KR102635864B1 - 딥러닝 알고리즘을 이용한 전력량계 오차 정밀도 진단방법 - Google Patents
딥러닝 알고리즘을 이용한 전력량계 오차 정밀도 진단방법 Download PDFInfo
- Publication number
- KR102635864B1 KR102635864B1 KR1020210133197A KR20210133197A KR102635864B1 KR 102635864 B1 KR102635864 B1 KR 102635864B1 KR 1020210133197 A KR1020210133197 A KR 1020210133197A KR 20210133197 A KR20210133197 A KR 20210133197A KR 102635864 B1 KR102635864 B1 KR 102635864B1
- Authority
- KR
- South Korea
- Prior art keywords
- power
- current sensor
- power amount
- deep learning
- learning algorithm
- Prior art date
Links
- 238000002405 diagnostic procedure Methods 0.000 title description 5
- 230000003068 static effect Effects 0.000 title 1
- 238000013135 deep learning Methods 0.000 claims abstract description 87
- 238000000034 method Methods 0.000 claims abstract description 46
- 238000005259 measurement Methods 0.000 claims abstract description 41
- 230000000052 comparative effect Effects 0.000 claims abstract description 4
- 230000005856 abnormality Effects 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 14
- 238000003745 diagnosis Methods 0.000 description 11
- 230000005611 electricity Effects 0.000 description 6
- 238000013528 artificial neural network Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000011176 pooling Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 230000006403 short-term memory Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000547 structure data Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R22/00—Arrangements for measuring time integral of electric power or current, e.g. electricity meters
- G01R22/06—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
- G01R22/061—Details of electronic electricity meters
- G01R22/068—Arrangements for indicating or signaling faults
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R21/00—Arrangements for measuring electric power or power factor
- G01R21/06—Arrangements for measuring electric power or power factor by measuring current and voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R22/00—Arrangements for measuring time integral of electric power or current, e.g. electricity meters
- G01R22/06—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
- G01R22/061—Details of electronic electricity meters
- G01R22/063—Details of electronic electricity meters related to remote communication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R22/00—Arrangements for measuring time integral of electric power or current, e.g. electricity meters
- G01R22/06—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
- G01R22/10—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods using digital techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
또한, 1개의 전류센서와 딥러닝 알고리즘을 활용하는 방법으로, 계량 전력량을 계량하는 제1 전류센서와 딥러닝 알고리즘을 통해 예측 전력량을 상호 비교하여 계기의 오차정밀도를 진단하는 방법을 포함하며, 오차가 있으면 외부로 관련 이벤트를 전송하는 진단 장치와 상기 진단장치로부터 관련 이벤트를 전송받는 서버를 포함하는 것을 특징으로 하는 것이다.
Description
도 2는 전력량계와 서버와 연결 구성도.
도 3은 자연어를 처리하는 CNN모델의 구조도.
도 4는 LSTM의 구조도.
도 5은 공공기관의 1시간 단위 12개월 전력 데이터를 나타낸 사진.
도 6은 전력 데이터에 대하여 지도학습으로 처리하는 데이터의 전처리 과정을 나타낸 도면.
도 7은 CNN - LSTM모델의 구조도.
도 8은 CNN-LSTM의 비교 모델로서 사용되는 예측 모델인 CNN과 LSTM 모델의 파라미터 구성도.
도 9는 전력량 예측을 위한 딥러닝 알고리즘이 내장된 MCU의 구성도.
도 10은 전류센서 1개와 딥러닝을 활용한 오차정밀도의 진단 방법을 나타낸 구조도.
도 11은 전류센서 1개와 딥러닝을 활용한 오차 정밀도 진단방법의 흐름도.
도 12는 전류센서 2개와 딥러닝을 활용한 오차 정밀도의 진단방법을 나타낸 구조도.
도 13은 전류센서 2개와 딥러닝을 활용한 오차 정밀도 진단방법의 흐름도.
5 : 전력량계 10 : 제1 전류센서
20 : 제2 전류센서 31 : 전력연산부
32 : 딥러닝 알고리즘 측정부 33 : A/D 변환부
34 : 오차정밀도 진단부 35 : 신호전송부
40 : 진단장치 50 : 서버
Claims (6)
- 예측 전력량을 학습시킨 딥러닝 알고리즘 측정부와 수용가의 전력량을 계측하는 전력량계와 상기 전력량계에 형성되어 전력량을 계측하는 제1 전류센서 및 상기 제1 전류센서에서 측정한 전력량과 비교 전력량을 측정하는 제2 전류센서; 상기 제1 전류센서와 상기 제2 전류센서가 전력량을 측정하는 방법은 동일하며, 상기 제1,2 전류센서를 이용한 딥러닝 알고리즘을 이용한 전력량계 오차 정밀도 진단방법에 있어서,
상기 전력량계에서 상기 제1 전류센서에서 측정한 계량 데이터를 통하여 일정 시간 동안의 전력량을 계측하는 단계;
상기 전력량계에서 상기 제2 전류센서로부터 비교 전력량을 측정하는 단계;
상기 딥러닝 알고리즘 측정부로부터 상기 전력량계의 예측 전력량을 학습하는 단계;
상기 제1 전류센서의 계측 전력량과 상기 제2 전류센서의 비교 전력량 및 상기 딥러닝 알고리즘 측정부의 예측 전력량을 서로 비교하는 단계;
상기 제1 전류센서의 계량 전력량과 상기 제2 전류센서의 비교 전력량 및 상기 딥러닝 알고리즘 측정부의 예측 전력량이 각각 모두 상이하면, 오차정밀도에 문제가 있는 것으로 판단하는 단계;
상기 단계에서 오차 정밀도에 이상이 발생한 것으로 판단되면, 오차 정밀도의 이상의 사실을 서버에 통보하는 단계를 포함하는 것을 특징으로 하는 딥러닝 알고리즘을 이용한 전력량계 오차 정밀도 진단방법.
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210133197A KR102635864B1 (ko) | 2021-10-07 | 2021-10-07 | 딥러닝 알고리즘을 이용한 전력량계 오차 정밀도 진단방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210133197A KR102635864B1 (ko) | 2021-10-07 | 2021-10-07 | 딥러닝 알고리즘을 이용한 전력량계 오차 정밀도 진단방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230050007A KR20230050007A (ko) | 2023-04-14 |
KR102635864B1 true KR102635864B1 (ko) | 2024-02-13 |
Family
ID=85946341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210133197A KR102635864B1 (ko) | 2021-10-07 | 2021-10-07 | 딥러닝 알고리즘을 이용한 전력량계 오차 정밀도 진단방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102635864B1 (ko) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101100083B1 (ko) | 2008-09-09 | 2011-12-29 | 한국전력공사 | 계기용 변압변류기 및 전력량계의 오차 측정 시스템 및방법 |
KR101172742B1 (ko) | 2009-10-20 | 2012-08-14 | 한국전기연구원 | 전력량계의 오차 보상방법 |
KR102556772B1 (ko) | 2018-06-29 | 2023-07-19 | 한국전력공사 | 전력량계의 상 오차 검출장치 및 그 방법 |
KR102174151B1 (ko) * | 2019-04-22 | 2020-11-04 | 김장운 | 변류기 및 변성기 오차율 검사 장치 |
-
2021
- 2021-10-07 KR KR1020210133197A patent/KR102635864B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR20230050007A (ko) | 2023-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106338706B (zh) | 一种电能计量装置整体误差检测的方法、装置和系统 | |
CN107589391B (zh) | 一种检测电能计量装置整体误差的方法、装置和系统 | |
Kong et al. | A remote estimation method of smart meter errors based on neural network filter and generalized damping recursive least square | |
CN106446016A (zh) | 一种基于并行关联规则挖掘的配电网运行可靠性预测方法 | |
CN115170000A (zh) | 一种基于电能表通信模块的远程监测方法及系统 | |
Vasconcelos et al. | Online security assessment with load and renewable generation uncertainty: The itesla project approach | |
Cai et al. | Assessment and modelling of uncertainty in precipitation forecasts from TIGGE using fuzzy probability and Bayesian theory | |
Kharlamova et al. | A digital twin of battery energy storage systems providing frequency regulation | |
CN114638425A (zh) | 一种基于历史数据的大用户月度用电量预测方法及系统 | |
US12166353B2 (en) | Determination of phase connections in a power grid | |
Wang et al. | Component-oriented reassembly in remanufacturing systems: Managing uncertainty and satisfying customer needs | |
Zhao et al. | Evaluation of operating state for smart electricity meters based on transformer–encoder–BiLSTM | |
Yang et al. | Probabilistic revenue analysis of microgrid considering source-load and forecast uncertainties | |
KR102635864B1 (ko) | 딥러닝 알고리즘을 이용한 전력량계 오차 정밀도 진단방법 | |
CN112765787B (zh) | 动态环境下考虑性能指标聚类的退化建模与寿命预测方法 | |
Mari et al. | Gaussian clustering and jump-diffusion models of electricity prices: a deep learning analysis | |
Ding et al. | A framework for short-term activity-aware load forecasting | |
Stamatescu et al. | Reporting interval impact on deep residential energy measurement prediction | |
CN114219118B (zh) | 一种d-s证据理论的智能电表寿命预测方法及系统 | |
CN111178556A (zh) | 电量异常检测方法、装置、计算机设备和可读存储介质 | |
CN116842684A (zh) | 电能表及其运行可靠性的评估方法、系统、电能表处理器 | |
Deschatre et al. | A joint model for electricity spot prices and wind penetration with dependence in the extremes | |
CN115828134A (zh) | 用电数据样本构建、模型训练、账户类别确定方法和装置 | |
Xiao-Xu et al. | An intelligent inspection robot of power distribution network based on image automatic recognition system | |
CN112256735A (zh) | 一种用电监测方法、装置、计算机设备和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20211007 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20230530 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20231219 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20230530 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
AMND | Amendment | ||
PX0701 | Decision of registration after re-examination |
Patent event date: 20240126 Comment text: Decision to Grant Registration Patent event code: PX07013S01D Patent event date: 20231220 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20231219 Comment text: Decision to Refuse Application Patent event code: PX07011S01I Patent event date: 20230731 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I |
|
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20240206 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20240206 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |