KR102632638B1 - 하드웨어 디코더 환경에서의 초해상도 이미지 생성 방법 및 시스템 - Google Patents

하드웨어 디코더 환경에서의 초해상도 이미지 생성 방법 및 시스템 Download PDF

Info

Publication number
KR102632638B1
KR102632638B1 KR1020220000352A KR20220000352A KR102632638B1 KR 102632638 B1 KR102632638 B1 KR 102632638B1 KR 1020220000352 A KR1020220000352 A KR 1020220000352A KR 20220000352 A KR20220000352 A KR 20220000352A KR 102632638 B1 KR102632638 B1 KR 102632638B1
Authority
KR
South Korea
Prior art keywords
super
resolution image
image
resolution
macroblock
Prior art date
Application number
KR1020220000352A
Other languages
English (en)
Other versions
KR20230105150A (ko
Inventor
장준기
김성호
조성택
변우식
강인철
이택주
안재철
Original Assignee
네이버 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 네이버 주식회사 filed Critical 네이버 주식회사
Priority to KR1020220000352A priority Critical patent/KR102632638B1/ko
Publication of KR20230105150A publication Critical patent/KR20230105150A/ko
Application granted granted Critical
Publication of KR102632638B1 publication Critical patent/KR102632638B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/423Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

하드웨어 디코더 환경에서의 초해상도 이미지 생성 방법 및 시스템을 개시한다. 일실시예에 따른 초해상도 이미지 생성 방법은 입력되는 비트스트림에 대한 코덱의 메타정보를 추출하는 단계, 상기 입력되는 비트스트림을 하드웨어 디코더에 입력하여 디코딩된 이미지를 생성하는 단계, 상기 디코딩된 이미지 중 제1 이미지에 초해상도 알고리즘을 적용하여 제1 초해상도 이미지를 생성하는 단계 및 상기 제1 초해상도 이미지 및 상기 메타정보를 이용하여 상기 디코딩된 이미지 중 제2 이미지에 대한 제2 초해상도 이미지를 생성하는 단계를 포함할 수 있다.

Description

하드웨어 디코더 환경에서의 초해상도 이미지 생성 방법 및 시스템{METHOD AND SYSTEM FOR GENERATING SUPER RESOLUTION IMAGE IN HARDWARE DECODER ENVIRONMENT}
아래의 설명은 하드웨어 디코더 환경에서의 초해상도(super resolution) 이미지 생성 기술에 관한 것으로, 보다 구체적으로는 디코딩된 이미지의 메타정보를 이용하여 초해상도 이미지의 생성 효율을 개선할 수 있는 초해상도 이미지 생성 방법 및 시스템에 관한 것이다.
일반적으로 동영상에 초해상도(super resolution, SR) 알고리즘을 수행하기 위해서는 많은 연산량이 요구된다. 특히 모바일에서는 제한된 성능으로 인해 실시간 SR 알고리즘을 수행하기 어렵다는 문제점이 있다. 일례로, 라이브 동영상의 재생을 위해서는 최소한 1초당 30 프레임 정도는 디코딩을 처리해야 하나, SR 알고리즘을 적용하면 일반적으로는 모바일에서 30fps(frame per second)를 보장할 수 없다. 현재는 모바일 디바이스에서 SR 이미지 하나를 처리하기 위해 수 초(일례로, 5초)가 소요되기 때문에, 향후 모바일 디바이스의 성능 향상을 고려하더라도 현재의 SR 기술을 모바일에 적용하기에는 어려움이 따르며, 동영상의 실시간 처리가 어려운 상황이다.
[선행기술문헌]
한국공개특허 제10-2013-0095260호(공개일: 2013.08.27)
하드웨어 디코더 환경에서 기존 동영상 코덱의 메타정보를 이용하여 초해상도(super resolution) 이미지의 생성 효율을 개선할 수 있는 초해상도 이미지 생성 방법 및 시스템을 제공한다.
적어도 하나의 프로세서를 포함하는 컴퓨터 장치의 초해상도(super resolution) 이미지 생성 방법에 있어서, 상기 적어도 하나의 프로세서에 의해, 입력되는 비트스트림에 대한 코덱의 메타정보를 추출하는 단계; 상기 적어도 하나의 프로세서에 의해, 상기 입력되는 비트스트림을 하드웨어 디코더에 입력하여 디코딩된 이미지를 생성하는 단계; 상기 적어도 하나의 프로세서에 의해, 상기 디코딩된 이미지 중 제1 이미지에 초해상도 알고리즘을 적용하여 제1 초해상도 이미지를 생성하는 단계; 및 상기 적어도 하나의 프로세서에 의해, 상기 제1 초해상도 이미지 및 상기 메타정보를 이용하여 상기 디코딩된 이미지 중 제2 이미지에 대한 제2 초해상도 이미지를 생성하는 단계를 포함하는 초해상도 이미지 생성 방법을 제공한다.
일측에 따르면, 상기 메타정보는 현재 프레임과 다음 프레임간의 움직임 추정(motion estimation) 정보 및 움직임 보상(motion compensated) 정보를 포함하는 것을 특징으로 할 수 있다.
다른 측면에 따르면, 상기 제1 이미지는 상기 코덱에 의해 생성된 I 프레임에 대응하고, 상기 제2 이미지는 상기 코덱에 의해 상기 I 프레임을 참조하여 디코딩되도록 생성된 프레임에 대응하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 비트스트림의 프레임 각각은 기설정된 크기의 복수의 매크로블록으로 분할되고, 상기 제2 초해상도 이미지를 생성하는 단계는, 상기 제2 이미지를 분할하는 매크로블록 각각에 대해, 제1 타입의 매크로블록에는 상기 제1 초해상도 이미지의 대응하는 매크로블록을 적용하고, 제2 타입의 매크로블록에는 상기 제1 초해상도 이미지의 대응하는 매크로블록에 상기 메타정보로서의 움직임 추정 정보 및 움직임 보상 정보를 반영하여 생성된 매크로블록을 적용하여 상기 제2 초해상도 이미지를 생성하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 제1 타입은 움직임 추정을 사용하는 압축방식인 인터코딩의 스킵타입을 포함하고, 상기 제2 타입은 상기 인터코딩에서 상기 스킵타입을 제외한 나머지 타입을 포함하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 제2 초해상도 이미지를 생성하는 단계는, 상기 제2 이미지를 분할하는 매크로블록 중 움직임 추정을 사용하지 않는 압축방식인 인트라코딩의 인트라 타입인 제3 타입의 매크로블록에는 상기 초해상도 알고리즘을 적용하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 제2 초해상도 이미지를 생성하는 단계는, 상기 제2 이미지를 분할하는 매크로블록 중 움직임 추정을 사용하지 않는 압축방식인 인트라코딩의 인트라 타입인 제3 타입의 매크로블록에는 상기 제2 이미지의 대응하는 매크로블록을 적용하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 초해상도 이미지 생성 방법은 상기 적어도 하나의 프로세서에 의해, 상기 제1 초해상도 이미지를 SR DPB(Super Resolution Decoded Picture Buffer)에 저장하는 단계를 더 포함하고, 상기 제2 초해상도 이미지를 생성하는 단계는, 상기 SR DPB에 저장된 상기 제1 초해상도 이미지를 참조하여 상기 제2 초해상도 이미지를 생성하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 초해상도 이미지 생성 방법은 상기 적어도 하나의 프로세서에 의해, 상기 제1 초해상도 이미지, 상기 제2 초해상도 이미지 및 상기 메타정보를 이용하여 상기 디코딩된 이미지 중 제3 이미지에 대한 제3 초해상도 이미지를 생성하는 단계를 더 포함할 수 있다.
컴퓨터 장치와 결합되어 상기 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장된 컴퓨터 프로그램을 제공한다.
상기 방법을 컴퓨터 장치에 실행시키기 위한 프로그램이 기록되어 있는 컴퓨터 판독 가능한 기록매체를 제공한다.
컴퓨터에서 판독 가능한 명령을 실행하도록 구현되는 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서에 의해, 입력되는 비트스트림에 대한 코덱의 메타정보를 추출하고, 상기 입력되는 비트스트림을 하드웨어 디코더에 입력하여 디코딩된 이미지를 생성하고, 상기 디코딩된 이미지 중 제1 이미지에 초해상도 알고리즘을 적용하여 제1 초해상도 이미지를 생성하고, 상기 제1 초해상도 이미지 및 상기 메타정보를 이용하여 상기 디코딩된 이미지 중 제2 이미지에 대한 제2 초해상도 이미지를 생성하는 것을 특징으로 하는 컴퓨터 장치를 제공한다.
하드웨어 디코더 환경에서 기존 동영상 코덱의 메타정보를 이용하여 초해상도(super resolution) 이미지의 생성 효율을 개선할 수 있다.
하드웨어 디코더 환경에서 적용 가능하기 때문에, 본 발명의 실시예들에 따른 초해상도 이미지 생성 방법 및 시스템을 일반적으로 모바일 운영체제에서 제공하는 시스템 기본 플레이어를 활용하여 구현할 수 있다.
하드웨어 디코더를 사용하기 때문에, 소프트웨어 디코더를 사용하는 경우보다 저전력 및 저발열 등의 장점을 가진다.
도 1은 본 발명의 일실시예에 따른 네트워크 환경의 예를 도시한 도면이다.
도 2는 본 발명의 일실시예에 따른 컴퓨터 장치의 예를 도시한 블록도이다.
도 3은 본 발명의 일실시예에 따른 초해상도 이미지 생성 시스템의 예를 도시한 도면이다.
도 4 내지 도 6은 본 발명의 일실시예에 있어서, 매크로블록을 설명하기 위한 도면들이다.
도 7은 본 발명의 일실시예에 따른 초해상도 이미지 생성 방법의 예를 도시한 흐름도이다.
이하, 실시예를 첨부한 도면을 참조하여 상세히 설명한다.
본 발명의 실시예들에 따른 초해상도(super resolution, SR) 이미지 생성 시스템은 적어도 하나의 컴퓨터 장치에 의해 구현될 수 있으며, 본 발명의 실시예들에 따른 초해상도 이미지 생성 방법은 초해상도 이미지 생성 시스템을 구현하는 적어도 하나의 컴퓨터 장치를 통해 수행될 수 있다. 컴퓨터 장치에는 본 발명의 일실시예에 따른 컴퓨터 프로그램이 설치 및 구동될 수 있고, 컴퓨터 장치는 구동된 컴퓨터 프로그램의 제어에 따라 본 발명의 실시예들에 따른 초해상도 이미지 생성 방법을 수행할 수 있다. 상술한 컴퓨터 프로그램은 컴퓨터 장치와 결합되어 초해상도 이미지 생성 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장될 수 있다.
도 1은 본 발명의 일실시예에 따른 네트워크 환경의 예를 도시한 도면이다. 도 1의 네트워크 환경은 복수의 전자 기기들(110, 120, 130, 140), 복수의 서버들(150, 160) 및 네트워크(170)를 포함하는 예를 나타내고 있다. 이러한 도 1은 발명의 설명을 위한 일례로 전자 기기의 수나 서버의 수가 도 1과 같이 한정되는 것은 아니다. 또한, 도 1의 네트워크 환경은 본 실시예들에 적용 가능한 환경들 중 하나의 예를 설명하는 것일 뿐, 본 실시예들에 적용 가능한 환경이 도 1의 네트워크 환경으로 한정되는 것은 아니다.
복수의 전자 기기들(110, 120, 130, 140)은 컴퓨터 장치로 구현되는 고정형 단말이거나 이동형 단말일 수 있다. 복수의 전자 기기들(110, 120, 130, 140)의 예를 들면, 스마트폰(smart phone), 휴대폰, 네비게이션, 컴퓨터, 노트북, 디지털방송용 단말, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 태블릿 PC 등이 있다. 일례로 도 1에서는 전자 기기(110)의 예로 스마트폰의 형상을 나타내고 있으나, 본 발명의 실시예들에서 전자 기기(110)는 실질적으로 무선 또는 유선 통신 방식을 이용하여 네트워크(170)를 통해 다른 전자 기기들(120, 130, 140) 및/또는 서버(150, 160)와 통신할 수 있는 다양한 물리적인 컴퓨터 장치들 중 하나를 의미할 수 있다.
통신 방식은 제한되지 않으며, 네트워크(170)가 포함할 수 있는 통신망(일례로, 이동통신망, 유선 인터넷, 무선 인터넷, 방송망)을 활용하는 통신 방식뿐만 아니라 기기들간의 근거리 무선 통신 역시 포함될 수 있다. 예를 들어, 네트워크(170)는, PAN(personal area network), LAN(local area network), CAN(campus area network), MAN(metropolitan area network), WAN(wide area network), BBN(broadband network), 인터넷 등의 네트워크 중 하나 이상의 임의의 네트워크를 포함할 수 있다. 또한, 네트워크(170)는 버스 네트워크, 스타 네트워크, 링 네트워크, 메쉬 네트워크, 스타-버스 네트워크, 트리 또는 계층적(hierarchical) 네트워크 등을 포함하는 네트워크 토폴로지 중 임의의 하나 이상을 포함할 수 있으나, 이에 제한되지 않는다.
서버(150, 160) 각각은 복수의 전자 기기들(110, 120, 130, 140)과 네트워크(170)를 통해 통신하여 명령, 코드, 파일, 컨텐츠, 서비스 등을 제공하는 컴퓨터 장치 또는 복수의 컴퓨터 장치들로 구현될 수 있다. 예를 들어, 서버(150)는 네트워크(170)를 통해 접속한 복수의 전자 기기들(110, 120, 130, 140)로 서비스(일례로, 컨텐츠 제공 서비스, 그룹 통화 서비스(또는 음성 컨퍼런스 서비스), 메시징 서비스, 메일 서비스, 소셜 네트워크 서비스, 지도 서비스, 번역 서비스, 금융 서비스, 결제 서비스, 검색 서비스 등)를 제공하는 시스템일 수 있다.
도 2는 본 발명의 일실시예에 따른 컴퓨터 장치의 예를 도시한 블록도이다. 앞서 설명한 복수의 전자 기기들(110, 120, 130, 140) 각각이나 서버들(150, 160) 각각은 도 2를 통해 도시된 컴퓨터 장치(200)에 의해 구현될 수 있다.
이러한 컴퓨터 장치(200)는 도 2에 도시된 바와 같이, 메모리(210), 프로세서(220), 통신 인터페이스(230) 그리고 입출력 인터페이스(240)를 포함할 수 있다. 메모리(210)는 컴퓨터에서 판독 가능한 기록매체로서, RAM(random access memory), ROM(read only memory) 및 디스크 드라이브와 같은 비소멸성 대용량 기록장치(permanent mass storage device)를 포함할 수 있다. 여기서 ROM과 디스크 드라이브와 같은 비소멸성 대용량 기록장치는 메모리(210)와는 구분되는 별도의 영구 저장 장치로서 컴퓨터 장치(200)에 포함될 수도 있다. 또한, 메모리(210)에는 운영체제와 적어도 하나의 프로그램 코드가 저장될 수 있다. 이러한 소프트웨어 구성요소들은 메모리(210)와는 별도의 컴퓨터에서 판독 가능한 기록매체로부터 메모리(210)로 로딩될 수 있다. 이러한 별도의 컴퓨터에서 판독 가능한 기록매체는 플로피 드라이브, 디스크, 테이프, DVD/CD-ROM 드라이브, 메모리 카드 등의 컴퓨터에서 판독 가능한 기록매체를 포함할 수 있다. 다른 실시예에서 소프트웨어 구성요소들은 컴퓨터에서 판독 가능한 기록매체가 아닌 통신 인터페이스(230)를 통해 메모리(210)에 로딩될 수도 있다. 예를 들어, 소프트웨어 구성요소들은 네트워크(170)를 통해 수신되는 파일들에 의해 설치되는 컴퓨터 프로그램에 기반하여 컴퓨터 장치(200)의 메모리(210)에 로딩될 수 있다.
프로세서(220)는 기본적인 산술, 로직 및 입출력 연산을 수행함으로써, 컴퓨터 프로그램의 명령을 처리하도록 구성될 수 있다. 명령은 메모리(210) 또는 통신 인터페이스(230)에 의해 프로세서(220)로 제공될 수 있다. 예를 들어 프로세서(220)는 메모리(210)와 같은 기록 장치에 저장된 프로그램 코드에 따라 수신되는 명령을 실행하도록 구성될 수 있다.
통신 인터페이스(230)은 네트워크(170)를 통해 컴퓨터 장치(200)가 다른 장치(일례로, 앞서 설명한 저장 장치들)와 서로 통신하기 위한 기능을 제공할 수 있다. 일례로, 컴퓨터 장치(200)의 프로세서(220)가 메모리(210)와 같은 기록 장치에 저장된 프로그램 코드에 따라 생성한 요청이나 명령, 데이터, 파일 등이 통신 인터페이스(230)의 제어에 따라 네트워크(170)를 통해 다른 장치들로 전달될 수 있다. 역으로, 다른 장치로부터의 신호나 명령, 데이터, 파일 등이 네트워크(170)를 거쳐 컴퓨터 장치(200)의 통신 인터페이스(230)를 통해 컴퓨터 장치(200)로 수신될 수 있다. 통신 인터페이스(230)를 통해 수신된 신호나 명령, 데이터 등은 프로세서(220)나 메모리(210)로 전달될 수 있고, 파일 등은 컴퓨터 장치(200)가 더 포함할 수 있는 저장 매체(상술한 영구 저장 장치)로 저장될 수 있다.
입출력 인터페이스(240)는 입출력 장치(250)와의 인터페이스를 위한 수단일 수 있다. 예를 들어, 입력 장치는 마이크, 키보드 또는 마우스 등의 장치를, 그리고 출력 장치는 디스플레이, 스피커와 같은 장치를 포함할 수 있다. 다른 예로 입출력 인터페이스(240)는 터치스크린과 같이 입력과 출력을 위한 기능이 하나로 통합된 장치와의 인터페이스를 위한 수단일 수도 있다. 입출력 장치(250)는 컴퓨터 장치(200)와 하나의 장치로 구성될 수도 있다.
또한, 다른 실시예들에서 컴퓨터 장치(200)는 도 2의 구성요소들보다 더 적은 혹은 더 많은 구성요소들을 포함할 수도 있다. 그러나, 대부분의 종래기술적 구성요소들을 명확하게 도시할 필요성은 없다. 예를 들어, 컴퓨터 장치(200)는 상술한 입출력 장치(250) 중 적어도 일부를 포함하도록 구현되거나 또는 트랜시버(transceiver), 데이터베이스 등과 같은 다른 구성요소들을 더 포함할 수도 있다.
도 3은 본 발명의 일실시예에 따른 초해상도 이미지 생성 시스템의 예를 도시한 도면이다. 도 3의 실시예에서 초해상도 이미지 생성 시스템(300)은 하드웨어 디코더(310), 메타정보 생성부(320) 및 초해상도 적용부(330)를 포함할 수 있다.
하드웨어 디코더(310)는 일례로, 하드웨어 H264 규격에 따른 디코더를 포함할 수 있다. 이러한 하드웨어 디코더(310)는 디코딩된 이전 프레임을 참조하기 위한 DPB(Decoded Picture Buffer, 311)를 포함할 수 있다. 하드웨어 디코더(310)는 비트스트림(340)을 입력받아 디코딩하여 디코딩된 이미지들(일례로, 도 3에 도시된 'Decoded Picture')을 출력할 수 있다.
메타정보 생성부(320)는 비트스트림(340)에 대한 코덱의 메타정보를 추출할 수 있다. 추출된 메타정보는 초해상도의 적용을 위한 메타정보(일례로, 도 3에 도시된 'SR Meta')로서 활용될 수 있다.
초해상도 적용부(330)는 하드웨어 디코더(310)에서 출력되는 디코딩된 이미지들을 입력받아 디코딩된 이미지들에 초해상도를 적용할 수 있다. 이때, 초해상도 적용부(330)는 디코딩된 이미지의 타입에 따라 SR을 적용할 수 있다. 일례로, 초해상도 적용부(330)는 코덱에 의해 생성된 I 프레임에 대응하는 제1 이미지에는 초해상도 알고리즘을 적용하여 제1 초해상도 이미지를 생성할 수 있다. 초해상도 알고리즘이나 초해상도 알고리즘을 이용하여 초해상도 이미지를 생성하는 기술 자체는 이미 잘 알려져 있기 때문에 구체적인 설명은 생략한다.
한편, 초해상도 적용부(330)는 코덱에 의해 I 프레임을 참조하여 디코딩되도록 생성된 프레임(일례로, P 프레임)에 대응하는 제2 이미지에 대해서는 제1 초해상도 이미지와 메타정보 생성부(320)에 의해 제공되는 메타정보를 이용하여 제2 초해상도 이미지를 생성할 수 있다. 이는 일례로, P 프레임에 대응하는 이미지가 I 프레임과 메타정보를 이용하여 디코딩된다는 점에 착안한 것으로, 초해상도 적용부(330)는 제2 이미지에 초해상도 알고리즘을 적용하는 것이 아니라, 이미 생성된 제1 초해상도 이미지를 메타정보에 따라 참조하여 제2 이미지에 대한 제2 초해상도 이미지를 생성할 수 있다.
보다 구체적인 예로, 비트스트림(340)의 프레임 각각은 기설정된 크기의 복수의 매크로블록으로 분할될 수 있다. 이때, 초해상도 적용부(330)는 제2 이미지를 분할하는 매크로블록 각각에 대해, 제1 타입의 매크로블록에는 제1 초해상도 이미지의 대응하는 매크로블록을 적용하고, 제2 타입의 매크로블록에는 제1 초해상도 이미지의 대응하는 매크로블록에 메타정보로서의 움직임 추정 정보 및 움직임 보상 정보를 반영하여 생성된 매크로블록을 적용하여 제2 초해상도 이미지를 생성할 수 있다. 여기서, 제1 타입은 움직임 추정을 사용하는 압축방식인 인터(inter)코딩의 스킵타입을 포함할 수 있고, 제2 타입은 인터코딩에서 스킵타입을 제외한 나머지 타입을 포함할 수 있다. 이미 잘 알려진 바와 같이 스킵타입의 매크로블록은 매크로블록을 인터코딩할 때, PMV(Predicted Motion Vector)와 예측오류데이터가 0인 블록을 의미할 수 있다. 즉, 추정된 움직임벡터가 실제 움직임벡터와 일치하고 예측오류데이터도 없는 매크로블록의 타입이 스킵타입으로 결정될 수 있다. 따라서 스킵타입의 매크로블록을 제1 초해상도 이미지의 대응하는 매크로블록과 실질적으로 동일하게 취급할 수 있으며, 초해상도 적용부(330)는 초해상도 알고리즘의 적용 없이 해당 매크로블록의 초해상도 이미지를 얻을 수 있게 된다. 또한, 제2 타입의 매크로블록에도 초해상도 알고리즘을 적용할 필요 없이 제1 초해상도 이미지의 대응하는 매크로블록에 움직임 추정 정보 및 움직임 보상 정보를 반영하는 것만으로 해당 매크로블록에 대한 초해상도 이미지를 얻을 수 있게 된다. 따라서, 제2 이미지가 포함하는 매크로블록의 대부분을 차지하는 제1 타입 및 제2 타입의 매크로블록들에 대한 초해상도 이미지들을 초해상도 알고리즘의 적용 없이 얻을 수 있게 된다.
한편, 매크로블록은 움직임 추정을 사용하지 않는 압축방식인 인트라(intra)코딩의 인트라 타입인 제3 타입을 가질 수도 있다. 이 경우, 초해상도 적용부(330)는 제3 타입의 매크로블록에 초해상도 알고리즘을 적용하여 해당 매크로블록에 대한 초해상도 이미지를 얻을 수 있다. 반면, 실시예에 따라 초해상도 적용부(330)는 더 좋은 성능을 위해, 제3 타입의 매크로블록에 초해상도 알고리즘을 적용하지 않고, 로우(low) 해상도의 이미지인 제2 이미지의 대응하는 매크로블록을 그대로 적용할 수도 있다. 이 경우 생성되는 제2 초해상도 이미지의 해상도는 약간 낮아질 수 있으나, 초해상도 알고리즘의 적용에 따른 연산량을 줄일 수 있기 때문에 초해상도 이미지 생성의 성능을 큰 폭으로 증가시킬 수 있다.
한편, 초해상도 적용부(330)는 이미 생성된 초해상도 이미지를 참조할 수 있도록 생성된 초해상도 이미지를 저장하는 SR DPB(Super Resolution Decoded Picture Buffer, 331)를 포함할 수 있다. 일례로, 초해상도 적용부(330)는 제2 이미지의 제2 타입의 매크로블록에 대한 초해상도 이미지를 얻기 위해, 제1 초해상도 이미지의 대응하는 매크로블록을 참조할 수 있다. 이 경우, 초해상도 적용부(330)는 SR DPB(331)에 저장된 제1 초해상도 이미지에서 대응하는 매크로블록의 초해상도 이미지를 얻을 수 있다.
한편, P 프레임은 이전의 I 프레임과 P 프레임을 참조하여 프레임을 부호화하는 프레임이다. 따라서, 초해상도 적용부(330)는 제2 이미지의 다음 이미지인 제3 이미지에 대한 제3 초해상도 이미지를 I 프레임에 대응하는 제1 이미지를 통해 생성된 제1 초해상도 이미지와 이전 P 프레임에 대응하는 제2 이미지를 통해 생성된 제2 초해상도 이미지, 그리고 메타정보를 이용하여 생성할 수 있다.
한편, 초해상도 적용부(330)는 입력되는 디코딩된 이미지마다 대응하는 초해상도 이미지(350)를 생성하여 출력할 수 있다.
도 4 내지 도 6은 본 발명의 일실시예에 있어서, 매크로블록을 설명하기 위한 도면들이다.
도 4는 디코딩된 이미지의 예를 나타내고 있으며, 도 5는 I 프레임의 매크로블록들을 나타내고 있다. 이때, I 프레임의 모든 매크로블록의 타입은 앞서 설명한 제3 타입일 수 있으며, 매크로블록 각각에 대해 초해상도 알고리즘을 적용하여 초해상도 이미지가 생성될 수 있다.
도 6은 P 프레임의 예로서, 숫자 2가 적힌 매크로블록은 제2 타입의 매크로블록의 예를, 숫자 3이 적힌 매크로블록은 제3 타입의 매크로블록의 예를, 숫자가 적혀있지 않은 매크로블록은 제1 타입의 매크로블록의 예를 각각 나타내고 있다.
이미 설명한 바와 같이, 초해상도 적용부(330)는 제1 타입의 매크로블록에는 제1 초해상도 이미지의 대응하는 매크로블록을 그대로 적용함으로써, 초해상도 알고리즘의 적용 없이도 해당 매크로블록에 대응하는 초해상도 이미지를 얻을 수 있다. 또한, 초해상도 적용부(330)는 제2 타입의 매크로블록에는 제1 초해상도 이미지의 대응하는 매크로블록에 메타정보로서의 움직임 추정 정보 및 움직임 보상 정보를 반영함으로써 해당 매크로블록에 대응하는 초해상도 이미지를 얻을 수 있다. 또한, 초해상도 적용부(330)는 제3 타입의 매크로블록에는 초해상도 알고리즘을 적용하여 초해상도 이미지를 얻거나 또는 성능 향상을 위해, 단순히 로우 해상도의 이미지의 대응하는 매크로블록을 그대로 적용할 수 있다. 이러한 방식으로, 초해상도 적용부(330)는 도 6의 P 프레임에 대응하는 이미지에 대한 초해상도 이미지를 생성할 수 있게 된다.
도 7은 본 발명의 일실시예에 따른 초해상도 이미지 생성 방법의 예를 도시한 흐름도이다. 본 실시예에 따른 초해상도 이미지 생성 방법은 초해상도 이미지 생성 시스템(300)을 구현하는 컴퓨터 장치(200)에 의해 수행될 수 있다. 이때, 컴퓨터 장치(200)의 프로세서(220)는 메모리(210)가 포함하는 운영체제의 코드나 적어도 하나의 컴퓨터 프로그램의 코드에 따른 제어 명령(instruction)을 실행하도록 구현될 수 있다. 여기서, 프로세서(220)는 컴퓨터 장치(200)에 저장된 코드가 제공하는 제어 명령에 따라 컴퓨터 장치(200)가 도 7의 방법이 포함하는 단계들(710 내지 760)을 수행하도록 컴퓨터 장치(200)를 제어할 수 있다.
단계(710)에서 컴퓨터 장치(200)는 입력되는 비트스트림에 대한 코덱의 메타정보를 추출할 수 있다. 일례로, 앞서 도 3에서는 메타정보 생성부(320)를 이용하여 비트스트림의 메타정보를 추출하여 초해상도를 위한 메타정보를 생성하는 예를 설명한 바 있다. 이러한 메타정보는 현재 프레임과 다음 프레임간의 움직임 추정 정보 및 움직임 보상 정보를 포함할 수 있다.
단계(720)에서 컴퓨터 장치(200)는 입력되는 비트스트림을 하드웨어 디코더에 입력하여 디코딩된 이미지를 생성할 수 있다. 하드웨어 디코더는 일례로, 앞서 도 3을 통해 설명한 하드웨어 디코더(310)에 대응할 수 있다. 하드웨어 디코더는 입력되는 비트스트림에 대해 프레임 단위로 디코딩된 이미지를 출력할 수 있다.
단계(730)에서 컴퓨터 장치(200)는 디코딩된 이미지 중 제1 이미지에 초해상도 알고리즘을 적용하여 제1 초해상도 이미지를 생성할 수 있다. 여기서, 제1 이미지는 코덱에 의해 생성된 I 프레임에 대응할 수 있다. 컴퓨터 장치(200)는 이러한 I 프레임에 대응하는 이미지마다 초해상도 알고리즘을 적용하여 제1 초해상도 이미지를 생성할 수 있다. I 프레임들 사이에는 I 프레임을 참조하여 디코딩되도록 생성된 프레임들(일례로, P 프레임들)이 존재할 수 있으며, 이러한 P 프레임들에 대응하는 디코딩된 이미지가 이후 설명될 제2 이미지일 수 있다.
단계(740)에서 컴퓨터 장치(200)는 제1 초해상도 이미지를 SR DPB(Super Resolution Decoded Picture Buffer)에 저장할 수 있다. SR DPB에 저장된 제1 초해상도 이미지는 단계(750)에서 제2 초해상도 이미지를 생성하기 위해 참조될 수 있다.
단계(750)에서 컴퓨터 장치(200)는 제1 초해상도 이미지 및 메타정보를 이용하여 디코딩된 이미지 중 제2 이미지에 대한 제2 초해상도 이미지를 생성할 수 있다. 앞서 설명한 바와 같이, 비트스트림의 프레임 각각은 기설정된 크기의 복수의 매크로블록으로 분할될 수 있다. 이때, 컴퓨터 장치(200)는 제2 이미지를 분할하는 매크로블록 각각에 대해 초해상도 이미지를 생성할 수 있다. 이 경우, 컴퓨터 장치(200)는 제1 타입의 매크로블록에는 제1 초해상도 이미지의 대응하는 매크로블록을 적용함으로써, 제1 타입의 매크로블록에 해당하는 초해상도 이미지를 생성할 수 있다. 또한, 컴퓨터 장치(200)는 제2 타입의 매크로블록에는 제1 초해상도 이미지의 대응하는 매크로블록에 메타정보로서의 움직임 추정 정보 및 움직임 보상 정보를 반영하여 생성된 매크로블록을 적용함으로써, 제2 타입의 매크로블록에 해당하는 초해상도 이미지를 생성할 수 있다. 여기서, 제1 타입은 움직임 추정을 사용하는 압축방식인 인터코딩의 스킵타입을 포함할 수 있으며, 제2 타입은 인터코딩에서 스킵타입을 제외한 나머지 타입을 포함할 수 있다. 인터코딩은 앞서 설명한 바와 같이, 움직임 추정을 사용하는 압축방식이며, 이때 스킵타입은 PMV(Predicted Motion Vector)와 예측오류데이터가 0인 매크로블록에 할당되는 타입으로, 나머지 타입은 PMV(Predicted Motion Vector)와 예측오류데이터가 0이 아닌 매크로블록에 할당되는 타입을 의미할 수 있다.
이처럼, 컴퓨터 장치(200)는 단계(750)에서 SR DPB에 저장된 제1 초해상도 이미지를 참조하여 제2 초해상도 이미지를 생성할 수 있다.
단계(760)에서 컴퓨터 장치(200)는 제1 초해상도 이미지, 제2 초해상도 이미지 및 메타정보를 이용하여 디코딩된 이미지 중 제3 이미지에 대한 제3 초해상도 이미지를 생성할 수 있다. 앞서 설명한 바와 같이, P 프레임은 이전의 I 프레임과 P 프레임을 참조하여 프레임을 부호화하는 프레임이다. 따라서, 컴퓨터 장치(200)는 제2 이미지의 다음 P 프레임의 이미지인 제3 이미지에 대한 제3 초해상도 이미지를 I 프레임에 대응하는 제1 이미지를 통해 생성된 제1 초해상도 이미지와 이전 P 프레임에 대응하는 제2 이미지를 통해 생성된 제2 초해상도 이미지, 그리고 메타정보를 이용하여 생성할 수 있다.
이와 같이, 본 발명의 실시예들에 따르면, 하드웨어 디코더 환경에서 기존 동영상 코덱의 메타정보를 이용하여 초해상도 이미지의 생성 효율을 개선할 수 있다. 또한, 하드웨어 디코더 환경에서 적용 가능하기 때문에, 본 발명의 실시예들에 따른 초해상도 이미지 생성 방법 및 시스템을 일반적으로 모바일 운영체제에서 제공하는 시스템 기본 플레이어를 활용하여 구현할 수 있다. 또한, 하드웨어 디코더를 사용하기 때문에, 소프트웨어 디코더를 사용하는 경우보다 저전력 및 저발열 등의 장점을 가진다.
이상에서 설명된 시스템 또는 장치는 하드웨어 구성요소, 또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 어플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치에 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 매체는 컴퓨터로 실행 가능한 프로그램을 계속 저장하거나, 실행 또는 다운로드를 위해 임시 저장하는 것일 수도 있다. 또한, 매체는 단일 또는 수개 하드웨어가 결합된 형태의 다양한 기록수단 또는 저장수단일 수 있는데, 어떤 컴퓨터 시스템에 직접 접속되는 매체에 한정되지 않고, 네트워크 상에 분산 존재하는 것일 수도 있다. 매체의 예시로는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등을 포함하여 프로그램 명령어가 저장되도록 구성된 것이 있을 수 있다. 또한, 다른 매체의 예시로, 애플리케이션을 유통하는 앱 스토어나 기타 다양한 소프트웨어를 공급 내지 유통하는 사이트, 서버 등에서 관리하는 기록매체 내지 저장매체도 들 수 있다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (15)

  1. 적어도 하나의 프로세서를 포함하는 컴퓨터 장치의 초해상도(super resolution) 이미지 생성 방법에 있어서,
    상기 적어도 하나의 프로세서에 의해, 입력되는 비트스트림에 대한 코덱의 메타정보를 추출하는 단계;
    상기 적어도 하나의 프로세서에 의해, 상기 입력되는 비트스트림을 하드웨어 디코더에 입력하여 디코딩된 이미지를 생성하는 단계;
    상기 적어도 하나의 프로세서에 의해, 상기 디코딩된 이미지 중 제1 이미지에 초해상도 알고리즘을 적용하여 제1 초해상도 이미지를 생성하는 단계; 및
    상기 적어도 하나의 프로세서에 의해, 상기 초해상도 알고리즘을 적용하여 생성된 상기 제1 초해상도 이미지와 상기 메타정보를 이용하여, 상기 디코딩된 이미지 중 제2 이미지에 대한 제2 초해상도 이미지를 생성하는 단계
    를 포함하는 초해상도 이미지 생성 방법.
  2. 제1항에 있어서,
    상기 메타정보는 현재 프레임과 다음 프레임간의 움직임 추정(motion estimation) 정보 및 움직임 보상(motion compensated) 정보를 포함하는 것을 특징으로 하는 초해상도 이미지 생성 방법.
  3. 제1항에 있어서,
    상기 제1 이미지는 상기 코덱에 의해 생성된 I 프레임에 대응하고,
    상기 제2 이미지는 상기 코덱에 의해 상기 I 프레임을 참조하여 디코딩되도록 생성된 프레임에 대응하는 것
    을 특징으로 하는 초해상도 이미지 생성 방법.
  4. 제1항에 있어서,
    상기 비트스트림의 프레임 각각은 기설정된 크기의 복수의 매크로블록으로 분할되고,
    상기 제2 초해상도 이미지를 생성하는 단계는,
    상기 제2 이미지를 분할하는 매크로블록 각각에 대해, 제1 타입의 매크로블록에는 상기 제1 초해상도 이미지의 대응하는 매크로블록을 적용하고, 제2 타입의 매크로블록에는 상기 제1 초해상도 이미지의 대응하는 매크로블록에 상기 메타정보로서의 움직임 추정 정보 및 움직임 보상 정보를 반영하여 생성된 매크로블록을 적용하여 상기 제2 초해상도 이미지를 생성하는 것
    을 특징으로 하는 초해상도 이미지 생성 방법.
  5. 제4항에 있어서,
    상기 제1 타입은 움직임 추정을 사용하는 압축방식인 인터코딩의 스킵타입을 포함하고,
    상기 제2 타입은 상기 인터코딩에서 상기 스킵타입을 제외한 나머지 타입을 포함하는 것
    을 특징으로 하는 초해상도 이미지 생성 방법.
  6. 제4항에 있어서,
    상기 제2 초해상도 이미지를 생성하는 단계는,
    상기 제2 이미지를 분할하는 매크로블록 중 움직임 추정을 사용하지 않는 압축방식인 인트라코딩의 인트라 타입인 제3 타입의 매크로블록에는 상기 초해상도 알고리즘을 적용하는 것을 특징으로 하는 초해상도 이미지 생성 방법.
  7. 제4항에 있어서,
    상기 제2 초해상도 이미지를 생성하는 단계는,
    상기 제2 이미지를 분할하는 매크로블록 중 움직임 추정을 사용하지 않는 압축방식인 인트라코딩의 인트라 타입인 제3 타입의 매크로블록에는 상기 제2 이미지의 대응하는 매크로블록을 적용하는 것을 특징으로 하는 초해상도 이미지 생성 방법.
  8. 제1항에 있어서,
    상기 적어도 하나의 프로세서에 의해, 상기 제1 초해상도 이미지를 SR DPB(Super Resolution Decoded Picture Buffer)에 저장하는 단계
    를 더 포함하고,
    상기 제2 초해상도 이미지를 생성하는 단계는,
    상기 SR DPB에 저장된 상기 제1 초해상도 이미지를 참조하여 상기 제2 초해상도 이미지를 생성하는 것
    을 특징으로 하는 초해상도 이미지 생성 방법.
  9. 제1항에 있어서,
    상기 적어도 하나의 프로세서에 의해, 상기 제1 초해상도 이미지, 상기 제2 초해상도 이미지 및 상기 메타정보를 이용하여 상기 디코딩된 이미지 중 제3 이미지에 대한 제3 초해상도 이미지를 생성하는 단계
    를 더 포함하는 초해상도 이미지 생성 방법.
  10. 컴퓨터 장치와 결합되어 제1항 내지 제9항 중 어느 한 항의 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장된 컴퓨터 프로그램.
  11. 제1항 내지 제9항 중 어느 한 항의 방법을 컴퓨터 장치에 실행시키기 위한 컴퓨터 프로그램이 기록되어 있는 컴퓨터 판독 가능한 기록매체.
  12. 컴퓨터에서 판독 가능한 명령을 실행하도록 구현되는 적어도 하나의 프로세서
    를 포함하고,
    상기 적어도 하나의 프로세서에 의해,
    입력되는 비트스트림에 대한 코덱의 메타정보를 추출하고,
    상기 입력되는 비트스트림을 하드웨어 디코더에 입력하여 디코딩된 이미지를 생성하고,
    상기 디코딩된 이미지 중 제1 이미지에 초해상도 알고리즘을 적용하여 제1 초해상도 이미지를 생성하고,
    상기 초해상도 알고리즘을 적용하여 생성된 상기 제1 초해상도 이미지와 상기 메타정보를 이용하여, 상기 디코딩된 이미지 중 제2 이미지에 대한 제2 초해상도 이미지를 생성하는 것
    을 특징으로 하는 컴퓨터 장치.
  13. 제12항에 있어서,
    상기 비트스트림의 프레임 각각은 기설정된 크기의 복수의 매크로블록으로 분할되고,
    상기 적어도 하나의 프로세서에 의해,
    상기 제2 이미지를 분할하는 매크로블록 각각에 대해, 제1 타입의 매크로블록에는 상기 제1 초해상도 이미지의 대응하는 매크로블록을 적용하고, 제2 타입의 매크로블록에는 상기 제1 초해상도 이미지의 대응하는 매크로블록에 상기 메타정보로서의 움직임 추정 정보 및 움직임 보상 정보를 반영하여 생성된 매크로블록을 적용하여 상기 제2 초해상도 이미지를 생성하는 것
    을 특징으로 하는 컴퓨터 장치.
  14. 제12항에 있어서,
    상기 적어도 하나의 프로세서에 의해,
    상기 제1 초해상도 이미지를 SR DPB(Super Resolution Decoded Picture Buffer)에 저장하고,
    상기 SR DPB에 저장된 상기 제1 초해상도 이미지를 참조하여 상기 제2 초해상도 이미지를 생성하는 것
    을 특징으로 하는 컴퓨터 장치.
  15. 제12항에 있어서,
    상기 적어도 하나의 프로세서에 의해,
    상기 제1 초해상도 이미지, 상기 제2 초해상도 이미지 및 상기 메타정보를 이용하여 상기 디코딩된 이미지 중 제3 이미지에 대한 제3 초해상도 이미지를 생성하는 것
    을 특징으로 하는 컴퓨터 장치.
KR1020220000352A 2022-01-03 2022-01-03 하드웨어 디코더 환경에서의 초해상도 이미지 생성 방법 및 시스템 KR102632638B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220000352A KR102632638B1 (ko) 2022-01-03 2022-01-03 하드웨어 디코더 환경에서의 초해상도 이미지 생성 방법 및 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220000352A KR102632638B1 (ko) 2022-01-03 2022-01-03 하드웨어 디코더 환경에서의 초해상도 이미지 생성 방법 및 시스템

Publications (2)

Publication Number Publication Date
KR20230105150A KR20230105150A (ko) 2023-07-11
KR102632638B1 true KR102632638B1 (ko) 2024-02-01

Family

ID=87159971

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220000352A KR102632638B1 (ko) 2022-01-03 2022-01-03 하드웨어 디코더 환경에서의 초해상도 이미지 생성 방법 및 시스템

Country Status (1)

Country Link
KR (1) KR102632638B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423948B2 (ja) * 2006-03-09 2014-02-19 日本電気株式会社 動画像符号化方法、およびこれを用いた装置とプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2099898A6 (ko) * 1970-07-02 1972-03-17 Hehl Karl
KR20100038694A (ko) * 2008-10-06 2010-04-15 인하대학교 산학협력단 초 해상도를 사용한 부호화기, 복호화기 및 그 방법
US9602814B2 (en) * 2010-01-22 2017-03-21 Thomson Licensing Methods and apparatus for sampling-based super resolution video encoding and decoding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423948B2 (ja) * 2006-03-09 2014-02-19 日本電気株式会社 動画像符号化方法、およびこれを用いた装置とプログラム

Also Published As

Publication number Publication date
KR20230105150A (ko) 2023-07-11

Similar Documents

Publication Publication Date Title
US8320448B2 (en) Encoder with multiple re-entry and exit points
US11057628B2 (en) Effective intra encoding for screen data
KR101459397B1 (ko) 움직임 보상 비디오 코딩에 있어서, 이미지 블록들을 비교하기 위한 메트릭을 결정하는 방법 및 시스템
JP2006094494A (ja) グラフィックス処理装置を使用した加速ビデオ符号化
US9584788B1 (en) Video storage and video playing
CN109327698B (zh) 动态预览图的生成方法、系统、介质和电子设备
KR102632638B1 (ko) 하드웨어 디코더 환경에서의 초해상도 이미지 생성 방법 및 시스템
US20230421754A1 (en) Neural network based coefficient sign prediction field
Wang et al. A collaborative scheduling-based parallel solution for HEVC encoding on multicore platforms
Sayadi et al. CUDA memory optimisation strategies for motion estimation
JP2011066843A (ja) 並列符号化装置及びプログラム並びに画像データの符号化方法
KR20210055278A (ko) 하이브리드 비디오 코딩 방법 및 시스템
Vats et al. Semantic-aware view prediction for 360-degree videos at the 5g edge
CN113794887A (zh) 一种游戏引擎中视频编码的方法及相关设备
KR102273144B1 (ko) 클라우드 스트리밍 서비스 시스템, 변화 영역의 분할을 이용한 이미지 클라우드 스트리밍 서비스 방법 및 이를 위한 장치
CN103327340A (zh) 一种整数搜索方法及装置
CN115428021A (zh) 视频编解码中用于基于神经网络的工具的多模型选择
KR20240037557A (ko) 비디오 저장공간 절약 방법, 컴퓨터 장치, 및 컴퓨터 프로그램
US11915457B2 (en) Method and apparatus for adaptive neural image compression with rate control by meta-learning
CN111683271B (zh) 一种视频加密方法、终端设备以及计算机存储介质
US20230156206A1 (en) Video encoding system and video encoding method
US20220343552A1 (en) Method and apparatus for multi-learning rates of substitution in neural image compression
Guo et al. An OpenCLTM Implementation of WebP Accelerator on FPGAs
CN115643410A (zh) 一种视频转码方法、装置、设备及计算机可读存储介质
Nola et al. GPU Acceleration for Directional Variance Based Intra-prediction in HEVC

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant