KR102634549B1 - Tomato lycopene epoxidase improving lutein level and uses thereof - Google Patents

Tomato lycopene epoxidase improving lutein level and uses thereof Download PDF

Info

Publication number
KR102634549B1
KR102634549B1 KR1020200184546A KR20200184546A KR102634549B1 KR 102634549 B1 KR102634549 B1 KR 102634549B1 KR 1020200184546 A KR1020200184546 A KR 1020200184546A KR 20200184546 A KR20200184546 A KR 20200184546A KR 102634549 B1 KR102634549 B1 KR 102634549B1
Authority
KR
South Korea
Prior art keywords
dna
artificial sequence
tomato
expression
lycopene
Prior art date
Application number
KR1020200184546A
Other languages
Korean (ko)
Other versions
KR20220093633A (en
Inventor
이제민
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020200184546A priority Critical patent/KR102634549B1/en
Priority to EP21915676.7A priority patent/EP4260686A1/en
Priority to US18/269,886 priority patent/US20240067976A1/en
Priority to PCT/KR2021/019727 priority patent/WO2022145878A1/en
Publication of KR20220093633A publication Critical patent/KR20220093633A/en
Application granted granted Critical
Publication of KR102634549B1 publication Critical patent/KR102634549B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • A01H6/825Solanum lycopersicum [tomato]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • A01H1/021Methods of breeding using interspecific crosses, i.e. interspecies crosses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Virology (AREA)
  • Nutrition Science (AREA)
  • Animal Husbandry (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 BC2.1의 발현이 억제된, 루테인의 함량이 증가된 토마토 야생종 유래 이입계통 및 형질전환 토마토에 관한 것이다.The present invention relates to an introgression line derived from a wild tomato species and a transgenic tomato with suppressed expression of BC2.1 and increased lutein content.

Description

토마토 라이코펜 에폭시다아제를 이용한 루테인 증진방법 {TOMATO LYCOPENE EPOXIDASE IMPROVING LUTEIN LEVEL AND USES THEREOF}Lutein enhancement method using tomato lycopene epoxidase {TOMATO LYCOPEENE EPOXIDASE IMPROVING LUTEIN LEVEL AND USES THEREOF}

본 발명은 토마토 라이코펜 에폭시다아제인 BC2.1의 발현이 억제하여 루테인의 함량이 증가된 토마토 야생종 유래 이입계통 및 형질전환 토마토에 대한 것이다. The present invention relates to an introgression line derived from a wild tomato species and a transgenic tomato in which the lutein content is increased by suppressing the expression of BC2.1, a tomato lycopene epoxidase.

카로티노이드는 식물, 조류, 박테리아 및 균류가 지방과 기본 유기대사 물질로 합성하는 유기 색소로서, 테트라테르페노이드(tetraterpenoid)로도 불린다. 카로티노이드는 또한 대사산물 전구체로서 동물에게 필수적이고 유용한 영양소이며 (예를 들어, 각각 비타민 A 및 항산화제), 실명의 예방 및 면역계의 유지와 같은 특정한 건강상의 이점을 갖는다. 동물은 카로티노이드의 드보노(de novo) 합성 능력이 부족하여 과일이나 채소를 통해 카로티노이드를 섭취해야만 한다. 이러한 이유로, 식물에서 카로티노이드의 생합성의 유전적 조절 및 카로티노이드의 함량이 증가된 개량 작물에 대한 관심이 높아지고 있다. 유전자원과 이종 유전자 또는 내생 유전자의 유전자침묵을 사용한 유전공학을 통한 육종 및 시퀘스트레이션 (sequestration)의 증가 모두 프로비타민 A 함량을 크게 증가시킬 수 있다. Carotenoids are organic pigments that plants, algae, bacteria and fungi synthesize from fat and basic organic metabolites, and are also called tetraterpenoids. Carotenoids are also essential and useful nutrients to animals as metabolite precursors (e.g., vitamin A and antioxidants, respectively) and have certain health benefits, such as prevention of blindness and maintenance of the immune system. Animals lack the ability to synthesize carotenoids de novo, so they must consume carotenoids through fruits and vegetables. For this reason, there is increasing interest in genetic control of carotenoid biosynthesis in plants and improved crops with increased carotenoid content. Both increased breeding and sequestration through genetic engineering using genetic resources and genetic silencing of xenogeneic or endogenous genes can significantly increase provitamin A content.

루테인은 현재까지 알려진 600개의 자연 발생 카로티노이드 가운데 하나이다. 루테인은 식물, 기타 잔토필에서만 합성되며 시금치, 케일, 노란당근 등의 잎채소에서 대량으로 발견되나, 일반적으로 루테인 제품은 마리골드(금잔화)의 꽃 추출물이 99% 이상 함유된 것을 제품으로 출시되고 있다.Lutein is one of 600 naturally occurring carotenoids known to date. Lutein is synthesized only from plants and other xanthophylls and is found in large quantities in leafy vegetables such as spinach, kale, and yellow carrots. However, lutein products are generally released as products containing more than 99% of marigold flower extract. .

이러한 루테인은 최근에 식품의약품안전청으로부터 눈 건강에 도움이 된다고 판정되어 개별인정형 성분으로 승인을 받았는데, 개별인정형 성분이란 식약청이 연구, 고시하는 것이 아니라 개인 또는 기업이 연구 결과를 제시해 식약청이 승인한 것으로, 식약청 공전에 따르면 루테인은 노화로 인해 감소될 수 있는 황반색소 밀도를 유지하여 눈 건강에 도움을 주는 것으로 기록되어 있다.Lutein was recently judged to be helpful for eye health by the Food and Drug Administration and was approved as an individually recognized ingredient. Individually recognized ingredients are not researched and announced by the Food and Drug Administration, but are approved by the Food and Drug Administration after individuals or companies present research results. According to the Food and Drug Administration, lutein is recorded to help eye health by maintaining the density of macular pigment, which can decrease due to aging.

그러나, 루테인은 체내에서 자연적으로 생성하지 못하기 때문에 음식물이나 보충제 등을 통해 외부로부터 섭취해야만 하는 실정이다However, since lutein cannot be produced naturally in the body, it must be consumed from outside through food or supplements.

한국등록특허 제 10-1553642호Korean Patent No. 10-1553642

본 발명의 발명자들은 BC2.1의 발현이 억제되어 LCY-E가 발현되는 토마토 야생종 유래 이입계통 및 형질전환 토마토에서 루테인의 함량이 증가됨을 확인하여, 본 발명을 완성하였다. The inventors of the present invention completed the present invention by confirming that the expression of BC2.1 was suppressed and the lutein content was increased in introgression lines derived from wild tomato species and transgenic tomatoes expressing LCY-E .

이에, 본 발명은 BC2.1의 발현이 억제된 토마토 이입계통 및 형질전환체를 제공하는 것을 목적으로 한다.Accordingly, the purpose of the present invention is to provide a tomato transfection line and transformant in which expression of BC2.1 is suppressed.

상기의 목적을 달성하기 위하여, 본 발명은 BC2.1의 발현이 억제된, 루테인의 함량이 증가된 토마토를 제공한다.In order to achieve the above object, the present invention provides tomatoes with suppressed expression of BC2.1 and increased lutein content.

본 발명의 일 실시예에 있어서, 상기 BC2.1의 ORF2의 발현이 억제된 것일 수 있다. In one embodiment of the present invention, the expression of ORF2 of BC2.1 may be suppressed.

본 발명의 일 실시예에서, 상기 BC2.1의 발현이 억제되어 LCY-E가 발현됨으로써 루테인의 함량이 증가될 수 있다.In one embodiment of the present invention, the expression of BC2.1 is suppressed and LCY-E is expressed, thereby increasing the lutein content.

본 발명의 일 실시예에 있어서, RNAi 구조물을 투여하여 상기 BC2.1의 발현이 억제된 것일 수 있다. 상기 RNAi 구조물은 서열번호 59로 표시되는 서열을 갖는 RNAi-F 및 서열번호 60으로 표시되는 서열을 갖는 RNAi-R을 이용하여 제조된 것일 수 있다.In one embodiment of the present invention, the expression of BC2.1 may be suppressed by administering an RNAi construct. The RNAi construct may be prepared using RNAi-F having the sequence shown in SEQ ID NO: 59 and RNAi-R having the sequence shown in SEQ ID NO: 60.

본 발명의 일 실시예에 있어서, 돌연변이를 포함하는 BC2.1을 코딩하는 서열을 토마토에 투여하여 상기 BC2.1 발현이 억제되는 것일 수 있다. 상기 돌연변이를 포함하는 BC2.1을 코딩하는 서열은 서열번호 2 내지 4로 표시되는 핵산 서열 중에서 선택된 것일 수 있다.In one embodiment of the present invention, BC2.1 expression may be suppressed by administering a sequence encoding BC2.1 containing a mutation to tomatoes. The sequence encoding BC2.1 containing the above mutation may be selected from the nucleic acid sequences represented by SEQ ID NOs: 2 to 4.

본 발명의 일 실시예에 있어서, 상기 토마토는 Solanum. pennellii LA716의 유전자 이입 계통인 subIL2-2-1을 IL6-3과 교배하여 수득하거나, subIL2-2-1을 IL12-2와 교배하여 생산된 것일 수 있다.In one embodiment of the present invention, the tomato is Solanum. It may be obtained by crossing subIL2-2-1, an introgression line of pennellii LA716, with IL6-3, or it may be produced by crossing subIL2-2-1 with IL12-2.

본 발명은 BC2.1의 발현을 억제함으로써 루테인의 함량을 증가시킬 수 있어, 많은 농작물의 영양소를 유전적으로 개선할 수 있다. 또한, 본 발명은 라이코펜 에폭시다아제인 BC2.1을 확인하여 식물 카로티노이드 축적의 유전적 및 생화학적 근본을 이해할 수 있도록 하며, 증가된 프로비타민 A 및 루테인을 위한 대립유전자 변이 또는 유전적 변이의 선별을 위한 분자학적 도구를 제공할 수 있다.The present invention can increase the content of lutein by suppressing the expression of BC2.1, thereby genetically improving the nutrients of many crops. In addition, the present invention identifies BC2.1, a lycopene epoxidase, to understand the genetic and biochemical basis of plant carotenoid accumulation, and to screen for allelic mutations or genetic mutations for increased provitamin A and lutein. It can provide molecular tools for

도 1은 IL2-1, IL2-2, subIL2-2-1, 및 M82의 카로티노이드 프로파일을 나타낸 것이다: a. IL2-1, IL2-2, 및 M82의 숙성 과일; B. trial 1 (야외, Florida, 2004), trial 2 (온실, New York, 2010) 및 trial 3 (온실, Daegu, 2016)의 세 군데 다른 환경 조건에서 재배한 IL2-1, IL2-2, 및 M82에서의 베타카로틴의 상대적 수준; (n=5) c. 과일 숙성 동안 M82 및 subIL2-2-1 (IL2-1 및 IL2-2의 오버랩핑 유전자이입 함유 SubIL)의 카로티노이드 및 엽록소 프로파일 (n=10). MG: mature green, BR: breaker (early 숙성), B3: 3 days post breaker, B7: 7 days post breaker, B10: 10 days post breaker; d. M82 및 subIL2-2-1의 잎 및 꽃에서 카로티노이드 및 엽록소의 상대적 수준 (n=5). n.d.: not detected.
도 2는 bc2.1의 위치 클로닝을 나타낸 것이다: 상부부터 하부까지, Top to bottom, 2번 염색체의 IL 유전자 맵, 베타카로틴 수준 및 통계학적 유의성 (n>3, paired one tail t-test, P<0.05)을 갖는 IL2-2 F2 집단으로부터 유래된 고해상도 유전자 맵, U582871 및 09 사이의 마커에 의해 규정되는 160 kb영역에서의 15개 ORFs (화살표), 및 프로모터에서 2개의 반복 요소 삽입 (삼각형) 및 (M82에 비해) LA716 대립유전자의 코딩 영역에서의 7개 돌연변이를 갖는 유전자 모델(15개 ORFs에서 오렌지색 화살표로 구별됨). 녹색 삼각형에서 보여지는 Copia-유사 레트로트랜스포존 (1261 bp) 및 토마토 특이 반복 요소 (553 bp)는 LA716 bc2.1 대립유전자의 프로모터에 삽입됨. 오렌지색 삼각형에서 보여지는 알려지지 않은 단편 (53 bp)은 LA317 및 LA1412의 bc2.1 프로모터에 삽입됨. 첫 번째 엑손에서 빨간색 사각형은 추정 색소체 표적 서열을 나타내고 및 검은색 사각형은 8개 엑손을 나타냄. a= IL2-2보다 상당히 높음, b= M82보다 상당히 높음. b, cis1-F 및 cis1-R 프라이머s (표 2)를 사용하여 bc2.1의 프로모터 영역에서 2개의 반복 요소의 삽입을 PCR 분석한 결과. 다른 발달 단계별 과일, 잎 및 꽃 조직(n=5)에서 M82 및 subIL2-2-1에서의 BC2.1/ORF2의 유전자 발현 분석 결과. 과일에서의 상대적 발현은 M82-BR 단계에서 표준화함.
도 3은 bc2.1 및 BC2.1 대립유전자에 의해 암호화되는 유전자의 생화학적 활성을 나타낸 것이다: a. Rbc2.1 (subIL2-2-1), Beta (IL6-3), 및 bc2.1 Beta (DIL26)의 숙성 과일에서 상대적 카로티노이드 프로파일을 야생형 (M82)과 비교한 HPLC 분석 결과; b. M82 (WT), IL2-2-1 (bc2.1), IL6-3 (Beta), DIL26 (bc2.1 Beta), IL12-2 (Delta), 및 DIL212 (bc2.1 Delta)의 숙성 과일; c. M82 (n=5)과 비교한 S. galapagense “LA317” 및 S. cheesmaniae “LA1412”에서의 BC2.1/ORF2의 상대적 유전자 발현 및 라이코펜 및 베타카로틴의 상대적 수준. n.d. : not detected; d. BC2.1와 CYC-B. Myc-BC2.1, Myc-GFP, 및 CYC-B-Flag 와의 상대적 관련성을 나타내는 면역블롯 및 공동-면역침강 분석 결과; e. 라이코펜을 축적하여 라이코펜 에폭사이드를 생산하는 E. coli 에서 BC2.1/ORF2 단백질 기능 분석 결과. Peak identification: I. trans-라이코펜; II. 라이코펜 에폭사이드; f. bc2.1에 의한 카로티노이드 생합성의 새로운 지류. LCY-E: 라이코펜 e-cyclase, CYC-B: 유색체 특이 b-cyclase, BC2.1: 라이코펜 에폭시다아제, MoB: Beta-modifier
도 4는 M82×IL2-2 and subIL2-1s로부터의 100개 F2-F3을 이용하여 bc2.1 영역을 유전적으로 세분화한 결과를 나타낸 것이다. 파란새 점선은 유전자형 및 표현형에 근거한 후보 QTL 영역을 나타낸다.
도 5는 M82 and subIL2-2-1 (n=5)의 숙성 과일에서 카로티노이드 생합성의 정량 RT-PCR 분석 결과를 나타낸 것이다.
도 6은 LA716 ILs의 숙성 과일에서 베타카로틴과 bc2.1 발현 사이의 피어슨 상관관계 분석 결과를 나타낸 것이다.
도 7은 식물에서 bc2.1 유사체의 다중 정렬(alignment)을 나타낸 것이다. 빨간색 박스는 FAD 결합 도메인을 나타낸 것이고, 파란 박스는 스쿠알렌 에폭시다아제 패밀리에서 고도로 보존된 영역을 나타낸다. 녹색 선은 TargetP 1.1 server (http://www.cbs.dtu.dk/services/TargetP-1.1/index.php)에 기반한 추정 색소체 표적 서열을 나타내며, 오렌지색 선은 추정 시그널 펩타이드를 나타내고, 노란색 선은 미토콘드리아 표적 서열을 나타낸다. 분석에 사용된 단백질 서열은 하기와 같다: SlBC2.1 (JX683513), SpBC2.1 (JX683514), SgBC2.1 (JX683515), StSQE2 (Sotub02g011310), SlSQE1 (Solyc04g077440), StSQE1 (XP_015168607), NtSQE1a (XP_016434789.1), NtSQE1b (XP_016502919.1), AtSQE1 (AT1G58440), AtSQE2 (AT2G22830), AtSQE3 (AT4G37760), AtSQE4 (AT5G24140), AtSQE5 (AT5G24150), AtSQE6 (AT5G24160), AtSQE7 (AT5G24155), ZmSQE1a (ZM09G25330), ZmSQE1b (ZM01G08660), OsSQE1a (Os03g12910), OsSQE1b (Os03g12900).
도 8은 식물에서 BC2.1 유사체의 계통발생학 분석 결과로서, 토마토, 감자, 담배, 애기장대, 쌀 및 옥수수에서 BC2.1 유사체의 추정 아미노산 서열에 근거한 인접-결합 (Neighbor-joining) 계통수를 나타낸 것이다.
도 9는 N. benthamiana에서 BC2.1의 세포내 위치 분석 결과를 나타낸 것이다. Scale bars = 5 μm.
도 10a 내지 10c는 M82, LA317, LA1412 및 LA716에서 bc2.1 프로모터 서열의 정렬을 나타낸다. 야생종에서의 주요한 삽입은 진하고 색깔이 있는 누클레오티드로 표시하였다. 시작 코돈은 밑줄을 그었다. 빨간색: LA716에서 copia-유사 레트로트랜스포존, 녹색: LA716에서 토마토 특이 반복 요소, 파란색: LA317 및 LA1412에서 알려지지 않은 52 bp 누클레오티드.
도 11은 숙성 과일 (B+10)의 야생형 및 T0RNAi-형질전환 토마토에서 bc2.1의 전사 수준을 나타낸 qRT-PCR 분석 결과를 나타낸 것이다. 야생형 (M82 or AC)에 대해 상대적인 전사 수준을 나타냈다.
도 12는 LC-APCI-MS/MS를 사용한 BC2.1 활성 분석의 LC-MS/MS 특성화를 나타낸 것이다: a. trans-라이코펜 (빈 벡터로 형질전환된 E. coli로부터 추출, 녹색) 및 라이코펜 에폭사이드 (extract from BC2.1 발현 E. coli 세포로부터 추출, 빨간색)으로부터의 extracted ion chromatograms (EIC)의 오버레이를 나타낸 것이다 (도 3e). 상부 패널은 대조로부터의 m/z 537.44 Da [M+H]+의 EICs를 나타낸 것이고 (ppm error: 0.12) 하부 패널은 m/z 553.44 Da [M+H]+(ppm error:0.23)를 나타낸 것이다. b. m/z 537.44의 MS-MS 세분화 스펙트럼, trans-라이코펜; c. m/z 553.44의 MS-MS 세분화 스펙트럼, 라이코펜 에폭사이드.
도 13은 UPLC-ESI-QTOF-MS/MS를 사용한 BC2.1 활성 분석의 LC-MS/MS 특성화를 나타낸 것이다: a. 471 nm에서 추출된 trans-라이코펜 및 라이코펜 에폭사이드의 UV-Vis 스펙트럼을 나타낸 것이다. b. 라이코펜 에폭사이드의 MS 스펙트럼을 나타낸 것이다. c. 라이코펜 에폭사이드의 MS/MS 스펙트럼을 나타낸 것이다.
도 14는 숙성 과일에서 야생형 (M82 및 AC), subIL2-2-1 및 RNAi 트랜스제닉 토마토의 라이코펜 에폭사이드 함량을 나타낸 것이다 (10 days post-breaker, n=5).
도 15는 subIL2-2-1 이입 위치 및 subIL2-2-1 육성 계통도를 나타낸 것이다.
Figure 1 shows the carotenoid profiles of IL2-1, IL2-2, subIL2-2-1, and M82: a. Ripening fruits of IL2-1, IL2-2, and M82; B. IL2-1, IL2-2, and IL2-2 grown under three different environmental conditions: trial 1 (outdoor, Florida, 2004), trial 2 (greenhouse, New York, 2010), and trial 3 (greenhouse, Daegu, 2016). Relative levels of beta-carotene in M82; (n=5) c. Carotenoid and chlorophyll profiles of M82 and subIL2-2-1 (SubIL containing overlapping introgression of IL2-1 and IL2-2) during fruit ripening (n=10). MG: mature green, BR: breaker (early ripening), B3: 3 days post breaker, B7: 7 days post breaker, B10: 10 days post breaker; d. Relative levels of carotenoids and chlorophyll in leaves and flowers of M82 and subIL2-2-1 (n=5). nd: not detected.
Figure 2 shows the positional cloning of bc2.1 : top to bottom, IL gene map of chromosome 2, beta-carotene level and statistical significance (n>3, paired one tail t -test, P <0.05), 15 ORFs (arrows) in a 160 kb region defined by markers between U582871 and 09, and two repeat element insertions in the promoter (triangles). ) and a gene model with seven mutations in the coding region of the LA716 allele (compared to M82) (distinguished by orange arrows in the 15 ORFs). The Copia -like retrotransposon (1261 bp) and tomato-specific repeat element (553 bp) shown in green triangles were inserted into the promoter of the LA716 bc2.1 allele. The unknown fragment (53 bp) shown in the orange triangle is inserted into the bc2.1 promoter of LA317 and LA1412. Red squares in the first exon represent the putative plastid target sequence and black squares represent the eight exons. a= significantly higher than IL2-2, b= significantly higher than M82. b, Results of PCR analysis of the insertion of two repeat elements in the promoter region of bc2.1 using cis1-F and cis1-R primers (Table 2). Gene expression analysis results of BC2.1/ORF2 in M82 and subIL2-2-1 in fruit, leaf and flower tissues (n=5) at different developmental stages. Relative expression in fruit normalized to M82-BR stage.
Figure 3 shows the biochemical activities of genes encoded by the bc2.1 and BC2.1 alleles: a. Results of HPLC analysis comparing relative carotenoid profiles in ripening fruits of R bc2.1 (subIL2-2-1), Beta (IL6-3), and bc2.1 Beta (DIL26) with wild type (M82); b. Ripening fruits of M82 (WT), IL2-2-1 ( bc2.1 ), IL6-3 ( Beta ), DIL26 ( bc2.1 Beta ), IL12-2 ( Delta ), and DIL212 ( bc2.1 Delta ); c. Relative gene expression of BC2.1/ORF2 and relative levels of lycopene and beta-carotene in S. galapagense “LA317” and S. cheesmaniae “LA1412” compared to M82 (n=5). nd : not detected; d. BC2.1 and CYC-B. Immunoblot and co-immunoprecipitation analysis results showing relative association with Myc-BC2.1 , Myc-GFP , and CYC-B-Flag ; e. Results of BC2.1/ORF2 protein function analysis in E. coli , which accumulates lycopene and produces lycopene epoxide. Peak identification: I. trans -lycopene; II. lycopene epoxide; f. A new branch of carotenoid biosynthesis by bc2.1 . LCY-E: lycopene e-cyclase, CYC-B: coloroid-specific b-cyclase, BC2.1: lycopene epoxidase, MoB : Beta-modifier
Figure 4 shows the results of genetic segmentation of the bc2.1 region using 100 F2-F3 from M82×IL2-2 and subIL2-1s. Blue dotted lines represent candidate QTL regions based on genotype and phenotype.
Figure 5 shows the results of quantitative RT-PCR analysis of carotenoid biosynthesis in ripened fruits of M82 and subIL2-2-1 (n=5).
Figure 6 shows the results of Pearson correlation analysis between beta-carotene and bc2.1 expression in ripened fruits of LA716 ILs.
Figure 7 shows multiple alignment of bc2.1 homologues in plants. The red box represents the FAD binding domain, and the blue box represents a highly conserved region in the squalene epoxidase family. The green line represents the putative plastid target sequence based on TargetP 1.1 server (http://www.cbs.dtu.dk/services/TargetP-1.1/index.php), the orange line represents the putative signal peptide, and the yellow line represents the putative signal peptide. Mitochondrial targeting sequence is indicated. The protein sequences used in the analysis are as follows: SlBC2.1 (JX683513), SpBC2.1 (JX683514), SgBC2.1 (JX683515), StSQE2 (Sotub02g011310), SlSQE1 (Solyc04g077440), StSQE1 (XP_015168607), NtSQ E1a (XP_016434789 .1), NtSQE1b (XP_016502919.1), AtSQE1 (AT1G58440), AtSQE2 (AT2G22830), AtSQE3 (AT4G37760), AtSQE4 (AT5G24140), AtSQE5 (AT5G24150), AtSQE6 (AT5G24160) , AtSQE7 (AT5G24155), ZmSQE1a (ZM09G25330) , ZmSQE1b (ZM01G08660), OsSQE1a (Os03g12910), OsSQE1b (Os03g12900).
Figure 8 shows the results of phylogenetic analysis of BC2.1 analogs in plants, showing a neighbor-joining phylogenetic tree based on the estimated amino acid sequences of BC2.1 analogs in tomato, potato, tobacco, Arabidopsis, rice, and corn. will be.
Figure 9 shows the results of analysis of the intracellular location of BC2.1 in N. benthamiana . Scale bars = 5 μm.
Figures 10A-10C show alignment of bc2.1 promoter sequences in M82, LA317, LA1412 and LA716. Major insertions in wild species are indicated by bold, colored nucleotides. The start codon is underlined. Red: copia-like retrotransposon in LA716, green: tomato-specific repeat element in LA716, blue: unknown 52 bp nucleotide in LA317 and LA1412.
Figure 11 shows the results of qRT-PCR analysis showing the transcription level of bc2.1 in wild-type and T 0 RNAi-transgenic tomatoes of ripening fruit (B+10). Transcript levels are shown relative to wild type (M82 or AC).
Figure 12 shows LC-MS/MS characterization of BC2.1 activity assay using LC-APCI-MS/MS: a. Shows an overlay of extracted ion chromatograms (EIC) from trans- lycopene (extract from E. coli transformed with empty vector, green) and lycopene epoxide (extract from BC2.1 expressing E. coli cells, red). (Figure 3e). The upper panel shows the EICs of m/z 537.44 Da [M+H] + (ppm error: 0.12) and the lower panel shows the EICs of m/z 553.44 Da [M+H] + (ppm error: 0.23) from the control. will be. b. MS-MS refined spectrum at m/z 537.44, trans -lycopene; c. MS-MS refined spectrum of m/z 553.44, lycopene epoxide.
Figure 13 shows LC-MS/MS characterization of BC2.1 activity assay using UPLC-ESI-QTOF-MS/MS: a. This shows the UV-Vis spectrum of trans- lycopene and lycopene epoxide extracted at 471 nm. b. This shows the MS spectrum of lycopene epoxide. c. This shows the MS/MS spectrum of lycopene epoxide.
Figure 14 shows the lycopene epoxide content of wild type (M82 and AC), subIL2-2-1 and RNAi transgenic tomatoes in ripened fruits (10 days post-breaker, n=5).
Figure 15 shows the subIL2-2-1 transfection location and subIL2-2-1 breeding system diagram.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 이하, 본 발명을 실시예에 의해 상세히 설명하기로 한다. 그러나 이들 실시예들은 본 발명을 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.The advantages and features of the present invention and methods for achieving them will become clear with reference to the embodiments described in detail below. Hereinafter, the present invention will be described in detail through examples. However, these examples are for illustrating the present invention in detail, and the scope of the present invention is not limited to these examples.

실시예 1Example 1

식물 물질plant matter

IL (introgression line) 과일 카로티노이드 및 이들의 환경 변화를 평가하기 위해 플로리다에서 야외 재배 (2004년 봄), 뉴욕에서 온실 재배 (2010년 가을) 및 대구에서 야외 재배 (2004년 봄)로 실시하였다. 토마토 맵핑 집단 및 형질전환 식물을 Boyce Thompson Institute for Plant Research (NY, USA)의 온실에서 표준 조건 (27/19 ℃; 16/8 h light/dark)으로 재배하였다. 종자는 Tomato Genetics Resource Center at the University of California, Davis (CA, USA) (http://tgrc.ucdavis.edu/) 및 Hebrew University of Israel (Jerusalem, Israel)에서 수득하였다.To evaluate IL (introgression line) fruit carotenoids and their environmental changes, field cultivation was conducted in Florida (spring 2004), greenhouse cultivation in New York (fall 2010), and outdoor cultivation in Daegu (spring 2004). Tomato mapping populations and transgenic plants were grown under standard conditions (27/19 °C; 16/8 h light/dark) in a greenhouse at the Boyce Thompson Institute for Plant Research (NY, USA). Seeds were obtained from the Tomato Genetics Resource Center at the University of California, Davis (CA, USA) (http://tgrc.ucdavis.edu/) and Hebrew University of Israel (Jerusalem, Israel).

Accession codesAccess code

서열은 GenBank에서 수득하였다: bc2.1 (JX683513), Spbc2.1 (JX683514), 및 Sgbc2.1 (JX683515).Sequences were obtained from GenBank: bc2.1 (JX683513), Spbc2.1 (JX683514), and Sgbc2.1 (JX683515).

bc2.1bc2.1 의 위치 클로닝 (Positional cloning)Positional cloning

Hebrew University of Israel에서 분양받은 (또한 M82×IL2-1 F2로부터 유래된) 2-1 유전자이입 계통의 서브셋을 나타내는 IL2-1로부터 유래된 라인 이외에 M82×IL2-2 F2 개체군의 100개 식물을 사용하여 bc2.1의 유전자 분석을 실시하였다 (도 4). 이 식물 재료들을 사용하여 bc2.1가, 토마토 2번 염색체의 1.1-Mb 세그먼트에 해당하는 (토마토 게놈 어셈블리 SL2.40에서 규정된 바와 같이 29.9~31.0-Mb 영역을 포괄함), DNA 마커 2A 및 C2_At1g60640 사이의 2번 염색체의 상부 근처에 위치함을 확인하였다(도 4).100 plants of the M82×IL2-2 F 2 population in addition to the line derived from IL2-1, which represents a subset of the 2-1 introgression line (also derived from M82×IL2-1 F 2 ) from the Hebrew University of Israel. Genetic analysis of bc2.1 was performed using (Figure 4). Using these plant materials, bc2.1 , corresponding to a 1.1-Mb segment of tomato chromosome 2 (encompassing the 29.9- to 31.0-Mb region as defined in tomato genome assembly SL2.40), DNA markers 2A and It was confirmed that it was located near the top of chromosome 2 between C2_At1g60640 (Figure 4).

bc2.1의 추가 고해상도 맵핑을 M82× IL2-2 교배로부터 유래된 1100개 F2 식물을 사용하여 실시하였다. bc2.1 플랭킹(flanking) 마커 2A 및 98 (후자는 초기 소규모 맵핑 개체군에서 규정된 IL2-2의 상부에 있는 PCR 마커)을 재조합체 스크리닝을 위해 사용하였다. 1.1-Mb 영역에서 8개의 F2 재조합체를 수득하였고 bc2.1 LA716 또는 M82 대립유전자와 동형인 이들의 F3자손에서 HPLC로 표지된 동일 발달 단계의 숙과로부터 베타카로틴을 분석하였다 (paired one-tailed t-test, P<0.05). 마커 09 및 U582871 사이에서 LA716로부터 유래한 유전자이입 조각 160 -kb가 (도 2a)를 증가된 베타카로틴 함량과 함께 분리하였고(co-segregated), 이 조각은 15개 예상 ORFs를 포함하였다. 유전형질분석(genotyping)에 사용된 마커를 표 1에 나타냈다. M82 및 subIL2-2-1로부터의 후보 bc2.1 대립유전자의 염기서열을 분석하고 qRT-PCR로 유전자 발현을 평가하였다. 카로티노이드 분석을 위해, 과실을 발달단계별로 (브레이커 후 7일) 모든 유전자형으로부터 수확하였다. 과피 조직을 액화질소로 바로 얼리고 -80 ℃에 저장하였다. 조직을 카로티노이드 및 RNA 추출을 위해 액화질소를 이용하여 분쇄하였다.Additional high-resolution mapping of bc2.1 was performed using 1100 F 2 plants derived from the M82×IL2-2 cross. The bc2.1 flanking markers 2A and 98 (the latter a PCR marker upstream of IL2-2 defined in the initial small mapping population) were used for recombinant screening. Eight F2 recombinants were obtained from a 1.1-Mb region and their F 3 progeny homozygous for the bc2.1 LA716 or M82 allele were analyzed for beta-carotene from ripe fruits of the same developmental stage labeled by HPLC (paired one-tailed t -test, P <0.05). Between markers 09 and U582871, a 160-kb introgression fragment from LA716 (Figure 2A) co-segregated with increased beta-carotene content, and this fragment contained 15 predicted ORFs. Markers used for genotyping are shown in Table 1. Candidate bc2.1 alleles from M82 and subIL2-2-1 were sequenced and gene expression was assessed by qRT-PCR. For carotenoid analysis, fruits were harvested from all genotypes at different stages of development (7 days after breaker). The pericarp tissue was immediately frozen with liquid nitrogen and stored at -80°C. The tissue was pulverized using liquid nitrogen to extract carotenoids and RNA.

HPLC에 의한 카로티노이드 프로파일링Carotenoid profiling by HPLC

개별 과일들 (생물학적 반복 포함)로부터의 약 100 mg의 냉동 및 분쇄된 과피를 카로티노이드 추출에 사용하였다. 각 실험의 모든 결과는 동일 조건에서 재배한 대조 과일 유전자형과 비교하였다. 카로티노이드 및 엽록소를 추출하여 HPLC로 정량하였다.Approximately 100 mg of frozen and ground pericarp from individual fruits (including biological repeats) was used for carotenoid extraction. All results from each experiment were compared with control fruit genotypes grown under the same conditions. Carotenoids and chlorophyll were extracted and quantified by HPLC.

RNAi 구조 개발 및 토마토 형질전환RNAi construct development and tomato transformation

cDNA의 3'-UTR 영역에 위치한 bc2.1 특이적인 282-bp DNA 단편 (EST clone: TUS-64-H10) (즉, GenBank accession number JX683513의 염기 1866 부터 2147까지)을 Phusion High-Fidelity DNA Polymerase (New England Biolabs, MA, USA), 유전자-특이적 프라이머, RNAi-F 및 RNAi-R (표 2), 및 주형으로 EST 클론을 사용하여 PCR로 증폭하였다. 정제된 cDNA 단편을 GatewayTM cloning system(GatewayTM BP ClonaseTM Enzyme Mix, Invitrogen, CA, USA)를 사용하여 35S 프로모터의 조절 하에 역반복 서열(inverted repeat)로서 pHellsgate 2로 클로닝하였다. 구조가 온전한 상태인지 시퀀싱으로 확인하였고 이전에 공개된 방법 (Fillatti, J.J. et al., Efficient Transfer of a Glyphosate Tolerance Gene into Tomato Using a Binary Agrobacterium-Tumefaciens Vector. Bio-Technology 5, 726-730 (1987))으로 Agrobacteriumtumefaciens LBA4404를 사용하여 M82 및 AC 토마토 품종으로 도입하였다. 이식유전자를 물려받은 식물을 CaMV-35S-특이 프라이머, 35S-F 및 35S-R (표 2)를 사용하여 PCR로 확인하고, CaMV-35S 특이 프로브를 사용하여 서던 블롯 분석하였다. A bc2.1- specific 282-bp DNA fragment (EST clone: TUS-64-H10) located in the 3'-UTR region of cDNA (i.e., bases 1866 to 2147 of GenBank accession number JX683513) was purified using Phusion High-Fidelity DNA Polymerase. (New England Biolabs, MA, USA), gene-specific primers, RNAi-F and RNAi-R (Table 2), and an EST clone as a template were amplified by PCR. The purified cDNA fragment was cloned into pHellsgate 2 as an inverted repeat sequence under the control of the 35S promoter using the Gateway TM cloning system (Gateway TM BP Clonase TM Enzyme Mix, Invitrogen, CA, USA). The intact structure was confirmed by sequencing and previously published method (Fillatti, JJ et al., Efficient Transfer of a Glyphosate Tolerance Gene into Tomato Using a Binary Agrobacterium-Tumefaciens Vector. Bio-Technology 5, 726-730 (1987) ) was introduced into M82 and AC tomato varieties using Agrobacterium tumefaciens LBA4404. Plants inheriting the transgene were confirmed by PCR using CaMV-35S-specific primers, 35S-F and 35S-R (Table 2), and subjected to Southern blot analysis using a CaMV-35S-specific probe.

qRT-PCR에 의한 mRNA 축적의 측정Measurement of mRNA accumulation by qRT-PCR

총 RNA (2 μg)를 랜덤 헥사머 및 Superscript III (Invitrogen)로 역전사하였다. 정제된 cDNA (2 ng)를 qRT-PCR을 위한 주형으로서 사용하였다. qRT-PCR 분석을 ABI PRISM 7900HT (Applied Biosystems, CA, USA) real-time thermocycler 및 SYBR Green PCR master mix (Applied Biosystems)를 사용하여 유전자-특이 프라이머 (표 2 및 3)를 가지고 실시하였다.Total RNA (2 μg) was reverse transcribed with random hexamers and Superscript III (Invitrogen). Purified cDNA (2 ng) was used as a template for qRT-PCR. qRT-PCR analysis was performed using an ABI PRISM 7900HT (Applied Biosystems, CA, USA) real-time thermocycler and SYBR Green PCR master mix (Applied Biosystems) with gene-specific primers (Tables 2 and 3).

BC2.1의 세포 이하 국소화 (Subcellular localization)Subcellular localization of BC2.1

CaMV 35S 프로모터의 조절 하에 증가된 GFP를 운반하는 pCAMBIA2300-eGFP를 세포 내 소기관 위치 예측 분석에 사용하였다. 종료 코돈이 제외된 전체 bc2.1을 유전자 특이적 프라이머 (BC2.1-GFP-F 및 BC2.1-GFP-R)를 사용하여 증폭하였다. 증폭된 bc2.1 및 pCAMBIA2300-eGFP를 37 ℃에서 4시간 동안 XbaI 및 SalI로 이중-절단한 후, bc2.1을 T4 DNA ligase (Promega Corporation, WI, USA)를 사용하여 pCAMBIA2300-eGFP의 호환이 되는 XbaI/SalI 부위에 연결하였다. 결과적으로 생성된 플라스미드 (pCAMBIA2300-BC2.1-eGFP)를 E. coli DH5α로 전이시키고 시퀀싱하였다. 적절한 플라스미드를 동결-융해 (freeze-thaw) 방법으로 Agrobacterium tumefaciens GV3101 내로 형질전환시켰다. Agrobacterium을 OD 600가 0.7이 될 때까지 28 ℃에서 배양시키고, 유도 버퍼 (10 mM MES, 10 mM MgCl2,200μM acetosyringone)에 재현탁한 후, agroinfiltration 전에 2시간 동안 실온에서 배양하였다. 6주된 N. benthamiana 식물의 어린 잎에 pCAMBIA2300-eGFP 또는 BC2.1-eGFP을 포함하는 GV3101로 침윤하였다(agroinfiltrated). GFP 융합 단백질의 세포 내 위치를 confocal laser-scanning microscopy (LSM700, Carl Zeiss, Oberkochen, Germany)로 관찰하였다. 엽록체를 555 nm에서 이들의 적색 자가-형광을 통해 확인하고 GFP (녹색 형광)를 488 nm에서 확인하였다.pCAMBIA2300-eGFP, which carries increased GFP under the control of the CaMV 35S promoter, was used for intracellular organelle location prediction analysis. The entire bc2.1 , excluding the stop codon, was amplified using gene-specific primers (BC2.1-GFP-F and BC2.1-GFP-R). The amplified bc2.1 and pCAMBIA2300 - eGFP were double- digested with It was linked to the compatible Xba I/ Sal I site. The resulting plasmid (pCAMBIA2300-BC2.1-eGFP) was transferred to E. coli DH5α and sequenced. The appropriate plasmid was transformed into Agrobacterium tumefaciens GV3101 by freeze-thaw method. Agrobacterium was cultured at 28°C until OD 600 reached 0.7, resuspended in induction buffer (10mM MES, 10mM MgCl 2 , 200μM acetosyringone), and incubated at room temperature for 2 hours before agroinfiltration. Young leaves of 6-week-old N. benthamiana plants were agroinfiltrated with GV3101 containing pCAMBIA2300-eGFP or BC2.1-eGFP. The intracellular location of the GFP fusion protein was observed using confocal laser-scanning microscopy (LSM700, Carl Zeiss, Oberkochen, Germany). Chloroplasts were identified through their red auto-fluorescence at 555 nm and GFP (green fluorescence) at 488 nm.

이중 유전자이입 라인의 개발Development of double introgression lines

bc2.1 locus를 확인하기 위해 M82와 IL2-2를 교배하여 얻은 F2 집단을 제작하고 2번 염색체에서 마커 98와 U572717(표 1) 사이에 위치하며 β-carotene 함량이 증가된 subIL2-2-1를 육성하였다. subIL2-2-1 이입 위치 및 subIL2-2-1 육성 계통도는 도 15에 나타낸 바와 같다.To confirm the bc2.1 locus, an F2 population obtained by crossing M82 and IL2-2 was created, and subIL2-2-1, located between markers 98 and U572717 on chromosome 2 (Table 1), has increased β-carotene content. was fostered. The subIL2-2-1 transfection location and subIL2-2-1 breeding diagram are shown in Figure 15.

IL6-3, IL12-2는 Tomato Genetics Resource Center at the University of California, Davis (CA, USA) (http://tgrc.ucdavis.edu/)에서 수득하였다.IL6-3 and IL12-2 were obtained from the Tomato Genetics Resource Center at the University of California, Davis (CA, USA) (http://tgrc.ucdavis.edu/).

이중 유전자이입 라인 DIL26의 분리를 위해, subIL2-2-1을 IL6-3과 교배하였다. 결과적으로 생성된 75개의 F2식물 중에서, bc2.1 (표 1) 및 CYC-B의 유전자 특이 PCR 마커를 사용하여 이중 돌연변이를 포함하고 있는 동형 라인을 수득하였다. 한 라인인, DIL26을 이후 분석에 사용하였다. 유전자이입 라인 DIL212의 분리를 위해, subIL2-2-1을 IL12-2와 교배하였다. 결과적으로 생성된 82개의 F2식물 중에서, bc2.1 (표 1) 및 LCY-E의 유전자 특이 PCR 마커를 사용하여 이중 돌연변이를 포함하고 있는 동형 라인을 수득하였다. 한 라인인, DIL212를 이후 분석에 사용하였다. 카로티노이드를 M82, subIL2-2-1, IL6-3, IL12-2, DIL26 및 DIL212의 숙성 과일에서 HPLC로 분석하였다 (표 4).For isolation of the double introgenic line DIL26, subIL2-2-1 was crossed with IL6-3. Among the resulting 75 F 2 plants, isogenic lines containing the double mutation were obtained using gene-specific PCR markers of bc2.1 (Table 1) and CYC-B . One line, DIL26, was used for further analysis. For isolation of the introgenic line DIL212, subIL2-2-1 was crossed with IL12-2. Among the resulting 82 F 2 plants, isogenic lines containing the double mutation were obtained using gene-specific PCR markers of bc2.1 (Table 1) and LCY-E . One line, DIL212, was used for further analysis. Carotenoids were analyzed by HPLC in ripened fruits of M82, subIL2-2-1, IL6-3, IL12-2, DIL26 and DIL212 (Table 4).

N. benthamianaN. benthamiana 에서의 in AgrobacteriumAgrobacterium -매개 일시적 발현 및 공동 면역침강을 위한 DNA 구조물-DNA constructs for mediated transient expression and co-immunoprecipitation

N. benthamiana에서의 Agrobacterium-매개 일시적 발현, 공동-면역침강 및 면역블롯을 실시하였다. Myc-GFP에 대한 식물 과발현 구조물은 이전에 공개된 것을 사용하였다(Bhattacharjee, S. et al. Virus resistance induced by NB-LRR proteins involves Argonaute4-dependent translational control. Plant J. 58, 940-951 (2009)). 각 말단에 AscI 부위를 갖는 CYC-BBC2.1을 올리고뉴클레오티드 (각각 CYC-B-AscI-F + CYC-B-AscI-R 및 BC2.1-AscI-F + BC2.1-AscI-R, 표 2)로 과일 cDNA로부터 증폭하였다. 증폭된 CYC-BBC2.1 단편을 각각 pER8-Flag 및 pER8-Myc에 연결하여, pER-CYC-B-Flag 및 pER-BC2.1-Myc를 생성하였다. Agrobacterium -mediated transient expression, co-immunoprecipitation, and immunoblotting in N. benthamiana were performed. The plant overexpression construct for Myc-GFP was used as previously published (Bhattacharjee, S. et al. Virus resistance induced by NB-LRR proteins involves Argonaute4-dependent translational control. Plant J. 58 , 940-951 (2009) ). CYC-B and BC2.1 with AscI sites at each end were synthesized with oligonucleotides (CYC-B-AscI-F + CYC-B-AscI-R and BC2.1-AscI-F + BC2.1-AscI-, respectively). R, Table 2) was amplified from fruit cDNA. The amplified CYC-B and BC2.1 fragments were linked to pER8-Flag and pER8-Myc, respectively, to generate pER-CYC-B-Flag and pER-BC2.1-Myc.

transtrans -라이코펜-축적 -Lycopene-accumulation E. coliE. coli 에서 BC2.1의 발현Expression of BC2.1 in

PCR 단편을 M82와 subIL2-2-1의 BC2.1/ORF2 전체 cDNA를 사용하여 증폭하고 mTrcHis2 프라이머 (표 2)를 사용하여 pTrcHis2-TOPO vector (Invitrogen, CA, USA)에 클로닝하여, 시퀀싱을 통해 확인하였다. pAC-LYC를 E. coli 균주 BL21-AI로 pTrcHis2-TOPO-BC2.1 구조물과 함께 공동-형질전환하였다. trans-라이코펜-생산 균주 및 BC2.1이 없는 pTrcHis2-TOPO로 구성된 대조에 동일한 유도 처리를 하였다. 3 mL의 밤새도록 배양한 배양물을 적절한 항생제 및 0.2% 글루코스를 함유하는 50 mL의 LB 배지에 접종하였다. 배양물을 600 nm에서의 흡광도가 0.5가 될 때까지 28 ℃에서 성장시켰다. 1 mM IPTG을 첨가하여 단백질의 발현을 유도하고 28 ℃에서 밤새 암실에서 배양하였다. 그런 다음 동일 부피의 아세톤을 첨가하고 두배 부피의 에틸 아세테이트를 첨가하였다. 물을 첨가하여 상들을 분리하고 에틸 아세테이트 상을 HPLC 및 LC-MS/MS 분석을 위해 보관하였다. 원심분리 후, 배양물로부터의 배지를 동일 부피의 에틸 아세테이트로 2회 분할하였다. HPLC 분획을 건조하고 에틸 아세테이트에 재현탁한 후 상기 기재된 바와 같이 HPLC에 사용하였다.The PCR fragment was amplified using the BC2.1/ORF2 total cDNA from M82 and subIL2-2-1, cloned into the pTrcHis2-TOPO vector (Invitrogen, CA, USA) using the mTrcHis2 primer (Table 2), and sequenced. Confirmed. pAC-LYC was co-transformed with the pTrcHis2-TOPO-BC2.1 construct into E. coli strain BL21-AI. The trans -lycopene-producing strain and a control consisting of pTrcHis2-TOPO without BC2.1 were subjected to the same induction treatment. 3 mL of overnight culture was inoculated into 50 mL of LB medium containing appropriate antibiotics and 0.2% glucose. Cultures were grown at 28°C until the absorbance at 600 nm was 0.5. Protein expression was induced by adding 1mM IPTG and cultured in the dark at 28°C overnight. Then, an equal volume of acetone was added and a double volume of ethyl acetate was added. Water was added to separate the phases and the ethyl acetate phase was stored for HPLC and LC-MS/MS analysis. After centrifugation, the medium from the culture was split twice with equal volumes of ethyl acetate. HPLC fractions were dried, resuspended in ethyl acetate and used for HPLC as described above.

효소 검정을 위한 카로티노이드의 LC-MS/MS 분석LC-MS/MS analysis of carotenoids for enzyme assays

LC-MS/MS 분석을 Mass Spectrometry Convergence Research Center (Kyungpook National University, Daegu, South Korea)로 실시하였다. 효소 검정으로부터의 5 μl 추출물을 (도 3e) Ultimate 3000 U-HPLC system (Thermo Fisher Scientific, MA, USA)과 atmospheric pressure chemical ionization (APCI) (positive mode)을 사용하는 Q EXACTIVETM Focus massspectrometry system (ThermoFisherScientific)으로 분석하였다. 크로마토그래피 분리는 Kinetex C18 column (100 × 2.1 mm; Phenomenex, Torrance, CA)을 사용하여 실시하였다. 이동상은 0.5 mL/min의 유속에서 0.1% 암모늄 아세테이트 함유 메탄올 (A) 및 메틸 tert-부틸 에테르 (B) 로, 25℃에서 5분간 90% A 및 10% B의 조건으로 흘려주었다. APCI 파라미터는 하기와 같다: sheath gas flow rate, 50 arbitrary units; auxiliary gas unit flow rate, 12 arbitrary units; vaporizer temperature ,300 ℃; capillary temperature, 320 ℃; discharge current, 5 mA; S-lens radiofrequency level, 95; resolving power, 70,000. 목적 화합물에 대해, 520~620 m/z의 스캔 범위를 선택하였다. automatic gain control은 1 × 106로 설정하고 주입 시간은 100 ms로 설정했다.LC-MS/MS analysis was performed by Mass Spectrometry Convergence Research Center (Kyungpook National University, Daegu, South Korea). 5 μl extracts from the enzyme assay (Figure 3e) were analyzed using an Ultimate 3000 U-HPLC system (Thermo Fisher Scientific, MA, USA) and a Q EXACTIVE TM Focus massspectrometry system (ThermoFisherScientific) using atmospheric pressure chemical ionization (APCI) (positive mode). ) was analyzed. Chromatographic separation was performed using a Kinetex C18 column (100 × 2.1 mm; Phenomenex, Torrance, CA). The mobile phase was methanol (A) and methyl tert -butyl ether (B) containing 0.1% ammonium acetate at a flow rate of 0.5 mL/min, flowed under conditions of 90% A and 10% B for 5 minutes at 25°C. APCI parameters are: sheath gas flow rate, 50 arbitrary units; auxiliary gas unit flow rate, 12 arbitrary units; vaporizer temperature, 300℃; capillary temperature, 320℃; discharge current, 5 mA; S-lens radiofrequency level, 95; resolving power, 70,000. For the target compound, a scan range of 520-620 m/z was selected. The automatic gain control was set to 1 × 106 and the injection time was set to 100 ms.

또한, UPLC-ESI-QTOF-MS/MS을 500?600 m/z의 검출 범위에서 electrospray ionization (ESI, positive mode)을 수반한 high-resolution 6540 QTOF-MS/MS spectrometer (Agilent, Santa Clara, CA, USA)를 사용하여 실시하였다. LC 분리를 이전에 공개된 바와 같이 Agilent 1290 UPLC system (Agilent)으로 실시하였다. UPLC-ESI-QTOF-MS/MS를 Metabolomic Discoveries GmbH (Potsdam, Germany로 실시하였다.In addition, UPLC-ESI-QTOF-MS/MS was performed using a high-resolution 6540 QTOF-MS/MS spectrometer (Agilent, Santa Clara, CA) accompanied by electrospray ionization (ESI, positive mode) in the detection range of 500~600 m/z. , USA) was used. LC separation was performed with an Agilent 1290 UPLC system (Agilent) as previously published. UPLC-ESI-QTOF-MS/MS was performed by Metabolomic Discoveries GmbH (Potsdam, Germany).

스쿠알렌 및 2, 3-옥시도스쿠알렌의 정량Quantification of squalene and 2, 3-oxidosqualene

스쿠알렌 및 2,3-옥시도스쿠알렌의 추출 및 프로파일링을 위해, 과일 브레이커 후 7일에 ~200 mg의 과피를 사용하였다. 스쿠알렌 및 2,3-옥시도스쿠알렌의 추출은 공지된 방법으로 실시하였으며(Khachik, F. et al. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med (Maywood) 227, 845-851 (2002)), 정량 분석을 6540 Q-TOF/LC-MS (Agilent, CA, USA) 및 reverse-phase C18 columns (100 × 3 mm, 1.8 mm, Agilent)을 사용하여 실시하였다. 표준 스쿠알렌 및 2, 3-옥시도스쿠알렌은 Sigma-Aldrich (St. Louis, MO, USA)에서 구매하였다. For extraction and profiling of squalene and 2,3-oxidosqualene, ~200 mg of pericarp was used 7 days after fruit breaker. Extraction of squalene and 2,3-oxidosqualene was performed using a known method (Khachik, F. et al. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med (Maywood) 227, 845-851 (2002)), quantitative analysis was performed using a 6540 Q-TOF/LC-MS (Agilent, CA, USA) and reverse-phase C18 columns (100 × 3 mm, 1.8 mm, Agilent). Standard squalene and 2, 3-oxidosqualene were purchased from Sigma-Aldrich (St. Louis, MO, USA).

실시예 2Example 2

결과result

토마토에서 카로티노이드에 영향을 주는 자연적 변이를 확인하기 위해, S. pennellii “LA716”의 유전자 이입 계통(introgression lines; ILs)에서 완숙과의 카로티노이드 함량을 평가하였다. ILs 중에서, IL2-1 및 IL2-2 (도 1a)는 이입 염색체의 일부분이 서로 겹치며 과일 색상 및 형태는 대조구인 S. lycopersicum “M82”과 시각적으로 구별되지 않았으나 유전 가능한 베타카로틴의 함량이 2.5배 이상 높았다 (도 1b). 본 발명에서는 이 베타카로틴 QTL(Quantitative trait locus)을 bc2.1로 명명하여 설계하였다. bc2.1 유전자좌의 추가적인 효과를 연구하기 위해 subIL2-2-1에서 HPLC 카로티노이드 프로파일링을 실시하였다. subIL2-2-1은 M82×IL2-2의 F3 집단에서 (도 4) IL2-1 및 IL2-2 (BIN2C로 명명됨)의 LA716 세그먼트가 오버래핑되는 지역을 포함하도록 육성되었다. M82와 비교하면, subIL2-2-1은 잎 및 꽃 조직에서 카로티노이드 또는 엽록소에서의 유의성 있는 변이는 보이지 않았다(도 1d). 흥미롭게도, 베타카로틴은 과실이 숙성하는 동안에만 증가하였으며, 베타카로틴의 전구물질인 파이토엔, 파이토플루엔, 및 trans-라이코펜은 M82에 비해 약간 감소하였다 (도 1c). bc2.1은 카로티노이드 생합성 유전자의 전사 축적을 유의적으로 변화시키지 않았으며, 이는 subIL2-2-1 토마토 과일에서의 베타카로틴 축적의 양적 변화가 이미 알려진 생함성 유전자의 mRNA 축적 변화가 아닌 새로운 대체 수단을 통한 것임이 분명함을 시사하는 것이다 (도 5). 게다가, 식물에서 카로티노이드 축적과 관련된 유전자들 중에서 BIN2C에 위치하는 유전자는 알려진 바가 없다. To identify natural variations affecting carotenoids in tomatoes, the carotenoid content of ripe fruits was evaluated in introgression lines (ILs) of S. pennellii “LA716”. Among the ILs, IL2-1 and IL2-2 (Fig. 1a) have overlapping portions of the introgressed chromosomes and the fruit color and shape are visually indistinguishable from the control S. lycopersicum “M82”, but their heritable beta-carotene content is 2.5 times higher. was higher than that (Figure 1b). In the present invention, this beta-carotene QTL (Quantitative trait locus) was designed and named bc2.1 . To study additional effects of the bc2.1 locus, HPLC carotenoid profiling was performed on subIL2-2-1. subIL2-2-1 was grown in the F3 population of M82 Compared with M82, subIL2-2-1 did not show significant changes in carotenoids or chlorophyll in leaf and flower tissues (Figure 1d). Interestingly, beta-carotene increased only during fruit ripening, and beta-carotene precursors phytoene, phytofluene, and trans -lycopene slightly decreased compared to M82 (Figure 1c). bc2.1 did not significantly change the transcript accumulation of carotenoid biosynthetic genes, suggesting that quantitative changes in beta-carotene accumulation in subIL2-2-1 tomato fruits are a novel alternative rather than changes in mRNA accumulation of already known biosynthetic genes. This clearly suggests that it is through (Figure 5). Moreover, among the genes related to carotenoid accumulation in plants, the gene located in BIN2C is not known.

bc2.1의 고해상도 맵핑은 M82×IL2-2 F2 집단 및 subIL2-1s를 사용하여 수행하였다 (도 2a). 마커 09 및 U582871 사이의 LA716-유래 염색체 160-kb가 이입된 세그먼트는 베타카로틴 함량 증가와 함께 분리하였고 15개의 open reading frames (ORFs)을 포함하였다 (도 2a). 베타카로틴 증진의 원인인 bc2.1 대립유전자는 F1의 표현형을 통해 열성 유전되는 것을 확인하였으며 이형접합 식물체의 경우 M82 대립유전자를 동형접합으로 보유하는 식물체와 유사한 표현형을 보였다. (도 2, 도 4). 이러한 결과는 ILs에서의 베타카로틴의 함량 증가는 LA716로부터 유래된 기능-손실 대립유전자에 의해 발생하는 것임을 시사하는 것이다. LA716로부터의 RNA-seq (도 6) 및 게놈 DNA 서열의 분석을 통해, 과일 숙성 동안 유도되고 스쿠알렌 에폭시다아제 (SQE: 도 7)와 고도로 상동인, ORF2를 후보 유전자로 확인하였다. 식물에서, SQE 패밀리 멤버로는 애기장대(Arabidopsis)의 7개 유전자 및 쌀, 옥수수 및 가지과 식물의 2개 유전자가 존재한다 (도 8).High-resolution mapping of bc2.1 was performed using the M82×IL2-2 F 2 population and subIL2-1s (Figure 2a). The segment containing 160-kb of LA716-derived chromosomes between marker 09 and U582871 was isolated with increased beta-carotene content and contained 15 open reading frames (ORFs) (Figure 2a). The bc2.1 allele, which is the cause of beta-carotene enhancement, was confirmed to be recessively inherited through the F 1 phenotype, and heterozygous plants showed a similar phenotype to plants homozygously carrying the M82 allele. (Figure 2, Figure 4). These results suggest that the increase in beta-carotene content in ILs is caused by a loss-of-function allele derived from LA716. Through RNA-seq (Figure 6) and analysis of genomic DNA sequences from LA716, ORF2, which is induced during fruit ripening and is highly homologous to squalene epoxidase (SQE: Figure 7), was identified as a candidate gene. In plants, SQE family members include 7 genes from Arabidopsis and 2 genes from rice, corn, and Solanaceae plants (FIG. 8).

BC2.1/ORF2의 발현은 잎, 꽃 뿐만 아니라 과실의 숙성 동안에도 M82에 비해 상당히 감소하였으며 (도 2c), 이는 이 유전자가 bc2.1 과일 베타카로틴 표현형의 원인이 되는 것임을 추가로 뒷받침하는 것이다. ORF2의 1.4 kb 업스트림의 추정 프로모터 서열에서, LA716 대립유전자에서 1.8 kb 서열의 삽입이 확인되었다. M82 대립유전자와 비교했을 때 개시 코돈으로부터 업스트림으로 각각 1263 및 223 bp 위치에 copia-유사 레트로트랜스포존 (retrotransposon) 및 토마토-특이 반복 요소가 LA716에 삽입되었으며 (도 2b, 도 10), 이들은 subIL2-2-1에서 ORF2 발현의 감소를 야기할 수 있다 (도 2c). S. pennellii에서 유전자와 매우 가까운 프로모터(proximal promoter)에 위치하는 Copia 요소는 copia 요소가 없는 S. lycopersicum의 이종상동성 유전자에서보다 이들 유전자의 더 낮은 발현을 이끌어낸다. 또한, LA716의 코딩 영역에서 6개 아미노산 치환 및 1개 아미노산 결실을 확인하였다 (도 2a, 도 7). 하기 기재한 바와 같이, 대립유전자의 코딩 서열 내 변이는 이의 활성에 영향을 주지 않으며 (도 3e), 표현형 상의 어떤 차이는 유전자 발현의 감소로부터 야기된 것임을 시사하는 것이다.The expression of BC2.1/ORF2 was significantly reduced compared to M82 not only in leaves and flowers, but also during fruit ripening (Figure 2c), which further supports that this gene is responsible for the bc2.1 fruit beta-carotene phenotype. . In the putative promoter sequence 1.4 kb upstream of ORF2, an insertion of 1.8 kb sequence was identified in the LA716 allele. Compared to the M82 allele, a copia -like retrotransposon and a tomato-specific repeat element were inserted into LA716 at positions 1263 and 223 bp upstream from the start codon, respectively (Figure 2B, Figure 10), which are subIL2-2 -1 could result in a decrease in ORF2 expression (Figure 2c). In S. pennellii , Copia elements located in proximal promoters lead to lower expression of these genes than in orthologous genes in S. lycopersicum without copia elements. Additionally, 6 amino acid substitutions and 1 amino acid deletion were confirmed in the coding region of LA716 (FIG. 2A, FIG. 7). As described below, variations in the coding sequence of the allele do not affect its activity (Figure 3E), suggesting that any differences in phenotype result from reduced gene expression.

SQE는 스쿠알렌의 대사를 촉진하여 모든 속씨식물의 사이클릭 트리테르페노이드의 전구체인 2,3-옥시도스쿠알렌을 생성한다. 카로티노이드 대사 효소들은 대부분 색소체에서 존재하는 것으로 구분되어지며, 스쿠알렌을 비롯한 트리테르페노이드 대사는 ER 및 사이토졸에 주로 잔류한다. 애기장대 SQE 패밀리 멤버와 달리 ORF2는 N-말단 영역에 예상되는 색소체-표적 펩티드를 포함한다 (도 6). subIL2-2-1에서 ORF2의 감소된 발현이 스쿠알렌 대사에 영향을 주는지를 확인하기 위해, 스쿠알렌 및 2,3-옥시도스쿠알렌을 Q-TOF-LC/MS로 정량하였다 (표 5). 스쿠알렌은 M82 또는 subIL2-2-1의 숙과에서 모두 검출되지 않았으며, 2,3-옥시도스쿠알렌 수준은 두 품종에서 서로 매우 유사하였다.SQE promotes the metabolism of squalene to produce 2,3-oxidosqualene, the precursor of cyclic triterpenoids in all angiosperms. Most carotenoid metabolic enzymes are classified as existing in plastids, and triterpenoid metabolism, including squalene, mainly remains in the ER and cytosol. Unlike Arabidopsis SQE family members, ORF2 contains a predicted plastid-targeting peptide in its N-terminal region (Figure 6). To confirm whether the reduced expression of ORF2 in subIL2-2-1 affects squalene metabolism, squalene and 2,3-oxidosqualene were quantified by Q-TOF-LC/MS (Table 5). Squalene was not detected in ripe fruits of either M82 or subIL2-2-1, and 2,3-oxidosqualene levels were very similar in both cultivars.

ORF2가 bc2.1의 중재자로써 토마토 과실의 베타카로틴 함량을 증진시키는지 위해 RNAi 실험을 진행하였다. ORF2의 RNAi 구조를 과실에서 상대적으로 낮은 베타카로틴 함량 (1.5~2.0 μg/g fw)을 갖는 M82로 도입하였다. 동일한 구조를 또한 숙과에서 상대적으로 높은 베타카로틴 함량 (~14 μg/g fw)을 갖는 Ailsa Craig (AC) 내로 형질전환시켰다. M82에서의 6개 독립적인 트랜스제닉 라인 및 AC에서 3개의 독립적인 트랜스제닉 라인이 생성되었으며 (표 6), 증가된 베타카로틴 및 감소된 ORF2 발현을 나타냈다 (도 11). 9개 RNAi 라인 모두에서 베타카로틴 함량이 2~4배 증가하였으며 다른 카로티노이드는 RNAi 라인에서 유의한 변화가 없었다(표 6).M82-RNAi 라인에서 T0 세대에서 관찰되는 카로티노이드 표현형은 T1 세대에서도 유지되었다(표 6). 종합하면, 상기 결과들은 ORF2 발현이 감소가 숙과에서 베타카로틴 농도를 증가시키고 이 유전자의 LA716 대립유전자의 발현 감소가 bc2.1 QTL의 근본적인 결정인자임을 확인해주었다. 이러한 결과들은 또한 BC2.1/ORF2가 토마토 숙과에서 b-베타카로틴 축적에 부정적인 영향을 미침을 입증하였다.An RNAi experiment was conducted to determine whether ORF2, as a mediator of bc2.1 , enhances the beta-carotene content of tomato fruit. The RNAi construct of ORF2 was introduced into M82, which has a relatively low beta-carotene content (1.5-2.0 μg/g fw) in fruit. The same construct was also transformed into Ailsa Craig (AC), which has a relatively high beta-carotene content (~14 μg/g fw) in ripe fruit. Six independent transgenic lines in M82 and three independent transgenic lines in AC were generated (Table 6) and showed increased beta-carotene and decreased ORF2 expression (Figure 11). Beta-carotene content increased 2- to 4-fold in all nine RNAi lines, and other carotenoids did not significantly change in the RNAi lines (Table 6). In the M82-RNAi line, the carotenoid phenotype observed in the T0 generation was maintained in the T1 generation. (Table 6). Taken together, the above results confirmed that reduced ORF2 expression increased beta-carotene concentration in ripe fruit and that reduced expression of the LA716 allele of this gene was the fundamental determinant of the bc2.1 QTL. These results also demonstrated that BC2.1/ORF2 had a negative effect on b-beta-carotene accumulation in ripe tomato fruit.

상기 기재된 바와 같이, SQE 동족체인 ORF2 발현의 감소는 과일 특이적으로 카로티노이드 축적에 영향을 미치며, 이는 카로티노이드 대사에서의 가능성있는 역할이 있음을 시사하는 것이다. BC2.1/ORF2의 분자 기반에 대한 연구를 위해, Beta와 어떠한 유전적 상호작용이 있는지를 확인하였다. subIL2-2-1를 IL6-3 (CYC-BBeta 대립유전자 포함-)과 교배하고, 결과적으로 생성된 F2 집단으로부터 두 유전자가 모두 이입된 하나의 동형 라인 (DIL26)을 선택하였다. 베타카로틴은 M82에서 총 카로티노이드의 5% 미만을 구성하며 붉은 오렌지색을 띄는 Beta (IL6-3) 과실에서는 총 카로티노이드의 약 40%를 구성한다. 반면에, DIL26 과실은 오렌지색을 띄고 베타카로틴이 총 카로티노이드의 거의 90%를 차지하며 , 이는 24배 이상 증가된 베타카로틴을 갖는 것이다 (도 3a, 표 4). 이러한 결과는 bc2.1이 베타카로틴 합성을 위해 Beta와 유전적으로 시너지효과를 냄을 시사한다.As described above, reduction of expression of the SQE homolog ORF2 affects carotenoid accumulation in a fruit-specific manner, suggesting a possible role in carotenoid metabolism. To study the molecular basis of BC2.1/ORF2 , any genetic interaction with Beta was confirmed. subIL2-2-1 was crossed with IL6-3 (containing the Beta allele of CYC-B ), and one isogenic line (DIL26) in which both genes were introgressed was selected from the resulting F 2 population. Beta-carotene constitutes less than 5% of the total carotenoids in M82 and approximately 40% of the total carotenoids in red-orange Beta (IL6-3) fruit. On the other hand, DIL26 fruits are orange in color and beta-carotene accounts for almost 90% of the total carotenoids, with beta-carotene increased more than 24-fold (Figure 3a, Table 4). These results suggest that bc2.1 exerts a genetic synergy with Beta for beta-carotene synthesis.

DIL26 유전자형의 카로티노이드 프로파일은 이전에 제안된 토마토 과일의 베타카로틴 함량에 대한 두-유전자 모델과 일치하며, 이 모델에서 베타카로틴은 BetaBeta-modifier (MoB)로서 명명되는 modifier 유전자 둘 다에 의해 영향을 받는다. 게다가, DIL26은 BetaMoB 유전자좌를 포함하는 S. galapagense “LA317” (이전에 L. chesmannii)에서 보고된 것과 매우 유사한 카로티노이드의 프로파일을 갖는다. LA317에서 bc2.1 대립유전자의 고유 성질을 평가하기 위해, 프로모터 및 cDNA 서열을 분석하였다. 프로모터에서 개시 코돈으로부터 1,234 bp 업스트림에서 기존에 알려진 서열과 분명한 상동성을 보이지 않는 52bp 삽입이 발견되었으며 (도 7), 삽입 위치는 LA716 bc2.1 대립유전자에서 발견된 copia-유사 레트로트랜스포존이 삽입된 위치와 유사하였다. LA317 숙과에서의 BC2.1/ORF2 발현은 subIL2-2-1 숙과에서 관찰되는 것과 유사한 수준으로 감소하였으며, 오렌지색을 나타내는 LA317 숙과에서 가장 풍부한 카로티노이드는 베타카로틴이었다. 오렌지 숙과색을 가지며 LA317과 유사한 카로티노이드 프로파일을 보이는 (표 7) S. cheesmaniae “LA1412”에서도 동일한 변이를 발견하였다 (도 10). 라이코펜은 DIL26과 유사하게 LA317 및 LA1412의 숙과에서 검출되지 않았으며 (도 3c), 이는 MoB에 대한 유망 후보자로서 bc2.1를 제시하는 것이다.The carotenoid profile of the DIL26 genotype is consistent with a previously proposed two-gene model for beta-carotene content in tomato fruit, in which beta-carotene is influenced by both a modifier gene, designated as Beta and Beta -modifier ( MoB ). receive Furthermore, DIL26 has a profile of carotenoids that is very similar to that reported in S. galapagense “LA317” (previously L. chesmannii ) containing the Beta and MoB loci. To evaluate the unique nature of the bc2.1 allele in LA317, the promoter and cDNA sequences were analyzed. In the promoter, a 52-bp insertion with no clear homology to the previously known sequence was found 1,234 bp upstream from the start codon (Figure 7), and the insertion site was the location where the copia -like retrotransposon found in the LA716 bc2.1 allele was inserted. The location was similar. BC2.1/ORF2 expression in LA317 ripe fruits was reduced to a level similar to that observed in subIL2-2-1 ripe fruits, and the most abundant carotenoid in orange-colored LA317 ripe fruits was beta-carotene. The same mutation was found in S. cheesmaniae “LA1412”, which has an orange ripe fruit color and a carotenoid profile similar to LA317 (Table 7) (Figure 10). Similar to DIL26, lycopene was not detected in ripe fruits of LA317 and LA1412 (Figure 3c), suggesting bc2.1 as a promising candidate for MoB .

bc2.1Beta 사이의 유전적 상호작용을 이끌어낸 것과 같이, subIL2-2-1를 라이코펜 e-cyclase (LCY-E)의 Delta 대립유전자을 포함하는 IL12-2와 교배하여, DIL212로 명명되는 이중 유전자이입 계통을 육성하였다. DIL212은 숙과에서 짙은 오렌지색을 나타내는 IL12-2 (Delta)과 빨간색을 나타내는 M82 (도 3b)와 비교했을 때 오렌지색 과일을 나타내었다. M82의 숙과에서는 매우 적은 양의 루테인이축적된 반면, DIL212에서 루테인 (11.74±0.80 mg/g fw)은 M82보다 20배 이상 높았다. DIL26에서 볼 수 있는 바와 같이, DIL212에도 매우 적은 양의 라이코펜이 축적되었으며, 이는 bc2.1 Delta 사이의 유전적 상호작용을 시사하는 것이다. IL에서의 루테인 변이는 관찰되지 않았으며, 이는 LCY-E가 M82를 비롯한 재배 토마토의 숙과에서 발현되지 않기 때문이다 (도 1c).Consistent with the genetic interaction between bc2.1 and Beta , subIL2-2-1 was crossed with IL12-2 containing the Delta allele of lycopene e-cyclase ( LCY-E ), resulting in the doublet, designated DIL212. Introgressive lines were cultivated. DIL212 produced orange-colored fruits when compared to IL12-2 ( Delta ), which produced a dark orange color in ripe fruits, and M82, which produced a red color (Figure 3b). While a very small amount of lutein was accumulated in ripened fruits of M82, lutein (11.74±0.80 mg/g fw) in DIL212 was more than 20 times higher than that of M82. As seen in DIL26, a very small amount of lycopene was also accumulated in DIL212, suggesting genetic interaction between bc2.1 and Delta . Lutein variation in IL was not observed, because LCY-E is not expressed in the ripe fruit of cultivated tomatoes, including M82 (Figure 1c).

BC2.1/ORF2와 관련된 베타카로틴 함량의 증가에 근거하여 카로티노이드 대사에서 암호화된 효소의 가능한 활성을 확인하였다. 재조합체 단백질 (M82로부터 SlBC2.1 및 LA716으로부터 SpBC2.1)을 이전에 제작된 trans-lycopene을 고도로 축적하는 E.coli에 이입하였다. trans-라이코펜 축적 E. coli에서 SlBC2.1 (JX683513, 75~602 a.a.) 또는 SpBC2.1 (JX683514, 75~601 a.a.)이 발현 벡터 pTrcHis2-TOPO와 함께 발현하면 trans-라이코펜의 대부분이 새로운 피크로 전환되었다 (도 3e). 표준품을 구할 수 없음에도 불구하고, LC-MS/MS 분석은 553.4428 m/z를 갖는 새로운 피크가 양성화된 라이코펜 에폭사이드임을 밝혔다 (도 12 및 13). 라이코펜 에폭사이드는 토마토 과일에서 이전에 확인되었으며 촉매 및 비-촉매 과정을 통해 생산된다고 보고되었다. 라이코펜 에폭사이드가 인간 혈장에서 확인된 것을 고려하면, 이의 생체이용률은 계속 연구되어야 할 과제로 남아있다. HPLC를 통해 라이코펜 에폭사이드를 정량하였으며, RNAi 라인 및 subIL2-2-1에서 M82 또는 AC에 비해 에서 감소하였다 (도 14). 이러한 결과는 BC2.1이 라이코펜 경로의 새로운 지류로 이어지는 라이코펜 에폭시다아제임을 나타내는 것이다 (도 3f).Based on the increase in beta-carotene content associated with BC2.1/ORF2, the possible activity of the encoded enzyme in carotenoid metabolism was identified. Recombinant proteins (SlBC2.1 from M82 and SpBC2.1 from LA716) were transfected into previously constructed E. coli , which highly accumulates trans -lycopene. trans -lycopene accumulation When SlBC2.1 (JX683513, 75~602 aa) or SpBC2.1 (JX683514, 75~601 aa) is expressed together with the expression vector pTrcHis2-TOPO in E. coli, most of the trans -lycopene appears as a new peak. converted (Figure 3e). Despite the unavailability of standards, LC-MS/MS analysis revealed that the new peak with 553.4428 m/z was protonated lycopene epoxide (Figures 12 and 13). Lycopene epoxide was previously identified in tomato fruit and reported to be produced through catalytic and non-catalytic processes. Considering that lycopene epoxide has been identified in human plasma, its bioavailability remains to be studied. Lycopene epoxide was quantified through HPLC, and was decreased in the RNAi line and subIL2-2-1 compared to M82 or AC (Figure 14). These results indicate that BC2.1 is a lycopene epoxidase leading to a new branch of the lycopene pathway (Figure 3f).

BC2.1/ORF2의 코딩 영역 내에서 대립유전자 변이 (도 2a)는 bc2.1 과실 표현형의 원인이 되지 않았다. 대신에 이 표현형은 BC2.1/ORF2 대립유전자의 발현 차이로 인해 야기되었다. bc2.1 표현형이 과실에 한정되지만, 발현 변이는 그렇지 않았다 (도 2c). E. coli 시스템에서 보여지는 BC2.1/ORF2의 라이코펜 에폭사이드 활성에 근거하여, bc2.1 표현형은 LA716 대립유전자 발현의 감소와숙과 특이적인 bc2.1의 기질인 라이코펜에 의해 결정되는 것으로 보인다.Allelic variation within the coding region of BC2.1/ORF2 (Figure 2A) did not cause the bc2.1 fruit phenotype. Instead, this phenotype was caused by differences in expression of the BC2.1/ORF2 allele. Although the bc2.1 phenotype was restricted to fruit, the expression variant was not (Figure 2c). Based on the lycopene epoxide activity of BC2.1/ORF2 seen in the E. coli system, the bc2.1 phenotype appears to be determined by reduced maturation of LA716 allele expression and lycopene, a specific bc2.1 substrate.

상기 언급된 바와 같이, BC2.1은 예측되는 수송 펩티드를 포함한다 (도 7). BC2.1-GFP 융합 단백질은 CaMV 35S 프로모터의 조절 하에 N. benthamiana의 잎에서 일시적으로 발현되었으며 BC2.1의 세포 내 소기관 위치를 공초점 레이저 현미경으로 확인하였다. 488 nm에서의 GFP 형광 시그널은 BC2.1-GFP 융합 단백질이 색소체, 아마도 플라스토글로불에 위치함을 보이며, 반면에pCAMBIA2300-eGFP은 핵세포에 위치함을 보였다 (도 8).As mentioned above, BC2.1 contains the predicted transit peptide (Figure 7). The BC2.1-GFP fusion protein was transiently expressed in the leaves of N. benthamiana under the control of the CaMV 35S promoter, and the intracellular organelle localization of BC2.1 was confirmed by confocal laser microscopy. The GFP fluorescence signal at 488 nm showed that the BC2.1-GFP fusion protein was localized in plastids, possibly plastoglobuli, whereas pCAMBIA2300-eGFP was localized in nuclear cells (Figure 8).

카로티노이드 경로는, 경로 중간체의 결여시 및 카로티노이드 생합성 효소를 포함하는 복합체의 존재시에 예상된 바와 같이, 다중-효소 복합체로서 작용하여 대사산물 채널링을 가능하게 하는 것으로 생각된다. Flag이 표지된 BC2.1 (JX683513, 1~602 a.a.) 및 Myc이 표지된 CYC-B (AF254793, 1~498 a.a.)은 N. benthamiana에서 일시적으로 발현되었다. αMyc 항체를 이용한 면역블롯 분석에서 BC2.1이 더블릿(doublet)으로서 이동하였으며; 따라서, BC2.1이 번역후 변형이 있었음을 보였다 (도 3d). 공동-면역침강 분석은 BC2.1이 CYC-B와 복합체를 형성하나, 음성 대조로 사용된 GFP과는 복합체를 형성하지 않음을 보이며 (도 3d), 이는 BC2.1이 in planta에서 CYC-B와 연관됨을 시사한다.The carotenoid pathway is thought to function as a multi-enzyme complex to enable metabolite channeling, as expected in the absence of pathway intermediates and in the presence of complexes containing carotenoid biosynthetic enzymes. Flag-tagged BC2.1 (JX683513, 1~602 aa) and Myc-tagged CYC-B (AF254793, 1~498 aa) were transiently expressed in N. benthamiana . In immunoblot analysis using αMyc antibody, BC2.1 migrated as a doublet; Therefore, it was shown that BC2.1 had post-translational modifications (Figure 3d). Co-immunoprecipitation analysis showed that BC2.1 forms a complex with CYC-B, but not with GFP, which was used as a negative control (Figure 3D), indicating that BC2.1 binds CYC-B in planta . It suggests that it is related to .

bc2.1의 유전적 및 생화학적 분석은 BC2.1/ORF2의 라이코펜 에폭사이드 활성이 이의 기질인 trans-라이코펜에 대해 CYC-B와 경쟁하고 BC2.1/ORF2 및 CYC-B 활성의 균형이 성숙한 과일에서 라이코펜 및 베타카로틴의 상대량을 결정함을 나타냈다. 유사하게, BC2.1/ORF2 또한 Delta에서 LCY-E와 경쟁하여 루테인 수준을 조절한다. bc2.1 유전자좌에서 자연적으로 발생하는 변이를 분석하여, 프로비타민 A를 조절하는 새로운 표적을 확인하였다.Genetic and biochemical analysis of bc2.1 suggests that the lycopene epoxide activity of BC2.1/ORF2 competes with CYC-B for its substrate, trans -lycopene, and that the balance of BC2.1/ORF2 and CYC-B activities is maintained at maturity. It was shown to determine the relative amounts of lycopene and beta-carotene in fruits. Similarly, BC2.1/ORF2 also regulates lutein levels by competing with LCY-E in Delta . By analyzing naturally occurring mutations in the bc2.1 locus, new targets that regulate provitamin A were identified.

영양문제는 국제적으로 대두되는 큰 문제로서 이를 해결하기 위한 지속적인 연구가 필요하다. 따라서, 많은 농작물의 영양소를 유전적으로 개선하는 것에 대한 요구가 증가하고 있다. 라이코펜 에폭시다아제의 확인은 식물 카로티노이드 축적의 유전적 및 생화학적 근본을 이해할 수 있도록 하며, 증가된 프로비타민 A 및 루테인을 위한 대립유전자 변이 또는 유전적 변이의 선별을 위한 분자학적 도구를 제공할 수 있다.Nutrition is a major problem emerging internationally, and continuous research is needed to solve it. Accordingly, there is an increasing need to genetically improve the nutrients of many crops. Identification of lycopene epoxidase allows understanding of the genetic and biochemical basis of plant carotenoid accumulation and may provide a molecular tool for screening of allelic or genetic variants for increased provitamin A and lutein. there is.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on its preferred embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

<110> Kyungpook National University Industry-Academic Cooperation Foundation <120> INTROGRESSION AND TRANSGENIC TOMATO CONTAINING INCREASED BETA-CAROTENE CONTENT <130> PN2009-396 <160> 108 <170> KoPatentIn 3.0 <210> 1 <211> 1423 <212> DNA <213> M82 <400> 1 aaataattac aagtgttatt aacattgaaa aagtccagat aattaaaatt agtacactac 60 aacaatatgt ttgtttgttc aatatttagt gtatagtaac tacgatgatt tgtttgtttg 120 tcaaatttat agttgtatag taattacaat gatatgtttg tttgccaaat tatagggtaa 180 ttgcaagtgg actatttgat tgtacaagtg taattataaa attatatgaa ttttaaaaac 240 taaaaagtta tactagataa attaatcata aaaattaaaa atacaaagtt ttaatgaaaa 300 tcatgaaata tatgtttgac aaaaaaatta atattataaa tatgttgtca taatattata 360 gaaatatttg ataaaaataa tatattaagt ctaactaaaa aaataaatta caatgtaaaa 420 tattgacgta atattcctaa aacaaataaa tttgaaaaca taacataagt tctaaattcg 480 aaataaaaaa tcaacatata atactctgat gttaaattcg acacaacata cacaaagatg 540 attttaaaag aacaggaaaa tgtatatcca taatcttatg caacaatgaa ttctatttta 600 attttaaaaa atttaaaata ataacaatgt ttatatatat ttgaaaaacg ttagaataat 660 aataaaataa atgaaaaaaa aataaagaga agaaattaaa aagtaatccc tatatgtcaa 720 aaaatcacga actcttaaaa attgaaaagt ataattattc gtgtcaatta tctagtgatc 780 caaaataata taattatatt aaattacacc aaatttaatc aacaaaatga tgtttattcg 840 taattttgta taaagaatgt tacgataatt tatagtctaa attcaaatta tgataaagaa 900 gaattaaata tatacgtaca taaacaaaaa aaagtttaaa tcttgcaatc taggaataat 960 aatatctaat cattcgtatt taaattgaga aatgttaata cttctttcgt tttaaaaaaa 1020 aatcttaata gtctatttaa aaaagaatga ttactttttt tttggtaata ttttaatttt 1080 ttgaataata ttttaatttt aatttttcac atgacctatt taagaccaca aggttataag 1140 atatttttat acatttaata taattttaat ttagatccac aaaattaaat attttcttta 1200 ttttcttaaa ctatatttaa aattaaacta gataactctt tttaaaagga aagaaatatt 1260 aacgaaataa ataaaatgtg ctaaataaat attcttgcat ttggcccctc ctgccaattg 1320 ccagacttga atattgtctc tcgtgttttt ttttattgtc atcctcgcaa ttttcaccca 1380 aaatcacacg gtccaattgg atccccaatt tcggattgcg atg 1423 <210> 2 <211> 1480 <212> DNA <213> LA317 <400> 2 aaataattac aagtgttatt aacattgaaa aagtccagat aattaaaatt agtacactac 60 aacaatatgt ttgtttgttc aatatttagt gtatagtaac tacgatgatt tgtttgtttg 120 tcaaatttat agttgtatag taattacaat gatatgtttg tttgccaaat tatagggtaa 180 ttgcaagcgc caaccccgac tcctccacca aagaattctg gtctggagct cattccgaag 240 tggactattt gattgtacaa gtgtaattat aaaattatat gaattttaaa aattaaaaag 300 ttatactaga taaattaatc ataaaaatta aaaatacaaa gttttaatga aaatcatgaa 360 atatatgttt gacaaaaaaa ttaatattat aaatatgttg tcataatatt atagaaatat 420 ttgataaaaa taatatatta agtctaacta aaaaaataaa ttacaatgta aaatatcgac 480 gtaatattcc taaaacaaat aaatttgaaa acataacata agttctaaat tcgaaataaa 540 aaatcaacat ataatactct gatgttaaat tcgacacaac atacacaaag atgattttaa 600 aagaacagga aaatgtatat ccataatctt atgcaacaat gaattctatt ttaattttaa 660 aaaatttaaa ataataacaa tgtttatata tatttgaaaa acgttagaat aataataaaa 720 taaatgaaaa aaaataaaga gaagaaatta aaaagtaatc cctatatgtc aaaaaatcac 780 gaactcctaa aaattgaaaa gtataattat tcgtgtcaat tatctagtga tccaaaataa 840 tataattata ttaaattaca ccaaatttaa tcaacaaaat gatgtttatt cgtaattttg 900 tataaagaat gttacgataa tttatagtct aaattcaaat tatgataaag aagaattaaa 960 tatatacgta cataaacaaa aagaagttta aatcttgcaa tctaggaata ataatatcta 1020 atcattcgta tttaaattga gaaatgttaa tacttctttc gttttaaaaa aaagatctta 1080 atagtctatt taaaaaagaa tgattacttt ttttggtaat attttaattt tttgaataat 1140 attttaattt taatttttca catgatctat ttaagaccac aaggttataa aacaatttta 1200 tacatttgat ataattttaa tttagatcca caaaattaaa tattttcttt attttcttaa 1260 actatattta aaattaaact agataactct ttttaaaagg aaagaaatat taacgaaata 1320 aataaaatgt gctaaataaa tattcttgca tttggcccct cctgccaatt gccagacttg 1380 aatattgtct ctcgtgtttt tttttttttt tattgtcatc ctcgcaattt tcacccaaaa 1440 tcacacggtc caattggatc cccaatttcg gatttcgatg 1480 <210> 3 <211> 1480 <212> DNA <213> LA1412 <400> 3 aaataattac aagtgttatt aacattgaaa aagtccagat aattaaaatt agtacactac 60 aacaatatgt ttgtttgttc aatatttagt gtatagtaac taagatgatt tgtttgtttg 120 tcaaatttat agttgtatag taattacaat gatatgtttg tttgccaaat tatagggtaa 180 ttgcaagcgc caaccccgac tcctccacca aagaattctg gtctggagct cattccgaag 240 tggactattt gattgtacaa gtgtaattat aaaattatat gaattttaaa aattaaaaag 300 ttatactaga taaattaatc ataaaaatta aaaatacaaa gttttaatga aaatcatgaa 360 atatatgttt gacaaaaaaa ttaatattat aaatatgttg tcataatatt atagaaatat 420 ttgataaaaa taatatatta agtctaacta aaaaaataaa ttacaatgta aaatatcgac 480 gtaatattcc taaaacaaat aaatttgaaa acataacata agttctaaat tcgaaataaa 540 aaatcaacat ataatactct gatgttaaat tcgacacaac atacacaaag atgattttaa 600 aagaacagga aaatgtatat ccataatctt atgcaacaat gaattctatt ttaattttaa 660 aaaatttaaa ataataacaa tgtttatata tatttgaaaa acgttagaat aataataaaa 720 taaatgaaaa aaaataaaga gaagaaatta aaaagtaatc cctatatgtc aaaaaatcac 780 gaactcctaa aaattgaaaa gtataattat tcgtgtcaat tatctagtga tccaaaataa 840 tataattata ttaaattaca ccaaatttaa tcaacaaaat gatgtttatt cgtaattttg 900 tataaagaat gttacgataa tttatagtct aaattcaaat tatgataaag aagaattaaa 960 tatatacgta cataaacaaa aagaagttta aatcttgcaa tctaggaata ataatatcta 1020 atcattcgta tttaaattga gaaatgttaa tacttctttc gttttaaaaa aaagatctta 1080 atagtctatt taaaaaagaa tgattacttt ttttggtaat attttaattt tttgaataat 1140 attttaattt taatttttca catgatctat ttaagaccac aaggttataa aacaatttta 1200 tacatttgat ataattttaa tttagatcca caaaattaaa tattttcttt attttcttaa 1260 actatattta aaattaaact agataactct ttttaaaagg aaagaaatat taacgaaata 1320 aataaaatgt gctaaataaa tattcttgca tttggcccct cctgccaatt gccagacttg 1380 aatattgtct ctcgtgtttt tttttttttt tattgtcatc ctcgcaattt tcacccaaaa 1440 tcacacggtc caattggatc cccaatttcg gatttcgatg 1480 <210> 4 <211> 3217 <212> DNA <213> LA716 <400> 4 aaataattac aagtgttatt aacattgaaa agtccagata attaaaatta gtacactaca 60 acaatatgtt tgttaaatat ttagtgaata gtaattacga tgatttattt gtttgttaaa 120 tttatagtgt atagtgatta caatgatatg tgttatattc taggtgtttt gatgatcctc 180 actaatgtgg ggacctggtc cctggcagag tgctttcgtc cagatacaaa ggggtacagt 240 cgtaaaagct gtcatgtcag gtgataggtg aaaagtgcag tatcatacac caatagaaaa 300 gcggacgaga ttgtatgttt cagtatctca caaatgcagg gcttggtacc aggcagagtt 360 tcctccatca gatacataat tggttacagc tgtaaagttg tcacgtcaga ggttggtaag 420 gcgtcagtgt actacacacc aatcagaatg gaggagggtg tttgtccaac ggataataac 480 tctttatgtt tgatactttt agcatgacaa acaccatatt atattcattc atccaaagaa 540 ggaagtcagc cagcaagcct tttcaagaac tcacaaagaa gtttgcaagg gacctggtcc 600 ccgcaagact gcgaggtgaa aaggatgaaa agacagctgt catctctgat gcgataggtg 660 cacaactttt ccaacagcag gccttcagcc aatgggatgg cttcaacgaa tttgtgggaa 720 attatattat ctctttcaac aaacacaaat tgaagacttg gaaaattaaa cttggatttt 780 ctctgaaaat tcacaagctt gaacagaaag ccatcttcaa ggaagaacat tgctcaactc 840 aacagaagga cctgatagag taaagaagaa tctttgttgt atttagagct ttgtgtctat 900 gtacttatat tgtaaatttg ttcctaatct ataaaggatt cagatatttg ttttgggttt 960 gtaaaagtct aaatcagtta aggttaactg atttagtggg caacattgtt ttgttgctta 1020 gtcaaattct aagtaatcta gagttaggtg gtttagtggg cgatgtggta tccgcttagc 1080 aaattctaag ttatctaggg gtgatagctt agtgggcggc gttgtatccg cttaggctct 1140 tcaagtaata ggtagattac ttgatcgtga gattaataac tttttctcac attgattgta 1200 accgggtttc acttttgctt gagaagatta gtgaagacgg ttgtaaatcc tgtgcagcag 1260 gtcatggttt tactcccttg agcaaggagg tttccacgta aattgcttgt gttgtgttct 1320 tcatattatt taatcttccg cactgttctt gctgtgtcaa gggacctggt ccgttgactg 1380 gtagtggacg cacatattcc aacaaatatg tttgtttgcc aaattatagg gtaattgcaa 1440 gtgtactatt tgattgcaca agtgtaatta taaaattata tgaattttaa aaactaaaaa 1500 gttatactag ataaattaat cataaaaact aaaagtacca aatttcaatg aacatcatga 1560 aatgtatgtt tgacaaaaag attaatatta taaatatgat gtcataatat tatagaaata 1620 tttgataaaa atagtatgtt aagtctaact aaaaaaataa attacaatgt aaaatatcga 1680 cgtaatattc ctaaaacaaa tgaaattaaa aatataacat aagttctaaa tttaaaataa 1740 aaaatcaata tataatatac tctgatgtca aattcaacac aacatacaca aagataattt 1800 ttttaaaaga aaaaaaaatg tatgtgcata atcttattca acaatgaatt ctattttaat 1860 tttaaaaaat taaaataatg acaatgtgta tatatatttg aaaaacatta gaataataaa 1920 aataaataat aaaataaaat ggaaaaaaaa taaagagaag aaattagaaa gtaatccctg 1980 tatgtcaaaa agtcacaaac tcctgaagag tgtaattatt cgtgtcaatt acctaataat 2040 ctaaaataaa tatgtcagac aatataatta tactaaatta caccaaattt aattaacaaa 2100 ataatgttta tttgtaattt tgtactaaga atgttacaat aatttatagt ctaaattcaa 2160 attatgataa agaagcatta aatatatacg tacataaaca aaaagtagtt taaatcttac 2220 gatctagaaa taatatctaa tcattcgtat ttaaattgag aaatgttaat actttttttc 2280 gtttaaaaaa ttgattttat tttttttagt ttattttaaa aagaatgatt acttttcttt 2340 tttgacaata ttttaatttc tttttttggt aatatttaaa ttttaatttt ccacgtgata 2400 tgtttaagat aaaaaaatta taagatattt tggtacatat gaagctagcg tttgactata 2460 aattttcaaa tattcttggc aaatattatt tgagtgaaaa tttggttggg aaatatattt 2520 caccttttta gaaaaatata atttataacc ataagtttta aaaactatta aaactaacta 2580 taagtttata caataacaaa tagtttccat cacactagag caatgtggta atttggagcg 2640 agtgcaacaa gtatcattcc atacatcgtg aagtagacga agcacatgat tttattacct 2700 tgagttaatt tttcatcatt ttcatcaaca atcatatcat tatttaatat tcactaaata 2760 tttcatcact attttggtgt tcacgtaaaa aaattatgta atacaacaca aacaactact 2820 aaaagggtgt ttttgtaaaa gataaaagtt tgggataaaa ttttaatatt caaaagatcc 2880 caaataatga gatttggccc aaatactaga aaaaattagt atttgggaat ttgggatatt 2940 tgccaaaaat gtttgccaaa taatgacaaa ttgtatggac aaacattaaa tatttttttc 3000 ttaaattctg tttgaaatta aattagatca ttctttttaa aacgaaaaaa tattaactaa 3060 agaaataaaa tgtgctaaat aaatattctt gcatttggcc cctcctgcca attgccagac 3120 ttgaatattg tctctcgtgt tgtttttttt tgtcatcctc gcaattttca cccaaaatca 3180 aacggtccaa ttggatccca aatttcgtat ttcgatg 3217 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> T1117-F <400> 5 caaggctgaa accaaaagac attg 24 <210> 6 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> T1117-R <400> 6 acatttaaat gctttgtcgt ctgc 24 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 97-F <400> 7 cctgttaact acttcttgac tatg 24 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 97-R <400> 8 tcagtgtttc acaatctaag tgc 23 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 98-F <400> 9 tacagccttc catctatgca aag 23 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 98-R <400> 10 cctatttgtt agacggcgag g 21 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> At1g60640-F <400> 11 tctgacaggg ggaaatgaat cttc 24 <210> 12 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> At1g60640-R <400> 12 acttcattga aagagctatc ttcactctc 29 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 01-F <400> 13 tgtgtgctta ttgccactta tata 24 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 01-R <400> 14 tgttcttgag gaaaacaata gagc 24 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 02-F <400> 15 tccaattcac gttaggtaat taag 24 <210> 16 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 02-R <400> 16 ctgtacctcc tcattatatt tgg 23 <210> 17 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 04-F <400> 17 ggctcaggat caagttcaat atg 23 <210> 18 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> 04-R <400> 18 cttcacatca ctctcaggca ac 22 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 09-F <400> 19 atagatcaat ttagtgcagt agtg 24 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 09-R <400> 20 agtaattttg agtaatggag gaag 24 <210> 21 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 10-F <400> 21 gtgaatgtgt aagagagttg tcc 23 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 10-R <400> 22 actattgtgt tgtgccgaaa tcc 23 <210> 23 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 13-F <400> 23 gaattattct gcttctaagg ctc 23 <210> 24 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 13-R <400> 24 atgtctttcg agtactagtc atg 23 <210> 25 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RnaB-F <400> 25 gaatatgatt tatcaacaag tatcc 25 <210> 26 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RnaB-R <400> 26 gcatgattgg tgttagcggg ac 22 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> TG276-F <400> 27 ctggtgctgc tcttgctcat ac 22 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> TG276-R <400> 28 aatccctttc gatgacgtga ac 22 <210> 29 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RnaP-F <400> 29 gttcatccgc aacctattgt acc 23 <210> 30 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RnaP-R <400> 30 tgcactctca ttagctacat cac 23 <210> 31 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> U582871-F <400> 31 taacagaatt aattcgtgtg attg 24 <210> 32 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> U582871-R <400> 32 agcaagaaac gtgtctgttc ag 22 <210> 33 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 26D15-3-F <400> 33 aaagagttgc cttctttaac atg 23 <210> 34 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> 26D15-3-R <400> 34 ggtttgtata tccctcctca tc 22 <210> 35 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 2B-F <400> 35 cgtggactac ctaactagca gac 23 <210> 36 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> 2B-R <400> 36 tgtgtgttgg acgtaggcca tg 22 <210> 37 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> T0888-F <400> 37 gaatcggagc aagtaactca gtc 23 <210> 38 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> T0888-R <400> 38 gagtttgagg ttactcgtta tgtc 24 <210> 39 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> T1238-F <400> 39 gaattcttgc aagctacatg agg 23 <210> 40 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> T1238-R <400> 40 acaagatgtc ctttcttaat agtg 24 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> U562933-F <400> 41 gcacacatgg ttacctgatt acc 23 <210> 42 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> U562933-R <400> 42 ctgagtgacc aaatgtgtgt acc 23 <210> 43 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> 46485-3-F <400> 43 gggagataac tcgagggctc ag 22 <210> 44 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> 46485-3-R <400> 44 cgccaacttt atacccaatg aatgtgc 27 <210> 45 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> U572717-F <400> 45 atccatccga ttatcccttc cg 22 <210> 46 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> U572717-R <400> 46 tgagactgaa ctcgccatgc tc 22 <210> 47 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> U572498-F <400> 47 gatcaattcg tgtcaattac agg 23 <210> 48 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> U572498-R <400> 48 gtgatcaagt tggctgtgtg aag 23 <210> 49 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 2A-F <400> 49 cttcatgatt acactttgcc attat 25 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 2A-R <400> 50 gattacctca ggagggctta acc 23 <210> 51 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> U569822-F <400> 51 aacggagaaa gtgggatcag c 21 <210> 52 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> U569822-R <400> 52 ttggcgcttt gtgagcctgt ag 22 <210> 53 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CT196-F <400> 53 acaacagctg ctattactac cg 22 <210> 54 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CT196-R <400> 54 ttcttgccgg agatagaggt gg 22 <210> 55 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> T0869-F <400> 55 gttacgctag ggcatttccg tc 22 <210> 56 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> T0869-R <400> 56 gataccaatc gaagtaacag cag 23 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SSR40-F <400> 57 tgcaggtatg tctcacacca 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SSR40-R <400> 58 tgcaacaact ggataggtcg 20 <210> 59 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-attB1 <400> 59 ggggacaagt ttgtacaaaa aagcaggctt gaagacggag tcagattaag 50 <210> 60 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-attB2 <400> 60 ggggaccact ttgtacaaga aagctgggtg agtctgacta gatttaaatg 50 <210> 61 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-mTrcHis2-F <400> 61 ttcatgatgg ataagtatat tg 22 <210> 62 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-mTrcHis2-R <400> 62 ttaatctgac tccgtcttca c 21 <210> 63 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> qRT-F <400> 63 ctgctcttgc tcataccctt gc 22 <210> 64 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> qRT-R <400> 64 ggattgttgg cgaattgctt cag 23 <210> 65 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> cis1-F <400> 65 aaataattac aagtgttatt aacattg 27 <210> 66 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> cis1-R <400> 66 tgtttgtatt tataagaagc atcg 24 <210> 67 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> cDNA1-F <400> 67 ttgtcatcct cgcaattttc acc 23 <210> 68 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> cDNA1-R <400> 68 cttaatctga ctccgtcttc acg 23 <210> 69 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> CYC-B-AscI-F <400> 69 ggcgcgccat ggaaactctt ctcaagcctt tt 32 <210> 70 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> CYC-B-AscI-R <400> 70 ggcgcgccaa ggctctctat tgctagattg cc 32 <210> 71 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-AscI-F <400> 71 ggcgcgccat gcttcttata aatacaaaca at 32 <210> 72 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-AscI-R <400> 72 ggcgcgccat ctgactccgt cttcacggga gg 32 <210> 73 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-GFP-F <400> 73 ggcgcgcctc tagaatgctt cttataaata caaac 35 <210> 74 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-GFP-R <400> 74 ggcgcgccgt cgacatctga ctccgtcttc acgg 34 <210> 75 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 35S-F <400> 75 cccaagaagg ttaaagatgc agtca 25 <210> 76 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 35S-R <400> 76 gctttgaaga cgtggttgga acgtc 25 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PSY1-F <400> 77 tggcccaaac gcatcatata 20 <210> 78 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PSY1-R <400> 78 caccatcgag catgtcaaat g 21 <210> 79 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PSY2-F <400> 79 gttgatggcc ctaatgcatc a 21 <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PSY2-R <400> 80 tcaagcatat caaatggccg 20 <210> 81 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> PDS-F <400> 81 gtgcattttg atcatcgcat tgaac 25 <210> 82 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PDS-R <400> 82 gcaaagtctc tcaggattac c 21 <210> 83 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ZDS-F <400> 83 ttggagcgtt cgaggcaat 19 <210> 84 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> ZDS-R <400> 84 agaaatctgc atctggcgta taga 24 <210> 85 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Z-ISO-F <400> 85 tatgaggatt accaggcatc c 21 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Z-ISO-R <400> 86 acagcgtgtg agctaagcac 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CRTISO-F <400> 87 ttttggcgga atcaactacc 20 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CRTISO-R <400> 88 gaaagcttca ctcccacagc 20 <210> 89 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CYC-B-F <400> 89 tgttattgag gaagagaaat gtgtgat 27 <210> 90 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CYC-B-R <400> 90 tcccaccaat agccataaca tttt 24 <210> 91 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LCY-B-F <400> 91 tcgttggaat cggtggtaca g 21 <210> 92 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LCY-B-R <400> 92 agctagtgtc cttgccacca t 21 <210> 93 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> CCD1A-F <400> 93 tggattatga caaacgattg acg 23 <210> 94 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CCD1A-R <400> 94 ttggatataa ccctataagt gatg 24 <210> 95 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> CCD1B-F <400> 95 ggattacgat aaaaggttgc aac 23 <210> 96 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CCD1B-R <400> 96 cttggatatg actctatatg tagc 24 <210> 97 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CRTR-b1-F <400> 97 agatgggcac acaaagcact g 21 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CRTR-b1-R <400> 98 gcgaaaacgt cgttcagctc 20 <210> 99 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CRTR-b2-F <400> 99 tttcagcctc cgctagttcc 20 <210> 100 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CRTR-b2-R <400> 100 cggagagaag aacagaaccg g 21 <210> 101 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> ZEP-F <400> 101 ttgatggtat ttctggcaac tgg 23 <210> 102 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ZEP-R <400> 102 accaacagca cgtgcaagga tc 22 <210> 103 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> VDE-F <400> 103 tgcctgaaac gattatacct gag 23 <210> 104 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> VDE-R <400> 104 ccgctctcct tcttccactt tc 22 <210> 105 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> NCED1-F <400> 105 gggatggttt agaatatacg tcc 23 <210> 106 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> NCED1-R <400> 106 ggttctctga gaatctctca cac 23 <210> 107 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 18S-F <400> 107 cggagaggga gcctgagaa 19 <210> 108 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 18S-R <400> 108 cccgtgttag gattgggtaa ttt 23 <110> Kyungpook National University Industry-Academic Cooperation Foundation <120> INTROGRESSION AND TRANSGENIC TOMATO CONTAINING INCREASED BETA-CAROTENE CONTENT <130> PN2009-396 <160> 108 <170> KoPatentIn 3.0 <210> 1 <211> 1423 <212> DNA <213> M82 <400> 1 aaataattac aagtgttatt aacattgaaa aagtccagat aattaaaatt agtacactac 60 aacaatatgt ttgtttgttc aatatttagt gtatagtaac tacgatgatt tgtttgtttg 120 tcaaatttat agttgtatag taattacaat gatatgtttg tttgccaaat tatagggtaa 180 ttgcaagtgg actatttgat tgtacaagtg taattataaa attatatgaa ttttaaaaac 240 taaaaagtta tactagataa attaatcata aaaattaaaa atacaaagtt ttaatgaaaa 300 tcatgaaata tatgtttgac aaaaaaatta atattataaa tatgttgtca taatattata 360 gaaatatttg ataaaaataa tatattaagt ctaactaaaa aaataaatta caatgtaaaa 420 tattgacgta atattcctaa aacaaataaa tttgaaaaca taacataagt tctaaattcg 480 aaataaaaaa tcaacatata atactctgat gttaaattcg acacaacata cacaaagatg 540 attttaaaag aacag gaaaa tgtatatcca taatcttatg caacaatgaa ttctatttta 600 attttaaaaa atttaaaata ataacaatgt ttatatatat ttgaaaaacg ttagaataat 660 aataaaataa atgaaaaaaa aataaagaga agaaattaaa aagtaatccc tatatgtcaa 720 aaaatcacga actcttaaaa attgaaaagt ataatt attc gtgtcaatta tctagtgatc 780 caaaataata taattatatt aaattacacc aaatttaatc aacaaaatga tgtttattcg 840 taattttgta taaagaatgt tacgataatt tatagtctaa attcaaatta tgataaagaa 900 gaattaaata tatacgtaca taaacaaaaa aaagtttaaa tcttgcaatc taggaataat 960 aatatctaat cattcgtatt ta aattgaga aatgttaata cttctttcgt tttaaaaaaa 1020 aatcttaata gtctatttaa aaaagaatga ttactttttt tttggtaata ttttaatttt 1080 ttgaataata ttttaatttt aatttttcac atgacctatt taagaccaca aggttataag 1140 atatttttat acatttaata taattttaat ttagatccac a aaattaaat attttcttta 1200 ttttcttaaa ctatatttaa aattaaacta gataactctt tttaaaagga aagaaatatt 1260 aacgaaataa ataaaatgtg ctaaataaat attcttgcat ttggcccctc ctgccaattg 1320 ccagacttga atattgtctc tcgtgttttt ttttattgtc atcctcgcaa ttttcaccca 1380 aaatcacacg gtccaattgg atccccaatt tcggattgcg atg 1423 <210> 2 <211> 1480 <212> DNA <213> LA317 <400> 2 aaataattac aagtgttat aacattgaaa aagtccagat aattaaaatt agtacactac 60 aacaatatgt ttgtttgttc aatatttagt gtatagtaac tacgatgatt tgtttgtttg 120 tcaaatttat agttgtatag taattacaat gatatgtttg tttgccaaat tatagggtaa 180 ttgcaagcgc caaccccgac tcctccacca aagaattct g gtctggagct cattccgaag 240 tggactattt gattgtacaa gtgtaattat aaaattatat gaattttaaa aattaaaaag 300 ttatactaga taaattaatc ataaaaatta aaaatacaaa gttttaatga aaatcatgaa 360 atatatgttt gacaaaaaaa ttaatattat aaatatgttg tcataatatt atagaaatat 42 0 ttgataaaaa taatatatta agtctaacta aaaaaataaa ttacaatgta aaatatcgac 480 gtaatattcc taaaacaaat aaatttgaaa acataacata agttctaaat tcgaaataaa 540 aaatcaacat ataatactct gatgttaaat tcgacacaac atacacaaag atgattttaa 600 aagaacagga aaatgtatat ccataatctt atgcaacaat gaattctatt ttaattttaa 660 aaa atttaaa ataataacaa tgtttatata tatttgaaaa acgttagaat aataataaaa 720 taaatgaaaa aaaataaaga gaagaaatta aaaagtaatc cctatatgtc aaaaaatcac 780 gaactcctaa aaattgaaaa gtataattat tcgtgtcaat tatctagtga tccaaaataa 840 tataattata ttaaattaca ccaaatttaa tcaacaaaat gatgtttat cgtaattttg 900 tataaagaat gttacgataa tttatagtct aaattcaaat tatgataaag aagaattaaa 960 tatatacgta cataaacaaa aagaagttta aatcttgcaa tctaggaata ataatatcta 1020 atcattcgta tttaaattga gaaatgttaa tacttctttc gttttaaaaa aaagatctta 1080 atagt ctatt taaaaaagaa tgattacttt ttttggtaat attttaattt tttgaataat 1140 attttaattt taatttttca catgatctat ttaagaccac aaggttataa aacaatttta 1200 tacatttgat ataattttaa tttagatcca caaaattaaa tattttcttt attttcttaa 1260 actatattta aaattaaact agata actct ttttaaaagg aaagaaatat taacgaaata 1320 aataaaatgt gctaaataaa tattcttgca tttggcccct cctgccaatt gccagacttg 1380 aatattgtct ctcgtgtttt ttttttttt tattgtcatc ctcgcaattt tcacccaaaa 1440 tcacacggtc caattggatc cccaatttcg gatttcgatg 1480 <2 10> 3 <211> 1480 <212> DNA <213> LA1412 <400> 3 aaataattac aagtgttat aacattgaaa aagtccagat aattaaaatt agtacactac 60 aacaatatgt ttgtttgttc aatatttagt gtatagtaac taagatgatt tgtttgtttg 120 tcaaatttat agttgtatag taattacaat gatatgtttg tttgccaaat tatagggtaa 180 ttgcaagcgc caaccccgac tcctccacca aagaattctg gtctggagct cattccgaag 240 tggactattt gattgtacaa gtgtaattat aaaattatat gaatt ttaaa aattaaaaag 300 ttatactaga taaattaatc ataaaaatta aaaatacaaa gttttaatga aaatcatgaa 360 atatatgttt gacaaaaaaa ttaatattat aaatatgttg tcataatatt atagaaatat 420 ttgataaaaa taatatatta agtctaacta aaaaaataaa ttacaatgta aaatatcgac 480 g taatattcc taaaacaaat aaatttgaaa acataacata agttctaaat tcgaaataaa 540 aaatcaacat ataatactct gatgttaaat tcgacacaac atacacaaag atgattttaa 600 aagaacagga aaatgtatat ccataatctt atgcaacaat gaattctatt ttaattttaa 660 aaaatttaaa ataataacaa tgtttatata tatttgaaaa acgttagaat aataataaaa 720 taaat gaaaa aaaataaaga gaagaaatta aaaagtaatc cctatatgtc aaaaaatcac 780 gaactcctaa aaattgaaaa gtataattat tcgtgtcaat tatctagtga tccaaaataa 840 tataattata ttaaattaca ccaaatttaa tcaacaaaat gatgtttat cgtaattttg 900 tataaagaat gttacga taa tttatagtct aaattcaaat tatgataaag aagaattaaa 960 tatatacgta cataaacaaa aagaagttta aatcttgcaa tctaggaata ataatatcta 1020 atcattcgta tttaaattga gaaatgttaa tacttctttc gttttaaaaa aaagatctta 1080 atagtctatt taaaaaagaa tgattacttt ttttggtaat attttaattt tttgaataat 1140 attttaattt taatttttca catgatctat ttaagaccac aaggttataa aacaatttta 1200 tacatttgat ataattttaa tttagatcca caaaattaaa tattttcttt attttcttaa 1260 actatattta aaattaaact agataactct ttttaaaagg aaagaaatat taacgaaata 1320 aataaaatgt gctaaataaa t attcttgca tttggcccct cctgccaatt gccagacttg 1380 aatattgtct ctcgtgtttt tttttttttt tattgtcatc ctcgcaattt tcacccaaaa 1440 tcacacggtc caattggatc cccaatttcg gatttcgatg 1480 <210> 4 <211> 3217 <212> DNA <213> LA716 <400> 4 aaataatta c aagtgttat aacattgaaa agtccagata attaaaatta gtacactaca 60 acaatatgtt tgttaaatat ttagtgaata gtaattacga tgatttattt gtttgttaaa 120 tttatagtgt atagtgatta caatgatatg tgttatattc taggtgtttt gatgatcctc 180 actaatgtgg ggacctggtc cctggcagag tgctttcgtc cagatacaaa ggggtacagt 240 cgtaaaagct gtcatgtcag gtgataggtg aaaagtgcag tatcatacac caatagaaaa 300 gcggacgaga ttgtatgttt cagtatct ca caaatgcagg gcttggtacc aggcagagtt 360 tcctccatca gatacataat tggttacagc tgtaaagttg tcacgtcaga ggttggtaag 420 gcgtcagtgt actacacacc aatcagaatg gaggagggtg tttgtccaac ggataataac 480 tctttatgtt tgatactttt ag catgacaa acaccatatt atattcattc atccaaagaa 540 ggaagtcagc cagcaagcct tttcaagaac tcacaaagaa gtttgcaagg gacctggtcc 600 ccgcaagact gcgaggtgaa aaggatgaaa agacagctgt catctctgat gcgataggtg 660 cacaactttt ccaacagcag gccttcagcc aatgggatgg cttcaacgaa tttgtgggaa 720 attatattat ctctttcaac aaacacaaaat tgaagacttg gaaaatta aa cttggatttt 780 ctctgaaaat tcacaagctt gaacagaaag ccatcttcaa ggaagaacat tgctcaactc 840 aacagaagga cctgatagag taaagaagaa tctttgttgt atttagagct ttgtgtctat 900 gtacttatat tgtaaatttg ttcctaatct ataaaggatt cagatatttg ttt tgggttt 960 gtaaaagtct aaatcagtta aggttaactg atttagtggg caacattgtt ttgttgctta 1020 gtcaaattct aagtaatcta gagttaggtg gtttagtggg cgatgtggta tccgcttagc 1080 aaattctaag ttatctaggg gtgatagctt agtgggcggc gttgtatccg cttaggctct 1140 tcaagtaata ggtagattac ttgatcgtga gattaataac tttttctcac attg attgta 1200 accgggtttc acttttgctt gagaagatta gtgaagacgg ttgtaaatcc tgtgcagcag 1260 gtcatggttt tactcccttg agcaaggagg tttccacgta aattgcttgt gttgtgttct 1320 tcatattt taatcttccg cactgttctt gctgtgtcaa gggacctggt ccgttgactg 1380 gtagtggacg cacatattcc aacaaatatg tttgtttgcc aaattatagg gtaattgcaa 1440 gtgtactatt tgattgcaca agtgtaatta taaaattata tgaattttaa aaactaaaaa 1500 gttatactag ataaattaat cataaaaact aaaagtacca aatttcaatg aacatcatga 1560 aatgtatgtt tgacaaaaag attaatatta taaatatgat gtcataatat tatagaaata 1620 tttgataaaa atagtatgtt aagtctaact aaaaaaataa attacaatgt aaaatatcga 1680 cgtaatattc ctaaaacaaa tgaaattaaa aatataacat aagttctaaa tttaaaataa 1740 aaaatcaata tataatatac tctgatgtca aattcaacac aacatacaca aagataattt 1800 ttttaaaaga aaaaaaaatg tatgtgcata atctt attca acaatgaatt ctattttaat 1860 tttaaaaaat taaaataatg acaatgtgta tatatatttg aaaaacatta gaataataaa 1920 aataaataat aaaataaaat ggaaaaaaaa taaagagaag aaattagaaa gtaatccctg 1980 tatgtcaaaa agtcacaaac tcctgaagag tgtaattatt cgtgtcaatt acctaataat 2040 ctaaaataaa tatgtcagac aatataatta tactaaatta caccaaattt aattaacaaa 2100 ataatgttta tttgtaattt tgtactaaga atgttacaat aatttatagt ctaaattcaa 2160 attatgataa agaagcatta aatatatacg tacataaaca aaaagtagtt taaatcttac 2220 gatctagaaa taatatctaa tcattcgtat ttaaattgag a aatgttaat actttttttc 2280 gtttaaaaaaa ttgattttat tttttttagt ttattttaaa aagaatgatt acttttcttt 2340 tttgacaata ttttaatttc tttttttggt aatatttaaa ttttaatttt ccacgtgata 2400 tgtttaagat aaaaaaatta taagatattt tggtacatat gaagctagcg tttgactata 2460 aattttcaaa tattcttgg c aaatattatt tgagtgaaaa tttggttggg aaatatattt 2520 caccttttta gaaaaatata atttataacc ataagtttta aaaactatta aaactaacta 2580 taagtttata caataacaaa tagtttccat cacactagag caatgtggta atttggagcg 2640 agtgcaacaa gtatcattcc atacat cgtg aagtagacga agcacatgat tttattacct 2700 tgagttaatt tttcatcatt ttcatcaaca atcatatcat tatttaatat tcactaaata 2760 tttcatcact attttggtgt tcacgtaaaa aaattatgta atacaacaca aacaactact 2820 aaaagggtgt ttttgtaaaa gataaaagtt tggggataaaa ttttaatatt caaaagatcc 2880 caaataatga gatttggccc aaatactaga aaaaattag t atttgggaat ttgggatatt 2940 tgccaaaaat gtttgccaaa taatgacaaa ttgtatggac aaacattaaa tatttttttc 3000 ttaaattctg tttgaaatta aattagatca ttctttttaa aacgaaaaaa tattaactaa 3060 agaaataaaa tgtgctaaat aaatattctt gcatttgg cc cctcctgcca attgccagac 3120 ttgaatattg tctctcgtgt tgtttttttt tgtcatcctc gcaattttca cccaaaatca 3180 aacggtccaa ttggatccca aatttcgtat ttcgatg 3217 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> T1117-F <400> 5 caaggctgaa accaaaagac attg 24 <210 > 6 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> T1117-R <400> 6 acatttaaat gctttgtcgt ctgc 24 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 97 -F <400> 7 cctgttaact acttcttgac tatg 24 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 97-R <400> 8 tcagtgtttc acaatctaag tgc 23 <210> 9 <211 > 23 <212> DNA <213> Artificial Sequence <220> <223> 98-F <400> 9 tacagccttc catctatgca aag 23 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223 > 98-R <400> 10 cctatttgtt agacggcgag g 21 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> At1g60640-F <400> 11 tctgacaggg ggaaatgaat cttc 24 <210> 12 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> At1g60640-R <400> 12 acttcattga aagagctatc ttcactctc 29 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 01-F <400> 13 tgtgtgctta ttgccactta tata 24 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 01-R <400> 14 tgttcttgag gaaaacaata gagc 24 <210 > 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 02-F <400> 15 tccaattcac gttaggtaat taag 24 <210> 16 <211> 23 <212> DNA <213> Artificial Sequence < 220> <223> 02-R <400> 16 ctgtacctcc tcattatatt tgg 23 <210> 17 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 04-F <400> 17 ggctcaggat caagttcaat atg 23 <210> 18 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> 04-R <400> 18 cttcacatca ctctcaggca ac 22 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 09-F <400> 19 atagatcaat ttagtgcagt agtg 24 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 09-R <400> 20 agtaattttg agtaatggag gaag 24 <210> 21 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 10-F <400> 21 gtgaatgtgt aagagagttg tcc 23 <210> 22 <211> 23 <212> DNA <213 > Artificial Sequence <220> <223> 10-R <400> 22 actattgtgt tgtgccgaaa tcc 23 <210> 23 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 13-F <400> 23 gaattattct gcttctaagg ctc 23 <210> 24 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 13-R <400> 24 atgtctttcg agtactagtc atg 23 <210> 25 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RnaB-F <400> 25 gaatatgatt tatcaacaag tatcc 25 <210> 26 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RnaB-R <400 > 26 gcatgattgg tgttagcggg ac 22 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> TG276-F <400> 27 ctggtgctgc tcttgctcat ac 22 <210> 28 <211> 22 <212 > DNA <213> Artificial Sequence <220> <223> TG276-R <400> 28 aatccctttc gatgacgtga ac 22 <210> 29 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RnaP-F <400> 29 gttcatccgc aacctattgt acc 23 <210> 30 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RnaP-R <400> 30 tgcactctca ttagctacat cac 23 <210> 31 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> U582871-F <400> 31 taacagaatt aattcgtgtg attg 24 <210> 32 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> U582871 -R <400> 32 agcaagaaac gtgtctgttc ag 22 <210> 33 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 26D15-3-F <400> 33 aaagagttgc cttctttaac atg 23 <210> 34 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> 26D15-3-R <400> 34 ggtttgtata tccctcctca tc 22 <210> 35 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 2B-F <400> 35 cgtggactac ctaactagca gac 23 <210> 36 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> 2B-R <400> 36 tgtgtgttgg acgtaggcca tg 22 <210> 37 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> T0888-F <400 > 37 gaatcggagc aagtaactca gtc 23 <210> 38 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> T0888-R <400> 38 gagtttgagg ttactcgtta tgtc 24 <210> 39 <211> 23 <212 > DNA <213> Artificial Sequence <220> <223> T1238-F <400> 39 gaattcttgc aagctacatg agg 23 <210> 40 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> T1238-R <400> 40 acaagatgtc ctttcttaat agtg 24 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> U562933-F <400> 41 gcacacatgg ttacctgatt acc 23 <210> 42 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> U562933-R <400> 42 ctgagtgacc aaatgtgtgt acc 23 <210> 43 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> 46485 -3-F <400> 43 gggagataac tcgagggctc ag 22 <210> 44 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> 46485-3-R <400> 44 cgccaacttt atacccaatg aatgtgc 27 <210 > 45 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> U572717-F <400> 45 atccatccga ttatcccttc cg 22 <210> 46 <211> 22 <212> DNA <213> Artificial Sequence < 220> <223> U572717-R <400> 46 tgagactgaa ctcgccatgc tc 22 <210> 47 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> U572498-F <400> 47 gatcaattcg tgtcaattac agg 23 <210> 48 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> U572498-R <400> 48 gtgatcaagt tggctgtgtg aag 23 <210> 49 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 2A-F <400> 49 cttcatgatt acactttgcc attat 25 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 2A-R <400> 50 gattacctca ggagggctta acc 23 <210> 51 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> U569822-F <400> 51 aacggagaaa gtgggatcag c 21 <210> 52 <211> 22 <212> DNA <213 > Artificial Sequence <220> <223> U569822-R <400> 52 ttggcgcttt gtgagcctgt ag 22 <210> 53 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CT196-F <400> 53 acaacagctg ctattactac cg 22 <210> 54 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CT196-R <400> 54 ttcttgccgg agatagaggt gg 22 <210> 55 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> T0869-F <400> 55 gttacgctag ggcatttccg tc 22 <210> 56 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> T0869-R <400 > 56 gataccaatc gaagtaacag cag 23 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SSR40-F <400> 57 tgcaggtatg tctcacacca 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SSR40-R <400> 58 tgcaacaact ggataggtcg 20 <210> 59 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-attB1 <400> 59 ggggacaagt ttgtacaaaa aagcaggctt gaagacggag tcagattaag 50 <210> 60 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-attB2 <400> 60 ggggaccact ttgtacaaga aagctgggtg agtctg acta gattaaatg 50 <210 > 61 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-mTrcHis2-F <400> 61 ttcatgatgg ataagtatat tg 22 <210> 62 <211> 21 <212> DNA <213 > Artificial Sequence <220> <223> bc2.1-mTrcHis2-R <400> 62 ttaatctgac tccgtcttca c 21 <210> 63 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> qRT-F <400> 63 ctgctcttgc tcataccctt gc 22 <210> 64 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> qRT-R <400> 64 ggattgttgg cgaattgctt cag 23 <210> 65 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> cis1-F <400> 65 aaataattac aagtgttatt aacattg 27 <210> 66 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> cis1 -R <400> 66 tgtttgtatt tataagaagc atcg 24 <210> 67 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> cDNA1-F <400> 67 ttgtcatcct cgcaattttc acc 23 <210> 68 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> cDNA1-R <400> 68 cttaatctga ctccgtcttc acg 23 <210> 69 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> CYC -B-AscI-F <400> 69 ggcgcgccat ggaaactctt ctcaagcctt tt 32 <210> 70 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> CYC-B-AscI-R <400> 70 ggcgcgccaa ggctctctat tgctagattg cc 32 <210> 71 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-AscI-F <400> 71 ggcgcgccat gcttcttata aatacaaaca at 32 <210> 72 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-AscI-R <400> 72 ggcgcgccat ctgactccgt cttcacggga gg 32 <210> 73 <211> 35 <212> DNA <213> Artificial Sequence < 220> <223> bc2.1-GFP-F <400> 73 ggcgcgcctc tagaatgctt cttataaata caaac 35 <210> 74 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> bc2.1-GFP- R <400> 74 ggcgcgccgt cgacatctga ctccgtcttc acgg 34 <210> 75 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 35S-F <400> 75 cccaagaagg ttaaagatgc agtca 25 <210> 76 <2 11 > 25 <212> DNA <213> Artificial Sequence <220> <223> 35S-R <400> 76 gctttgaaga cgtggttgga acgtc 25 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223 > PSY1-F <400> 77 tggcccaaac gcatcatata 20 <210> 78 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PSY1-R <400> 78 caccatcgag catgtcaaat g 21 <210> 79 < 211> 21 <212> DNA <213> Artificial Sequence <220> <223> PSY2-F <400> 79 gttgatggcc ctaatgcatc a 21 <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> < 223> PSY2-R <400> 80 tcaagcatat caaatggccg 20 <210> 81 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> PDS-F <400> 81 gtgcattttg atcatcgcat tgaac 25 <210> 82 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PDS-R <400> 82 gcaaagtctc tcaggattac c 21 <210> 83 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ZDS-F <400> 83 ttggagcgtt cgaggcaat 19 <210> 84 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> ZDS-R <400> 84 agaaatctgc atctggcgta taga 24 <210> 85 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Z-ISO-F <400> 85 tatgaggatt accaggcatc c 21 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Z-ISO-R <400> 86 acagcgtgtg agctaagcac 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CRTISO-F <400> 87 ttttggcgga atcaactacc 20 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CRTISO-R <400> 88 gaaagcttca ctcccacagc 20 <210> 89 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CYC-B-F <400> 89 tgttatgag gaagagaaat gtgtgat 27 <210> 90 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CYC-B-R <400> 90 tcccaccaat agccataaca tttt 24 <210> 91 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LCY-B-F <400> 91 tcgttggaat cggtggtaca g 21 <210> 92 <211> 21 <212> DNA <213 > Artificial Sequence <220> <223> LCY-B-R <400> 92 agctagtgtc cttgccacca t 21 <210> 93 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> CCD1A-F <400> 93 tggattatga caaacgattg acg 23 <210> 94 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CCD1A-R <400> 94 ttggatataa ccctataagt gatg 24 <210> 95 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> CCD1B-F <400> 95 ggattacgat aaaaggttgc aac 23 <210> 96 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CCD1B-R <400 > 96 cttggatatg actctatatg tagc 24 <210> 97 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CRTR-b1-F <400> 97 agatgggcac acaaagcact g 21 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CRTR-b1-R <400> 98 gcgaaaacgt cgttcagctc 20 <210> 99 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CRTR-b2-F <400> 99 tttcagcctc cgctagttcc 20 <210> 100 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CRTR-b2-R <400> 100 cggagagaag aacagaaccg g 21 <210 > 101 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> ZEP-F <400> 101 ttgatggtat ttctggcaac tgg 23 <210> 102 <211> 22 <212> DNA <213> Artificial Sequence < 220> <223> ZEP-R <400> 102 accaacagca cgtgcaagga tc 22 <210> 103 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> VDE-F <400> 103 tgcctgaaac gattatacct gag 23 <210> 104 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> VDE-R <400> 104 ccgctctcct tcttccactt tc 22 <210> 105 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> NCED1-F <400> 105 gggatggttt agaatatacg tcc 23 <210> 106 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> NCED1-R <400> 106 ggttctctga gaatctctca cac 23 <210> 107 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 18S-F <400> 107 cggagaggga gcctgagaa 19 <210> 108 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 18S-R<400> 108 cccgtgttag gattgggtaa ttt 23

Claims (10)

토마토 라이코펜 에폭시다아제를 코딩하는 유전자인 BC2.1의 발현이 억제된, 루테인의 함량이 증가된 토마토.Tomatoes with increased lutein content and suppressed expression of BC2.1, a gene encoding tomato lycopene epoxidase. 제 1 항에 있어서, 상기 BC2.1의 ORF2의 발현이 억제된 것인, 루테인의 함량이 증가된 토마토. The tomato with increased lutein content according to claim 1, wherein the expression of ORF2 of BC2.1 is suppressed. 제 1 항에 있어서, RNAi 구조물을 투여하여 상기 BC2.1의 발현이 억제되는 것이고, 상기 RNAi 구조물은 BC2.1 유전자에 대한 RNAi인 것인, 루테인의 함량이 증가된 토마토.The tomato with increased lutein content according to claim 1, wherein the expression of BC2.1 is suppressed by administering an RNAi construct, and the RNAi construct is RNAi against the BC2.1 gene. 제 1 항에 있어서, 토마토에 돌연변이를 포함하는 BC2.1을 코딩하는 서열을 이입(introgression)하여 상기 BC2.1 발현이 억제되는 것인, 루테인의 함량이 증가된 토마토.The tomato with increased lutein content according to claim 1, wherein BC2.1 expression is suppressed by introgressing a sequence encoding BC2.1 containing a mutation into the tomato. 제 4 항에 있어서, 상기 돌연변이를 포함하는 BC2.1을 코딩하는 서열은 서열번호 2 내지 4로 표시되는 핵산 서열 중에서 선택된 것인, 루테인의 함량이 증가된 토마토. The tomato with increased lutein content according to claim 4, wherein the sequence encoding BC2.1 containing the mutation is selected from the nucleic acid sequences represented by SEQ ID NOs: 2 to 4. 제 3 항에 있어서, 상기 RNAi 구조물은 서열번호 59로 표시되는 서열을 갖는 RNAi-F 및 서열번호 60으로 표시되는 서열을 갖는 RNAi-R을 이용하여 제조된 것인, 루테인의 함량이 증가된 토마토.The tomato with increased lutein content according to claim 3, wherein the RNAi structure is produced using RNAi-F having a sequence shown in SEQ ID NO: 59 and RNAi-R having a sequence shown in SEQ ID NO: 60. . 제 1 항에 있어서, BC2.1의 발현이 억제되어 LCY-E가 발현되는 것인, 루테인의 함량이 증가된 토마토.The tomato with increased lutein content according to claim 1, wherein expression of BC2.1 is suppressed and LCY-E is expressed. 제 1 항에 있어서, Solanum. pennellii LA716의 유전자 이입 계통인 subIL2-2-1을 IL12-2와 교배하여 생산한 것인, 루테인의 함량이 증가된 토마토.According to claim 1, Solanum. Tomatoes with increased lutein content produced by crossing subIL2-2-1, an introgression line of pennellii LA716, with IL12-2. 라이코펜 에폭시다아제(lycopene epoxidase)를 코딩하는 BC2.1 유전자의 발현을 억제하는 단계;를 포함하는, 토마토에서 루테인의 함량을 증가시키는 방법.A method for increasing the content of lutein in tomatoes, comprising: inhibiting the expression of the BC2.1 gene encoding lycopene epoxidase. 라이코펜 에폭시다아제(lycopene epoxidase)를 코딩하는 BC2.1 유전자의 발현을 억제하는 단계;를 포함하는, 루테인의 함량이 증가된 토마토의 제조 방법.A method for producing tomatoes with increased lutein content, comprising: inhibiting the expression of the BC2.1 gene encoding lycopene epoxidase.
KR1020200184546A 2020-12-28 2020-12-28 Tomato lycopene epoxidase improving lutein level and uses thereof KR102634549B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020200184546A KR102634549B1 (en) 2020-12-28 2020-12-28 Tomato lycopene epoxidase improving lutein level and uses thereof
EP21915676.7A EP4260686A1 (en) 2020-12-28 2021-12-23 Method for promoting beta-carotene or lutein by using tomato lycopene epoxidase
US18/269,886 US20240067976A1 (en) 2020-12-28 2021-12-23 Method for promoting beta-carotene or lutein by using tomato lycopene epoxidase
PCT/KR2021/019727 WO2022145878A1 (en) 2020-12-28 2021-12-23 Method for promoting beta-carotene or lutein by using tomato lycopene epoxidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200184546A KR102634549B1 (en) 2020-12-28 2020-12-28 Tomato lycopene epoxidase improving lutein level and uses thereof

Publications (2)

Publication Number Publication Date
KR20220093633A KR20220093633A (en) 2022-07-05
KR102634549B1 true KR102634549B1 (en) 2024-02-07

Family

ID=82401674

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200184546A KR102634549B1 (en) 2020-12-28 2020-12-28 Tomato lycopene epoxidase improving lutein level and uses thereof

Country Status (1)

Country Link
KR (1) KR102634549B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134004B1 (en) 2009-11-13 2012-04-09 한국생명공학연구원 Lycopene ?-cyclase gene increasing ?-carotene content of plants and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101553642B1 (en) 2014-06-02 2015-09-16 주식회사 에코마인 Method of extracting Lycopene from Tomato

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134004B1 (en) 2009-11-13 2012-04-09 한국생명공학연구원 Lycopene ?-cyclase gene increasing ?-carotene content of plants and uses thereof

Also Published As

Publication number Publication date
KR20220093633A (en) 2022-07-05

Similar Documents

Publication Publication Date Title
Lu et al. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes
Moehs et al. Analysis of carotenoid biosynthetic gene expression during marigold petal development
Ronen et al. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon‐cyclase is down‐regulated during ripening and is elevated in the mutant Delta
Meurer et al. A nuclear‐encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana
Kobayashi et al. Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside)
EP0746615B1 (en) Dna constructs, cells and plants derived therefrom
Rafique et al. Nonsense mutation inside anthocyanidin synthase gene controls pigmentation in yellow raspberry (Rubus idaeus L.)
Zhang et al. Functional characterization of Citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle)
JP2019533436A (en) Ciliary process-specific promoter for manipulation of cannabinoids and other compounds in the glandular trichome
US20170247713A1 (en) Trichome-specific transcription factor modulating terpene biosynthesis
KR100550960B1 (en) Sd1 gene participating in plant semidwarfing and utilization thereof
Zhu et al. Building the synthetic biology toolbox with enzyme variants to expand opportunities for biofortification of provitamin A and other health-promoting carotenoids
US8119855B2 (en) Resistance to abiotic stress in plants
Yang et al. RNA interference of NtNCED3 reduces drought tolerance and impairs plant growth through feedback regulation of isoprenoids in Nicotiana tabacum
Li et al. Site-directed mutagenesis of the carotenoid isomerase gene BnaCRTISO alters the color of petals and leaves in Brassica napus L.
Phadungsawat et al. Expression of CCD4 gene involved in carotenoid degradation in yellow-flowered Petunia× hybrida
EP3095863B1 (en) Parthenocarpy regulation gene and use thereof
WO2013051925A1 (en) A method for regulating the biosynthesis, conversion and utilization of prenyl-pyrophosphates in hevea brasiliensis
KR102634549B1 (en) Tomato lycopene epoxidase improving lutein level and uses thereof
KR102635736B1 (en) Tomato lycopene epoxidase improving beta-carotne level and uses thereof
US6252141B1 (en) Tomato gene B polynucleotides coding for lycopene cyclase
US20100037357A1 (en) Polynucleotides Encoding Phenylpropanoid and Falvonoid Biosynthetic Pathway Enzymes in Coffee
CN113423837A (en) Brassica plants producing increased levels of polyunsaturated fatty acids
CA2348025C (en) Genes encoding proteins regulating ph of vacuoles
EP4260686A1 (en) Method for promoting beta-carotene or lutein by using tomato lycopene epoxidase

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right