KR102632776B1 - 3D laser printing applied brake disc and brake disc ceramic coating method - Google Patents

3D laser printing applied brake disc and brake disc ceramic coating method Download PDF

Info

Publication number
KR102632776B1
KR102632776B1 KR1020210191422A KR20210191422A KR102632776B1 KR 102632776 B1 KR102632776 B1 KR 102632776B1 KR 1020210191422 A KR1020210191422 A KR 1020210191422A KR 20210191422 A KR20210191422 A KR 20210191422A KR 102632776 B1 KR102632776 B1 KR 102632776B1
Authority
KR
South Korea
Prior art keywords
brake disc
coating
coating layer
base material
laser
Prior art date
Application number
KR1020210191422A
Other languages
Korean (ko)
Other versions
KR20230101370A (en
Inventor
김동석
김일현
Original Assignee
(주)에이치엠3디피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에이치엠3디피 filed Critical (주)에이치엠3디피
Priority to KR1020210191422A priority Critical patent/KR102632776B1/en
Publication of KR20230101370A publication Critical patent/KR20230101370A/en
Application granted granted Critical
Publication of KR102632776B1 publication Critical patent/KR102632776B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/04Attachment of linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/16Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases more than one element being diffused in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • C23C10/26Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions more than one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/127Discs; Drums for disc brakes characterised by properties of the disc surface; Discs lined with friction material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/04Attachment of linings
    • F16D2069/0425Attachment methods or devices

Abstract

본 발명은 브레이크 디스크 표면에 내마모성 코팅을 3D Laser Printing 장비의 고에너지 직접조사(DED; Direct Energy Deposition) 기술로 제공하는데 내마모 코팅은 브레이크 디스크 소재와 내마모 코팅 소재의 접합력이 유지되도록 코팅하여 내구성을 향상시키고 브레이크 디스크의 내마모 저항성을 향상시키는 방법에 관한 것이다. 상세하게는 브레이크디스크 모재(회주철) 표면에 내마모 저항성이 우수한 소재를 코팅하여 내구성 및 내마모성을 향상시키면서 디스크 표면에 코팅하는 3D Laser 프린팅 적용 브레이크 디스크 및 그 브레이크 디스크 세라믹 코팅 방법을 제공하는 것이다.The present invention provides a wear-resistant coating on the surface of a brake disc using high-energy direct irradiation (DED; Direct Energy Deposition) technology of 3D Laser Printing equipment. The wear-resistant coating is coated to maintain the adhesion between the brake disc material and the wear-resistant coating material to ensure durability. It relates to a method of improving and improving the wear resistance of brake discs. In detail, it provides a 3D laser printing applied brake disc and a brake disc ceramic coating method that coats the disc surface while improving durability and wear resistance by coating a material with excellent wear resistance on the surface of the brake disc base material (gray cast iron).

Description

3D 레이저 프린팅 적용 브레이크 디스크 및 그 브레이크 디스크 세라믹 코팅 방법{3D laser printing applied brake disc and brake disc ceramic coating method}3D laser printing applied brake disc and brake disc ceramic coating method}

본 발명은 브레이크 디스크 표면에 내마모성 코팅을 3D 레이저 프린팅장비의 고에너지 직접조사(DED; Direct Energy Deposition) 기술로 적용하는 3D 레이저 프린팅 적용 브레이크 디스크 및 그 브레이크 디스크 세라믹 코팅 방법에 관한 기술분야이다.The present invention is a technical field related to a 3D laser printing applied brake disc and a brake disc ceramic coating method in which a wear-resistant coating is applied to the surface of the brake disc using high energy direct irradiation (DED; Direct Energy Deposition) technology of 3D laser printing equipment.

일반적으로 브레이크 디스크(brake disc)는 모든 자동차에 사용되므로 브레이크 패드에 밀착되어 제동시키기 위한 브레이크 시스템의 핵심 부품으로 방열성, 내마모성, 내구성이 요구된다. In general, brake discs are used in all automobiles, so they are a core part of the brake system that adheres closely to the brake pads for braking and requires heat dissipation, wear resistance, and durability.

브레이크 디스크의 상용 소재로 내마모성이 우수한 회주철(gray cast iron)이 사용되고 있으며 내마모 향상 및 부식 방지 목적으로 용사 코팅 방법이나 초고속 화염용사법(HVOF)으로 코팅을 수행하는 기술이 있다. Gray cast iron, which has excellent wear resistance, is used as a commercial material for brake discs, and there are technologies for coating using thermal spray coating or high-velocity flame spraying (HVOF) to improve wear resistance and prevent corrosion.

기존 공정에서는 코팅 소재가 빠른 속도로 부품에 용사되어 충격에너지에 의해 표면에 코팅이 된다. 하지만 용사 코팅은 코팅 속도는 빠르지만 열충격 및 열에 의한 변형이 생기게 되면 코팅층과 코팅소재에서 계면 분리가 발생되거나 코팅층이 박리될 수 있는 단점이 있다. In the existing process, the coating material is sprayed onto the part at high speed and coated on the surface by impact energy. However, although thermal spray coating has a fast coating speed, it has the disadvantage that when thermal shock or deformation due to heat occurs, interfacial separation may occur between the coating layer and the coating material, or the coating layer may peel off.

특히 브레이크 디스크는 제동 시 고속의 회전 중 패드와 마찰이 발생하여 고온의 열이 발생할 수 있으며 디스크는 열에 의한 가열과 냉각이 반복되면서 열충격이 발생하기 때문에 코팅층의 건전성 즉 코팅층과 코팅 소재와의 접합력이 매우 중요하다. 이러한 기존의 코팅 기술은 브레이크 디스크의 성능에 요구되는 성능을 만족시키고 오랜 내구성을 확보하는데 어려움이 있다.In particular, brake discs can generate high-temperature heat due to friction with the pads during high-speed rotation during braking, and because thermal shock occurs as the disc is repeatedly heated and cooled, the soundness of the coating layer, that is, the bonding strength between the coating layer and the coating material, is affected. very important. These existing coating technologies have difficulty satisfying the performance requirements of brake discs and securing long-term durability.

대한민국 공개특허 제10-2016-0032273호(2016.03.23.)Republic of Korea Patent Publication No. 10-2016-0032273 (2016.03.23.) 대한민국 공개특허 제10-2018-0074564호(2018.07.03.)Republic of Korea Patent Publication No. 10-2018-0074564 (2018.07.03.)

본 발명은 상술한 종래기술의 문제점을 해결하고자 도출한 것으로서, 용사 코팅은 코팅 속도는 빠르지만 열충격 및 열에 의한 변형이 생기게 되면 코팅층과 혼합층에서 계면 분리가 발생되거나 코팅층이 박리될 수 있는 문제점이 발생한다.The present invention was derived to solve the problems of the prior art described above. Although thermal spray coating has a fast coating speed, when thermal shock or deformation due to heat occurs, problems such as interfacial separation between the coating layer and the mixed layer or peeling of the coating layer occur. do.

이에 대하여 본 발명은 브레이크 디스크 표면에 내마모성 코팅을 3D 레이저 프린팅 장비의 고에너지 직접조사(DED; Direct Energy Deposition) 기술로 제공하는데 내마모 코팅은 브레이크 디스크 소재와 내마모 코팅 소재의 접합력이 유지되도록 코팅하여 내구성을 향상시키고 브레이크 디스크의 내마모 저항성을 향상시키는 방법에 관한 것이다. 상세하게는 브레이크디스크 모재(회주철) 표면에 내마모 저항성이 우수한 소재를 코팅하여 내구성 및 내마모성을 향상시키면서 디스크 표면에 코팅하는 3D Laser 프린팅 적용 브레이크 디스크 및 그 브레이크 디스크 세라믹 코팅 방법을 제공하는 것이다.In relation to this, the present invention provides a wear-resistant coating on the surface of the brake disc using high-energy direct irradiation (DED; Direct Energy Deposition) technology of 3D laser printing equipment. The wear-resistant coating is coated to maintain the adhesion between the brake disc material and the wear-resistant coating material. This relates to a method of improving durability and abrasion resistance of brake discs. In detail, the aim is to provide a 3D laser printing applied brake disc and a brake disc ceramic coating method that coats the surface of the disc while improving durability and wear resistance by coating a material with excellent wear resistance on the surface of the brake disc base material (gray cast iron).

본 발명은 상기와 같은 목적을 실현하고자, 브레이크 디스크에 있어서, 상기 브레이크 디스크는 모재, 혼합층 및 코팅층으로 구분되며, 상기 코팅층은 상기 모재 상부에 분말이 3D 레이저 열원에 의하여 형성되며, 상기 혼합층은 상기 코팅층을 형성하는 과정 중 상기 용융된 분말과 상기 모재와의 반응에 의하여 형성되는 것을 특징으로 하는 3D 레이저 프린팅 적용 브레이크 디스크를 제시한다.In order to realize the above object, the present invention relates to a brake disc, wherein the brake disc is divided into a base material, a mixed layer, and a coating layer, wherein the coating layer is formed by forming powder on the top of the base material by a 3D laser heat source, and the mixed layer is We present a 3D laser printing applied brake disc, which is formed by a reaction between the molten powder and the base material during the process of forming a coating layer.

또한 본 발명의 상기 TiC 코팅층은 Ti : 75 ~ 80 wt% C : 20 ~ 25 wt%이고, 상기 혼합층은 Fe : 40 ~ 50 wt%, TiC : 50 ~ 60 wt%인 것을 특징으로 한다.In addition, the TiC coating layer of the present invention is characterized in that Ti: 75 to 80 wt% C: 20 to 25 wt%, and the mixed layer is Fe: 40 to 50 wt% and TiC: 50 to 60 wt%.

또한 본 발명의 상기 WC 코팅층은 W : 80 ~ 90 wt% C : 10 ~ 20 wt% 이고, 상기 혼합층은 Fe : 60 ~ 65 wt%, WC : 35 ~ 40 wt%인 것을 특징으로 한다.In addition, the WC coating layer of the present invention is characterized in that W: 80 to 90 wt% C: 10 to 20 wt%, and the mixed layer is Fe: 60 to 65 wt% and WC: 35 to 40 wt%.

또한 본 발명의 TiC 코팅층의 마찰흔적 최대 깊이는 1.3276 ~ 1.2512 ㎛ 또는 WC 코팅층의 마찰흔적 최대 깊이는 1.0519 ~ 1.0169 ㎛이고, 모재는 9.8700 ~ 9.4319 ㎛ 인 것을 특징으로 한다.In addition, the maximum depth of friction traces of the TiC coating layer of the present invention is 1.3276 ~ 1.2512 ㎛ or the maximum depth of friction traces of the WC coating layer is 1.0519 ~ 1.0169 ㎛, and the base material is 9.8700 ~ 9.4319 ㎛.

또한 본 발명은 3D 레이저 출력은 220 ~ 240 w이고, 3D 레이저 이송속도는 8 ~10 ㎜/s, 분말 공급량은 2.3 ~ 2.5 g/min, 이너가스 공급량은 3.4 ~ 3.6 L/min인 것을 특징으로 하는3D 레이저 프린팅 적용 브레이크 디스크 코팅방법을 제시한다.In addition, the present invention is characterized in that the 3D laser output is 220 to 240 w, the 3D laser transport speed is 8 to 10 mm/s, the powder supply amount is 2.3 to 2.5 g/min, and the inner gas supply amount is 3.4 to 3.6 L/min. We present a brake disc coating method using 3D laser printing.

본 발명은 브레이크 디스크의 제동면 표면에 3D Laser Printing 공정 기술로 세라믹 소재를 코팅하여 표면 처리함으로써 브레이크 디스크의 내마모성, 제동성 및 내구성을 향상시킬 수 있고, 브레이크 디스크의 사용주기를 연장할 수 있어 상품성을 향상시킬 수 있다.The present invention can improve the wear resistance, braking performance and durability of the brake disc by coating the surface of the braking surface of the brake disc with a ceramic material using 3D Laser Printing process technology to surface treat it, and extend the use cycle of the brake disc, thereby increasing its marketability. can be improved.

또한 본 발명은 브레이크 디스크 마모에서 발생하는 미세 분진 입자를 줄일 수 있어 친환경적인 것이다.Additionally, the present invention is environmentally friendly because it can reduce fine dust particles generated from brake disc wear.

또한 본 발명은 장기간 사용하지 않더라도 내 마모 저항성이 우수한 세라믹소재를 코팅하므로 부식을 억제할 수 있어 자동차의 수명 연장 등 경제적이다. In addition, the present invention coats a ceramic material with excellent wear resistance even if it is not used for a long period of time, so corrosion can be suppressed, making it economical by extending the life of the car.

도 1은 본 발명의 실시예의 코팅 공정 및 코팅 후 시편 사진.
도 2는 본 발명의 실시예의 코팅 후 미세조직 관찰 사진.
도 3은 본 발명의 실시예의 코팅 후 미세조직 혼합층의 관찰 사진 및 분석결과표.
도 4는 본 발명의 실시예의 코팅 후 표면경도 분석결과 그래프.
도 5는 본 발명의 실시예의 코팅 전, 후 마찰계수 평가결과 및 시험 후 시편 사진.
도 6은 본 발명의 실시예의 코팅 전, 후 마찰흔적 그래픽
도 7은 도 6의 마찰흔적의 최대 깊이 평가결과.
도 8은 Pin-on-disk type 마모시험기 사진
1 is a photograph of a specimen after the coating process and coating of an embodiment of the present invention.
Figure 2 is a photograph of microstructure observed after coating of an example of the present invention.
Figure 3 is an observation photograph and analysis result table of the microstructure mixed layer after coating in an example of the present invention.
Figure 4 is a graph showing the results of surface hardness analysis after coating of an example of the present invention.
Figure 5 shows the friction coefficient evaluation results before and after coating of an example of the present invention and a photograph of a specimen after the test.
Figure 6 is a graphic of friction traces before and after coating of an embodiment of the present invention
Figure 7 shows the maximum depth evaluation results of the friction traces in Figure 6.
Figure 8 is a photo of a pin-on-disk type wear tester

본 발명은 3D 레이저 프린팅 적용 브레이크 디스크 및 그 브레이크 디스크 세라믹 코팅 방법에 관한 것으로서, 보다 상세하게 설명하면, 브레이크 디스크 표면에 내마모성이 우수한 소재를 코팅하기 위한 3D Laser Printing 공정 기술로 레이저 출력, 분말 공급, 산화방지 이너가스공급, 코팅간격, 시편의 이송속도로 코팅 제어를 포함한다. The present invention relates to a 3D laser printing applied brake disc and a brake disc ceramic coating method. To be described in more detail, the 3D Laser Printing process technology for coating a material with excellent wear resistance on the surface of a brake disc includes laser output, powder supply, Includes coating control including supply of anti-oxidation inner gas, coating interval, and specimen transfer speed.

본 발명의 브레이크 디스크의 표면에 코팅되는 물질은 내마모성이 우수하고 부식성이 우수한 세라믹 소재 WC(Tungsten carbide) 또는 TiC(Titanium carbide) 소재를 코팅/적층하는 것이다. 코팅층의 내마모성과 기밀성을 유지하기 위하여 레이저를 열원으로 사용하여 코팅층은 분말을 용융상태로 만들면서 디스크 표면도 용융되도록 하여 용융된 분말과 모재가 일부 혼합되는 혼합층을 형성하여 접착력을 향상시키는 것이다.The material coated on the surface of the brake disc of the present invention is a coating/lamination of WC (Tungsten Carbide) or TiC (Titanium Carbide), a ceramic material with excellent wear resistance and corrosion resistance. In order to maintain the wear resistance and airtightness of the coating layer, a laser is used as a heat source to melt the powder and also melt the surface of the disk to form a mixed layer in which the molten powder and the base material are partially mixed to improve adhesion.

본 발명은 도 1에 도시된 바와 같이, 3D 레이저 프린팅의 직접조사에서 적용되는 코팅층 형성하는 공정에서 브레이크 디스크 표면에 내마모성이 우수한 소재를 코팅하기 위하여 레이저 출력, 분말 공급, 이너가스 공급, 코팅층 두께, 시편의 이송속도로 코팅 제어를 포함한다. As shown in FIG. 1, the present invention uses laser output, powder supply, inner gas supply, coating layer thickness, and Includes coating control at specimen transport speed.

또한 상기 분말은 Ti, W, Nb, Ta 또는 이들의 탄화물이고, 상기 이너가스는 아르곤(Ar)을 사용하는 것이다.Additionally, the powder is Ti, W, Nb, Ta, or carbides thereof, and the inner gas uses argon (Ar).

본 발명의 최적 WC, TiC 코팅층 공정조건은 레이저출력 220 ∼ 240 W, 이송 속도는 8 ~ 10 mm/s, 분말 공급량은 2.3 ∼ 2.5 g/min, 이너가스 공급량은 3.4 ∼ 3.6 L/min 인 것을 특징으로 한다.The optimal WC and TiC coating layer process conditions of the present invention are laser power of 220 to 240 W, transport speed of 8 to 10 mm/s, powder supply amount of 2.3 to 2.5 g/min, and inner gas supply amount of 3.4 to 3.6 L/min. It is characterized by

또한 이송속도는 8 ~ 10 mm/s 범위로써, 이송속도 8 mm/s 미만에서는 코팅층 두께 증가로 인한 코팅품질 저하와 표면 거칠기가 증가하고, 이송속도 10 mm/s를 벗어나면 코팅층 두께 감소로 인한 코팅품질이 저하된다.In addition, the transfer speed is in the range of 8 to 10 mm/s. If the transfer speed is less than 8 mm/s, coating quality decreases and surface roughness increases due to an increase in coating layer thickness, and if the transfer speed exceeds 10 mm/s, the coating layer thickness decreases. Coating quality deteriorates.

본 발명의 분말 공급량은 2.3 ∼ 2.5 g/min 범위로써, 분말 공급량이 2.3 g/min 미만에서는 분말 공급량이 적어 코팅층 두께 저하 및 코팅층이 형성되지 않으며, 분말 공급량이 2.5 g/min를 벗어나면 코팅층 두께가 두꺼워지지만 용융되는 에너지양의 한계 때문에 코팅품질이 저하된다.The powder supply amount of the present invention is in the range of 2.3 to 2.5 g/min. If the powder supply amount is less than 2.3 g/min, the powder supply amount is small and the coating layer thickness decreases and the coating layer is not formed. If the powder supply amount exceeds 2.5 g/min, the coating layer thickness decreases. It becomes thicker, but the coating quality deteriorates due to limitations in the amount of melting energy.

또한 산화방지 이너가스 공급량은 3.4 ∼ 3.6 L/min의 범위로써, 3.4 L/min 미만에서는 공급되는 이너가스가 적어 코팅 시 플라즈마 발생을 억제하지 못하고 코팅품질이 저하되고, 이너가스 공급량이 3.6 L/min 벗어나면 이너가스 공급량이 증가함에 따라 분말의 비산으로 인하여 코팅층 두께의 감소및 분말이 중간에 모아지지 않고 넓게 퍼지면서 용해되는 분말의 양이 감소하여 코팅품질이 저하된다.In addition, the supply amount of the anti-oxidation inner gas is in the range of 3.4 to 3.6 L/min. If it is less than 3.4 L/min, the supplied inner gas is small, so plasma generation cannot be suppressed during coating, and the coating quality deteriorates, and the inner gas supply amount is 3.6 L/min. If it deviates from min, as the inner gas supply increases, the thickness of the coating layer decreases due to scattering of the powder, and the powder spreads widely instead of gathering in the middle, reducing the amount of dissolved powder, thereby deteriorating the coating quality.

본 발명의 코팅층과 혼합층은 TiC 코팅 또는 WC 코팅으로 형성되고,The coating layer and mixed layer of the present invention are formed with TiC coating or WC coating,

TiC 코팅에서 TiC 코팅층은 Ti 75 ~ 80 wt%, C : 20 ~ 25 wt%로 조성되고, 혼합층은 모재인 Fe 40 ~ 50 wt%과 코팅 소재인 TiC 50 ~ 60 wt%로 조성되는 것이다.In TiC coating, the TiC coating layer is composed of 75 to 80 wt% of Ti and 20 to 25 wt% of C, and the mixed layer is composed of 40 to 50 wt% of Fe, the base material, and 50 to 60 wt% of TiC, the coating material.

또한 WC 코팅에서 WC 코팅층은 Ti 80 ~90 wt%, C : 10 ~ 20 wt%로 조성되고, 혼합층은 모재인 Fe 60 ~ 65 wt%과 코팅 소재인 WC는 50 ~ 60 wt%로 조성된다.In addition, in WC coating, the WC coating layer is composed of 80 to 90 wt% of Ti and 10 to 20 wt% of C, and the mixed layer is composed of 60 to 65 wt% of Fe, the base material, and 50 to 60 wt% of WC, the coating material.

본 발명의 실시예를 살펴보면,Looking at an embodiment of the present invention,

브레이크 디스크에 대한 경도시험은 KS B0811(2003)의 비커스 경도시험방법으로 실시하였고, 이때 시험하중은 98.07 mN, 상온에서 10회 실시하여 그 평균값을 경도값으로 하였다. 그 결과는 도 4와 같이 TiC는 1,448 HV, WC는 1,187 HV로 나타났다.The hardness test for the brake disc was conducted using the Vickers hardness test method of KS B0811 (2003), and the test load was 98.07 mN, performed 10 times at room temperature, and the average value was taken as the hardness value. As shown in Figure 4, the results were 1,448 HV for TiC and 1,187 HV for WC.

또한 내마모 시험은 다음과 같이 실시하였다.Additionally, the wear resistance test was conducted as follows.

시험기기는 도 8에 도시된 바와 같이 Pin-on-disk type이며, 시험방법은 시편이 장착된 치구 상부에 산화알루미늄 볼이 설치된 치구를 일정한 하중으로 접촉시킨 상태에서 상기 시편이 장착된 치구를 회전시켜 마모된 량을 측정하며, 상기 마모흔적은 원형의 띠를 이루게 되므로, 상기 원형의 띠의 직경을 증가키셔 동일한 시편에 대해 각각 반복시험을 3회 실시한다.The test device is a pin-on-disk type as shown in Figure 8, and the test method is to rotate the fixture on which the specimen is mounted while contacting the fixture with an aluminum oxide ball installed on the upper part of the fixture on which the specimen is mounted with a constant load. The amount of wear is measured, and since the wear marks form a circular band, the diameter of the circular band is increased and the test is repeated three times on the same specimen.

이때, 상기 하부시편은 주철 및 TiC 또는 WC가 코팅된 브레이크 디스크이고, 하부시편은 직경이 5 ㎜인 Al2O3 볼이며, 수직하중은 7.5 N, 회전속도는 1800 rpm(3 Hz), 사이클은 10,000회, 환경은 상온 대기중에 실시하였다. 상기 실시결과는 도 6 내지 도 7과 같다.At this time, the lower specimen is a brake disc coated with cast iron and TiC or WC, the lower specimen is an Al 2 O 3 ball with a diameter of 5 mm, the vertical load is 7.5 N, the rotation speed is 1800 rpm (3 Hz), and the cycle The test was conducted 10,000 times and in room temperature air. The results of the above implementation are shown in Figures 6 and 7.

또한 도 2의 도시된 실험결과 코팅층의 두께가 611 ㎛인 TiC가 코팅된 브레이크 디스크에 비하여 415 ㎛인 WC가 코팅된 경우, 표면경도는 WC가 코팅된 브레이크 디스크에 비하여 TiC가 코팅된 브레이크 디스크보다 더 높게 나타났으나, 내마모시험 결과 WC가 코팅된 브레이크 디스크에 비하여 TiC가 코팅된 브레이크 디스크가 더 나은 결과를 보였다.In addition, as a result of the experiment shown in Figure 2, when the coating layer thickness is 415 ㎛ coated with WC compared to the TiC-coated brake disk with a coating layer thickness of 611 ㎛, the surface hardness is higher than that of the TiC-coated brake disk compared to the WC-coated brake disk. Although it was higher, the wear resistance test results showed that TiC-coated brake discs showed better results than WC-coated brake discs.

이는 TiC가 코팅된 브레이크 디스크에 비하여 상대적으로 얇게 WC가 코팅이 되었으므로, 상기 코팅층을 통하여 시편에 가하는 압하력의 일부가 모재로 전달되어 모재에서 흡수한 결과로 해석이 된다. This is interpreted as a result of the fact that WC was coated relatively thinly compared to the TiC-coated brake disc, so part of the compressive force applied to the specimen through the coating layer was transmitted to the base material and absorbed by the base material.

상기는 본 발명의 바람직한 실시예를 참고로 설명하였으며, 상기의 실시예에 한정되지 아니하고, 상기의 실시예를 통해 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 요지를 벗어나지 않는 범위에서 다양한 변경으로 실시할 수 있는 것이다.The above has been described with reference to preferred embodiments of the present invention, and is not limited to the above embodiments, and the scope of the above embodiments does not deviate from the gist of the present invention to those skilled in the art to which the present invention pertains. It can be implemented with various changes.

삭제delete

삭제delete

Claims (5)

3D 레이저 프린팅 적용 브레이크 디스크 코팅방법에 있어서,
3D 레이저 출력은 220 ~ 240w이고, 3D 레이저 이송속도는 8 ~10 ㎜/s, 분말 공급량은 2.3 ~ 2.5 g/min, 이너가스 공급량은 3.4 ~ 3.6 L/min이고,
상기 브레이크 디스크는 모재, 혼합층 및 코팅층으로 구분되며,
상기 코팅층은 상기 모재 상부에 분말이 3D 레이저 열원에 의하여 형성되며,
상기 혼합층은 상기 코팅층을 형성하는 과정 중 용융된 분말과 상기 모재와의 반응에 의하여 형성되고,
상기 코팅층의 TiC 코팅층은 Ti : 75 ~ 80 wt% C : 20 ~ 25 wt%이고, 상기 혼합층은 Fe : 40 ~ 50 wt%, TiC : 50 ~ 60 wt%이고,
상기 TiC 코팅층의 마찰흔적 최대 깊이는 1.3276 ~ 1.2512 ㎛ 이고, 모재는 9.8700 ~ 9.4319 ㎛ 인 것을 특징으로 하는 3D 레이저 프린팅 적용 브레이크 디스크 코팅방법.
In the 3D laser printing applied brake disc coating method,
The 3D laser output is 220 to 240w, the 3D laser transport speed is 8 to 10 mm/s, the powder supply amount is 2.3 to 2.5 g/min, and the inner gas supply amount is 3.4 to 3.6 L/min.
The brake disc is divided into base material, mixed layer, and coating layer,
The coating layer is formed on the base material using a 3D laser heat source.
The mixed layer is formed by reaction between the molten powder and the base material during the process of forming the coating layer,
The TiC coating layer of the coating layer is Ti: 75 to 80 wt%, C: 20 to 25 wt%, and the mixed layer is Fe: 40 to 50 wt%, TiC: 50 to 60 wt%,
A brake disc coating method using 3D laser printing, characterized in that the maximum depth of friction marks of the TiC coating layer is 1.3276 ~ 1.2512 ㎛, and the base material is 9.8700 ~ 9.4319 ㎛.
삭제delete 3D 레이저 프린팅 적용 브레이크 디스크 코팅방법에 있어서,
3D 레이저 출력은 220 ~ 240w이고, 3D 레이저 이송속도는 8 ~10 ㎜/s, 분말 공급량은 2.3 ~ 2.5 g/min, 이너가스 공급량은 3.4 ~ 3.6 L/min이고,
상기 브레이크 디스크는 모재, 혼합층 및 코팅층으로 구분되며,
상기 코팅층은 상기 모재 상부에 분말이 3D 레이저 열원에 의하여 형성되며,
상기 혼합층은 상기 코팅층을 형성하는 과정 중 용융된 분말과 상기 모재와의 반응에 의하여 형성되고,
상기 코팅층의 WC 코팅층은 W : 80 ~ 90 wt% C : 10 ~ 20 wt%이고, 상기 혼합층은 Fe : 60 ~ 65 wt%, WC : 35 ~ 40 wt%이고,
상기 WC 코팅층의 마찰흔적 최대 깊이는 1.0519 ~ 1.0169 ㎛이고, 모재는 9.8700 ~ 9.4319 ㎛ 인 것을 특징으로 하는 3D 레이저 프린팅 적용 브레이크 디스크 코팅방법.
In the 3D laser printing applied brake disc coating method,
The 3D laser output is 220 to 240w, the 3D laser transport speed is 8 to 10 mm/s, the powder supply amount is 2.3 to 2.5 g/min, and the inner gas supply amount is 3.4 to 3.6 L/min.
The brake disc is divided into base material, mixed layer, and coating layer,
The coating layer is formed on the base material using a 3D laser heat source.
The mixed layer is formed by reaction between the molten powder and the base material during the process of forming the coating layer,
The WC coating layer of the coating layer is W: 80 to 90 wt%, C: 10 to 20 wt%, and the mixed layer is Fe: 60 to 65 wt%, WC: 35 to 40 wt%,
A brake disc coating method using 3D laser printing, characterized in that the maximum depth of friction marks of the WC coating layer is 1.0519 ~ 1.0169 ㎛, and the base material is 9.8700 ~ 9.4319 ㎛.
삭제delete 삭제delete
KR1020210191422A 2021-12-29 2021-12-29 3D laser printing applied brake disc and brake disc ceramic coating method KR102632776B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210191422A KR102632776B1 (en) 2021-12-29 2021-12-29 3D laser printing applied brake disc and brake disc ceramic coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210191422A KR102632776B1 (en) 2021-12-29 2021-12-29 3D laser printing applied brake disc and brake disc ceramic coating method

Publications (2)

Publication Number Publication Date
KR20230101370A KR20230101370A (en) 2023-07-06
KR102632776B1 true KR102632776B1 (en) 2024-02-05

Family

ID=87185933

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210191422A KR102632776B1 (en) 2021-12-29 2021-12-29 3D laser printing applied brake disc and brake disc ceramic coating method

Country Status (1)

Country Link
KR (1) KR102632776B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203601A (en) 2018-05-23 2019-11-28 ゼネラル・エレクトリック・カンパニイ Additively manufactured brake rotor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100000099A (en) * 2008-06-24 2010-01-06 황평 Brake disk coatide ceramics and the coating method
JP6245906B2 (en) 2013-09-13 2017-12-13 公益財団法人鉄道総合技術研究所 Brake disc and manufacturing method thereof
US20180180125A1 (en) 2016-12-23 2018-06-28 Hyundai America Technical Center, Inc Cold spray laser coated of iron/aluminum brake discs
IT201700086975A1 (en) * 2017-07-28 2019-01-28 Freni Brembo Spa METHOD TO BUILD A BRAKE DISC AND BRAKE DISC FOR DISC BRAKES
KR102286106B1 (en) * 2019-08-14 2021-08-06 아토메탈테크 유한회사 Coated pipe having amorphous inner surface and method of manufacturing the same
WO2021145709A1 (en) * 2020-01-17 2021-07-22 코오롱인더스트리 주식회사 Brake body and brake device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203601A (en) 2018-05-23 2019-11-28 ゼネラル・エレクトリック・カンパニイ Additively manufactured brake rotor

Also Published As

Publication number Publication date
KR20230101370A (en) 2023-07-06

Similar Documents

Publication Publication Date Title
KR102590480B1 (en) Manufacturing method of brake disc and brake disc for disc brake
US9879740B2 (en) Method for making a brake disc, brake disc for disc brake and a disc brake
US11035427B2 (en) Method for manufacturing a brake disc and brake disc for disc brakes
JP6717450B2 (en) Double-layer iron coating on light metal substrate
US7985703B2 (en) Wear-resistant coating
US11788593B2 (en) Method of making a brake disc and brake disc for a disc brake
JP7463554B2 (en) Brake disc with wear protection and corrosion protection and method for manufacturing the same
CN113122840A (en) Tough wear-resistant strengthening layer and preparation method thereof
KR102632776B1 (en) 3D laser printing applied brake disc and brake disc ceramic coating method
JP4146112B2 (en) Water cooling lance for metallurgy and manufacturing method thereof
US20230056819A1 (en) Composite material
JPH10195625A (en) Wear resistant coating parts and its manufacture
US20240084430A1 (en) Method to produce high corrosion and wear resistant cast iron components by water jet surface activation, nitrocarburization and thermal spray coating
KR100599552B1 (en) Thermal spray coating method on surface of spindle disk for abrasive wear resistance
US20160017474A1 (en) Thermo-Mechanical Fatigue Resistant Aluminum Abradable Coating
US11828342B2 (en) Devitrified metallic alloy coating for rotors
JP3262365B2 (en) Manufacturing method of brake disc
US20230013186A1 (en) Brake body for a transportation vehicle and method for producing a brake body
Azarmi et al. Development of Protective Thermal Spray Coatings for Lightweight Al Brake Rotor Discs
Xu et al. The microstructure and high-temperature sliding wear behavior of Fe-Al coating produced by high velocity arc spraying
WO2023119060A1 (en) Brake disc with nickel-free steel layer and method for making a brake disc
TWM635918U (en) Brake disc for vehicle

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant