KR102633374B1 - Pressure sensor for measuring hydraulic pressure in pipe and manufacturing method thereof - Google Patents

Pressure sensor for measuring hydraulic pressure in pipe and manufacturing method thereof Download PDF

Info

Publication number
KR102633374B1
KR102633374B1 KR1020210186517A KR20210186517A KR102633374B1 KR 102633374 B1 KR102633374 B1 KR 102633374B1 KR 1020210186517 A KR1020210186517 A KR 1020210186517A KR 20210186517 A KR20210186517 A KR 20210186517A KR 102633374 B1 KR102633374 B1 KR 102633374B1
Authority
KR
South Korea
Prior art keywords
pvdf
mxene
pressure sensor
pipe
hydraulic pressure
Prior art date
Application number
KR1020210186517A
Other languages
Korean (ko)
Other versions
KR20230097285A (en
Inventor
타오 첸
만 리
양 리
배준호
송승준
Original Assignee
가천대학교 산학협력단
주식회사 대한인스트루먼트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단, 주식회사 대한인스트루먼트 filed Critical 가천대학교 산학협력단
Priority to KR1020210186517A priority Critical patent/KR102633374B1/en
Publication of KR20230097285A publication Critical patent/KR20230097285A/en
Application granted granted Critical
Publication of KR102633374B1 publication Critical patent/KR102633374B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings

Abstract

본 발명의 일 실시예에 의하면, MXene을 이용하여 압력을 측정할 수 있고 나아가 배관 내부 또는 밸브 측의 유압을 측정하는 데 이용할 수 있다. 그리고 MXene과 PVDF의 복합 필름으로 형성된 배관내 유압 측정용 압력 센서의 제조 방법을 제공함으로써 제조 단가를 낮출 수 있고 압력 센서 공정의 간소화를 구현할 수 있다. 이를 위해 특히 본 발명의 일 실시예는, 배관 내부 또는 밸브 측에 장착되어 유압을 센싱하는 압력 센서에 있어서, MXene과 PVDF로 형성된 PVDF/MXene 복합 필름을 포함하는 배관내 유압 측정용 압력 센서를 포함한다.According to an embodiment of the present invention, MXene can be used to measure pressure and can further be used to measure hydraulic pressure inside a pipe or on the valve side. In addition, by providing a method of manufacturing a pressure sensor for measuring hydraulic pressure in pipes formed from a composite film of MXene and PVDF, the manufacturing cost can be reduced and the pressure sensor process can be simplified. To this end, in particular, an embodiment of the present invention includes a pressure sensor for measuring hydraulic pressure in a pipe including a PVDF/MXene composite film formed of MXene and PVDF in a pressure sensor mounted inside the pipe or on the valve side to sense hydraulic pressure. do.

Description

배관내 유압 측정용 압력 센서 및 이의 제조 방법{Pressure sensor for measuring hydraulic pressure in pipe and manufacturing method thereof}Pressure sensor for measuring hydraulic pressure in pipe and manufacturing method thereof}

본 발명은 배관내 유압 측정용 압력센서 및 이의 제조 방법에 관한 것이다.The present invention relates to a pressure sensor for measuring hydraulic pressure in a pipe and a method of manufacturing the same.

유압 시스템에는 많은 전환 밸브가 있으므로 오작동하는 밸브를 찾는 데 시간이 많이 걸릴 수 있다. 긴 수리 시간은 수리 및 운영 비용을 증가시킨다. 따라서 밸브가 제대로 작동하는지 확인하는 장치를 활용하는 것이 바람직할 수 있다. 이러한 밸브 점검은 입력, 출력, 입력과 출력 사이 또는 밸브 근처에서 압력 변화를 측정하는 압력 센서를 사용하여 수행할 수 있다. 감지된 압력 변화를 기반으로 밸브가 원하는 대로 전화되는지 여부를 인식할 수 있다. 밸브 전환을 제어하기 위한 압력 센서는 넓은 작동 온도 범위, 긴 작동 수명, 압력 범위, 응답 시간에 관한 요구사항이 있을 수 있으며, 이러한 요구 사항을 만족하면서 저렴한 단가를 맞추기는 쉽지 않다. 기존 시장에서 위 요구 사항과 단가를 만족하는 압력 센서는 거의 없다시피 하다.Because there are many diverter valves in a hydraulic system, finding a malfunctioning valve can be time consuming. Long repair times increase repair and operating costs. Therefore, it may be desirable to utilize a device to verify that the valve is operating properly. These valve checks can be performed using pressure sensors that measure pressure changes at the input, output, between input and output, or near the valve. Based on the pressure changes detected, it is possible to recognize whether the valve is turning as desired. Pressure sensors for controlling valve switching may have requirements regarding a wide operating temperature range, long operating life, pressure range, and response time, and it is not easy to meet these requirements while maintaining a low unit price. There are almost no pressure sensors in the existing market that meet the above requirements and unit price.

기존 대한민국 공개특허 제 10-2020-0024138 호 "압력 센서를 갖는 진공 밸브"에서는 진공 밸브에 이용되는 압력 센서를 소개하고 있고, 이러한 압력 센서로 변형 가능한 멤브레인 및/또는 피에조 결정 및/또는 석영 및/또는 피에조 공진기를 예시하고 있다. 이러한 종래 압력 센서는 제조공정이 복잡하고, 전술하였듯이 단가가 비싸며 압력센서에 요구되는 요구사항을 만족시킬 수 없는 문제점이 있었다.Existing Korean Patent Publication No. 10-2020-0024138 “Vacuum Valve with Pressure Sensor” introduces a pressure sensor used in a vacuum valve, and includes a membrane and/or piezo crystal and/or quartz and/or deformable pressure sensor. Alternatively, a piezo resonator is exemplified. These conventional pressure sensors have a complicated manufacturing process, are expensive as mentioned above, and have the problem of being unable to meet the requirements for pressure sensors.

본 발명은 상기와 같은 문제점을 해결하기 위해 도출된 것으로서, 본 발명의 목적은, MXene을 이용하여 압력을 측정할 수 있고 나아가 배관이나 밸브 측의 유압을 측정하는 데 이용할 수 있는 배관내 유압 측정용 압력 센서를 제공하는 데 있다.The present invention was developed to solve the above problems, and the purpose of the present invention is to measure the hydraulic pressure in the pipe, which can be used to measure the pressure using MXene and further measure the hydraulic pressure on the pipe or valve side. The purpose is to provide a pressure sensor.

본 발명의 또 다른 목적은, MXene과 PVDF의 복합 필름으로 형성된 배관내 유압 측정용 압력 센서의 제조 방법을 제공하는 데 있다.Another object of the present invention is to provide a method of manufacturing a pressure sensor for measuring hydraulic pressure in a pipe formed of a composite film of MXene and PVDF.

상기와 같은 본 발명의 목적은, 배관 내부 또는 밸브 측에 장착되어 유체의 압력을 센싱하는 압력 센서에 있어서, MXene과 PVDF로 형성된 PVDF/MXene 복합 필름을 포함하는 배관내 유압 측정용 압력 센서를 제공함으로써 달성될 수 있다.The object of the present invention as described above is to provide a pressure sensor for measuring hydraulic pressure in a pipe including a PVDF/MXene composite film formed of MXene and PVDF in a pressure sensor mounted inside the pipe or on the valve side to sense the pressure of the fluid. This can be achieved by doing.

여기서 배관내 유압 측정용 압력 센서는, PVDF/MXene 복합 필름 상면 또는 하면에 PEDOT:PSS 층(Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) layer)을 더 포함하여 구성될 수 있다.Here, the pressure sensor for measuring hydraulic pressure in the pipe may be configured to further include a PEDOT:PSS layer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer) on the upper or lower surface of the PVDF/MXene composite film.

그리고 배관내 유압 측정용 압력 센서는, PVDF/MXene 복합 필름에 가해지는 유압에 기반하여 전기 신호를 출력하는 신호 출력부를 더 포함하는 것이 바람직하다.In addition, the pressure sensor for measuring hydraulic pressure in a pipe preferably further includes a signal output unit that outputs an electric signal based on the hydraulic pressure applied to the PVDF/MXene composite film.

한편 본 발명의 목적은 다른 카테고리로서, 배관내 유압 측정용 압력 센서의 제조 방법에 있어서, MXene과 PVDF로 형성된 PVDF/MXene 복합 필름을 제조하는 단계(S10); 및 PVDF/MXene 복합 필름의 적어도 일 면에 PEDOT:PSS 층을 형성하는 단계(S20)를 포함하는 배관내 유압 측정용 압력 센서의 제조 방법을 제공함으로써 달성될 수 있다.Meanwhile, the object of the present invention is another category, a method of manufacturing a pressure sensor for measuring hydraulic pressure in a pipe, comprising: manufacturing a PVDF/MXene composite film formed of MXene and PVDF (S10); and forming a PEDOT:PSS layer on at least one side of the PVDF/MXene composite film (S20). This can be achieved by providing a method of manufacturing a pressure sensor for measuring hydraulic pressure in a pipe.

또한 PVDF/MXene 복합 필름 제조단계(S10)에 있어서, PVDF/MXene 복합 필름은, DMF(Dimethylformamide) 용매에 PVDF 분말을 용해시키는 단계(S110); MXene을 PVDF 용액에 첨가하고 균일하게 분산시키는 단계(S120); MXene이 PVDF 용액에 분산된 PVDF-MXene 혼합물을 기판에 캐스팅하고 진공 건조하는 단계(S130); 진공 건조된 PVDF-MXene 혼합물로부터 DMF 용매를 제거하는 단계(S140); 및 PVDF-MXene 복합 필름을 기판으로부터 박리하는 단계(S140)로 제조된 것일 수 있다.In addition, in the PVDF/MXene composite film manufacturing step (S10), the PVDF/MXene composite film includes the steps of dissolving PVDF powder in a DMF (Dimethylformamide) solvent (S110); Adding MXene to the PVDF solution and dispersing it uniformly (S120); Casting a PVDF-MXene mixture in which MXene is dispersed in a PVDF solution onto a substrate and vacuum drying (S130); Removing the DMF solvent from the vacuum-dried PVDF-MXene mixture (S140); and peeling the PVDF-MXene composite film from the substrate (S140).

아울러 배관내 유압 측정용 압력 센서의 제조 방법은, PEDOT:PSS 층 형성단계(S20) 이후에, PEDOT:PSS 층 상부 또는 하부에 PDMS 층을 형성하는 단계(S30)를 더 포함할 수 있다.In addition, the method of manufacturing a pressure sensor for measuring hydraulic pressure in a pipe may further include forming a PDMS layer on or below the PEDOT:PSS layer (S30) after the PEDOT:PSS layer forming step (S20).

상기와 같은 본 발명의 일 실시예에 의하면, MXene을 이용하여 압력을 측정할 수 있고 나아가 배관 내부 또는 밸브 측의 유압을 측정하는 데 이용할 수 있다.According to an embodiment of the present invention as described above, MXene can be used to measure pressure and can further be used to measure hydraulic pressure inside a pipe or on the valve side.

그리고 MXene과 PVDF의 복합 필름으로 형성된 배관내 유압 측정용 압력 센서의 제조 방법을 제공함으로써 제조 단가를 낮출 수 있고 압력 센서 공정의 간소화를 구현할 수 있다. In addition, by providing a method of manufacturing a pressure sensor for measuring hydraulic pressure in pipes formed from a composite film of MXene and PVDF, the manufacturing cost can be reduced and the pressure sensor process can be simplified.

도 1은 본 발명인 배관내 유압 측정용 압력 센서의 일 실시예에 따른 레이어들을 나타낸 단면도이고,
도 2는 본 발명인 배관내 유압 측정용 압력 센서의 제조 방법 일 실시예를 순차적으로 나타낸 순서도이고,
도 3 (a), (b), (c), (d)는 본 발명인 배관내 유압 측정용 압력 센서의 제조 방법 일 실시예를 순차적으로 나타낸 사진들이고,
도 4는 본 발명인 배관내 유압 측정용 압력 센서의 일 실시예에 테스트를 위해 코인 셀에 결합한 상태를 나타낸 사진이며,
도 5 (a), (b), (c), (d)는 본 발명인 배관내 유압 측정용 압력 센서의 일 실시예에 서로 다른 압력을 가하여 출력된 EIS 테스트 결과를 그래프로 나타낸 도면들이고,
도 6 (a), (b)는 본 발명인 배관내 유압 측정용 압력 센서의 일 실시예에 서로 다른 굽힘 각도를 구현하여 출력된 EIS 테스트 결과를 그래프로 나타낸 도면들이다.
1 is a cross-sectional view showing the layers according to an embodiment of the present invention's pressure sensor for measuring hydraulic pressure in a pipe;
Figure 2 is a flowchart sequentially showing an embodiment of the present invention's method of manufacturing a pressure sensor for measuring hydraulic pressure in a pipe;
Figures 3 (a), (b), (c), and (d) are photographs sequentially showing an embodiment of the present invention's method of manufacturing a pressure sensor for measuring hydraulic pressure in a pipe;
Figure 4 is a photograph showing an embodiment of the present inventor's pressure sensor for measuring hydraulic pressure in a pipe coupled to a coin cell for testing;
Figures 5 (a), (b), (c), and (d) are graphs showing the EIS test results output by applying different pressures to one embodiment of the pressure sensor for measuring hydraulic pressure in a pipe according to the present invention;
Figures 6 (a) and (b) are graphs showing EIS test results output by implementing different bending angles in one embodiment of the pressure sensor for measuring hydraulic pressure in a pipe according to the present invention.

이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings and the contents described in the accompanying drawings, but the present invention is not limited or limited by the embodiments.

아래 설명하는 실시예들에는 다양한 변경이 가해질 수 있다. 아래 설명하는 실시예들은 실시 형태에 대해 한정하려는 것이 아니며, 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Various changes may be made to the embodiments described below. The embodiments described below are not intended to limit the embodiments, but should be understood to include all changes, equivalents, and substitutes therefor.

한편, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 상세한 설명을 생략할 것이다. 그리고, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Meanwhile, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. In addition, the terminology used in this specification is a term used to appropriately express the embodiments of the present invention, and may vary depending on the intention of the user or operator or the customs of the field to which the present invention belongs. Therefore, definitions of these terms should be made based on the content throughout this specification.

MXene을 이용한 배관내 유압 측정용 압력센서Pressure sensor for measuring hydraulic pressure in pipes using MXene

도 1은 본 발명인 배관내 유압 측정용 압력 센서의 일 실시예에 따른 레이어들을 나타낸 단면도이다. 도 1에 도시된 바와 같이, 본 실시예는, MXene(맥신)과 PVDF(polyvinylidene difluoride)으로 형성된 PVDF/MXene 복합 필름(10)이 압전막을 형성함으로써 유압 측정용 압력센서로 작용할 수 있다. 특히 맥신은, 전이금속 카바이드 소재라고도 하는데, 티타늄(Ti )과 같은 중금속 원자와 탄소(C) 원자의 이중 원소로 이루어진 나노 물질이며, 1nm(나노) 두께와 수 μm(마이크로미터) 길이를 가지는 이차원적인 판상구조를 가지는 2D 나노 재료이다. 표면에 다수의 친수기(물과 친화성이 강한 원자단)를 포함하고 있어, 용매에 분산이 용이하고 고분자 복합체 제조가 용이하며, 또한 우수한 전기전도성을 가진다.Figure 1 is a cross-sectional view showing the layers according to an embodiment of the present invention's pressure sensor for measuring hydraulic pressure in a pipe. As shown in FIG. 1, in this embodiment, the PVDF/MXene composite film 10 formed of MXene (MXene) and PVDF (polyvinylidene difluoride) forms a piezoelectric film, so that it can function as a pressure sensor for measuring hydraulic pressure. In particular, MXene, also called a transition metal carbide material, is a nanomaterial composed of a double element of heavy metal atoms such as titanium (Ti) and carbon (C) atoms, and is a two-dimensional material with a thickness of 1 nm (nano) and a length of several μm (micrometers). It is a 2D nanomaterial with a flat plate-like structure. It contains a large number of hydrophilic groups (atomic groups with strong affinity for water) on the surface, making it easy to disperse in solvents and manufacture polymer composites, and also has excellent electrical conductivity.

또한 PVDF는 다른 불소 중합체와 달리 낮은 밀도와 우수한 기계적 강도를 가지고 높은 장기 사용 온도 (140°C) 특성이 있으며, 수분흡수가 없고 치수 안정성, 우수한 내화학성 및 전기 절연성이 좋아 전기저항 특성을 높이는 작용을 한다.In addition, unlike other fluoropolymers, PVDF has low density, excellent mechanical strength, high long-term use temperature (140°C), no moisture absorption, dimensional stability, excellent chemical resistance, and good electrical insulation, increasing electrical resistance properties. Do it.

아울러 본 실시예는 전도성 고분자인 PEDOT: PSS 층(12a, 12b) (Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate)를 PVDF/MXene 복합 필름(10) 상면 또는 하면에 더 포함하여 구성됨으로써 전기 전도성을 배가시키도록 작용할 수 있으며, 바람직하게는 PVDF/MXene 복합 필름(10)의 상하면 모두에 배치된다.In addition, this embodiment further includes conductive polymer PEDOT:PSS layers (12a, 12b) (Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) on the upper or lower surface of the PVDF/MXene composite film (10), thereby enabling electrical It may act to double conductivity, and is preferably disposed on both the upper and lower surfaces of the PVDF/MXene composite film 10.

본 실시예는 배관 내부 또는 밸브 측에 장착되어 유압을 센싱하는 압력 센서로 이용된다. 구체적으로 다수의 전환 밸브에 각 장착되어 압력 변화가 수반되는 밸브 오작동을 감지하는 역할을 할 수 있는데, 필름 압전막에 가해지는 압력 또는 굽힘에 따른 압력을 감지한다.This embodiment is used as a pressure sensor that is mounted inside the pipe or on the valve side and senses hydraulic pressure. Specifically, it can be mounted on multiple switching valves and play a role in detecting valve malfunctions accompanied by pressure changes. It detects the pressure applied to the piezoelectric film or the pressure caused by bending.

본 실시예에서는 배관 내부 또는 밸브 측에 접착되고 수분의 침투를 막기 위해 Polydimethylsiloxane 즉 고분자량의 PDMS 층(14a, 14b))을 PEDOT: PSS 층(12a, 12b) 외측면(상면 또는 하면)에 더 부가하여 완성되었다. In this embodiment, polydimethylsiloxane (high molecular weight PDMS layer (14a, 14b)) is added to the outer surface (top or bottom) of the PEDOT: PSS layer (12a, 12b) to adhere to the inside of the pipe or the valve side and prevent moisture infiltration. It was completed with the addition.

도 2는 본 발명인 배관내 유압 측정용 압력 센서의 제조 방법 일 실시예를 순차적으로 나타낸 순서도이다. 배관내 유압 측정용 압력 센서의 제조 방법 일 실시예는 도 2를 참조하면, 우선 MXene과 PVDF로 형성된 PVDF/MXene 복합 필름을 제조하는 단계(S10)가 수행되고, 이후 PVDF/MXene 복합 필름의 적어도 일 면에 PEDOT:PSS 층을 형성하는 단계(S20)가 수행됨으로써 배관내 유압 측정용 압력 센서의 제조 방법의 일 실시예가 수행될 수 있다.Figure 2 is a flow chart sequentially showing an embodiment of the method of manufacturing a pressure sensor for measuring hydraulic pressure in a pipe according to the present invention. Referring to FIG. 2, an embodiment of a method for manufacturing a pressure sensor for measuring hydraulic pressure in a pipe is first performed (S10) of manufacturing a PVDF/MXene composite film formed of MXene and PVDF, and then at least the PVDF/MXene composite film is An embodiment of a method of manufacturing a pressure sensor for measuring hydraulic pressure in a pipe can be performed by performing the step (S20) of forming a PEDOT:PSS layer on one side.

특히 PVDF/MXene 복합 필름 제조단계(S10)에서 PVDF/MXene 복합 필름은, DMF(Dimethylformamide) 용매에 PVDF 분말을 용해시키는 단계(S110), 이후 MXene을 PVDF 용액에 첨가하고 균일하게 분산시키는 단계(S120), 이후 MXene이 PVDF 용액에 분산된 PVDF-MXene 혼합물을 기판에 캐스팅하고 진공 건조하는 단계(S130), 이후 진공 건조된 PVDF-MXene 혼합물로부터 DMF 용매를 제거하는 단계(S140) 이후에 마지막으로 PVDF-MXene 복합 필름을 기판으로부터 박리하는 단계(S140)로 제조될 수 있다.In particular, in the PVDF/MXene composite film manufacturing step (S10), the PVDF/MXene composite film is prepared by dissolving PVDF powder in DMF (Dimethylformamide) solvent (S110), followed by adding MXene to the PVDF solution and uniformly dispersing it (S120). ), then casting the PVDF-MXene mixture in which MXene is dispersed in the PVDF solution onto a substrate and vacuum drying (S130), then removing the DMF solvent from the vacuum-dried PVDF-MXene mixture (S140), and finally, PVDF It can be manufactured by peeling the -MXene composite film from the substrate (S140).

도 4는 본 발명인 배관내 유압 측정용 압력 센서의 일 실시예에 테스트를 위해 코인 셀에 결합한 상태를 나타낸 사진들이며, 전술한 PVDF-MXene 복합 필름의 일 제조 예는 도 4를 참조하면 다음과 같다.Figure 4 is a photograph showing an embodiment of the present invention's pressure sensor for measuring hydraulic pressure in a pipe in a state of being coupled to a coin cell for testing. Referring to Figure 4, an example of manufacturing the above-described PVDF-MXene composite film is as follows. .

1. 폴리(비닐리덴 플루오라이드)(PVDF) 분말의 일정량을 DMF 용액에 완전히 용해시켜 투명한 PVDF/DMF 용액을 얻었다.1. A certain amount of poly(vinylidene fluoride) (PVDF) powder was completely dissolved in a DMF solution to obtain a transparent PVDF/DMF solution.

2. 1.2g의 PVDF 분말을 10mL의 DMF 용액에 용해시키고 용액을 60℃에서 1시간 동안 자기 교반하에 가열하였다.2. 1.2 g of PVDF powder was dissolved in 10 mL of DMF solution and the solution was heated at 60°C for 1 hour with magnetic stirring.

3. 다른 질량의 MXene을 상기 PVDF 용액에 첨가하고 균일하게 분산시켰다. MXene 분말 30-120mg(2.5-10wt% MXene/PVDF)을 첨가하고 실온에서 장시간 교반하여 균일하게 분산시켰다.3. Different masses of MXene were added to the PVDF solution and dispersed uniformly. 30-120 mg (2.5-10 wt% MXene/PVDF) of MXene powder was added and stirred for a long time at room temperature to uniformly disperse.

4. PVDF-MXene 혼합물 용액을 PTFE 판에 직접 캐스팅하고 80℃에서 장시간 진공 건조하여 DMF 용매를 제거하였다. 그런 다음 PVDF-MXene 복합 필름을 PTFE 판에서 벗겨내고 사용하기에 적합한 모양으로 절단하였다.4. The PVDF-MXene mixture solution was cast directly on a PTFE plate and vacuum dried at 80°C for a long time to remove the DMF solvent. The PVDF-MXene composite film was then peeled off the PTFE plate and cut into shapes suitable for use.

또한 배관내 유압 측정용 압력 센서의 제조 방법은, 전술한 PEDOT:PSS 층 형성단계(S20) 이후에, PEDOT:PSS 층 상부 또는 하부에 PDMS 층을 형성하는 단계(S30)를 더 포함할 수 있다.In addition, the method of manufacturing a pressure sensor for measuring hydraulic pressure in a pipe may further include forming a PDMS layer on or below the PEDOT:PSS layer (S30) after the above-described PEDOT:PSS layer forming step (S20). .

EIS(Electrochemical Impedance Spectroscopy) 테스트 결과Electrochemical Impedance Spectroscopy (EIS) test results

도 5 (a), (b), (c), (d)는 본 발명인 배관내 유압 측정용 압력 센서의 일 실시예에 서로 다른 압력을 가하여 출력된 EIS 테스트 결과를 그래프로 나타낸 도면들이고, 도 6 (a), (b)는 본 발명인 배관내 유압 측정용 압력 센서의 일 실시예에 서로 다른 굽힘 각도를 구현하여 출력된 IS 테스트 결과를 그래프로 나타낸 도면들이다. Figures 5 (a), (b), (c), and (d) are graphs showing EIS test results output by applying different pressures to one embodiment of the pressure sensor for measuring hydraulic pressure in a pipe according to the present invention; 6 (a) and (b) are graphs showing the IS test results output by implementing different bending angles in one embodiment of the pressure sensor for measuring hydraulic pressure in a pipe according to the present invention.

도 5 및 도 6을 참조하면, 본 실시예 배관내 유압 측정용 압력 센서는, 고감도 플렉서블 정전용량 센서로서 작용하며, 높은 감도, 우수한 선형성 및 우수한 반복성으로 굽힘 및 압력 모두에서 잘 응답하는 것을 알 수 있었으며, MXene의 비율을 조절하여 센서의 감도와 감지 범위를 조정할 수 있다는 것을 확인할 수 있다. 또한 넓은 작동 온도 범위(-40 ~ +125 ºC), 긴 작동 수명(10년 이상 및 1억 개의 압력 주기), 압력 범위 10kPa ~ 2MPa, 약 10% 정확도 및 약 1ms 응답 시간. 5mm × 5mm 미만의 센서 크기를 손쉽게 구현할 수 있다.Referring to Figures 5 and 6, it can be seen that the pressure sensor for measuring hydraulic pressure in the pipe of this embodiment acts as a high-sensitivity flexible capacitance sensor and responds well to both bending and pressure with high sensitivity, excellent linearity, and excellent repeatability. It can be confirmed that the sensitivity and detection range of the sensor can be adjusted by adjusting the ratio of MXene. Additionally, it has a wide operating temperature range (-40 to +125 ºC), long operating life (more than 10 years and 100 million pressure cycles), pressure range of 10 kPa to 2 MPa, approximately 10% accuracy, and approximately 1 ms response time. Sensor sizes of less than 5mm × 5mm can be easily implemented.

전술한 EIS 측정 방법의 일 예는 다음과 같다.An example of the above-described EIS measurement method is as follows.

1. 획득된 고분자 복합 필름(PVDF/MXene과 PEDOT:PSS와 PDMS)에 압력을 가하였다.1. Pressure was applied to the obtained polymer composite films (PVDF/MXene and PEDOT:PSS and PDMS).

2. 두 개의 스테인리스 스틸 사이에 제작된 PVDF-MXene 복합 필름을 샌드위치한 다음 다른 압력(25-70kg/cm2)에서 코인 셀로 조립한다.2. Sandwich the fabricated PVDF-MXene composite film between two stainless steels and then assemble into a coin cell at different pressures (25-70kg/cm2).

3. 임피던스 분광법(EIS) 측정3. Impedance spectroscopy (EIS) measurements

상온에서 0.1-5MHz에서 압전저항 특성을 확인하기 위해 전기화학적 임피던스 분광법(EIS) 측정을 수행하였다.Electrochemical impedance spectroscopy (EIS) measurements were performed to confirm the piezoresistive properties at 0.1-5 MHz at room temperature.

이상 첨부된 도면을 참조하여 본 발명의 실시 예를 설명하였지만, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술 분야의 당 업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 한다. 아울러, 본 발명의 범위는 상기의 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어진다. 또한, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Although embodiments of the present invention have been described with reference to the attached drawings, the technical configuration of the present invention described above can be easily modified by those skilled in the art in the technical field to which the present invention belongs in other specific forms without changing the technical idea or essential features of the present invention. You will be able to understand that this can be implemented. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. In addition, the scope of the present invention is indicated by the claims described later rather than the detailed description above. In addition, the meaning and scope of the patent claims and all changes or modified forms derived from the equivalent concept should be construed as being included in the scope of the present invention.

10: PVDF/MXene 필름
12a, 12b: PEDOT:PSS
14a, 14b: PDMS
10: PVDF/MXene film
12a, 12b: PEDOT:PSS
14a, 14b: PDMS

Claims (6)

배관내 유압 측정용 압력 센서의 제조 방법에 있어서,
MXene과 PVDF로 형성된 PVDF/MXene 복합 필름을 제조하는 단계(S10); 및
상기 PVDF/MXene 복합 필름의 적어도 일 면에 PEDOT:PSS 층을 형성하는 단계(S20)를 포함하되,
상기 PVDF/MXene 복합 필름 제조단계(S10)에 있어서,
상기 PVDF/MXene 복합 필름은,
DMF(Dimethylformamide) 용매에 PVDF 분말을 용해시키는 단계(S110);
MXene을 PVDF 용액에 첨가하고 균일하게 분산시키는 단계(S120);
상기 MXene이 상기 PVDF 용액에 분산된 PVDF-MXene 혼합물을 기판에 캐스팅하고 진공 건조하는 단계(S130);
상기 진공 건조된 PVDF-MXene 혼합물로부터 상기 DMF 용매를 제거하는 단계(S140); 및
PVDF-MXene 복합 필름을 상기 기판으로부터 박리하는 단계(S140)로 제조된 것인 배관내 유압 측정용 압력 센서의 제조 방법.
In the method of manufacturing a pressure sensor for measuring hydraulic pressure in a pipe,
Manufacturing a PVDF/MXene composite film formed of MXene and PVDF (S10); and
Comprising the step of forming a PEDOT:PSS layer on at least one side of the PVDF/MXene composite film (S20),
In the PVDF/MXene composite film manufacturing step (S10),
The PVDF/MXene composite film,
Dissolving PVDF powder in DMF (Dimethylformamide) solvent (S110);
Adding MXene to the PVDF solution and dispersing it uniformly (S120);
Casting the PVDF-MXene mixture in which the MXene is dispersed in the PVDF solution onto a substrate and vacuum drying (S130);
Removing the DMF solvent from the vacuum-dried PVDF-MXene mixture (S140); and
A method of manufacturing a pressure sensor for measuring hydraulic pressure in a pipe, which is manufactured by peeling the PVDF-MXene composite film from the substrate (S140).
제1 항에 있어서,
상기 PEDOT:PSS 층 형성단계(S20) 이후에,
상기 PEDOT:PSS 층 상부 또는 하부에 PDMS 층을 형성하는 단계(S30)를 더 포함하는 배관내 유압 측정용 압력 센서의 제조 방법.
According to claim 1,
After the PEDOT:PSS layer forming step (S20),
A method of manufacturing a pressure sensor for measuring hydraulic pressure in a pipe further comprising forming a PDMS layer on or below the PEDOT:PSS layer (S30).
삭제delete 삭제delete 삭제delete 삭제delete
KR1020210186517A 2021-12-23 2021-12-23 Pressure sensor for measuring hydraulic pressure in pipe and manufacturing method thereof KR102633374B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210186517A KR102633374B1 (en) 2021-12-23 2021-12-23 Pressure sensor for measuring hydraulic pressure in pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210186517A KR102633374B1 (en) 2021-12-23 2021-12-23 Pressure sensor for measuring hydraulic pressure in pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20230097285A KR20230097285A (en) 2023-07-03
KR102633374B1 true KR102633374B1 (en) 2024-02-06

Family

ID=87157648

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210186517A KR102633374B1 (en) 2021-12-23 2021-12-23 Pressure sensor for measuring hydraulic pressure in pipe and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102633374B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020097514A1 (en) * 2018-11-08 2020-05-14 Drexel University Mxene-based sensor devices
KR102183309B1 (en) * 2019-05-21 2020-11-26 성균관대학교산학협력단 A multi-type pressure sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020097514A1 (en) * 2018-11-08 2020-05-14 Drexel University Mxene-based sensor devices
KR102183309B1 (en) * 2019-05-21 2020-11-26 성균관대학교산학협력단 A multi-type pressure sensor

Also Published As

Publication number Publication date
KR20230097285A (en) 2023-07-03

Similar Documents

Publication Publication Date Title
Najeeb et al. Organic thin‐film capacitive and resistive humidity sensors: a focus review
Xin et al. Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors
Zhang et al. Rational design of a flexible CNTs@ PDMS film patterned by bio‐inspired templates as a strain sensor and supercapacitor
Liang et al. Highly sensitive, flexible MEMS based pressure sensor with photoresist insulation layer
Li et al. Porous ionic membrane based flexible humidity sensor and its multifunctional applications
Choi et al. Wide range high speed relative humidity sensor based on PEDOT: PSS–PVA composite on an IDT printed on piezoelectric substrate
Li et al. Wide‐Range Strain Sensors Based on Highly Transparent and Supremely Stretchable Graphene/Ag‐Nanowires Hybrid Structures
US8133465B2 (en) Polymer-carbon nanotube composite for use as a sensor
Li et al. Experimental investigation of expanded graphite/phenolic resin composite bipolar plate
Li et al. Detection of very low humidity using polyelectrolyte/graphene bilayer humidity sensors
Liu et al. An omni‐healable and highly sensitive capacitive pressure sensor with microarray structure
Turkani et al. A fully printed CNT based humidity sensor on flexible PET substrate
Sajid et al. Linear bi-layer humidity sensor with tunable response using combinations of molybdenum carbide with polymers
US20100072565A1 (en) Soft Mems
Anichini et al. Ultrafast and highly sensitive chemically functionalized graphene oxide-based humidity sensors: harnessing device performances via the supramolecular approach
CN100595576C (en) Surface-sensitive condenser type gas transducer and manufacturing method thereof
JK O'Neill et al. A carbon flower based flexible pressure sensor made from large‐area coating
WO2021253278A1 (en) Touch sensor, manufacturing method, and intelligent device comprising touch sensor
Kavalenka et al. Chemical capacitive sensing using ultrathin flexible nanoporous electrodes
Tang et al. Ultrafast‐Response Humidity Sensor with High Humidity Durability Based on a Freestanding Film of Graphene Oxide Supramolecular
KR102633374B1 (en) Pressure sensor for measuring hydraulic pressure in pipe and manufacturing method thereof
Li et al. Eggshell-inspired membrane—shell strategy for simultaneously improving the sensitivity and detection range of strain sensors
Yim et al. Controllable porous membrane actuator by gradient infiltration of conducting polymers
Xie et al. 3D-conductive pathway written on leather for highly sensitive and durable electronic whisker
Li et al. A multidimensional hierarchical structure designed for lateral strain-isolated ultrasensitive pressure sensing

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant