섬유소는 α-1,6 결합이 80% 이상, 바람직하게는 83~87%이고, 글루코오스 중합도가 10 이상인 것의 비율이 55~80%, 바람직하게는 77~79%이고, 물에 대한 용해도가 60~65%인 것일 수 있으나, 이에 제한되지 않는다.The highly soluble fiber has an α-1,6 bond of 80% or more, preferably 83 to 87%, a glucose polymerization degree of 10 or more, and a ratio of 55 to 80%, preferably 77 to 79%, with respect to water. The solubility may be 60-65%, but is not limited thereto.

또한, 본 발명은 상기 고수용성 섬유소를 포함하는 식품에 관한 것이다.Additionally, the present invention relates to a food containing the high soluble fiber.

본 발명의 식품은 본 발명에서 제조된 고수용성 섬유소를 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 또한, 상기 식품의 종류에는 특별히 제한하는 것을 아니지만, 상기 고수용성 섬유소를 이용하여 건강기능성식품, 건강식품 또는 건강보조식품을 제조할 수 있다. 본 발명에서 건강식품 또는 건강보조식품은 영양 기능 외에도 생리활성 성분을 포함하여 생체조절 기능을 제공하는 식품을 의미한다.The food of the present invention can be used by adding the high-soluble fiber prepared in the present invention as is or with other foods or food ingredients, and can be used appropriately according to conventional methods. In addition, there are no particular restrictions on the type of food, but health functional foods, health foods, or health supplements can be manufactured using the high-soluble fiber. In the present invention, health food or health supplement refers to food that provides bioregulatory functions by including physiologically active ingredients in addition to nutritional functions.

이하, 실시예를 이용하여 본 발명을 더욱 상세하게 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이들에 의해 제한되지 않는다는 것은 당해 기술분야에서 통상의 지식을 가진 자에게 있어 자명한 것이다. Hereinafter, the present invention will be described in more detail using examples. These examples are only for illustrating the present invention in more detail, and it is obvious to those skilled in the art that the scope of the present invention is not limited thereto.

실시예 1. MBP(maltose binding protein)를 이용한 발현 및 정제Example 1. Expression and purification using MBP (maltose binding protein)

4,6αGT 단백질 크기는 101kD이며, 가용성 분획(soluble fraction)의 발현을 증가시키기 위해, MBP(maltose binding protein)를 발현하는 malE 유전자를 이용하여 가용성 분획에 발현되도록 하고, 아밀로스 친화성 크로마토그래피를 이용한 정제법을 사용해 정제도를 개선하였다. MBP를 발현하는 malE 유전자를 가진 pMAL_TEV_XhoⅠ 벡터에서 NdeⅠ 및 HindⅢ 제한효소 자리에 락토바실러스 루테리에서 유래한 4,6αGT 유전자를 서브클로닝하였다. 대장균을 숙주로 하여 LB 배지를 사용하여 37℃에서 OD 값이 0.6~0.8까지 배양한 후, 0.1mM의 IPTG를 첨가하고, 30℃에서 6시간 배양하였다. 배양 후 세포를 수확하여 파쇄한 후 원심분리하여 상층액을 획득하여 MBP와 융합된 단백질을 분리 정제하였다. 정제는 아밀로즈 레진(amylose resin)을 사용하여 만든 컬럼을 사용하여, MBP와 아밀로즈 간의 친화성을 이용하여 정제하였다. 아밀로즈 레진 1㎖을 컬럼에 넣고, 50mM Tris (pH7.5) 버퍼 5㎖을 흘려주어 안정화를 시켜준 후, 시료 5㎖을 로딩하고, 다시 50mM Tris(pH 7.5) 버퍼를 5㎖ 로딩해 세척해 주고, 50mM Tris에 10mM 말토스가 들어있는 용출용 버퍼를 5㎖ 로딩해 아밀로즈 레진에 붙어 있는 융합 단백질을 용출시켰다. 단백질의 크기는 142kD이며, 가용성 분획에 발현되었고, 이를 아밀로스 친화성 크로마토그래피를 이용하여 정제하였다.The size of the 4,6αGT protein is 101kD, and in order to increase expression in the soluble fraction, the malE gene that expresses MBP (maltose binding protein) was used to express it in the soluble fraction, and the protein was expressed in the soluble fraction using amylose affinity chromatography. The degree of purification was improved using a purification method. The 4,6αGT gene derived from Lactobacillus reuteri was subcloned into the pMAL_TEV_XhoⅠ vector containing the malE gene expressing MBP into the NdeⅠ and HindⅢ restriction enzyme sites. Using E. coli as a host, the culture was cultured at 37°C using LB medium to an OD value of 0.6 to 0.8, then 0.1mM of IPTG was added and cultured at 30°C for 6 hours. After culturing, the cells were harvested, disrupted, and centrifuged to obtain the supernatant, and the protein fused with MBP was separated and purified. Purification was performed using a column made using amylose resin, taking advantage of the affinity between MBP and amylose. Put 1 ml of amylose resin into the column, stabilize it by flowing 5 ml of 50mM Tris (pH 7.5) buffer, load 5 ml of sample, and wash by loading 5 ml of 50mM Tris (pH 7.5) buffer again. Then, 5 ml of elution buffer containing 10mM maltose in 50mM Tris was loaded to elute the fusion protein attached to the amylose resin. The size of the protein was 142 kD, expressed in the soluble fraction, and purified using amylose affinity chromatography.

실시예Example 2. 복합효소 처리를 통한 고수용성 섬유소의 생산2. Production of highly soluble fiber through complex enzyme treatment

대상(주)에서 생산하는 PureDex라는 DE 10 말토덱스트린을 기질로 하여 4,6-αGT 반응을 수행하였다. 말토덱스트린은 전분에 비해 수용성이 높고, 고농도에서 점도가 낮아 효소반응이 용이하여 채택하였으며, 바람직하게는 엿당 이상의 중합도를 가지는 말토덱스트린을 사용할 수 있다. The 4,6-αGT reaction was performed using DE 10 maltodextrin called PureDex produced by Daesang Co., Ltd. as a substrate. Maltodextrin was selected because it has higher water solubility than starch and has low viscosity at high concentrations, making it easy to carry out enzymatic reactions. Preferably, maltodextrin with a degree of polymerization equal to or greater than that of maltose can be used.

본 발명의 복합효소 처리의 효과를 확인하기 위하여, 하기와 같은 4가지 타입의 효소반응을 구성하였다.In order to confirm the effect of the complex enzyme treatment of the present invention, four types of enzyme reactions were constructed as follows.

① 반응 1: 4,6-αGT 만 처리하는 경우,① Reaction 1: When treating only 4,6-αGT,

② 반응 2: 4,6-αGT 처리하여 반응 후 효소 불활성화시키고, 알파-아밀라아제 처리하는 경우,② Reaction 2: When the enzyme is inactivated after reaction by treatment with 4,6-αGT and treated with alpha-amylase,

③ 반응 3: 4,6-αGT 처리하여 효소반응 후 효소 불활성화시키고, 알파-아밀라아제 처리한 후, 다시 4,6-αGT 처리하는 경우,③ Reaction 3: When the enzyme is inactivated after the enzyme reaction by treatment with 4,6-αGT, treated with alpha-amylase, and then treated with 4,6-αGT again,

④ 반응 4: 4,6-αGT 처리하여 효소반응 후 알파-아밀라아제 처리하는 경우로 나누어 실험하였고, 반응 결과를 비교하였다. ④ Reaction 4: The experiment was divided into cases where 4,6-αGT was treated, enzymatic reaction was followed by alpha-amylase treatment, and the reaction results were compared.

반응 1은 기질로서의 30%(w/v) 말토덱스트린, 5mM의 염화칼슘 및 0.05%(w/v)의 아지드화나트륨(sodium azide)을 50mM의 아세트산 나트륨 완충용액(pH5.0)에 용해시켰다. 기질 1g당, 0.5U의 4,6-αGT를 처리하여 40℃에서 72시간 동안 당전이 반응을 유도하였다.In reaction 1, 30% (w/v) maltodextrin, 5mM calcium chloride, and 0.05% (w/v) sodium azide as substrates were dissolved in 50mM sodium acetate buffer solution (pH 5.0). . Per 1 g of substrate, 0.5 U of 4,6-αGT was treated to induce a glycosyltransferase reaction at 40°C for 72 hours.

반응 2는 반응 1 이후에, 상기 4,6-αGT를 불활성화시키기 위해 100℃에서 10분동안 멸균처리하고 반응 혼합물을 0.45㎛ 필터를 이용하여 정제하였다.In Reaction 2, after Reaction 1, the 4,6-αGT was sterilized at 100°C for 10 minutes to inactivate, and the reaction mixture was purified using a 0.45㎛ filter.

이후, 가수분해 효소 Termamyl과 Novamyl의 알파-아밀라아제 각각 처리하여 40℃에서 pH5.0의 조건으로 가수분해하였다.Afterwards, it was treated with the hydrolytic enzymes Termamyl and Novamyl alpha-amylase, respectively, and hydrolyzed at 40°C under pH 5.0 conditions.

반응 3은 상기 반응 2 이후에, 추가로 기질 1g당, 0.5U의 4,6-αGT를 처리하여 40℃에서 72시간 동안 당전이 반응을 유도하였다.In reaction 3, after reaction 2, 0.5 U of 4,6-αGT was added per 1 g of substrate to induce a glycosyltransferase reaction at 40°C for 72 hours.

반응 4는 기질로서의 30%(w/v) 말토덱스트린, 5mM의 염화칼슘 및 0.05%(w/v)의 아지드화나트륨(sodium azide)을 50mM의 아세트산 나트륨 완충용액(pH5.0)에 용해시켰다. 기질 1g당, 0.5U의 4,6-αGT를 처리하여 40℃에서 72시간 동안 당전이 반응을 유도하였으며, 도 1에 개시한 바와 같이, 반응초기, 24시간후 또는 48시간 후에 알파-아밀라아제 효소를 처리하여 동시에 당전이반응과 가수분해 반응을 복합적으로 수행하도록 하였다.In reaction 4, 30% (w/v) maltodextrin, 5mM calcium chloride, and 0.05% (w/v) sodium azide as substrates were dissolved in 50mM sodium acetate buffer solution (pH 5.0). . Per 1 g of substrate, 0.5 U of 4,6-αGT was treated to induce a glycosyltransferase reaction at 40°C for 72 hours, and as shown in Figure 1, alpha-amylase enzyme was activated at the beginning, 24 hours, or 48 hours after the reaction. was processed to simultaneously perform a saccharide transfer reaction and a hydrolysis reaction.

그 결과, 하기 표 1에 개시한 바와 같이 ③ 4,6-αGT 처리하여 효소반응 후 효소 불활성화시키고, 알파-아밀라아제 처리한 후, 다시 4,6-αGT 처리하는 반응 결과와 ④ 4,6-αGT 처리하여 효소반응 후, 알파-아밀라아제 처리하는 반응 결과에서 반응생성물의 α-1,6 결합 비율이 83~84%임을 1H-NMR 분석하여 확인하였다(도 2). As a result, as shown in Table 1 below, the reaction results of ③ 4,6-αGT treatment to inactivate the enzyme after the enzyme reaction, alpha-amylase treatment, and then again 4,6-αGT treatment and ④ 4,6- After the enzyme reaction with αGT treatment, it was confirmed by 1 H-NMR analysis that the α-1,6 bond ratio of the reaction product was 83-84% in the reaction results of alpha-amylase treatment (FIG. 2).

조건 별 4,6-αGT 반응에 따라 생성된 알파글루칸의 비율Proportion of alpha-glucan produced according to 4,6-αGT reaction by condition α-1,4 결합 비율(%)α-1,4 binding ratio (%) α-1,6 결합 비율(%) α-1,6 binding ratio (%) 기질(Puredex)Substrate (Puredex) 9696 4.04.0 ① 4,6-αGT 처리된 Puredex의 생성물① Product of Puredex treated with 4,6-αGT 6666 34.034.0 ② 4,6-αGT 처리후 불활성화->알파-아밀라아제 처리된 Puredex의 생성물② Puredex product treated with 4,6-αGT and then inactivated -> alpha-amylase treated 36.136.1 63.963.9 ③ 4,6-αGT 처리후 불활성화->알파-아밀라아제 처리 -> 4,6-αGT 처리된 Puredex의 생성물③ Inactivation after 4,6-αGT treatment -> alpha-amylase treatment -> 4,6-αGT treated Puredex product 1616 8484 ④ 4,6-αGT 처리하여 효소반응 ->알파-아밀라아제 처리된 Puredex의 생성물④ 4,6-αGT treatment and enzymatic reaction -> Alpha-amylase treated Puredex product 17.017.0 83.083.0

실시예Example 3. 고성능 음이온 교환 크로마토그래피 분석을 이용한 반응산물(섬유소)의 중합도 확인 3. Confirmation of polymerization degree of reaction product (fibrin) using high-performance anion exchange chromatography analysis

반응 4에서, 반응산물의 중합도가 알파-아밀라아제를 반응 24~48시간 후에 처리하였을 때 최적의 효과가 있는 것으로 나타났으며, 고성능 음이온 교환 크로마토그래피 분석을 통해, 당전이 반응을 유도하고 24시간 후에 알파-아밀라아제를 처리한 경우, 중합도가 2~9인 반응산물이 90% 이상 획득된 것을 확인하였고, 그 중 중합도가 4~9인 반응산물은 약 80% 수준으로 나타나 전체를 기준으로 할 때 약 72%가 중합도가 4~9인 반응산물을 획득한 것을 확인하였다(도 3). In Reaction 4, the degree of polymerization of the reaction product was found to be optimal when treated with alpha-amylase 24 to 48 hours after the reaction, and through high-performance anion exchange chromatography analysis, the glycotransfer reaction was induced and 24 hours later. When treated with alpha-amylase, it was confirmed that more than 90% of reaction products with a degree of polymerization of 2 to 9 were obtained, and among them, reaction products with a degree of polymerization of 4 to 9 were found at about 80%, based on the total. It was confirmed that 72% of reaction products with a degree of polymerization of 4 to 9 were obtained (Figure 3).

실시예 4. 글루코스 함량 측정Example 4. Measurement of glucose content

기질 중합도에 따른 개량된 4,6-α-글루카노트렌스퍼라제(4,6-α-GT)의 가수분해 활성을 측정하기 위하여, 말토테트라오스(maltotetraose; G4), 말토헥사오스(maltohexaose; G6), 말토옥타오스(maltooctaose; G8) 및 말코데카오스(maltodecaose; G10)를 기질로 사용하여 가수분해 반응을 수행하였다. 이후 불활성화된 반응물을 희석하고, 0.2㎛ 친수성 멤브레인 필터(hydrophilic membrane filter)를 이용하여 여과한 후, 고성능 음이온 교환 크로마토그래피로 분석하였다.To measure the hydrolytic activity of the improved 4,6-α-glucanotransferase (4,6-α-GT) according to the degree of substrate polymerization, maltotetraose (G4), maltohexaose; Hydrolysis reaction was performed using G6), maltooctaose (G8), and maltodecaose (G10) as substrates. Afterwards, the inactivated reactant was diluted, filtered using a 0.2㎛ hydrophilic membrane filter, and then analyzed by high-performance anion exchange chromatography.

[고성능 음이온 교환 크로마토그래피 분석 조건][High-performance anion exchange chromatography analysis conditions]

칼럼: CarboPacTM PA-1 칼럼(4×250 mm, Dionex) composed guard column (4× 50mm, Dionex)Column: CarboPac TM PA-1 column (4×250 mm, Dionex) composed guard column (4×50mm, Dionex)

용리액: 0.15M NaOH 완충용액, 0.6 M NaOAc을 포함하는 0.15M NaOH Eluent: 0.15 M NaOH buffer, 0.15 M NaOH with 0.6 M NaOAc.

시료 농도: 0.05mg/㎖Sample concentration: 0.05mg/ml

유속: 1.0㎖/minFlow rate: 1.0 mL/min

주입량: 20㎕Injection volume: 20㎕

고성능 음이온 교환 크로마토그래피 분석에서 얻은 크로마토그램에서 반응물과 표준 물질의 글루코스의 피크 면적을 각각 구해, 표준 물질의 글루코스 농도를 이용하여 반응물의 글루코스의 함량을 구하고, 반응 기질 대비 글루코스 생성량을 비교하였다. The peak areas of glucose in the reactant and standard material were obtained from the chromatogram obtained from high-performance anion exchange chromatography analysis, the glucose content of the reactant was determined using the glucose concentration of the standard material, and the amount of glucose produced compared to the reaction substrate was compared.

그 결과, 기질에 따른 글루코스 함량이 하기 표 3에 개시한 바와 같이 나타났다. As a result, the glucose content depending on the substrate was shown in Table 3 below.

기질농도에 따른 4,6-α-GT 가수분해 후의 글루코스 생성량Glucose production after 4,6-α-GT hydrolysis according to substrate concentration 기질농도(%)Substrate concentration (%) 글루코스 생성량(mg/g 기질)Glucose production (mg/g substrate) 24h24h 48h48h 72h72h G4G4 10%10% 194194 204204 206206 20%20% 178178 180180 168168 30%30% 152152 172172 184184 G6G6 10%10% 102.9102.9 105.9105.9 109.9109.9 20%20% 68.468.4 74.174.1 80.380.3 30%30% 68.068.0 66.166.1 62.962.9 G8G8 10%10% 144144 138138 158158 20%20% 100100 100100 9090 30%30% 9898 100100 8888 G10G10 5%5% 132132 120120 136136 20%20% 102102 9696 8888 30%30% 6868 8282 6262

실시예 4. 중합도 분포 측정Example 4. Measurement of polymerization degree distribution

합성된 이소말토올리고당의 중합도 분포를 평가하기 위해, 크기 배제 크로마토그래피(size exclusion chromatography; SEC)로 분석하였다. 이소말토올리고당 및 표준물질로 쓰인 G4, G6, G8, G10, G12을 물에 0.5mg/㎖의 농도가 되도록 용해시킨 후, 0.2㎛ 친수성 멤브레인 필터(hydrophilic membrane filter)에 여과하여 준비하였다. To evaluate the degree of polymerization distribution of the synthesized isomaltooligosaccharide, it was analyzed by size exclusion chromatography (SEC). Isomaltooligosaccharides and G4, G6, G8, G10, and G12 used as standards were dissolved in water to a concentration of 0.5 mg/ml and then filtered through a 0.2㎛ hydrophilic membrane filter.

[SEC 분석 조건][SEC analysis conditions]

칼럼: YMC-Pack DIOL 60 column(4.6×300 mm)Column: YMC-Pack DIOL 60 column (4.6×300 mm)

용리액: 물Eluent: water

Detector : refractive index (RI) detectorDetector: refractive index (RI) detector

시료 농도: 0.5mg/㎖Sample concentration: 0.5mg/ml

유속: 0.3 ㎖/minFlow rate: 0.3 mL/min

주입량: 20㎕Injection volume: 20㎕

SEC 분석 결과를 중합도(Degree of Polymerization DP)가 4 미만, DP 4 초과 DP 10 미만, DP 10 초과의 3가지 피크면적으로 분류하여 각각의 피크 면적을 이용하여 각 중합도 분포를 계산하였으며, 하기 표 4에 개시한 바와 같이 30% G10의 기질을 사용하는 경우, DP>10인 비율이 79%인 것으로 나타났다.The SEC analysis results were classified into three peak areas: Degree of Polymerization DP less than 4, DP greater than 4, DP less than 10, and DP greater than 10, and the distribution of each degree of polymerization was calculated using each peak area, as shown in Table 4 below. When using a substrate of 30% G10 as described in, the rate of DP>10 was found to be 79%.

중합도 분포(%)=각 피크 면적/전체 피크 면적×100Degree of polymerization distribution (%) = each peak area/total peak area × 100

기질 농도에 따른 중합도(%) Degree of polymerization (%) depending on substrate concentration 기질농도(%)Substrate concentration (%) 중합도(%)Degree of polymerization (%) DP>10DP>10 4<DP<104<DP<10 DP<4DP<4 G4G4 10%10% 55.455.4 27.327.3 17.317.3 20%20% 56.056.0 29.129.1 14.814.8 30%30% 51.651.6 31.531.5 16.916.9 G6G6 10%10% 63.463.4 21.921.9 14.714.7 20%20% 60.860.8 25.725.7 13.513.5 30%30% 68.968.9 27.227.2 3.93.9 G8G8 10%10% 64.864.8 13.013.0 22.222.2 20%20% 71.971.9 16.216.2 11.911.9 30%30% 71.771.7 17.417.4 10.910.9 G10G10 5%5% 61.761.7 21.021.0 17.317.3 20%20% 77.277.2 12.512.5 10.310.3 30%30% 79.079.0 12.412.4 8.68.6

한편, 각 생성물의 1H-NMR 분석 결과, α-1,4 결합이 95% 이상인 기질이 가수분해 반응 후, 생성물의 α-1,6 결합이 87%까지 증진된 것을 확인하였다. 5% G10의 기질을 사용한 경우 α-1,4 결합, α-1,3 결합 및 α-1,6 결합의 비율이 12:1:87으로 나타났고, 20% G10의 기질을 사용한 경우는 α-1,4 결합, α-1,3 결합 및 α-1,6 결합의 비율이 11:2:87으로 나타났으며, 30% G10의 기질을 사용한 경우는 α-1,4 결합, α-1,3 결합 및 α-1,6 결합의 비율이 13:2:85인 것으로 나타났다(도 4).Meanwhile, as a result of 1 H-NMR analysis of each product, it was confirmed that the α-1,6 bond of the product was increased to 87% after the hydrolysis reaction of the substrate with more than 95% of the α-1,4 bond. When 5% G10 substrate was used, the ratio of α-1,4 bond, α-1,3 bond, and α-1,6 bond was 12:1:87, and when 20% G10 substrate was used, α-1,4 bond, α-1,3 bond, and α-1,6 bond ratio were found to be 12:1:87. The ratio of -1,4 bond, α-1,3 bond, and α-1,6 bond was found to be 11:2:87, and when 30% G10 substrate was used, α-1,4 bond, α- The ratio of 1,3 bonds and α-1,6 bonds was found to be 13:2:85 (Figure 4).

실시예 5. 페놀-황산법을 이용한 가용성 당의 함량 분석 Example 5 . Analysis of soluble sugar content using phenol-sulfuric acid method

본 발명의 방법에 따라 생성된 섬유소가 다른 조건으로 생성된 것에 비해 물에 대한 용해도가 현저하게 높다는 것을 확인하였다(표 4). It was confirmed that the solubility in water of the fiber produced according to the method of the present invention was significantly higher than that produced under other conditions (Table 4).

덱스트린을 당전이 반응하여 생산한 섬유소의 물에 대한 용해도 Solubility in water of fiber produced by glycosyltransfer reaction with dextrin 물에 대한 용해도(%)Solubility in water (%) PuredexTM(4.03%의 α-1,6)Puredex TM (4.03% α-1,6) 25.225.2 ① 4,6-αGT 처리(34.0%의 α-1,6)① 4,6-αGT treatment (34.0% of α-1,6) 38.438.4 ② 4,6-αGT 처리후 불활성화->알파-아밀라아제 처리
(63.9%의 α-1,6)
② After 4,6-αGT treatment, inactivation -> alpha-amylase treatment
(63.9% α-1,6)
52.052.0
④ 4,6-αGT 처리하여 효소반응 ->알파-아밀라아제 처리
(83.0%의 α-1,6)
④ 4,6-αGT treatment to enzymatic reaction -> alpha-amylase treatment
(83.0% α-1,6)
62.962.9

<110> The Industry & Academic Cooperation in Chungnam National University (IAC) <120> Method for producing high soluble cellulose using 4,6-alpha-glucanotransferase and alpha-amylase complex enzyme reaction <130> PN21387 <150> KR 2020/0151441 <151> 2020-11-13 <160> 1 <170> KoPatentIn 3.0 <210> 1 <211> 904 <212> PRT <213> Lactobacillus reuteri <400> 1 Met Gly Ile Asp Gly Lys Asn Tyr His Phe Ala Ser Asn Gly Gln Leu 1 5 10 15 Leu Gly Asn Leu Tyr Gly Lys Ile Val Asp Gly Lys Phe Asn Ile Tyr 20 25 30 Asp Ser Leu Ser Asn Lys Leu Ile Lys Thr Leu Asp Ser Gly Asp Trp 35 40 45 Glu Asn Met Ala Tyr Ser Gln Asp Ser Ser Ser Ile Asn Asn Thr Asp 50 55 60 Gly Tyr Leu Ser Tyr Ser Gly Trp Tyr Arg Pro Tyr Gly Thr Ser Gln 65 70 75 80 Asp Gly Lys Thr Trp Tyr Lys Thr Thr Ala Ser Asp Trp Arg Pro Leu 85 90 95 Leu Met Tyr Thr Trp Pro Ser Lys Asp Val Glu Ala Lys Phe Ile Lys 100 105 110 Tyr Phe Val Asp Asn Gly Tyr Thr Asn Thr Asp Tyr Gly Leu Thr Lys 115 120 125 Asp Asn Val Thr Asn Leu Ser Gln Asp Thr Asp Thr Gln Thr Leu Asn 130 135 140 Lys Tyr Ala Arg Asn Leu Arg Phe Val Ile Glu Lys Ser Ile Ala Ala 145 150 155 160 Asn Lys Ser Thr Gly Pro Leu Ala Asn Asp Ile Asn Lys Phe Met Leu 165 170 175 Thr Ile Pro Glu Leu Ser Ala Lys Ser Glu Leu Pro Val Glu Tyr Ser 180 185 190 Asn Gly Tyr Val Pro Asp Val Ser Gly Ser Ile Asp Asn Asn Gln Leu 195 200 205 Ile Phe Ile Asn Asn Asn Ser Asp Asn Gln Ala Lys Gly Asn Thr Ser 210 215 220 Tyr Ala Asp Ser Asn Tyr Arg Leu Met Asn Arg Thr Ile Asn Asn Gln 225 230 235 240 Thr Asn Asn Asp Asn Ser Asp Gln Ser Pro Glu Leu Leu Val Gly Asn 245 250 255 Asp Ile Asp Asn Ser Asn Pro Ala Val Gln Ala Glu Asn Phe Asn Trp 260 265 270 Glu Tyr Phe Leu Leu Asn Tyr Gly Lys Leu Met Lys Tyr Asn Ala Asp 275 280 285 Gly Asn Phe Asp Gly Phe Arg Val Asp Ala Ala Asp Asn Ile Asp Ala 290 295 300 Asp Val Leu Asp Gln Leu Gly Gln Leu Val Asn Asp Met Tyr His Thr 305 310 315 320 Lys Gly Asn Gln Glu Asn Ala Asn Asn His Leu Val Tyr Asn Glu Gly 325 330 335 Tyr His Ser Gly Ala Ala Arg Met Leu Asn Asp Lys Gly Asn Pro Glu 340 345 350 Leu Phe Met Asp Ala Gly Tyr Phe Tyr Thr Leu Glu Asn Val Leu Gly 355 360 365 Gln Ala Glu Asn Lys Arg Asp Asn Val Asn Asn Leu Ile Thr Asn Ser 370 375 380 Val Val Asn Arg Ala Asn Asp Ile Thr Glu Asn Thr Ala Thr Pro Asn 385 390 395 400 Trp Ser Phe Val Thr Asn His Asp Gln Arg Lys Asn Val Ile Asn Gln 405 410 415 Ile Ile Ile Asp Asn His Pro Asn Ile Pro Asp Ile Met Ala Asn Ser 420 425 430 Tyr Lys Ser Thr Tyr Ala Gln Lys Ala Trp Asp Glu Phe Tyr Ala Asp 435 440 445 Gln Ala Lys Ala Asp Lys Lys Tyr Ala Gln Tyr Asn Leu Pro Ala Gln 450 455 460 Tyr Ala Leu Leu Leu Ser Asn Lys Asp Thr Val Pro Gln Val Tyr Tyr 465 470 475 480 Gly Asp Leu Tyr Lys Glu Thr Asp Gln Tyr Met Lys Thr Lys Ser Met 485 490 495 Tyr Tyr Asp Ala Ile Thr Thr Leu Met Lys Ala Arg Gly Glu Phe Val 500 505 510 Asn Gly Gly Gln Thr Met Thr Lys Val Asn Asp Asn Leu Ile Thr Ser 515 520 525 Val Arg Tyr Gly Lys Gly Val Val Asp Val Ser Ser Asn Gly Thr Asp 530 535 540 Pro Leu Ser Arg Thr Thr Gly Met Ala Val Ile Val Gly Asn Asn Pro 545 550 555 560 Ser Met Ser Glu Gln Val Val Ala Ile Asn Met Gly Leu Ala His Ala 565 570 575 Asn Glu Gln Tyr Arg Asn Leu Ile Asp Ser Thr Ala Asp Gly Leu Thr 580 585 590 Tyr Asn Ser Asn Gly Ser Val Asn Pro Ser Val Leu Thr Thr Asp Ser 595 600 605 Lys Gly Ile Leu Arg Val Thr Val Lys Gly Tyr Ser Asn Pro Tyr Val 610 615 620 Ser Gly Tyr Leu Ser Val Trp Val Pro Leu Ile Asn Gly Thr Gln Asn 625 630 635 640 Ala Arg Thr Ser Ala Gln Glu Val Arg Asn Val Pro Gly Lys Val Phe 645 650 655 Thr Ser Asn Ala Ala Leu Asp Ser His Met Ile Tyr Glu Asp Phe Ser 660 665 670 Leu Phe Gln Pro Glu Pro Thr Thr Val Asn Glu His Ala Tyr Asn Val 675 680 685 Ile Lys Asp Asn Val Ala Leu Phe Asn Gln Leu Gly Ile Thr Asp Phe 690 695 700 Trp Met Ala Pro Ser Tyr Thr Pro Phe Asn Thr Ser Arg Tyr Asn Glu 705 710 715 720 Gly Tyr Ala Met Thr Asp Arg Tyr Asn Leu Gly Thr Ala Asp Asn Pro 725 730 735 Thr Lys Tyr Gly Asn Gly Glu Glu Leu Ser Asn Ala Ile Ala Ala Leu 740 745 750 His Gln Ala Gly Leu Lys Val Gln Glu Asp Leu Val Met Asn Gln Met 755 760 765 Ile Gly Phe Ser Thr Gln Glu Ala Val Thr Val Thr Arg Val Asp Arg 770 775 780 Asp Ala Lys Gln Leu Ser Val Asp Gly Gln Thr Phe Ala Asp Gln Ile 785 790 795 800 Tyr Phe Gly Tyr Thr Arg Gly Gly Gly Gln Gly Gln Gln Asp Tyr Gly 805 810 815 Gly Lys Tyr Leu Ala Glu Leu Lys Gln Lys Tyr Pro Asp Leu Phe Thr 820 825 830 Thr Lys Ala Ala Ser Thr Gly Val Ala Pro Asp Pro Asn Thr Arg Ile 835 840 845 Thr Glu Trp Ser Ala Lys Tyr Glu Asn Gly Thr Ser Leu Gln Asn Val 850 855 860 Gly Ile Gly Leu Ala Val Lys Met Pro Asn Gly Tyr Tyr Ala Tyr Leu 865 870 875 880 Asn Asp Gly Asn Asn Lys Ala Phe Ala Thr Thr Leu Pro Asp Ala Ile 885 890 895 Ser Ser Ala Asp Tyr Tyr Ala Asn 900 <110> The Industry & Academic Cooperation in Chungnam National University (IAC) <120> Method for producing highly soluble cellulose using 4,6-alpha-glucanotransferase and alpha-amylase complex enzyme reaction <130> PN21387 <150> KR 2020/0151441 <151> 2020-11-13 <160> 1 <170> KoPatentIn 3.0 <210> 1 <211> 904 <212> PRT <213> Lactobacillus reuteri <400> 1 Met Gly Ile Asp Gly Lys Asn Tyr His Phe Ala Ser Asn Gly Gln Leu 1 5 10 15 Leu Gly Asn Leu Tyr Gly Lys Ile Val Asp Gly Lys Phe Asn Ile Tyr 20 25 30 Asp Ser Leu Ser Asn Lys Leu Ile Lys Thr Leu Asp Ser Gly Asp Trp 35 40 45 Glu Asn Met Ala Tyr Ser Gln Asp Ser Ser Ser Ile Asn Asn Thr Asp 50 55 60 Gly Tyr Leu Ser Tyr Ser Gly Trp Tyr Arg Pro Tyr Gly Thr Ser Gln 65 70 75 80 Asp Gly Lys Thr Trp Tyr Lys Thr Thr Ala Ser Asp Trp Arg Pro Leu 85 90 95 Leu Met Tyr Thr Trp Pro Ser Lys Asp Val Glu Ala Lys Phe Ile Lys 100 105 110 Tyr Phe Val Asp Asn Gly Tyr Thr Asn Thr Asp Tyr Gly Leu Thr Lys 115 120 125 Asp Asn Val Thr Asn Leu Ser Gln Asp Thr Asp Thr Gln Thr Leu Asn 130 135 140 Lys Tyr Ala Arg Asn Leu Arg Phe Val Ile Glu Lys Ser Ile Ala Ala 145 150 155 160 Asn Lys Ser Thr Gly Pro Leu Ala Asn Asp Ile Asn Lys Phe Met Leu 165 170 175 Thr Ile Pro Glu Leu Ser Ala Lys Ser Glu Leu Pro Val Glu Tyr Ser 180 185 190 Asn Gly Tyr Val Pro Asp Val Ser Gly Ser Ile Asp Asn Asn Gln Leu 195 200 205 Ile Phe Ile Asn Asn Asn Ser Asp Asn Gln Ala Lys Gly Asn Thr Ser 210 215 220 Tyr Ala Asp Ser Asn Tyr Arg Leu Met Asn Arg Thr Ile Asn Asn Gln 225 230 235 240 Thr Asn Asn Asp Asn Ser Asp Gln Ser Pro Glu Leu Leu Val Gly Asn 245 250 255 Asp Ile Asp Asn Ser Asn Pro Ala Val Gln Ala Glu Asn Phe Asn Trp 260 265 270 Glu Tyr Phe Leu Leu Asn Tyr Gly Lys Leu Met Lys Tyr Asn Ala Asp 275 280 285 Gly Asn Phe Asp Gly Phe Arg Val Asp Ala Ala Asp Asn Ile Asp Ala 290 295 300 Asp Val Leu Asp Gln Leu Gly Gln Leu Val Asn Asp Met Tyr His Thr 305 310 315 320 Lys Gly Asn Gln Glu Asn Ala Asn Asn His Leu Val Tyr Asn Glu Gly 325 330 335 Tyr His Ser Gly Ala Ala Arg Met Leu Asn Asp Lys Gly Asn Pro Glu 340 345 350 Leu Phe Met Asp Ala Gly Tyr Phe Tyr Thr Leu Glu Asn Val Leu Gly 355 360 365 Gln Ala Glu Asn Lys Arg Asp Asn Val Asn Asn Leu Ile Thr Asn Ser 370 375 380 Val Val Asn Arg Ala Asn Asp Ile Thr Glu Asn Thr Ala Thr Pro Asn 385 390 395 400 Trp Ser Phe Val Thr Asn His Asp Gln Arg Lys Asn Val Ile Asn Gln 405 410 415 Ile Ile Ile Asp Asn His Pro Asn Ile Pro Asp Ile Met Ala Asn Ser 420 425 430 Tyr Lys Ser Thr Tyr Ala Gln Lys Ala Trp Asp Glu Phe Tyr Ala Asp 435 440 445 Gln Ala Lys Ala Asp Lys Lys Tyr Ala Gln Tyr Asn Leu Pro Ala Gln 450 455 460 Tyr Ala Leu Leu Leu Ser Asn Lys Asp Thr Val Pro Gln Val Tyr Tyr 465 470 475 480 Gly Asp Leu Tyr Lys Glu Thr Asp Gln Tyr Met Lys Thr Lys Ser Met 485 490 495 Tyr Tyr Asp Ala Ile Thr Thr Leu Met Lys Ala Arg Gly Glu Phe Val 500 505 510 Asn Gly Gly Gln Thr Met Thr Lys Val Asn Asp Asn Leu Ile Thr Ser 515 520 525 Val Arg Tyr Gly Lys Gly Val Val Asp Val Ser Ser Asn Gly Thr Asp 530 535 540 Pro Leu Ser Arg Thr Thr Gly Met Ala Val Ile Val Gly Asn Asn Pro 545 550 555 560 Ser Met Ser Glu Gln Val Val Ala Ile Asn Met Gly Leu Ala His Ala 565 570 575 Asn Glu Gln Tyr Arg Asn Leu Ile Asp Ser Thr Ala Asp Gly Leu Thr 580 585 590 Tyr Asn Ser Asn Gly Ser Val Asn Pro Ser Val Leu Thr Thr Asp Ser 595 600 605 Lys Gly Ile Leu Arg Val Thr Val Lys Gly Tyr Ser Asn Pro Tyr Val 610 615 620 Ser Gly Tyr Leu Ser Val Trp Val Pro Leu Ile Asn Gly Thr Gln Asn 625 630 635 640 Ala Arg Thr Ser Ala Gln Glu Val Arg Asn Val Pro Gly Lys Val Phe 645 650 655 Thr Ser Asn Ala Ala Leu Asp Ser His Met Ile Tyr Glu Asp Phe Ser 660 665 670 Leu Phe Gln Pro Glu Pro Thr Thr Val Asn Glu His Ala Tyr Asn Val 675 680 685 Ile Lys Asp Asn Val Ala Leu Phe Asn Gln Leu Gly Ile Thr Asp Phe 690 695 700 Trp Met Ala Pro Ser Tyr Thr Pro Phe Asn Thr Ser Arg Tyr Asn Glu 705 710 715 720 Gly Tyr Ala Met Thr Asp Arg Tyr Asn Leu Gly Thr Ala Asp Asn Pro 725 730 735 Thr Lys Tyr Gly Asn Gly Glu Glu Leu Ser Asn Ala Ile Ala Ala Leu 740 745 750 His Gln Ala Gly Leu Lys Val Gln Glu Asp Leu Val Met Asn Gln Met 755 760 765 Ile Gly Phe Ser Thr Gln Glu Ala Val Thr Val Thr Arg Val Asp Arg 770 775 780 Asp Ala Lys Gln Leu Ser Val Asp Gly Gln Thr Phe Ala Asp Gln Ile 785 790 795 800 Tyr Phe Gly Tyr Thr Arg Gly Gly Gly Gln Gly Gln Gln Asp Tyr Gly 805 810 815 Gly Lys Tyr Leu Ala Glu Leu Lys Gln Lys Tyr Pro Asp Leu Phe Thr 820 825 830 Thr Lys Ala Ala Ser Thr Gly Val Ala Pro Asp Pro Asn Thr Arg Ile 835 840 845 Thr Glu Trp Ser Ala Lys Tyr Glu Asn Gly Thr Ser Leu Gln Asn Val 850 855 860 Gly Ile Gly Leu Ala Val Lys Met Pro Asn Gly Tyr Tyr Ala Tyr Leu 865 870 875 880 Asn Asp Gly Asn Asn Lys Ala Phe Ala Thr Thr Leu Pro Asp Ala Ile 885 890 895 Ser Ser Ala Asp Tyr Tyr Ala Asn 900

Claims (8)

(1) 말토덱스트린에 4,6-알파-글루카노트랜스퍼라아제(4,6αGT, 4,6-α-glucanotransferase)를 처리하여 당전이 반응을 유도하는 단계; 및
(2) 상기 단계 (1)의 당전이 반응 24~48시간 후에, 알파-아밀라아제(α-amylase)를 첨가하여 α-1,4 결합의 비환원성 말단을 형성시켜 상기 4,6-알파-글루카노트랜스퍼라아제에 의한 당전이 반응을 추가로 유도하는 단계;를 포함하며, α-1,6 결합이 80% 이상이고, 글루코오스 중합도가 10 이상인 것의 비율이 55~80%인 고수용성 섬유소의 제조 방법.
(1) treating maltodextrin with 4,6-alpha-glucanotransferase (4,6αGT, 4,6-α-glucanotransferase) to induce a glycosyltransferase reaction; and
(2) 24 to 48 hours after the glycolysis reaction of step (1), alpha-amylase is added to form the non-reducing end of the α-1,4 bond to form the 4,6-alpha-glu A step of additionally inducing a glycosyltransferase reaction by carnotransferase; manufacturing highly soluble fiber having more than 80% of α-1,6 bonds and a ratio of 55 to 80% of the glucose polymerization degree of 10 or more. method.
제1항에 있어서, 상기 말토덱스트린은 글루코스 중합도가 2~20인 것을 특징으로 하는 고수용성 섬유소의 제조 방법.The method of claim 1, wherein the maltodextrin has a degree of glucose polymerization of 2 to 20. 삭제delete 제1항에 있어서, 상기 4,6-알파-글루카노트랜스퍼라아제는 (1) 말토오스 결합 단백질 코딩 유전자와 락토바실러스 루테리(Lactobacillus reuteri)에서 유래된 4,6-α-글루카노트랜스퍼라제 단백질을 코딩하는 유전자를 포함하는 재조합 벡터를 제조하는 단계;
(2) 상기 제조된 재조합 벡터를 대장균에 형질전환시키는 단계; 및
(3) 상기 형질전환된 대장균으로부터 말토오스 결합 단백질 융합 4,6-α-글루카노트랜스퍼라제 효소를 분리 및 정제하는 단계;를 포함하는 제조방법으로 제조된 것을 특징으로 하는 고수용성 섬유소의 제조 방법.
The method of claim 1, wherein the 4,6-alpha-glucanotransferase comprises (1) a maltose binding protein coding gene and a 4,6-α-glucanotransferase protein derived from Lactobacillus reuteri . Preparing a recombinant vector containing the coding gene;
(2) transforming the prepared recombinant vector into E. coli; and
(3) isolating and purifying the maltose-binding protein fusion 4,6-α-glucanotransferase enzyme from the transformed E. coli.
제1항에 있어서, 상기 반응 온도는 37~42℃이고, 반응의 pH는 4.7~5.3인 것을 특징으로 하는 고수용성 섬유소의 제조 방법.The method of claim 1, wherein the reaction temperature is 37 to 42°C and the pH of the reaction is 4.7 to 5.3. 제1항, 제2항, 제4항 및 제5항 중 어느 한 항의 방법에 의해 제조되며, α-1,6 결합이 80% 이상이고, 글루코오스 중합도가 10 이상인 것의 비율이 55~80%인 고수용성 섬유소.It is manufactured by the method of any one of claims 1, 2, 4, and 5, and has an α-1,6 bond of 80% or more and a glucose polymerization degree of 10 or more in a ratio of 55 to 80%. Highly soluble fiber. 삭제delete 제6항의 고수용성 섬유소를 포함하는 식품. Food containing the high-soluble fiber of paragraph 6.
KR1020210156493A 2020-11-13 2021-11-15 Method for producing high soluble cellulose using 4,6-alpha-glucanotransferase and alpha-amylase complex enzyme reaction KR102637535B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200151441 2020-11-13
KR1020200151441 2020-11-13

Publications (2)

Publication Number Publication Date
KR20220065718A KR20220065718A (en) 2022-05-20
KR102637535B1 true KR102637535B1 (en) 2024-02-16

Family

ID=81801873

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210156493A KR102637535B1 (en) 2020-11-13 2021-11-15 Method for producing high soluble cellulose using 4,6-alpha-glucanotransferase and alpha-amylase complex enzyme reaction

Country Status (1)

Country Link
KR (1) KR102637535B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210299229A1 (en) 2016-09-23 2021-09-30 Dupon Nutrition Biosciences Aps USE OF LOW pH ACTIVE ALPHA-1,4;/1,6-GLYCOSIDE HYDROLASES (GLCH) AS A FEED ADDITIVE FOR RUMINANTS TO ENHANCE STARCH DIGESTION

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210299229A1 (en) 2016-09-23 2021-09-30 Dupon Nutrition Biosciences Aps USE OF LOW pH ACTIVE ALPHA-1,4;/1,6-GLYCOSIDE HYDROLASES (GLCH) AS A FEED ADDITIVE FOR RUMINANTS TO ENHANCE STARCH DIGESTION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Appl Environ Microbiol., 2015, Vol.81, No.20, pp.7223-7232.*

Also Published As

Publication number Publication date
KR20220065718A (en) 2022-05-20

Similar Documents

Publication Publication Date Title
EP0710674B1 (en) Method for producing a glucan having cyclic structure
Kopec et al. Structural aspects of glucans formed in solution and on the surface of hydroxyapatite
JP3957684B2 (en) Glucan production method and preparation method thereof
CN110088277A (en) The Production by Enzymes of D-Psicose
JP5828589B2 (en) Industrial production method of branched glucan having cyclic structure
JP3150266B2 (en) Glucan having cyclic structure and method for producing the same
KR20120019391A (en) Production of isomaltooligosaccharides and uses therefor
US6248566B1 (en) Glucan having cyclic structure and method for producing the same
KR101969040B1 (en) Composition comprising isomalto-oligosaccharide and manufacturing method thereof
Yamamoto Enzyme chemistry and molecular biology of amylases and related enzymes
US11884942B2 (en) Compositions and methods comprising the use of Exiguobacterium acetylicum and Bacillus coagluans α-glucanotransferase enzymes
EP0258050B1 (en) An amylase of a new type
KR102637535B1 (en) Method for producing high soluble cellulose using 4,6-alpha-glucanotransferase and alpha-amylase complex enzyme reaction
EP0675137B1 (en) Glucans having a cycle structure, and processes for preparing the same
JP7082066B2 (en) High molecular weight glucan with slow digestion rate
KR101532025B1 (en) Method for production of amlylopectin cluster with novel cyclodextrin glucanotransferase
JP5726499B2 (en) Method for producing branched glucan having a cyclic structure
Chen et al. Microbial dextran-hydrolyzing enzyme: Properties, structural features, and versatile applications
KR101658198B1 (en) Synthesis of slowly digestible starch by maltose-binding-protein fused 4,6-alpha-glucanotransferase and the uses thereof
Boudries et al. HPAEC-PAD profiles of maltooligosaccharide produced by hydrolysis of sorghum starches using amylases from various sources
KR20240042273A (en) Corynebacterium glutamicum(C. glutamicum)-based glycotransferase expression body and method for producing high-functional oligosaccharides with enhanced digestive delay effectiveness using thereof
Sreenath et al. Effect of Pullulanase and α‐Amylase on Hydrolysis of Waxy Corn Starch
JP4011102B2 (en) Glucan production method and preparation method thereof
CN102876640A (en) Cyclodextrin glycosyltransferase mutant and application thereof
JP2005210925A (en) Method for transferring glucosyl group

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant