KR102632423B1 - Biomarker for predicting prognosis of Non-muscle invasive bladder cancer and uses thereof - Google Patents

Biomarker for predicting prognosis of Non-muscle invasive bladder cancer and uses thereof Download PDF

Info

Publication number
KR102632423B1
KR102632423B1 KR1020210026520A KR20210026520A KR102632423B1 KR 102632423 B1 KR102632423 B1 KR 102632423B1 KR 1020210026520 A KR1020210026520 A KR 1020210026520A KR 20210026520 A KR20210026520 A KR 20210026520A KR 102632423 B1 KR102632423 B1 KR 102632423B1
Authority
KR
South Korea
Prior art keywords
bladder cancer
prognosis
predicting
gene
muscle invasive
Prior art date
Application number
KR1020210026520A
Other languages
Korean (ko)
Other versions
KR20220122197A (en
Inventor
김용준
강규호
박현미
유채린
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020210026520A priority Critical patent/KR102632423B1/en
Publication of KR20220122197A publication Critical patent/KR20220122197A/en
Application granted granted Critical
Publication of KR102632423B1 publication Critical patent/KR102632423B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 비근침윤성 방광암(Non-muscle Invasive Bladder Cancer; NMIBC)의 예후 예측을 위한 바이오마커 및 이의 용도에 관한 것으로, 자세하게는 비근침윤성 방광암의 예후 예측용 바이오마커; 상기 바이오마커를 이용한 비근침윤성 방광암의 예후 예측용 조성물; 상기 조성물을 포함하는 비근침윤성 방광암의 예후 예측용 키트 또는 마이크로어레이; 및 상기 바이오마커의 발현 수준을 측정하는 단계를 포함하는 비근침윤성 방광암의 예후 예측을 위한 정보를 제공하는 방법에 관한 것이다. 본 발명은 다양한 방광암 환자 코호트에서 SKA3 유전자 발현 및 임상 결과와의 연관성 확인한 결과, 비근침윤성 방광암의 병기가 진행될수록 또는 조직학적 등급(세포분화도)이 나쁠수록 SKA3 유전자 발현이 높게 나타난바, 본 발명의 SKA3 유전자는 비근침윤성 방광암의 진행(progression) 및 재발(recurrence)을 포함하는 방광암의 예후 예측을 위한 마커로 유용하게 사용될 수 있다.The present invention relates to biomarkers for predicting the prognosis of Non-Muscle Invasive Bladder Cancer (NMIBC) and their use, specifically to biomarkers for predicting the prognosis of non-muscle invasive bladder cancer; A composition for predicting the prognosis of non-muscle invasive bladder cancer using the biomarkers; A kit or microarray for predicting the prognosis of non-muscle invasive bladder cancer comprising the composition; and a method of providing information for predicting the prognosis of non-muscle invasive bladder cancer, including measuring the expression level of the biomarker. The present invention confirmed the correlation between SKA3 gene expression and clinical outcomes in various bladder cancer patient cohorts. As a result, SKA3 gene expression was found to be higher as the stage of non-muscle invasive bladder cancer progressed or the histological grade (degree of cell differentiation) became worse. The SKA3 gene can be useful as a marker for predicting the prognosis of bladder cancer, including progression and recurrence of non-muscle invasive bladder cancer.

Description

비근침윤성 방광암의 예후 예측을 위한 바이오마커 및 이의 용도{Biomarker for predicting prognosis of Non-muscle invasive bladder cancer and uses thereof}Biomarker for predicting prognosis of Non-muscle invasive bladder cancer and uses thereof}

본 발명은 비근침윤성 방광암(Non-muscle Invasive Bladder Cancer; NMIBC)의 예후 예측을 위한 바이오마커 및 이의 용도에 관한 것으로, 자세하게는 비근침윤성 방광암의 예후 예측용 바이오마커; 상기 바이오마커를 이용한 비근침윤성 방광암의 예후 예측용 조성물; 상기 조성물을 포함하는 비근침윤성 방광암의 예후 예측용 키트 또는 마이크로어레이; 및 상기 바이오마커의 발현 수준을 측정하는 단계를 포함하는 비근침윤성 방광암의 예후 예측을 위한 정보를 제공하는 방법에 관한 것이다.The present invention relates to biomarkers for predicting the prognosis of Non-Muscle Invasive Bladder Cancer (NMIBC) and their use, specifically to biomarkers for predicting the prognosis of non-muscle invasive bladder cancer; A composition for predicting the prognosis of non-muscle invasive bladder cancer using the biomarkers; A kit or microarray for predicting the prognosis of non-muscle invasive bladder cancer comprising the composition; and a method of providing information for predicting the prognosis of non-muscle invasive bladder cancer, including measuring the expression level of the biomarker.

방광암(bladder cancer, BC)은 비뇨기계 영역에서 가장 빈번하게 발생하는 암으로서, 서양에서는 매년 인구 10만 명당 16.5명이 발병하는데 비하여 한국에서는 4.5명이 발생하는 것으로 보고되고 있다. 이처럼 서양에 비하여는 발생률이 낮으나, 해마다 발생률이 높아지고 있으며, 우리나라에서는 비뇨기계 암 중 가장 발생빈도가 높은 암으로 알려져 있다(Lee C, et al., 1992).Bladder cancer (BC) is the most frequently occurring cancer in the urinary system. It is reported to occur in 4.5 cases per 100,000 people in Korea every year, compared to 16.5 cases per 100,000 people in the West. Although the incidence rate is lower than in the West, it is increasing every year, and in Korea, it is known to be the most common urinary cancer (Lee C, et al., 1992).

방광암은 종양이 근육층을 침범했는지 여부에 따라 비근침윤성 방광암(Non-muscle Invasive Bladder Cancer; NMIBC)과 근침윤성 방광암(Muscle Invasive Bladder Cancer; MIBC)으로 분류된다. 비근침윤성 방광암은 암이 근육층의 침범 없이 점막에 국한된 병변으로써 경요도 방광절제술(transurethral resection of bladder tumor) 또는 방광내 항암제 또는 BCG를 주입함으로써 비교적 간단하게 치료가 가능하나, 암의 재발과 근침윤성 암으로의 진행이 문제가 된다. 한편, 근침윤성 방광암은 암이 근육층까지 침투한 상태를 말하는 것으로서, 이의 치료를 위하여는 근치적 방광적출술과 함께 복잡한 요로전환(urinary diversion)을 수행하여야 할 뿐 아니라, 환자에게 치명적인 결과를 초래할 수도 있다.Bladder cancer is classified into Non-Muscle Invasive Bladder Cancer (NMIBC) and Muscle Invasive Bladder Cancer (MIBC) depending on whether the tumor invades the muscle layer. Non-muscle invasive bladder cancer is a lesion in which the cancer is confined to the mucosa without invading the muscle layer. It can be treated relatively simply by transurethral resection of bladder tumor or intravesical injection of anticancer drugs or BCG. However, cancer recurrence and muscle invasive cancer are common. Progression becomes a problem. On the other hand, muscle-invasive bladder cancer refers to a condition in which cancer has penetrated into the muscle layer, and its treatment not only requires radical cystectomy and complex urinary diversion, but can also lead to fatal results for the patient. .

새로 진단된 방광암 환자의 약 75%가 비근침윤성 방광암이다(Burger et al., 2013). 비근침윤성 방광암 환자의 재발률은 60-70%, MIBC로의 진행률은 20-30%로, 이 암은 매우 이질적이기 때문에 환자들 사이에서 재발 및 진행 위험이 크다(Matulewicz and Steinberg, 2020). 근침윤성 방광암은 사망률이 높은 공격적인 암이다. 치료받지 않은 환자의 5년 생존율은 15% 미만이며, 표준 치료법인 근치 방광 절제술(radical cystectomy)을 시행한 후에도 환자의 약 50%가 사망한다. 새로운 치료법이 도입되었음에도 불구하고 MIBC 환자의 생존율은 지난 30년 동안 개선되지 않았다(Lobo et al., 2017). 따라서 비근침윤성 방광암 환자 중 근침윤성 방광암으로의 진행 가능성이 높은 환자를 미리 선별하여 보다 적극적인 치료를 시행하는 등 진행을 예방하는 것이 환자의 생존율 향상에 도움이 된다.Approximately 75% of newly diagnosed bladder cancer patients have non-muscle invasive bladder cancer (Burger et al., 2013). The recurrence rate for patients with non-muscle invasive bladder cancer is 60-70% and the progression rate to MIBC is 20-30%, and because this cancer is very heterogeneous, there is a high risk of recurrence and progression among patients (Matulewicz and Steinberg, 2020). Muscle-invasive bladder cancer is an aggressive cancer with a high mortality rate. The 5-year survival rate for untreated patients is less than 15%, and approximately 50% of patients die even after radical cystectomy, the standard treatment. Despite the introduction of new treatments, the survival rate of MIBC patients has not improved over the past 30 years (Lobo et al., 2017). Therefore, among patients with non-muscle-invasive bladder cancer, screening patients with a high likelihood of progression to muscle-invasive bladder cancer in advance and preventing progression by administering more aggressive treatment is helpful in improving the patient's survival rate.

이러한 배경 하에, 본 발명자들은 비근침윤성 방광암 환자 조직을 이용한 RNA 시퀀싱 분석 및 다양한 방광암 환자 코호트 분석을 통해 방광암 세포에서 차등 발현되는 유전자를 분석하고, 환자의 병리학적 특징 및 생존율과 SKA3 유전자의 발현량 사이의 연관성을 규명함으로써 본 발명을 완성하였다.Under this background, the present inventors analyzed genes differentially expressed in bladder cancer cells through RNA sequencing analysis using tissue from patients with non-muscle invasive bladder cancer and analysis of various bladder cancer patient cohorts, and analyzed the relationship between the pathological characteristics and survival rate of patients and the expression level of the SKA3 gene. The present invention was completed by identifying the relationship between .

한국공개특허 제10-2019-0089552호Korean Patent Publication No. 10-2019-0089552 한국공개특허 제10-2016-0082028호Korean Patent Publication No. 10-2016-0082028

따라서 본 발명의 목적은 비근침윤성 방광암의 예후를 효과적으로 예측할 수 있는 바이오마커를 제공하는 것이다.Therefore, the purpose of the present invention is to provide a biomarker that can effectively predict the prognosis of non-muscle invasive bladder cancer.

본 발명의 다른 목적은 상기 바이오마커를 이용한 비근침윤성 방광암의 예후 예측용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for predicting the prognosis of non-muscle invasive bladder cancer using the above biomarkers.

본 발명의 다른 목적은, 상기 조성물을 포함하는 비근침윤성 방광암의 예후 예측용 키트를 제공하는 것이다.Another object of the present invention is to provide a kit for predicting the prognosis of non-muscle invasive bladder cancer comprising the composition.

본 발명의 또 다른 목적은, 상기 조성물을 포함하는 비근침윤성 방광암의 예후 예측용 마이크로어레이를 제공하는 것이다.Another object of the present invention is to provide a microarray for predicting the prognosis of non-muscle invasive bladder cancer comprising the composition.

본 발명의 또 다른 목적은, 상기 바이오마커를 이용하여 비근침윤성 방광암의 예후를 효과적으로 예측하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for effectively predicting the prognosis of non-muscle invasive bladder cancer using the biomarkers.

상기와 같은 본 발명의 목적을 달성하기 위해서,In order to achieve the purpose of the present invention as described above,

본 발명은 SKA3 유전자를 유효성분으로 포함하는 비근침윤성 방광암의 예후 예측용 바이오마커 조성물을 제공한다.The present invention provides a biomarker composition for predicting the prognosis of non-muscle invasive bladder cancer comprising the SKA3 gene as an active ingredient.

본 발명의 일실시예에 있어서, 상기 바이오마커 조성물은 ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, TPX2 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자를 더 포함할 수 있다.In one embodiment of the present invention, the biomarker composition may further include one or more genes selected from the group consisting of ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, TPX2, and TTK.

또한, 본 발명은 SKA3 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 포함하는 비근침윤성 방광암의 예후 예측용 조성물을 제공한다.Additionally, the present invention provides a composition for predicting the prognosis of non-muscle invasive bladder cancer, comprising an agent for measuring the expression level of the mRNA of the SKA3 gene or the protein encoded by the gene.

본 발명의 일실시예에 있어서, 상기 조성물은 ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, TPX2 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 추가로 포함할 수 있다.In one embodiment of the present invention, the composition expresses the mRNA of one or more genes selected from the group consisting of ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, TPX2, and TTK, or the protein encoded by the genes. An agent whose level is measured may additionally be included.

본 발명의 일실시예에 있어서, mRNA의 발현수준을 측정하는 제제는 상기 유전자에 특이적으로 결합하는 안티센스 올리고뉴클레오티드, 프라이머 쌍 또는 프로브이며; 단백질의 발현수준을 측정하는 제제는 선택된 유전자로부터 코딩되는 단백질에 특이적인 항체일 수 있다.In one embodiment of the present invention, the agent for measuring the expression level of mRNA is an antisense oligonucleotide, primer pair, or probe that specifically binds to the gene; The agent for measuring the expression level of a protein may be an antibody specific for the protein encoded by the selected gene.

또한, 본 발명은 상기 조성물을 포함하는 비근침윤성 방광암의 예후 예측용 키트를 제공한다.Additionally, the present invention provides a kit for predicting the prognosis of non-muscle invasive bladder cancer comprising the composition.

또한, 본 발명은 상기 조성물을 포함하는 비근침윤성 방광암의 예후 예측용 마이크로어레이를 제공한다.Additionally, the present invention provides a microarray for predicting the prognosis of non-muscle invasive bladder cancer comprising the composition.

또한, 본 발명은 개체로부터 분리된 생물학적 시료에서 SKA3 유전자의 mRNA 발현수준 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 단계를 포함하는, 비근침윤성 방광암의 예후 예측을 위한 정보를 제공하는 방법을 제공한다.In addition, the present invention provides a method for providing information for predicting the prognosis of non-muscle invasive bladder cancer, comprising measuring the mRNA expression level of the SKA3 gene or the expression level of the protein encoded by the gene in a biological sample isolated from an individual. provides.

본 발명의 일실시예에 있어서, 상기 단계는 ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, TPX2 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 더 측정할 수 있다.of the present invention In one embodiment, the step further increases the expression level of the mRNA or protein encoded by one or more genes selected from the group consisting of ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, TPX2, and TTK. It can be measured.

본 발명의 일실시예에 있어서, 상기 생물학적 시료는 환자의 조직, 세포, 혈액, 혈청, 혈장, 타액 및 뇨로 이루어진 군에서 선택될 수 있다.of the present invention In one embodiment, the biological sample may be selected from the group consisting of tissue, cells, blood, serum, plasma, saliva, and urine of a patient.

본 발명은 다양한 방광암 환자 코호트에서 SKA3 유전자 발현 및 임상 결과와의 연관성 확인한 결과, 비근침윤성 방광암의 병기가 진행될수록 또는 조직학적 등급(세포분화도)이 나쁠수록 SKA3 유전자 발현이 높게 나타난바, 본 발명의 SKA3 유전자는 비근침윤성 방광암의 진행(progression) 및 재발(recurrence)을 포함하는 방광암의 예후 예측을 위한 마커로 유용하게 사용될 수 있다.The present invention confirmed the correlation between SKA3 gene expression and clinical outcomes in various bladder cancer patient cohorts. As a result, SKA3 gene expression was found to be higher as the stage of non-muscle invasive bladder cancer progressed or the histological grade (degree of cell differentiation) became worse. The SKA3 gene can be useful as a marker for predicting the prognosis of bladder cancer, including progression and recurrence of non-muscle invasive bladder cancer.

도 1은 RNA 시퀀싱 분석을 통해 얻은 방광암 조직과 정상 인접 방광 조직의 전사체 프로파일을 분석한 결과이다. 도 1a는 PCA (Principal component analysis)를 통해 나타낸 결과이며, 도 1b는 유전자 발현 히트맵(heatmap)이고, 도 1c는 대표적인 방광암 상향 조절된 유전자를 확인한 결과이며, 도 1d는 유전자 온톨로지(GO) 분석을 통해 방광암에서 상향 조절된 유전자들이 관련된 pathway를 분석한 결과이다.
도 2는 방광암의 예후를 예측할 수 있는 후보 유전자를 찾기 위해 다양한 방광암 환자 코호트를 이용해 분석한 결과이다. 도 2a는 E-MTAB-4321 데이터 세트와 TCGA 데이터 세트에서 방광암에서 상향 조절된 유전자를 구한 뒤 오버랩 한 벤다이어그램이며; 도 2b는 23개의 후보 유전자를 GO 분석한 결과이고; 도 2c는 GSE13507 데이터 세트를 사용하여 23개의 후보 유전자의 발현량과 무재발 생존 및 무진행 생존 확률 간의 연관성을 univariate cox regression을 이용하여 보여준 결과이다.
도 3은 비근침윤성 방광암 환자의 조직에서 SKA3 유전자의 발현 수준을 real-time PCR을 통해 확인한 결과이다. 도 3a는 방광암 조직과 정상 방광 조직에서의 SKA3 유전자의 발현 수준을 비교한 결과이며; 도 3b는 비근침윤성 방광암 환자를 저등급(Low grade) 및 고등급(High grade) 군으로 나눈 후 SKA3 발현값을 비교한 결과이고; 도 3c는 비근침윤성 방광암 환자를 Ta기 및 T1기 군으로 나눈 후 SKA3 발현값을 비교한 결과이며; 도 3d는 비근침윤성 방광암 환자를 SKA3 발현 수준에 따라 두 그룹으로 나눈 후 발현 정도에 따른 방광암 진행률을 확인한 결과이다.
도 4는 방광암 환자 코호트(GSE13507 데이터 세트, E-MTAB-4321 데이터 세트)에서 SKA3 발현 수준을 확인한 결과이다. 도 4a는 방광암 샘플과 정상 방광 샘플에서의 SKA3 유전자의 발현 수준을 비교한 결과이며, 도 4b 내지 4c는 비근침윤성 방광암 환자를 Ta기 및 T1기 군으로 나눈 후 SKA3 발현값을 비교한 결과이고(4b: GSE13507, 4c: E-MTAB-4321); 도 4d 내지 4e는 비근침윤성 방광암 환자를 저등급(Low grade) 및 고등급(High grade) 군으로 나눈 후 SKA3 발현값을 비교한 결과이다(4d: GSE13507, 4e: E-MTAB-4321).
도 5는 방광암 환자 코호트(GSE13507 데이터 세트, E-MTAB-4321 데이터 세트)에서 비근침윤성 방광암 환자를 SKA3 발현 수준에 따라 두 그룹(SKA3 low, SKA3 high)으로 나눈 후, 두 환자 그룹의 무재발 생존(Recurrence-free survival; RFS) 또는 무진행 생존(Progression-free survival; PFS)에 대한 카플란-메이어 플롯 분석 결과이다. 도 5a 및 5b는 GSE13507 코호트에서 두 그룹의 무진행 생존율 및 무재발 생존율을 비교한 결과이며; 도 5c는 E-MTAB-4321 코호트에서 두 그룹의 무진행 생존율은 비교한 결과이다.
도 6은 두 가지 방광암 세포주(5637, T24)에서 siRNA 형질주입을 통해 SKA3 유전자를 넉다운(knockdown, KD) 시킨 후, 방광암 세포의 변화를 관찰한 결과이다. 도 6a 내지 6b는 두 세포주에서 SKA3 넉다운(KD)이 잘 되었는지 확인하기 위해 real-time PCR을 통해 SKA3 발현 수준을 확인한 결과이다(6a: 5637, 6b: T24). 도 6c 내지 6d는 콜로니 형성 분석을 통해 SKA3을 넉다운(KD)하지 않은 세포와 넉다운(KD) 한 세포의 암세포 증식 능력을 비교한 결과이다(6c: 5637, 6d: T24). 도 6e 내지 6f는 유세포 분석을 이용한 세포 주기 분석을 통해 SKA3을 넉다운(KD)하지 않은 세포와 넉다운(KD)을 한 세포의 세포 주기 변화를 확인한 결과이다(6e: 5637, 6f: T24).
Figure 1 shows the results of analyzing the transcriptome profiles of bladder cancer tissue and normal adjacent bladder tissue obtained through RNA sequencing analysis. Figure 1a is the result of PCA (Principal component analysis), Figure 1b is a gene expression heatmap, Figure 1c is the result of confirming representative bladder cancer up-regulated genes, and Figure 1d is gene ontology (GO) analysis. This is the result of analyzing the pathways related to genes upregulated in bladder cancer.
Figure 2 shows the results of analysis using various bladder cancer patient cohorts to find candidate genes that can predict the prognosis of bladder cancer. Figure 2a is a Venn diagram overlapping genes upregulated in bladder cancer in the E-MTAB-4321 data set and the TCGA data set; Figure 2b is the result of GO analysis of 23 candidate genes; Figure 2c shows the results showing the association between the expression level of 23 candidate genes and the probability of recurrence-free survival and progression-free survival using the GSE13507 data set using univariate cox regression.
Figure 3 shows the results of confirming the expression level of the SKA3 gene in the tissues of patients with non-muscle invasive bladder cancer through real-time PCR. Figure 3a shows the results of comparing the expression level of the SKA3 gene in bladder cancer tissue and normal bladder tissue; Figure 3b shows the results of comparing SKA3 expression values after dividing patients with non-muscle invasive bladder cancer into low grade and high grade groups; Figure 3c shows the results of comparing SKA3 expression values after dividing patients with non-muscle invasive bladder cancer into stage Ta and stage T1 groups; Figure 3d shows the results of dividing non-muscle invasive bladder cancer patients into two groups according to the expression level of SKA3 and confirming the bladder cancer progression rate according to the expression level.
Figure 4 shows the results of confirming the SKA3 expression level in the bladder cancer patient cohort (GSE13507 data set, E-MTAB-4321 data set). Figure 4a shows the results of comparing the expression levels of the SKA3 gene in bladder cancer samples and normal bladder samples, and Figures 4b to 4c show the results of comparing the SKA3 expression values after dividing patients with non-muscle invasive bladder cancer into stage Ta and stage T1 groups ( 4b: GSE13507, 4c: E-MTAB-4321); Figures 4d to 4e show the results of comparing SKA3 expression values after dividing patients with non-muscle invasive bladder cancer into low grade and high grade groups (4d: GSE13507, 4e: E-MTAB-4321).
Figure 5 shows the recurrence-free survival of the two patient groups after dividing patients with non-muscle invasive bladder cancer into two groups (SKA3 low, SKA3 high) according to the SKA3 expression level in the bladder cancer patient cohort (GSE13507 data set, E-MTAB-4321 data set). This is the result of Kaplan-Meier plot analysis for recurrence-free survival (RFS) or progression-free survival (PFS). Figures 5A and 5B are results comparing the progression-free survival rate and recurrence-free survival rate of the two groups in the GSE13507 cohort; Figure 5c shows the results of comparing the progression-free survival rates of the two groups in the E-MTAB-4321 cohort.
Figure 6 shows the results of observing changes in bladder cancer cells after knockdown (KD) of the SKA3 gene through siRNA transfection in two bladder cancer cell lines (5637, T24). Figures 6a and 6b show the results of confirming the SKA3 expression level through real-time PCR to confirm whether SKA3 knockdown (KD) was successful in the two cell lines (6a: 5637, 6b: T24). Figures 6c to 6d show the results of comparing the cancer cell proliferation ability of cells without knockdown (KD) of SKA3 and cells with knockdown (KD) of SKA3 through colony formation analysis (6c: 5637, 6d: T24). Figures 6e to 6f show the results of cell cycle analysis using flow cytometry to confirm cell cycle changes in cells without knockdown (KD) of SKA3 and cells with knockdown (KD) of SKA3 (6e: 5637, 6f: T24).

하나의 양태로서, 본 발명은 SKA3 유전자의 비근침윤성 방광암의 예후 예측을 위한 바이오마커로서의 용도에 관한 것이다.In one aspect, the present invention relates to the use of the SKA3 gene as a biomarker for predicting the prognosis of non-muscle invasive bladder cancer.

본 발명의 일구체예에서, 비근침윤성 방광암의 예후 예측을 위한 바이오마커로 SKA3 유전자 이외에 ANLN, ASF1B, AURKB, CCNA2, CCNB2, CDC20, CDK1, CEP55, FOXM1, KIF20A, KIF23, MKI67, NUSAP1, PLK1, PRC1, RECQL4, RRM2, SPAG5, TK1, TOP2A, TPX2 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자를 더 포함할 수 있으며, 바람직하게는 ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, TPX2 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자를 더 포함할 수 있고, 더욱 바람직하게는 CDK1, MKI67 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자를 더 포함할 수 있다.In one embodiment of the present invention, in addition to the SKA3 gene, biomarkers for predicting the prognosis of non-muscle invasive bladder cancer include ANLN, ASF1B, AURKB, CCNA2, CCNB2, CDC20, CDK1, CEP55, FOXM1, KIF20A, KIF23, MKI67, NUSAP1, PLK1, It may further include one or more genes selected from the group consisting of PRC1, RECQL4, RRM2, SPAG5, TK1, TOP2A, TPX2 and TTK, preferably ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, TPX2 and It may further include one or more genes selected from the group consisting of TTK, and more preferably, it may further include one or more genes selected from the group consisting of CDK1, MKI67, and TTK.

본 발명에 따른 상기 비근침윤성 방광암의 예후 예측을 위한 바이오마커 유전자는 비근침윤성 방광암 환자 조직을 이용한 RNA 시퀀싱 분석 및 다양한 방광암 환자 코호트 분석을 통해 방광암 세포에서 차등 발현되는 유전자로서, 이들은 각각 SKA3(GenBank Accession: NM_145061), ANLN(GenBank Accession: NM_018685), ASF1B(GenBank Accession: NM_018154), AURKB(GenBank Accession: NM_001256834), CCNA2(GenBank Accession: NM_001237), CCNB2(GenBank Accession: NM_004701), CDC20(GenBank Accession: NM_001255), CDK1(GenBank Accession: NM_001786), CEP55(GenBank Accession: NM_001127182), FOXM1(GenBank Accession: NM_001243088), KIF20A(GenBank Accession: NM_005733), KIF23(GenBank Accession: NM_138555), MKI67(GenBank Accession: NM_002417), NUSAP1(GenBank Accession: NM_001243143), PLK1(GenBank Accession: NM_005030), PRC1(GenBank Accession: NM_001267580), RECQL4(GenBank Accession: NM_004260), RRM2(GenBank Accession: NM_001034), SPAG5(GenBank Accession: NM_006461), TK1(GenBank Accession: NM_003258), TOP2A(GenBank Accession: NM_001067), TPX2(GenBank Accession: NM_012112) 및 TTK(GenBank Accession: NM_001166691) 이다.The biomarker genes for predicting the prognosis of non-muscle-invasive bladder cancer according to the present invention are genes differentially expressed in bladder cancer cells through RNA sequencing analysis using tissue from patients with non-muscle-invasive bladder cancer and analysis of various bladder cancer patient cohorts. These genes are each SKA3 (GenBank Accession) : NM_145061), ANLN (GenBank Accession: NM_018685), ASF1B (GenBank Accession: NM_018154), AURKB (GenBank Accession: NM_001256834), CCNA2 (GenBank Accession: NM_001237), CCNB2 (GenBank Accession: NM_004701), CDC20 ( GenBank Accession: NM_001255 ), CDK1 (GenBank Accession: NM_001786), CEP55 (GenBank Accession: NM_001127182), FOXM1 (GenBank Accession: NM_001243088), KIF20A (GenBank Accession: NM_005733), KIF23 (GenBank Accession: NM_138555), MKI67 (GenBank Accession: Bank Access: NM_002417), NUSAP1 (GenBank Accession: NM_001243143), PLK1 (GenBank Accession: NM_005030), PRC1 (GenBank Accession: NM_001267580), RECQL4 (GenBank Accession: NM_004260), RRM2 (GenBank Accession: NM_001034), SPAG5 (GenBank Accession: NM_006461), TK1( GenBank Accession: NM_003258), TOP2A (GenBank Accession: NM_001067), TPX2 (GenBank Accession: NM_012112), and TTK (GenBank Accession: NM_001166691).

본 발명의 상기 SKA3 유전자는 서열번호 1의 폴리뉴클레오티드 서열로 이루어질 수 있으며; 상기 ANLN 유전자는 서열번호 2의 폴리뉴클레오티드 서열로 이루어질 수 있고; 상기 ASF1B 유전자는 서열번호 3의 폴리뉴클레오티드 서열로 이루어질 수 있으며; 상기 AURKB 유전자는 서열번호 4의 폴리뉴클레오티드 서열로 이루어질 수 있고; 상기 CCNA2 유전자는 서열번호 5의 폴리뉴클레오티드 서열로 이루어질 수 있으며; 상기 CCNB2 유전자는 서열번호 6의 폴리뉴클레오티드 서열로 이루어질 수 있고; 상기 CDC20 유전자는 서열번호 7의 폴리뉴클레오티드 서열로 이루어질 수 있으며; 상기 CDK1 유전자는 서열번호 8의 폴리뉴클레오티드 서열로 이루어질 수 있고; 상기 CEP55 유전자는 서열번호 9의 폴리뉴클레오티드 서열로 이루어질 수 있으며; 상기 FOXM1 유전자는 서열번호 10의 폴리뉴클레오티드 서열로 이루어질 수 있고; 상기 KIF20A 유전자는 서열번호 11의 폴리뉴클레오티드 서열로 이루어질 수 있으며; 상기 KIF23 유전자는 서열번호 12의 폴리뉴클레오티드 서열로 이루어질 수 있고; 상기 MKI67 유전자는 서열번호 13의 폴리뉴클레오티드 서열로 이루어질 수 있으며; 상기 NUSAP1 유전자는 서열번호 14의 폴리뉴클레오티드 서열로 이루어질 수 있고; 상기 PLK1 유전자는 서열번호 15의 폴리뉴클레오티드 서열로 이루어질 수 있으며; 상기 PRC1 유전자는 서열번호 16의 폴리뉴클레오티드 서열로 이루어질 수 있고; 상기 RECQL4 유전자는 서열번호 17의 폴리뉴클레오티드 서열로 이루어질 수 있으며; 상기 RRM2 유전자는 서열번호 18의 폴리뉴클레오티드 서열로 이루어질 수 있고; 상기 SPAG5 유전자는 서열번호 19의 폴리뉴클레오티드 서열로 이루어질 수 있으며; 상기 TK1 유전자는 서열번호 20의 폴리뉴클레오티드 서열로 이루어질 수 있고; 상기 TOP2A 유전자는 서열번호 21의 폴리뉴클레오티드 서열로 이루어질 수 있으며; 상기 TPX2 유전자는 서열번호 22의 폴리뉴클레오티드 서열로 이루어질 수 있고; 상기 TTK 유전자는 서열번호 23의 폴리뉴클레오티드 서열로 이루어질 수 있다.The SKA3 gene of the present invention may consist of the polynucleotide sequence of SEQ ID NO: 1; The ANLN gene may consist of the polynucleotide sequence of SEQ ID NO: 2; The ASF1B gene may consist of the polynucleotide sequence of SEQ ID NO: 3; The AURKB gene may consist of the polynucleotide sequence of SEQ ID NO: 4; The CCNA2 gene may consist of the polynucleotide sequence of SEQ ID NO: 5; The CCNB2 gene may consist of the polynucleotide sequence of SEQ ID NO: 6; The CDC20 gene may consist of the polynucleotide sequence of SEQ ID NO: 7; The CDK1 gene may consist of the polynucleotide sequence of SEQ ID NO: 8; The CEP55 gene may consist of the polynucleotide sequence of SEQ ID NO: 9; The FOXM1 gene may consist of the polynucleotide sequence of SEQ ID NO: 10; The KIF20A gene may consist of the polynucleotide sequence of SEQ ID NO: 11; The KIF23 gene may consist of the polynucleotide sequence of SEQ ID NO: 12; The MKI67 gene may consist of the polynucleotide sequence of SEQ ID NO: 13; The NUSAP1 gene may consist of the polynucleotide sequence of SEQ ID NO: 14; The PLK1 gene may consist of the polynucleotide sequence of SEQ ID NO: 15; The PRC1 gene may consist of the polynucleotide sequence of SEQ ID NO: 16; The RECQL4 gene may consist of the polynucleotide sequence of SEQ ID NO: 17; The RRM2 gene may consist of the polynucleotide sequence of SEQ ID NO: 18; The SPAG5 gene may consist of the polynucleotide sequence of SEQ ID NO: 19; The TK1 gene may consist of the polynucleotide sequence of SEQ ID NO: 20; The TOP2A gene may consist of the polynucleotide sequence of SEQ ID NO: 21; The TPX2 gene may consist of the polynucleotide sequence of SEQ ID NO: 22; The TTK gene may consist of the polynucleotide sequence of SEQ ID NO: 23.

본 발명에 따른 비근침윤성 방광암의 예후 예측을 위한 마커 유전자로서 상기 선택된 유전자는 ⅰ) 충북대학교병원 RNA 시퀀싱에서 비근침윤성 방광암 환자 조직과 방광암이 포함되지 않은 정상 주변 조직 사이의 차등적으로 증가된 발현수준; ⅱ) E-MTAB-4321 코호트에서 T1기와 Ta기 환자 조직 사이의 차등적으로 증가된 발현수준; ⅲ) E-MTAB-4321 코호트에서 고등급(high grade)과 저등급(low grade)환자 조직 사이의 차등적으로 증가된 발현수준; 및 ⅳ) TCGA 코호트에서 방광암과 정상 조직 사이의 차등적으로 증가된 발현수준을 나타내었다.As a marker gene for predicting the prognosis of non-muscle-invasive bladder cancer according to the present invention, the selected gene is i) differentially increased expression level between non-muscle-invasive bladder cancer patient tissue and normal surrounding tissue without bladder cancer in RNA sequencing at Chungbuk National University Hospital. ; ii) differentially increased expression levels between stage T1 and stage Ta patient tissues in the E-MTAB-4321 cohort; iii) differentially increased expression levels between high grade and low grade patient tissues in the E-MTAB-4321 cohort; and iv) showed differentially increased expression levels between bladder cancer and normal tissues in the TCGA cohort.

또한, 본 발명의 비근침윤성 방광암의 예후 예측을 위한 마커 유전자로서 상기 선발된 23개의 유전자 후보 중 어떤 유전자가 환자의 결과를 예측할 수 있는지 조사하기 위해 GSE13507 코호트를 사용하여 해당 유전자의 발현 수준과 무재발 생존(Recurrence-free survival; RFS) 및 무진행 생존(Progression-free survival; PFS) 확률 간의 관련성을 테스트한 결과, 23개의 후보 유전자 중 10개(SKA3, ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, TPX2 및 TTK)의 유전자가 무진행 생존(PFS)과 유의한 연관성이 있으며, 그 중 4개(SKA3, MKI67, CDK1 및 TTK)의 유전자는 무재발 생존(RFS)과도 유의한 연관이 있음을 확인하였다.In addition, the GSE13507 cohort was used to investigate which gene among the 23 gene candidates selected above as a marker gene for predicting the prognosis of non-muscle invasive bladder cancer of the present invention can predict the patient's outcome, based on the expression level of the gene and the absence of recurrence. When testing the association between survival (RFS) and progression-free survival (PFS) probabilities, 10 out of 23 candidate genes (SKA3, ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1) , PRC1, TPX2, and TTK) were significantly associated with progression-free survival (PFS), and four of them (SKA3, MKI67, CDK1, and TTK) were also significantly associated with recurrence-free survival (RFS). It was confirmed that it exists.

이에, 본 발명에 따른 비근침윤성 방광암의 예후 예측을 위한 마커로서 상기 선발된 유전자들은 비근침윤성 방광암의 재발 및 진행에 대한 중요한 지표가 되는 종양 단계(stage) 및 등급(grade) 사이에 발현 수준의 차이를 보이는 차등적으로 발현된 유전자들이다.Accordingly, the genes selected above as markers for predicting the prognosis of non-muscle-invasive bladder cancer according to the present invention show differences in expression levels between tumor stages and grades, which are important indicators for recurrence and progression of non-muscle-invasive bladder cancer. These are differentially expressed genes that show .

그러므로 본 발명에 따른 상기 유전자의 발현수준을 측정함으로써 보다 정확하게 비근침윤성 방광암의 예후를 예측할 수 있다.Therefore, the prognosis of non-muscle invasive bladder cancer can be more accurately predicted by measuring the expression level of the gene according to the present invention.

본 발명에서 용어 "비근침윤성 방광암(Non-muscle Invasive Bladder Cancer; NMIBC)"이란, 암이 근육층의 침범 없이 점막에 국한된 병변을 가지는 방광암으로서 ‘비근침윤성성 방광암’ 또는 ‘표재성 방광암’이라고도 불린다.In the present invention, the term "Non-muscle Invasive Bladder Cancer (NMIBC)" refers to bladder cancer in which the cancer has lesions limited to the mucosa without invading the muscle layer. It is also called 'non-muscle invasive bladder cancer' or 'superficial bladder cancer'.

본 발명에서 용어, "차등적으로 발현된 유전자(differentially expressed genes, DEGs)"는 정상 또는 대조군 시료에서의 발현에 비하여, 질병, 구체적으로 암, 예를 들어 방광암 환자에서 그의 발현이 보다 높거나 보다 낮은 수준으로 활성화되는 유전자를 말한다. 이 용어는 또한 그의 발현이 동일한 질병의 상이한 병기에서 보다 높거나 보다 낮은 수준으로 활성화되는 유전자를 포함한다. 차등적으로 발현되는 유전자는 핵산 수준 또는 단백질 수준에서 활성화되거나 또는 억제될 수 있거나, 교대 스플라이싱을 통해 상이한 폴리펩티드 산물을 생성시킬 수 있음을 또한 알 수 있다. 이러한 차이는, 예를 들면 폴리펩티드의 mRNA 수준, 표면 발현, 분비 또는 다른 분배에 있어서의 변화에 의해 입증될 수 있다. 차등적인 유전자 발현은 2개 이상의 유전자 또는 상기 유전자 산물간의 발현 비교, 또는 2개 이상의 유전자 또는 상기 유전자 산물간의 발현 비율의 비교, 또는 동일한 유전자의 2개의 상이하게 처리된 산물의 비교(이들은 정상 대상과 질병, 구체적으로 비근침윤성 방광암을 앓는 대상 사이에서 또는 동일한 질병의 다양한 병기 사이에서 다름)를 포함할 수 있다. 차등적인 발현은, 예를 들면 정상 세포와 질병에 걸린 세포들 사이에서, 또는 상이한 질병 사건 또는 질병 병기를 거치는 세포들 사이에서 유전자 또는 그의 발현 산물에서 일시적인 또는 세포 발현 양상의 정량적 및 정성적 차이를 모두 포함한다. 본 발명의 목적상, "차등적인 유전자 발현"은 질병에 걸린 대상의 질병 발생의 다양한 병기 및 등급에서 주어진 유전자의 발현 사이에 적어도 약 1.5배, 바람직하게는 적어도 약 2배, 보다 바람직하게는 적어도 약 4배의 차이가 있을 때 존재하는 것으로 간주된다.As used herein, the term "differentially expressed genes (DEGs)" refers to the expression of genes that are higher or higher in patients with disease, specifically cancer, such as bladder cancer, compared to their expression in normal or control samples. Refers to genes that are activated at low levels. The term also includes genes whose expression is activated at higher or lower levels in different stages of the same disease. It can also be seen that differentially expressed genes can be activated or repressed at the nucleic acid level or protein level, or can produce different polypeptide products through alternative splicing. Such differences may be evidenced, for example, by changes in mRNA levels, surface expression, secretion or other distribution of the polypeptide. Differential gene expression refers to a comparison of expression between two or more genes or said gene products, or a comparison of expression ratios between two or more genes or said gene products, or a comparison of two differently processed products of the same gene, which are compared to normal subjects. disease, specifically between subjects suffering from non-muscle invasive bladder cancer or between various stages of the same disease). Differential expression refers to quantitative and qualitative differences in temporal or cellular expression patterns in a gene or its expression product, for example between normal and diseased cells, or between cells undergoing different disease events or stages of the disease. Includes all. For the purposes of the present invention, “differential gene expression” means at least about 1.5-fold, preferably at least about 2-fold, and more preferably at least about 1.5-fold between the expression of a given gene at various stages and grades of disease development in diseased subjects. A difference of approximately 4 times is considered present.

본 발명에서 용어, "예후"는 방광암과 같은 질환의, 예를 들어 재발(동일한 병리학적 단계의 원발성 NMIBC의 재발로 정의), 전이성 확산, 및 약물 내성을 비롯한 방광암-기인성 사망 또는 진행(질병 재발 후 TNM 단계 진행으로 정의)의 가능성 등의 병의 경과 및 완치 여부를 의미한다. 본 발명의 목적상 예후는 방광암 치료 후 재발 가능성 또는 근침윤성 방광암(Muscle Invasive Bladder Cancer; MIBC)으로 진행 여부를 예측하는 것을 의미한다.As used herein, the term “prognosis” refers to bladder cancer-attributable death or progression of a disease such as bladder cancer, including recurrence (defined as recurrence of primary NMIBC of the same pathological stage), metastatic spread, and drug resistance (disease recurrence). It refers to the course of the disease and whether it is cured, including the possibility of progression to the post-TNM stage. For the purposes of the present invention, prognosis means predicting the possibility of recurrence or progression to Muscle Invasive Bladder Cancer (MIBC) after bladder cancer treatment.

본 발명에서 용어, "양호한 예후"는 암 환자, 특히 방광암 환자의 질병이 완치될 가능성을 의미하고, "양호하지 않은 예후"는 투병 중인 암 또는 종양의 진행(progression) 및 재발(recurrence), 전이 또는 사망할 가능성이 있음을 의미한다. 양호한 결과를 갖는 것으로 분류된 암 환자는 투병 중인 암 또는 종양이 없는 상태이다. 이와는 반대로, 양호하지 않은 결과의 암 환자는 질병의 재생, 종양 재발, 진행, 전이 또는 사망에 이른다. "양호한 예후"는 방광암 환자가 투병 중인 암 또는 종양이 적어도 2년, 보다 구체적으로는 적어도 5년 이상 동안 없는 상태로 있을 수 있음을 의미한다. 본 발명의 다른 측면에서, "양호하지 않은 예후"는 방광암 환자가 5년 미만 이내에 질병 재생, 종양 재발, 진행, 전이 또는 사망을 경험할 수 있음을 의미한다.In the present invention, the term "good prognosis" refers to the possibility of curing the disease of a cancer patient, especially a bladder cancer patient, and the "poor prognosis" refers to the progression, recurrence, and metastasis of the cancer or tumor being fought. Or it means there is a possibility of death. Cancer patients classified as having a good outcome do not have active cancer or tumors. In contrast, cancer patients with poor outcomes experience disease regeneration, tumor recurrence, progression, metastasis, or death. “Good prognosis” means that a patient with bladder cancer can remain free of the cancer or tumor they are fighting for at least 2 years, and more specifically at least 5 years. In another aspect of the invention, “unfavorable prognosis” means that patients with bladder cancer may experience disease regeneration, tumor recurrence, progression, metastasis, or death within less than 5 years.

본 발명에서 용어, "예측"이란 환자가 화학요법 또는 방사선 치료 등의 치료법에 대해 선호적으로 또는 비선호적으로 반응하여 환자가 치료, 예를 들어 특정 치료제, 및/또는 원발성 종양의 수술로 제거, 및/또는 암의 재발 없이 특정 시기 동안 화학요법으로 치료된 후의 생존 여부 및/또는 가능성과 관련된다. 본 발명의 예측방법은 임의의 특정 환자에 대한 가장 적절한 치료방식을 선택하여 적용함으로써 임상적으로 사용될 수 있다. 본 발명의 예측방법은 환자가, 예를 들어 소정의 치료제 또는 조합물, 외과적 개입, 화학요법 등의 투여를 비롯한 소정의 치료 처방과 같은 치료법에 선호적으로 반응하는지를 확인하거나, 치료 처방 후 환자의 장기 생존 또는 전신 또는 국소 재발이 가능한지를 예측할 수 있다. 또한 이를 통하여 불필요한 보조 항암요법을 최소화하거나 전신 또는 국소 재발이 예측되는 환자에게는 더욱 효과적인 보조 항암요법을 사용할 수 있도록 계획할 수 있다.In the present invention, the term "prediction" means that a patient will respond favorably or unfavorably to a treatment such as chemotherapy or radiation therapy, such that the patient may receive treatment, for example, a specific therapeutic agent, and/or surgical removal of the primary tumor, and/or relates to the presence and/or likelihood of survival after treatment with chemotherapy for a certain period of time without recurrence of cancer. The prediction method of the present invention can be used clinically by selecting and applying the most appropriate treatment method for any specific patient. The prediction method of the present invention confirms whether a patient responds preferentially to a treatment, such as a treatment regimen, including administration of a treatment or combination, surgical intervention, chemotherapy, etc., or determines whether a patient responds preferentially to a treatment regimen after treatment prescription. It is possible to predict long-term survival or whether systemic or local recurrence is possible. In addition, through this, it is possible to plan to minimize unnecessary adjuvant anticancer therapy or to use more effective adjuvant anticancer therapy for patients predicted to have systemic or local recurrence.

본 발명에서 용어, "예후 예측용 마커", "예후 예측을 위한 마커" 또는 "예후 예측 마커(prognosis marker)"란 방광암 세포를 정상 세포와 구분하여 방광암 치료 후 진행 또는 재발 여부를 비롯한 예후를 예측할 수 있는 물질이다. 본 발명의 목적상 비근침윤성 방광암 진단 후 수술 또는 화학요법을 시술받고 5년 이내에 근침윤성 방광암으로의 진행 여부 또는 재발 여부를 결정하여 예후가 양호한 환자와 양호하지 않은 환자를 구별할 수 있는 마커를 의미한다.In the present invention, the term "prognosis prediction marker", "prognosis prediction marker", or "prognosis marker" refers to a marker that distinguishes bladder cancer cells from normal cells and predicts the prognosis, including progression or recurrence, after treatment of bladder cancer. It is a substance that can be For the purpose of the present invention, it refers to a marker that can determine the progression or recurrence of muscle-invasive bladder cancer within 5 years of receiving surgery or chemotherapy after diagnosis of non-muscle-invasive bladder cancer and distinguish between patients with a good prognosis and patients with a poor prognosis. do.

유의성 있는 예후 예측 마커의 선택과 적용은 예후 예측 결과의 신뢰도를 결정짓는다. "유의성 있는 예후 예측 마커"란, 예후 예측하여 얻은 결과가 정확하여 타당도(validity)가 높고 반복 측정 시에도 일관된 결과를 나타내도록 신뢰도(reliability)가 높은 마커를 의미한다. 본 발명에 따른 방광암의 예후 예측 마커는, 비근침윤성 방광암 환자 조직을 이용한 RNA 시퀀싱 분석과 더불어 다양한 방광암 환자 코호트(E-MTAB-4321, TCGA)에 공통적으로 나타나는 차등적으로 발현된 유전자들로서, 반복된 실험에도 동일한 결과를 나타낸다.The selection and application of meaningful prognostic prediction markers determines the reliability of prognostic prediction results. “Significant prognosis prediction marker” refers to a marker that has high validity so that the results obtained by predicting prognosis are accurate and has high reliability so that it shows consistent results even when measured repeatedly. The prognostic markers for bladder cancer according to the present invention are differentially expressed genes that are common in various bladder cancer patient cohorts (E-MTAB-4321, TCGA), as well as RNA sequencing analysis using tissue from patients with non-muscle-invasive bladder cancer. The experiment shows the same results.

본 발명에서 방광암의 예후 예측 마커로 선택된 상기 유전자들과 방광암의 진행 또는 재발과의 관련성에 대해서는 현재까지 보고된 바 없다.There has been no report to date on the relationship between the genes selected as prognostic markers for bladder cancer in the present invention and the progression or recurrence of bladder cancer.

또 하나의 양태로서, 본 발명은 SKA3 유전자의 mRNA 발현수준 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 포함하는, 비근침윤성 방광암의 예후 예측용 조성물에 관한 것이다.In another aspect, the present invention relates to a composition for predicting the prognosis of non-muscle invasive bladder cancer, comprising an agent for measuring the mRNA expression level of the SKA3 gene or the expression level of the protein encoded by the gene.

본 발명의 일구체예에서, 상기 조성물은 ANLN, ASF1B, AURKB, CCNA2, CCNB2, CDC20, CDK1, CEP55, FOXM1, KIF20A, KIF23, MKI67, NUSAP1, PLK1, PRC1, RECQL4, RRM2, SPAG5, TK1, TOP2A, TPX2 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 더 포함할 수 있으며, 바람직하게는 ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, TPX2 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 더 포함할 수 있고, 더욱 바람직하게는 CDK1, MKI67 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 더 포함할 수 있다.In one embodiment of the present invention, the composition includes ANLN, ASF1B, AURKB, CCNA2, CCNB2, CDC20, CDK1, CEP55, FOXM1, KIF20A, KIF23, MKI67, NUSAP1, PLK1, PRC1, RECQL4, RRM2, SPAG5, TK1, TOP2A , TPX2, and TTK may further include an agent for measuring the expression level of the mRNA or protein encoded by one or more genes selected from the group consisting of ANLN, CCNA2, CDC20, CDK1, MKI67, It may further include an agent for measuring the expression level of the mRNA or protein encoded by one or more genes selected from the group consisting of NUSAP1, PRC1, TPX2, and TTK, and more preferably CDK1, MKI67, and TTK. It may further include an agent for measuring the expression level of mRNA or protein encoded by one or more genes selected from the group consisting of the genes.

본 발명에서 용어, "mRNA 발현수준 측정"은 방광암의 예후를 예측하기 위하여 생물학적 시료에서 마커 유전자의 mRNA 존재 여부와 발현정도를 확인하는 과정으로, mRNA의 양을 측정함으로써 알 수 있다. 이를 위한 분석방법으로는 RT-PCR, 경쟁적 RT-PCR(competitive RT-PCR), 실시간 RT-PCR(Real-time RT-PCR), RNase 보호 분석법(RPA; RNase protection assay), 노던 블랏팅(northern blotting), DNA 마이크로어레이 칩 등이 있으나, 이들로 한정되는 것은 아니다.In the present invention, the term "mRNA expression level measurement" is a process of confirming the presence and expression level of mRNA of a marker gene in a biological sample in order to predict the prognosis of bladder cancer, which can be determined by measuring the amount of mRNA. Analysis methods for this include RT-PCR, competitive RT-PCR, real-time RT-PCR, RNase protection assay (RPA), and northern blotting. blotting, DNA microarray chips, etc., but are not limited to these.

본 발명에 따른 방광암의 예후 마커 유전자의 mRNA 수준을 측정하는 제제는 바람직하게는 안티센스 올리고뉴클레오티드, 프라이머 쌍 또는 프로브이며, 상기 마커 유전자의 염기서열을 바탕으로 이들 유전자의 특정 영역을 특이적으로 증폭하는 프라이머 또는 프로브를 고안할 수 있다. 본 발명에 따른 방광암의 예후 마커 유전자의 염기서열은 유전자뱅크(GenBank)에 등록되어 당해분야에 공지된 상태이므로, 당업자는 상기 염기서열을 바탕으로 이들 유전자의 특정 영역을 특이적으로 증폭할 수 있는 프라이머 또는 프로브를 디자인할 수 있다.The agent for measuring the mRNA level of the prognostic marker gene for bladder cancer according to the present invention is preferably an antisense oligonucleotide, a primer pair, or a probe, and specifically amplifies a specific region of these genes based on the base sequence of the marker gene. Primers or probes can be designed. Since the base sequence of the prognostic marker gene for bladder cancer according to the present invention is registered in GenBank and is known in the field, those skilled in the art can specifically amplify specific regions of these genes based on the base sequence. Primers or probes can be designed.

본 발명에서 용어, "안티센스"는 안티센스 올리고머가 왓슨-크릭 염기쌍 형성에 의해 RNA 내의 표적서열과 혼성화되어 표적 서열 내에서 전형적으로 mRNA와 헤테로이중체를 형성할 수 있는 뉴클레오티드 염기서열 및 서브 유닛간 백본을 갖는 올리고머를 지칭한다. 올리고머는 표적 서열에 대한 정확한 서열 상보성 또는 유사 상보성을 가질 수 있다. 이 안티센스 올리고머는 mRNA의 번역을 차단 또는 저해하고 mRNA의 스플라이스 변이체를 생산하는 mRNA의 프로세싱 과정을 변화시킬 수 있다.In the present invention, the term "antisense" refers to a nucleotide base sequence and a backbone between subunits in which an antisense oligomer can hybridize with a target sequence in RNA through Watson-Crick base pairing to typically form a heteroduplex with mRNA within the target sequence. It refers to an oligomer having . Oligomers may have exact or near sequence complementarity to the target sequence. These antisense oligomers can block or inhibit the translation of mRNA and alter the processing of mRNA, producing splice variants of mRNA.

본 발명에서 용어, "프라이머"는 적절한 완충액 중의 적절한 조건(예를 들면, 4개의 다른 뉴클레오시드 트리포스페이트 및 DNA, RNA 폴리머라제 또는 역전사 효소와 같은 중합제) 및 적절한 온도 하에서 주형-지시 DNA 합성의 시작점으로서 작용할 수 있는 단일가닥 올리고뉴클레오티드를 말한다. 상기 프라이머의 적절한 길이는 사용 목적에 따라 달라질 수 있으나, 통상 15 내지 30개 뉴클레오티드이다. 짧은 프라이머 분자는 일반적으로 주형과 안정한 혼성체를 형성하기 위해서 더 낮은 온도를 필요로 한다. 프라이머 서열은 주형과 완전하게 상보적일 필요는 없으나, 주형과 혼성화할 정도로 충분히 상보적이어야 한다. 본 발명에서는 본 발명에 따른 방광암의 예후 마커 유전자에 대한 정방향 및 역방향 프라이머를 사용하여 PCR 증폭을 수행한 후 PCR 생성물의 증폭 여부를 통해 방광암의 예후를 예측할 수 있다.As used herein, the term "primer" refers to template-directed DNA synthesis under appropriate conditions (e.g., four different nucleoside triphosphates and a polymerizing agent such as DNA, RNA polymerase, or reverse transcriptase) in an appropriate buffer and at an appropriate temperature. refers to a single-stranded oligonucleotide that can act as a starting point. The appropriate length of the primer may vary depending on the purpose of use, but is usually 15 to 30 nucleotides. Short primer molecules generally require lower temperatures to form stable hybrids with the template. The primer sequence need not be completely complementary to the template, but should be sufficiently complementary to hybridize to the template. In the present invention, the prognosis of bladder cancer can be predicted by performing PCR amplification using forward and reverse primers for the prognostic marker gene for bladder cancer according to the present invention, and then determining whether or not the PCR product is amplified.

본 발명에서 용어, "프로브"는 mRNA와 특이적 결합을 이룰 수 있는 짧게는 수개 염기 내지 길게는 수백 개 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미한다. 프로브는 올리고 뉴클레오티드 프로브, 단일가닥 DNA 프로브, 이중가닥 DNA 프로브, RNA 프로브 등의 형태로 제작될 수 있다. 본 발명에서는 본 발명에 따른 마커 유전자에 대해 상보적인 프로브를 이용하여 혼성화를 실시한 후, 혼성화 여부를 통해 방광암의 재발 여부를 비롯한 예후를 예측할 수 있다. 적당한 프로브의 선택 및 혼성화 조건은 당해분야에 공지된 것을 기초로 변형할 수 있다.In the present invention, the term “probe” refers to a nucleic acid fragment such as RNA or DNA that can bind specifically to mRNA, ranging from a few bases to several hundreds of bases. Probes can be manufactured in the form of oligonucleotide probes, single-stranded DNA probes, double-stranded DNA probes, RNA probes, etc. In the present invention, after performing hybridization using a probe complementary to the marker gene according to the present invention, the prognosis, including recurrence of bladder cancer, can be predicted based on hybridization. Selection of appropriate probes and hybridization conditions can be modified based on those known in the art.

본 발명에 따른 안티센스 올리고뉴클레오티드, 프라이머 또는 프로브는 포스포르아미다이트 고체 지지체 방법을 비롯한 당해분야에 널리 공지된 방법을 사용하여 화학적으로 합성할 수 있다. 이러한 핵산 서열은 또한 당해분야에 공지된 많은 수단을 이용하여 변형시킬 수 있다. 이러한 변형의 비-제한적인 예로는 메틸화, 캡핑, 천연 뉴클레오티드 하나 이상의 동족체로의 치환, 및 뉴클레오티드간의 변형, 예를 들면, 하전되지 않은 연결체(예: 메틸포스포네이트, 포스포트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체(예: 포스포로티오에이트, 포스포로디티오에이트 등)로의 변형이 있다.Antisense oligonucleotides, primers or probes according to the present invention can be chemically synthesized using methods well known in the art, including the phosphoramidite solid support method. These nucleic acid sequences can also be modified using many means known in the art. Non-limiting examples of such modifications include methylation, capping, substitution of a native nucleotide with one or more homologs, and internucleotide modifications, such as uncharged linkages (e.g., methylphosphonate, phosphotriester, phosphoro). amidates, carbamates, etc.) or charged linkages (e.g. phosphorothioate, phosphorodithioate, etc.).

본 발명에서 용어, "단백질의 발현수준 측정"은 방광암의 진행 또는 재발 가능성을 예후 예측하기 위하여 생물학적 시료에서 마커 유전자로부터 코딩된 단백질의 존재 여부와 발현수준을 확인하는 과정으로, 상기 단백질에 대하여 특이적으로 결합하는 항체를 이용해 단백질의 양을 확인한다. 이를 위한 분석방법으로는 웨스턴 블랏팅(western blotting), ELISA(enzyme linked immunosorbent assay), 방사선면역분석법(radioimmunoassay), 방사면역확산법(radioimmunodiffusion), 오우크레로니(Ouchterlony) 면역확산법, 로케트(Rocket) 면역전기영동, 면역조직화학염색, 면역침전분석(immunoprecipitation assay), 보체고정분석(complete fixation assay), FACS, 단백질 칩(protein chip) 등이 있으나, 이들로 한정되는 것은 아니다.In the present invention, the term "protein expression level measurement" refers to the process of confirming the presence and expression level of a protein encoded from a marker gene in a biological sample to predict the prognosis of the possibility of progression or recurrence of bladder cancer, and is specific for the protein. The amount of protein is confirmed using an antibody that binds to the target. Analysis methods for this include western blotting, ELISA (enzyme linked immunosorbent assay), radioimmunoassay, radioimmunodiffusion, Ouchterlony immunodiffusion, and rocket immunization. Electrophoresis, immunohistochemical staining, immunoprecipitation assay, complete fixation assay, FACS, protein chip, etc. are included, but are not limited to these.

본 발명에서 용어, "항체"는 당해분야에 공지된 용어로서, 항원성 부위에 대해서 지시되는 특이적인 단백질 분자를 의미한다. 본 발명의 목적상, 항체는 본 발명의 마커 유전자로부터 코딩된 단백질에 대해 특이적으로 결합하는 항체를 의미하며, 이러한 항체는 각 유전자를 통상적인 방법에 따라 발현벡터에 클로닝하여 상기 마커 유전자에 의해 코딩되는 단백질을 얻은 후, 얻어진 단백질로부터 통상적인 방법에 의해 제조될 수 있다. 여기에는 상기 단백질에서 만들어질 수 있는 펩티드 단편도 포함되며, 본 발명의 펩티드 단편으로는, 최소한 7개 아미노산, 바람직하게는 9개 아미노산, 더욱 바람직하게는 12개 이상의 아미노산을 포함한다. 본 발명의 항체는 그 형태가 특별히 제한되지 않으며, 다중클론 항체, 단일클론 항체 또는 항원 결합성을 갖는 것이라면 그것의 일부도 본 발명의 항체에 포함되고, 모든 면역글로불린 항체가 포함된다.In the present invention, the term “antibody” is a term known in the art and refers to a specific protein molecule directed to an antigenic site. For the purpose of the present invention, an antibody refers to an antibody that specifically binds to a protein encoded from the marker gene of the present invention, and such antibody is produced by cloning each gene into an expression vector according to a conventional method and expressing the marker gene. After obtaining the encoded protein, it can be prepared from the obtained protein by conventional methods. This also includes peptide fragments that can be made from the above proteins, and the peptide fragments of the present invention contain at least 7 amino acids, preferably 9 amino acids, and more preferably 12 or more amino acids. The form of the antibody of the present invention is not particularly limited, and polyclonal antibodies, monoclonal antibodies, or parts of antibodies having antigen binding properties are also included in the antibody of the present invention, and all immunoglobulin antibodies are included.

상기한 바와 같이 방광암의 예후 예측 마커 유전자가 규명되었으므로, 이를 이용하여 항체를 생성하는 것은 당업계에 널리 공지된 기술을 이용하여 용이하게 제조할 수 있다. 다중클론 항체는 상기한 방광암의 예후 예측 마커 유전자로부터 코딩되는 단백질 항원을 동물에 주사하고 동물로부터 채혈하여 항체를 포함하는 혈청을 수득하는 당해분야에 널리 공지된 방법에 의해 생산할 수 있다. 이러한 다중클론 항체는 염소, 토끼, 양, 원숭이, 말, 돼지, 소 개 등의 임의의 동물 종 숙주로부터 제조 가능하다. 단클론 항체는 당해분야에 널리 공지된 하이브리도마 방법(hybridoma method)(Kohler 및 Milstein, European Jounral of Immunology, 6: 511-519, 1976), 또는 파지 항체 라이브러리(Clackson et al, Nature, 352: 624-628, 1991; Marks et al, J. Mol. Biol., 222(58): 1-597, 1991) 기술을 이용하여 제조될 수 있다. 상기 방법으로 제조된 항체는 겔 전기영동, 투석, 염침전, 이온교환 크로마토그래피, 친화성 크로마토그래피 등의 방법을 이용하여 분리, 정제할 수 있다.As described above, since the marker gene for predicting the prognosis of bladder cancer has been identified, antibodies using it can be easily produced using techniques widely known in the art. Polyclonal antibodies can be produced by a method well known in the art, which involves injecting an animal with a protein antigen encoded from the marker gene for predicting the prognosis of bladder cancer and collecting blood from the animal to obtain serum containing the antibody. These polyclonal antibodies can be prepared from any animal species host, such as goats, rabbits, sheep, monkeys, horses, pigs, cows and dogs. Monoclonal antibodies can be prepared using the hybridoma method (Kohler and Milstein, European Jounral of Immunology, 6: 511-519, 1976), which is well known in the art, or the phage antibody library (Clackson et al, Nature, 352: 624). -628, 1991; Marks et al, J. Mol. Biol., 222(58): 1-597, 1991). Antibodies prepared by the above method can be separated and purified using methods such as gel electrophoresis, dialysis, salt precipitation, ion exchange chromatography, and affinity chromatography.

나아가, 본 발명의 항체에는 인간화 항체 등의 재조합 항체도 포함된다. 본 발명에 사용되는 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 완전한 형태뿐만 아니라 항체 분자의 기능적인 단편을 포함한다. 항체 분자의 기능적인 단편이란 적어도 항원 결합기능을 보유하고 있는 단편을 뜻하며, Fab, F(ab'), F(ab')2, Fv 등이 있다.Furthermore, the antibodies of the present invention also include recombinant antibodies such as humanized antibodies. Antibodies for use in the present invention include intact forms with two full-length light chains and two full-length heavy chains as well as functional fragments of the antibody molecule. A functional fragment of an antibody molecule refers to a fragment that possesses at least an antigen-binding function and includes Fab, F(ab'), F(ab')2, and Fv.

또 하나의 양태로서, 본 발명은 상기 조성물을 포함하는 비근침윤성 방광암의 예후 예측용 키트에 관한 것이다.In another aspect, the present invention relates to a kit for predicting the prognosis of non-muscle invasive bladder cancer comprising the composition.

본 발명의 키트는 비근침윤성 방광암의 예후 예측 마커인 SKA3 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정(확인)함으로써 피험체를 대상으로 하여 비근침윤성 방광암의 예후를 예측하는데 사용될 수 있다. 본 발명의 비근침윤성 방광암의 예후 예측용 키트에는 상기 SKA3 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하기 위한 폴리뉴클레오티드, 프라이머, 프로브 또는 항체뿐만 아니라 분석 방법에 적합한 한 종류 또는 그 이상의 다른 구성 성분 조성물, 용액 또는 장치가 포함될 수 있다.The kit of the present invention can be used to predict the prognosis of non-muscle-invasive bladder cancer in subjects by measuring (confirming) the expression level of the mRNA of the SKA3 gene, which is a prognostic marker for non-muscle-invasive bladder cancer, or the protein encoded by the gene. there is. The kit for predicting the prognosis of non-muscle invasive bladder cancer of the present invention includes polynucleotides, primers, probes, or antibodies for measuring the expression level of the mRNA of the SKA3 gene or the protein encoded by the gene, as well as one type or one suitable for the analysis method. Other component compositions, solutions, or devices may be included.

구체적인 일례로서, 본 발명의 방광암의 예후 예측용 키트는 RT-PCR을 수행하기 위해 필요한 필수 요소를 포함하는 키트일 수 있다. RT-PCR 키트는, 상기 SKA3 유전자에 대한 특이적인 각각의 프라이머 쌍 외에도 테스트 튜브 또는 다른 적절한 컨테이너, 반응 완충액(pH 및 마그네슘 농도는 다양), 데옥시뉴클레오타이드(dNTPs), Taq-폴리머라아제 및 역전사효소와 같은 효소, DNase, RNAse 억제제, DEPC-수(DEPC-water), 멸균수 등을 포함할 수 있다. 또한, 정량 대조구로 사용되는 유전자에 특이적인 프라이머 쌍을 포함할 수 있다.As a specific example, the kit for predicting prognosis of bladder cancer of the present invention may be a kit containing the essential elements necessary to perform RT-PCR. The RT-PCR kit requires, in addition to each primer pair specific for the SKA3 gene, a test tube or other suitable container, reaction buffer (pH and magnesium concentration vary), deoxynucleotides (dNTPs), Taq-polymerase, and reverse transcription. It may include enzymes such as enzymes, DNase, RNAse inhibitors, DEPC-water, sterilized water, etc. Additionally, it may include a pair of primers specific to the gene used as a quantitative control.

다른 일례로서, 본 발명의 키트는 유전자 칩 분석법을 수행하기 위해 필요한 필수 요소를 포함할 수 있다. 유전자 칩 분석용 키트는, 유전자 또는 그의 단편에 해당하는 cDNA가 프로브로 부착되어 있는 기판, 및 형광표식 프로브를 제작하기 위한 시약, 제제, 효소 등을 포함할 수 있다. 또한, 기판은 정량 대조구 유전자 또는 그의 단편에 해당하는 cDNA를 포함할 수 있다.As another example, the kit of the present invention may include essential elements required to perform gene chip analysis. A gene chip analysis kit may include a substrate to which a cDNA corresponding to a gene or a fragment thereof is attached as a probe, and reagents, agents, enzymes, etc. for producing a fluorescent label probe. Additionally, the substrate may include cDNA corresponding to a quantitative control gene or a fragment thereof.

본 발명의 키트는 상기 SKA3 유전자 이외에 ANLN, ASF1B, AURKB, CCNA2, CCNB2, CDC20, CDK1, CEP55, FOXM1, KIF20A, KIF23, MKI67, NUSAP1, PLK1, PRC1, RECQL4, RRM2, SPAG5, TK1, TOP2A, TPX2 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 더 포함할 수 있으며, 바람직하게는 ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, TPX2 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 더 포함할 수 있고, 더욱 바람직하게는 CDK1, MKI67 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 추가로 포함할 수 있다.In addition to the SKA3 gene, the kit of the present invention contains ANLN, ASF1B, AURKB, CCNA2, CCNB2, CDC20, CDK1, CEP55, FOXM1, KIF20A, KIF23, MKI67, NUSAP1, PLK1, PRC1, RECQL4, RRM2, SPAG5, TK1, TOP2A, TPX2 And it may further include an agent for measuring the expression level of the mRNA or protein encoded by one or more genes selected from the group consisting of TTK, preferably ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, It may further include an agent for measuring the expression level of the mRNA or protein encoded by one or more genes selected from the group consisting of PRC1, TPX2, and TTK, and more preferably the group consisting of CDK1, MKI67, and TTK. It may further include an agent for measuring the expression level of the mRNA of one or more genes selected from or the protein encoded by the genes.

또 하나의 양태로서, 본 발명은 상기 조성물을 포함하는 비근침윤성 방광암의 예후 예측용 마이크로어레이에 관한 것이다.In another aspect, the present invention relates to a microarray for predicting the prognosis of non-muscle invasive bladder cancer comprising the composition.

상기 마이크로어레이는 본 발명의 상기 선발된 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하기 위한 폴리뉴클레오티드, 프라이머, 프로브 또는 항체를 포함하는 것을 제외하고는 통상적인 마이크로어레이로 이루어질 수 있다.The microarray may be a conventional microarray except that it includes polynucleotides, primers, probes or antibodies for measuring the expression level of the mRNA of the selected gene of the present invention or the protein encoded by the gene. there is.

마이크로어레이 상에서의 핵산의 혼성화 및 혼성화 결과의 검출은 당업계에 잘 알려져 있다. 상기 검출은 예를 들면, 핵산 시료를 형광 물질, 예를 들면, Cy3 및 Cy5와 같은 물질을 포함하는 검출 가능한 신호를 발생시킬 수 있는 표지 물질로 표지한 다음, 마이크로어레이 상에 혼성화하고 상기 표지 물질로부터 발생하는 신호를 검출함으로써 혼성화 결과를 검출할 수 있다.Hybridization of nucleic acids and detection of hybridization results on microarrays are well known in the art. The detection may be performed, for example, by labeling a nucleic acid sample with a labeling material capable of generating a detectable signal including a fluorescent substance, such as Cy3 and Cy5, and then hybridizing the labeling material on a microarray. The hybridization result can be detected by detecting the signal generated from.

또 다른 하나의 양태로서, 본 발명은 개체로부터 분리된 생물학적 시료에서 SKA3 유전자의 mRNA 발현수준 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 단계를 포함하는, 비근침윤성 방광암의 예후 예측을 위한 정보를 제공하는 방법에 관한 것이다.In another aspect, the present invention provides a method for predicting the prognosis of non-muscle invasive bladder cancer, comprising measuring the mRNA expression level of the SKA3 gene or the expression level of the protein encoded by the gene in a biological sample isolated from an individual. It's about how to provide information.

본 발명의 일구체예에서, 상기 단계는 ANLN, ASF1B, AURKB, CCNA2, CCNB2, CDC20, CDK1, CEP55, FOXM1, KIF20A, KIF23, MKI67, NUSAP1, PLK1, PRC1, RECQL4, RRM2, SPAG5, TK1, TOP2A, TPX2 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 더 측정할 수 있으며, 바람직하게는 ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, TPX2 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 더 측정할 수 있고, 더욱 바람직하게는 CDK1, MKI67 및 TTK로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 더 측정할 수 있다.In one embodiment of the present invention, the step includes ANLN, ASF1B, AURKB, CCNA2, CCNB2, CDC20, CDK1, CEP55, FOXM1, KIF20A, KIF23, MKI67, NUSAP1, PLK1, PRC1, RECQL4, RRM2, SPAG5, TK1, TOP2A , the expression level of the mRNA or protein encoded by one or more genes selected from the group consisting of TPX2 and TTK, preferably ANLN, CCNA2, CDC20, CDK1, MKI67, NUSAP1, PRC1, The expression level of the mRNA or protein encoded by one or more genes selected from the group consisting of TPX2 and TTK can be further measured, more preferably one or more genes selected from the group consisting of CDK1, MKI67, and TTK. The expression level of the mRNA or protein encoded by the gene can be further measured.

본 발명에서 용어, "개체로부터 분리된 생물학적 시료"란 방광암에 대한 수술 및/또는 화학요법을 시술 받은 개체로부터 분리된 조직, 세포, 전혈, 혈청, 혈장, 타액, 객담, 뇌척수액 또는 뇨와 같은 시료 등을 포함하나, 이들로 한정되는 것은 아니다.In the present invention, the term "biological sample isolated from an individual" refers to a sample such as tissue, cells, whole blood, serum, plasma, saliva, sputum, cerebrospinal fluid, or urine isolated from an individual who has undergone surgery and/or chemotherapy for bladder cancer. It includes, but is not limited to, etc.

mRNA 발현수준을 측정하기 위한 분석방법으로는 역전사효소 중합효소반응, 경쟁적 역전사효소 중합효소반응, 실시간 역전사효소 중합효소반응, RNase 보호 분석법, 노던 블랏팅, DNA 마이크로어레이 칩 등이 있으나, 이들로 한정되는 것은 아니다.Analytical methods for measuring mRNA expression levels include reverse transcriptase polymerase reaction, competitive reverse transcriptase polymerase reaction, real-time reverse transcriptase polymerase reaction, RNase protection assay, Northern blotting, and DNA microarray chip, but are limited to these. It doesn't work.

상기 분석방법을 통하여, 정상 대조군 시료의 mRNA 발현수준과 방광암 진행 또는 재발 의심 개체에서의 mRNA 발현수준을 비교할 수 있고, 마커 유전자에서 mRNA로의 발현수준의 유의한 증가여부를 판단하여 방광암 진행 또는 재발 의심 개체의 실제 방광암 진행 또는 재발 여부를 예후 예측할 수 있다. mRNA 발현수준은, 바람직하게는 마커로 사용되는 유전자에 특이적인 프라이머를 이용하는 역전사효소 중합반응 또는 마커로 사용되는 유전자에 특이적인 프로브를 이용하는 DNA 마이크로어레이 칩을 이용하여 측정할 수 있다.Through the above analysis method, the mRNA expression level of normal control samples can be compared with the mRNA expression level in subjects suspected of bladder cancer progression or recurrence, and a significant increase in the expression level of the marker gene to mRNA can be determined to determine bladder cancer progression or recurrence. It is possible to predict the prognosis of an individual's actual bladder cancer progression or recurrence. The mRNA expression level can preferably be measured using a reverse transcriptase polymerization reaction using primers specific to the gene used as a marker or a DNA microarray chip using a probe specific to the gene used as a marker.

본 발명의 바람직한 실시예에 따르면, 마커 유전자에 특이적인 프라이머를 사용하여 역전사효소 중합반응을 수행한 후 생성물을 전기영동하여 밴드 패턴과 밴드의 두께를 확인함으로써 방광암의 예후 예측 마커로 사용되는 유전자의 mRNA 발현수준을 측정한 후 이를 정상 대조군의 발현수준과 비교함으로써 방광암의 진행 또는 재발 가능성을 간편하게 예후 예측할 수 있다.According to a preferred embodiment of the present invention, a reverse transcriptase polymerization reaction is performed using a primer specific for a marker gene, and then the product is electrophoresed to confirm the band pattern and band thickness, thereby determining the gene used as a prognostic marker for bladder cancer. By measuring the mRNA expression level and comparing it with the expression level of a normal control group, the likelihood of progression or recurrence of bladder cancer can be easily predicted.

또한, 상기 마커 유전자에 의해 코딩되는 단백질 수준 측정은 항체를 이용할 수 있는데, 이러한 경우, 생물학적 시료 내의 상기 마커 유전자에 의해 코딩되는 단백질과 이에 특이적인 항체 결합물은, 즉, 항원-항체 복합체를 형성하며, 항원-항체 복합체의 형성량은 검출 라벨(detection label)의 시그널의 크기를 통해서 정량적으로 측정할 수 있다. 이러한 검출 라벨은 효소, 형광물, 리간드, 발광물, 미소입자(microparticle), 레독스 분자 및 방사선 동위원소로 이루어진 그룹 중에서 선택할 수 있으며, 이에 제한되는 것은 아니다. 단백질 수준을 측정하기 위한 분석 방법으로는, 이에 제한되지는 않으나, 웨스턴 블럿, ELISA, 방사선면역분석, 방사선 면역 확산법, 오우크테로니 면역 확산법, 로케트 면역전기영동, 면역조직화학법, 면역침전분석법, 보체 고정분석법, FACS, 단백질 칩 등이 있다.In addition, the level of the protein encoded by the marker gene can be measured using an antibody. In this case, the protein encoded by the marker gene in the biological sample and the antibody specific for the protein bind, that is, form an antigen-antibody complex. The amount of antigen-antibody complex formation can be quantitatively measured through the size of the signal of the detection label. These detection labels may be selected from the group consisting of enzymes, fluorescent substances, ligands, luminescent substances, microparticles, redox molecules and radioisotopes, but are not limited thereto. Analytical methods for measuring protein levels include, but are not limited to, Western blot, ELISA, radioimmunoassay, radioimmunodiffusion, Ouchteroni immunodiffusion, rocket immunoelectrophoresis, immunohistochemistry, and immunoprecipitation. , complement fixation analysis, FACS, protein chip, etc.

따라서 본 발명은 상기와 같은 검출 방법들을 통하여, 정상대조군 샘플에서의 마커 유전자의 mRNA 발현양 또는 단백질의 양과 비근침윤성 방광암으로 약물 치료 또는 종양 제거 수술을 받은 환자에서의 마커 유전자의 mRNA 발현양 또는 단백질의 양을 확인할 수 있고, 상기 발현양의 정도를 대조군과 비교함으로써 방광암의 진행 또는 재발을 예측할 수 있다.Therefore, the present invention uses the above detection methods to detect the mRNA expression level or protein level of the marker gene in normal control samples and the mRNA expression level or protein level of the marker gene in patients who received drug treatment or tumor removal surgery for non-muscle invasive bladder cancer. The amount can be confirmed, and the progression or recurrence of bladder cancer can be predicted by comparing the level of expression with the control group.

본 발명에서는 비근침윤성 방광암으로 약물 치료 또는 종양 제거 수술을 받은 환자에서 상기 마커 유전자의 발현양 또는 단백질의 발현양이 정상대조군 시료에 비해 증가된 경우, 근침윤성 방광암으로 진행 가능성이 높거나 또는 비근침윤성 방광암이 재발할 가능성이 높을 것으로 예상할 수 있다.In the present invention, if the expression level of the marker gene or protein in a patient who has received drug treatment or tumor removal surgery for non-muscle-invasive bladder cancer is increased compared to the normal control sample, there is a high possibility of progression to muscle-invasive bladder cancer or non-muscle-invasive bladder cancer. It can be expected that bladder cancer has a high risk of recurrence.

따라서 본 발명의 정보제공방법을 통해 비근침윤성 방광암으로 약물 치료 또는 종양 제거 수술을 받은 환자에서 근침윤성 방광암으로 진행 가능성이 높을 것으로 예상되거나, 또는, 비근침윤성 방광암이 재발할 가능성이 높을 것으로 예상된 환자군을 미리 선별할 수 있으므로, 보다 적극적인 치료가 가능하다.Therefore, patients who have received drug treatment or tumor removal surgery for non-muscle-invasive bladder cancer through the information provision method of the present invention are expected to have a high likelihood of progressing to muscle-invasive bladder cancer, or a group of patients who are expected to have a high likelihood of recurrence of non-muscle-invasive bladder cancer. can be screened in advance, allowing for more active treatment.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are for illustrating the present invention in more detail, and the scope of the present invention is not limited to these examples.

<실시예><Example>

1. 재료 및 방법1. Materials and Methods

방광암 환자 조직 임상 샘플Bladder cancer patient tissue clinical samples

본 발명에 사용된 환자의 샘플은 충북대학교 의과대학 비뇨기과에서 채취하여 실험하였다. 본 연구에서 8명의 환자에게서 얻은 전체 24개의 인간 방광 시료는 RNA 시퀀싱 분석에 사용하였다; 16개의 비근침윤성 방광암(Non-Muscle Invasive Bladder Cancer; NMIBC) 환자 조직 및 방광암이 포함되지 않은 정상 주변 조직(Normal adjacent tissues; NAT) 8개를 사용하였다. 임상 정보는 하기 표 1에서 자세히 나타내었다.The patient samples used in the present invention were collected and tested at the Department of Urology, Chungbuk National University College of Medicine. A total of 24 human bladder samples from 8 patients in this study were used for RNA sequencing analysis; We used 16 non-muscle invasive bladder cancer (NMIBC) patient tissues and 8 normal adjacent tissues (NAT) that did not contain bladder cancer. Clinical information is detailed in Table 1 below.

또한, 본 연구의 SKA3 유전자 발현량 확인에 사용된 생체 표본은 보건 복지 가족부가 지원하는 국립 바이오 뱅크 회원사인 충북대학교 병원에서 제공한 것이다. 이 연구는 충북대학교 기관 심의위원회(GR2010-12-010)의 승인을 받았으며 실험은 모든 참가자의 사전 서면 동의를 받아 수행되었다. 전체 105개의 방광 조직 샘플을 사용하였다; 이 중 89개의 샘플은 원발성 비근침윤성 방광암(NMIBC) 환자의 샘플이며 조직학적으로 과도 세포 암종(transitional cell carcinoma)으로 확인되었다. 대조군으로 사용된 나머지 16개의 샘플은 정상 방광 점막(normal bladder mucosa)으로 구성되었다. 각 시료는 근치 방광 절제술 및 방광 종양의 경요도 절제술(Trans Urethral Resection of Bladder Tumor; TURBT)에서 얻은 신선한 냉동 시료의 일부에 대한 병리학적 분석을 통해 확인되었다. 종양은 표준 기준에 따라 단계(2002 TNM 분류) 및 등급(2004 WHO 분류)으로 분류되었다. 재발은 동일한 병리학적 단계의 원발성 NMIBC의 재발로 정의되었으며, NMIBC 및 근침윤성 방광암(Muscle invasive bladder cancer; MIBC)의 진행은 질병 재발 후 TNM 단계 진행으로 정의되었다. NMIBC 환자의 평균 추적 기간은 70.12개월(범위, 10.70-174.90)이었다. 임상 정보는 하기 표 2에서 자세히 나타내었다.In addition, the biological specimen used to confirm the SKA3 gene expression level in this study was provided by Chungbuk National University Hospital, a member of the National Biobank supported by the Ministry of Health, Welfare and Family Affairs. This study was approved by the Chungbuk National University Institutional Review Board (GR2010-12-010), and the experiment was conducted with written informed consent from all participants. A total of 105 bladder tissue samples were used; Among these, 89 samples were from patients with primary non-muscle invasive bladder cancer (NMIBC) and were histologically confirmed as transitional cell carcinoma. The remaining 16 samples used as controls consisted of normal bladder mucosa. Each sample was confirmed through pathological analysis of a portion of fresh frozen specimens obtained from radical cystectomy and transurethral resection of bladder tumor (TURBT). Tumors were classified into stage (2002 TNM classification) and grade (2004 WHO classification) according to standard criteria. Recurrence was defined as recurrence of primary NMIBC at the same pathological stage, and progression of NMIBC and muscle invasive bladder cancer (MIBC) was defined as progression to TNM stage after disease recurrence. The average follow-up period for NMIBC patients was 70.12 months (range, 10.70-174.90). Clinical information is detailed in Table 2 below.

방광암 환자 및 대조군 조직(정상 인접 조직)의 임상 병리학적 특징Clinicopathological characteristics of bladder cancer patients and control tissues (normal adjacent tissues) CharacteristicsCharacteristics NMIBCNMIBC NormalNormal No.No. 1616 88 Median age (range)Median age (range) 60.5 (40-75)60.5 (40-75) 60 (40-74)60 (40-74) GenderGender MaleMale 1313 66 FemaleFemale 33 22 GradeGrade G1G1 44 G2G2 1010 G3G3 22 StageStage TaTa 1111 T1T1 55

원발성 방광암 환자 및 대조군 조직(정상 방광 점막)의 임상 병리학적 특징Clinicopathological characteristics of primary bladder cancer patients and control tissues (normal bladder mucosa) VariableVariable NMIBCNMIBC NormalNormal No.No. 8989 1616 Mean age ± SDMean age ± SD 68.00±13.6868.00±13.68 68.00±15.6368.00±15.63 Gender (%)Gender (%) MaleMale 76 (85.4%)76 (85.4%) 16 (100%)16 (100%) FemaleFemale 13 (14.6%)13 (14.6%) 00 Tumor size (%)Tumor size (%) ≤ 1 cm≤ 1cm 51 (57.3%)51 (57.3%) 2-3 cm2-3cm 38 (42.7%)38 (42.7%) > 3 cm>3cm 00 Multiplicity (%)Multiplicity (%) SingleSingle 50 (56.2%)50 (56.2%) 2-72-7 26 (29.2%)26 (29.2%) > 7> 7 13 (14.6%)13 (14.6%) Grade, 2004 WHO grading system (%)Grade, 2004 WHO grading system (%) LowLow 65 (73.0%)65 (73.0%) HighHigh 24 (27.0%)24 (27.0%) Stage (%)Stage (%) TaN0M0TaN0M0 26 (29.2%)26 (29.2%) T1N0M0T1N0M0 63 (70.8%)63 (70.8%) BCG therapy (%)BCG therapy (%) NoNo 57 (64.0%)57 (64.0%) YesYes 32 (36.0%)32 (36.0%) Recurrence - no. of patients (%)Recurrence - no. of patients (%) NoNo 54 (60.7%)54 (60.7%) YesYes 35 (39.3%)35 (39.3%) Progression - no. of patients (%)Progression - no. of patients (%) NoNo 75 (84.3%)75 (84.3%) YesYes 14 (15.7%)14 (15.7%) Survival - no. of patients (%)Survival - no. of patients (%) AliveAlive 60 (67.4%)60 (67.4%) DeathDeath 29 (32.6%)29 (32.6%) Mean follow-up (range)
- months
Mean follow-up (range)
- months
70.12 (10.70-174.90)70.12 (10.70-174.90)

BCG, Bacillus Calmette-Guerin; NMIBC, non-muscle invasive bladder cancer; SD, standardBCG, Bacillus Calmette-Guerin; NMIBC, non-muscle invasive bladder cancer; SD, standard

데이터 세트data set

RNA 시퀀싱 데이터는 RNA 시퀀싱에 의해 생성되었다. 본 발명을 검증하기 위해 마이크로어레이 데이터 세트(Gene Expression Omnibus accession number GSE13507), 유럽 환자 그룹(E-MTAB-4321), TCGA 방광암 환자 그룹의 유전자 발현 프로파일 데이터 및 임상 데이터를 이용하였다.RNA sequencing data were generated by RNA sequencing. To verify the present invention, gene expression profile data and clinical data from a microarray data set (Gene Expression Omnibus accession number GSE13507), European patient group (E-MTAB-4321), and TCGA bladder cancer patient group were used.

RNA 시퀀싱 샘플 준비 및 데이터 분석RNA sequencing sample preparation and data analysis

16개의 비근침윤성 방광암(Non-Muscle Invasive Bladder Cancer; NMIBC) 환자의 종양 조직 및 방광암이 포함되지 않은 정상 주변 조직(Normal adjacent tissues; NAT)을 트리졸을 이용하여 RNA를 추출하고, 마크로젠 회사에 시퀀싱을 의뢰하여 FASTQ 파일을 받았다. 총 시퀀싱 리드는 다음과 같은 전처리를 거쳤다 : 어댑터 시퀀스는 Trim Galore를 사용하여 제거되었으며 STAR method를 사용하여 인간 게놈(GRCh38: hg38)에 매핑되었다. HOMER는 정렬된 리드를 tag directory로 변환하는데 사용되었다. 각 파일은 HOMER를 사용하여 정량화되었다. 각 샘플에서 유전자의 발현 수준은 FPKM을 사용하여 표준화되었다. 그리고 HOMER를 통한 DESeq2 분석에 의해 차등 발현 유전자를 확인했다.RNA was extracted from tumor tissues and normal adjacent tissues (NAT) that did not contain bladder cancer from 16 patients with Non-Muscle Invasive Bladder Cancer (NMIBC) using Trizol and sequenced by Macrogen. I requested and received the FASTQ file. Total sequencing reads underwent the following preprocessing: adapter sequences were removed using Trim Galore and mapped to the human genome (GRCh38:hg38) using the STAR method. HOMER was used to convert sorted reads into a tag directory. Each file was quantified using HOMER. Expression levels of genes in each sample were normalized using FPKM. And differentially expressed genes were identified by DESeq2 analysis through HOMER.

세포 배양cell culture

인간 방광암 세포주 5637 및 T24는 10% FBS(FBS; Gibco: 16000-044) 및 1% 페니실린-스트렙토마이신(Gipco: 15070-063)이 보충된 RPMI1640(Gibco: 11875-119)에서 배양되었다.Human bladder cancer cell lines 5637 and T24 were cultured in RPMI1640 (Gibco: 11875-119) supplemented with 10% FBS (FBS; Gibco: 16000-044) and 1% penicillin-streptomycin (Gipco: 15070-063).

siRNA 형질주입siRNA transfection

인간 SKA3 유전자 넉다운(knockdown)은 SMART pool ON-TARGETplus siRNA (Dharmacon: L-015700-00-0005)를 사용하였다. ON-TARGETplus Non-targeting Pool(Dharmacon: D-001810-10-05)을 대조군으로 사용하였다. 제조사의 프로토콜에 따라 Lipofectamine RNAi-MAX(Invitrogen)를 이용하여 24시간 형질주입하고, 그 후에 완전배지로 변경하였으며, 24시간 후에 세포를 수거하였다.For human SKA3 gene knockdown, SMART pool ON-TARGETplus siRNA (Dharmacon: L-015700-00-0005) was used. ON-TARGETplus Non-targeting Pool (Dharmacon: D-001810-10-05) was used as a control. Transfection was performed for 24 hours using Lipofectamine RNAi-MAX (Invitrogen) according to the manufacturer's protocol, then the medium was changed to complete medium, and the cells were collected 24 hours later.

Real-time PCR analysisReal-time PCR analysis

[환자 조직][Patient tissue]

전체 RNA는 이전에 설명한대로 TRIzol 시약(Invitrogen, Carlsbad, CA, USA)을 사용하여 조직에서 추출하고 -80℃에 보관하였다. 다음으로, 제조업체의 프로토콜에 따라 First Strand cDNA Synthesis Kit(Clontech, TAKARA, Otsu, Japan)를 사용하여 1ug의 total RNA에서 cDNA를 합성하였다.Total RNA was extracted from tissues using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) as previously described and stored at −80°C. Next, cDNA was synthesized from 1ug of total RNA using the First Strand cDNA Synthesis Kit (Clontech, TAKARA, Otsu, Japan) according to the manufacturer's protocol.

Rotor Gene 6000 기기(Qiagen, Hilden, Germany)를 사용하여 real-time PCR로 조직 mRNA를 증폭하고 2-ΔΔCt 방법을 사용하여 정량화하였다. Real-time PCR 반응은 TB Green Premix Ex Taq Ⅱ(Clontech, TAKARA, Otsu, Japan)를 사용하여 수행되었다. 후보 유전자를 증폭하기 위해 다음 프라이머를 사용했다. SKA3(유전자 ID: 221150) 프라이머는 다음과 같다: sense, 5'-GAAGTATGGATATAGTCCACG-3'(21bp, Tm 58℃); antisense, 5'-GACTACGTGGAGACTTCTCAG-3'(21bp, Tm 64℃)이고 amplicon 크기는 152bp이다. 대조군 GAPDH(유전자 ID: 2597) 프라이머는 다음과 같다: sense, 5'-CATGTTCGTCATGGGTGTGA-3'(20bp, Tm 60℃); antisense, 5'-ATGGCATGGACTGTGGTCAT-3'(20bp, Tm 60℃) 및 amplicon 크기는 156bp이다. PCR 반응은 5μL의 2x TB Green Premix EX Taq buffer, 0.5μL의 각 5 '및 3' 프라이머 (10pM/μL) 그리고 2μL의 샘플 cDNA를 포함하는 10μL의 최종 부피에서 수행되었다. PCR 산물 농도를 100 pg/μL에서 0.1 pg/μL로 연속 10배 희석하여 표준 곡선을 설정하였다. Real-Time PCR 조건은 다음과 같다: 96℃에서 20초간 1 사이클 진행한 후, 이어서 변성(denaturation) 과정을 96℃에서 3초, 어닐링(annealing) 과정을 60℃에서 15초, 연장(extension) 과정을 72℃에서 15초간 40 사이클 진행하였고, melting program은 45 초당 1℃의 가열 속도로 72?95℃에서 수행되었다. Rotor-Gene Q 소프트웨어 2.3.1.49는 spectral data를 캡처하고 분석하는데 사용되었다. 모든 샘플은 triplicate로 실행되었다. 각 샘플에서의 유전자 발현값은 GAPDH의 발현값으로 보정하였다.Tissue mRNA was amplified by real-time PCR using a Rotor Gene 6000 instrument (Qiagen, Hilden, Germany) and quantified using the 2-ΔΔCt method. Real-time PCR reactions were performed using TB Green Premix Ex Taq II (Clontech, TAKARA, Otsu, Japan). The following primers were used to amplify candidate genes. SKA3 (gene ID: 221150) primers were as follows: sense, 5'-GAAGTATGGATATAGTCCACG-3' (21bp, Tm 58°C); antisense, 5'-GACTACGTGGAGACTTCTCAG-3' (21bp, Tm 64℃) and the amplicon size is 152bp. Control GAPDH (gene ID: 2597) primers were as follows: sense, 5'-CATGTTCGTCATGGGTGTGA-3' (20bp, Tm 60°C); antisense, 5'-ATGGCATGGACTGTGGTCAT-3' (20bp, Tm 60°C) and the amplicon size is 156bp. PCR reactions were performed in a final volume of 10 μL containing 5 μL of 2x TB Green Premix EX Taq buffer, 0.5 μL of each 5’ and 3’ primer (10 pM/μL) and 2 μL of sample cDNA. A standard curve was established by serial 10-fold dilution of the PCR product concentration from 100 pg/μL to 0.1 pg/μL. Real-time PCR conditions are as follows: 1 cycle at 96°C for 20 seconds, followed by denaturation at 96°C for 3 seconds, annealing at 60°C for 15 seconds, and extension. The process was performed at 72°C for 40 cycles for 15 seconds, and the melting program was performed at 72-95°C at a heating rate of 1°C per 45 seconds. Rotor-Gene Q software 2.3.1.49 was used to capture and analyze spectral data. All samples were run in triplicate. The gene expression value in each sample was corrected to the expression value of GAPDH.

[siRNA 형질주입 세포주][siRNA transfected cell line]

Ribospin II(GeneAll)를 사용하여 세포에서 총 RNA를 추출하고 RevertAid First Strand cDNA Synthesis kit(Thermo Fisher Scientific)를 사용하여 500ng의 total RNA를 reverse했다. Real-time PCR은 TOPreal qPCR 2X PreMIX (SYBR Green with low ROX)를 사용하여 replicate로 수행되었다. Rotor-Gene Q 소프트웨어 2.3.1은 spectral data를 캡처하고 분석하는 데 사용되었다. 다음 프라이머를 사용하여 후보 유전자를 증폭했다: SKA3(유전자 ID : 221150), sense, 5'-GAAGTATGGATATAGTCCACG-3'(21bp, Tm 58℃); antisense, 5'-GACTACGTGGAGACTTCTCAG-3'(21bp, Tm 64℃)이고 amplicon 크기는 152bp이다. 유전자 발현값은 TBP의 발현값으로 보정하였다. 대조군 TBP(Gene ID : 6908) 프라이머는 다음과 같다: sense, 5'-CCCGAAACGCCGAATATAATCC-3'(22bp, Tm 61.2℃); antisense, 5'-AATCAGTGCCGTGGTTCGTG-3 '(20bp, Tm 63℃) 및 amplicon 크기는 80bp이다.Total RNA was extracted from cells using Ribospin II (GeneAll), and 500 ng of total RNA was reversed using the RevertAid First Strand cDNA Synthesis kit (Thermo Fisher Scientific). Real-time PCR was performed in replicates using TOPreal qPCR 2X PreMIX (SYBR Green with low ROX). Rotor-Gene Q software 2.3.1 was used to capture and analyze spectral data. Candidate genes were amplified using the following primers: SKA3 (gene ID: 221150), sense, 5′-GAAGTATGGATATAGTCCACG-3′ (21 bp, Tm 58°C); antisense, 5'-GACTACGTGGAGACTTCTCAG-3' (21bp, Tm 64℃) and the amplicon size is 152bp. Gene expression values were corrected to the expression values of TBP. Control TBP (Gene ID: 6908) primers are as follows: sense, 5'-CCCGAAACGCCGAATATAATCC-3' (22bp, Tm 61.2°C); antisense, 5'-AATCAGTGCCGTGGTTCGTG-3' (20bp, Tm 63°C) and the amplicon size is 80bp.

콜로니 형성 분석(Colony formation assay)Colony formation assay

형질주입된 방광암 세포를 웰 당 1000개 세포 농도로 플레이트에 넣고 7일 동안 배양한 후 콜로니를 세척하고, 메탄올에 10분 고정한 후, 0.5% 크리스탈 바이올렛 용액으로 15분 동안 염색하였다. 웰 당 세포의 confluency는 ImageJ 소프트웨어의 "colony area" plugin을 사용하여 정량화되었다.The transfected bladder cancer cells were placed in a plate at a concentration of 1000 cells per well and cultured for 7 days. The colonies were washed, fixed in methanol for 10 minutes, and stained with 0.5% crystal violet solution for 15 minutes. The confluency of cells per well was quantified using the “colony area” plugin of ImageJ software.

세포 주기 분석(Cell cycle assay)Cell cycle assay

형질주입된 방광암 세포주를 수확하고 70% 에탄올에 고정시켰다. 이어서 세포주기 분석을 위해 프로피디움 요오드화물(Propidium Iodide, PI) 용액으로 세포를 염색하였다(Invitrogen: F10797). 세포의 DNA 함량은 CytoFLEX(Beckman Coulter)를 사용하여 유세포 분석(flow cytometry)에 의해 분석되었다. Transfected bladder cancer cell lines were harvested and fixed in 70% ethanol. Then, cells were stained with propidium iodide (PI) solution for cell cycle analysis (Invitrogen: F10797). The DNA content of cells was analyzed by flow cytometry using CytoFLEX (Beckman Coulter).

2. 결과2. Results

NMIBC 조직과 정상 조직을 이용한 방광암의 유전자 발현 패턴 확인Confirmation of gene expression pattern of bladder cancer using NMIBC tissue and normal tissue

NMIBC에서 새로운 후보 예측 마커 유전자를 확인하기 위해 NMIBC 환자의 방광 종양(n=16) 및 정상 방광 조직(NAT; n=8)에서 RNA 시퀀싱을 수행하여 NMIBC의 유전자 발현 패턴을 확인하였다.To identify new candidate predictive marker genes in NMIBC, RNA sequencing was performed on bladder tumors (n=16) and normal bladder tissues (NAT; n=8) of NMIBC patients to identify gene expression patterns in NMIBC.

주성분 분석(Principal component analysis; PCA)은 NMIBC 환자로부터 정상 인접 조직(NAT)과 종양의 전사체 프로파일을 분리하였다(도 1a 참조). 본 실험에서 정상 방광 조직(NAT)과 비교하여 NMIBC에서 1288개의 차등 발현 유전자(296개의 상향 조절된 유전자 및 992개의 하향 조절된 유전자; FDR <0.05,> 2-fold differences in expression)를 확인하였으며(도 1b 참조), 이중 증가하는 몇 개의 유전자를 선택하여 시각화하였다(도 1c 참조). 정상 방광 조직(NAT)에 비해 NMIBC에서 증가하는 차등 발현 유전자는 유전자 온톨로지(gene ontology, GO) 분석을 통해 세포주기, 세포분열 및 DNA 복구와 같은 경로(pathway)와 강하게 연관되어 있는 것으로 나타났다(도 1d 참조).Principal component analysis (PCA) separated the transcriptome profiles of normal adjacent tissue (NAT) and tumor from NMIBC patients (see Figure 1A). In this experiment, 1288 differentially expressed genes (296 up-regulated genes and 992 down-regulated genes; FDR <0.05, > 2-fold differences in expression) were identified in NMIBC compared to normal bladder tissue (NAT) ( (see Figure 1b), several genes with double increase were selected and visualized (see Figure 1c). Differentially expressed genes increased in NMIBC compared to normal bladder tissue (NAT) were found to be strongly associated with pathways such as cell cycle, cell division, and DNA repair through gene ontology (GO) analysis (Figure 1d).

방광암의 예후를 예측할 수 있는 후보 유전자 발굴Discovery of candidate genes that can predict the prognosis of bladder cancer

방광암 악화에 기여하는 주요 유전자를 찾기 위해 4개의 카테고리에서 개별적으로 차등 발현 유전자의 교차를 수행한 결과 23개의 유전자가 여러 코호트의 방광 종양에서 상향 조절되었음을 확인하였다(도 2a 참조).To find key genes contributing to bladder cancer exacerbation, we performed cross-over of differentially expressed genes individually in four categories and found that 23 genes were upregulated in bladder tumors of several cohorts (see Figure 2a).

(1) 본 연구자가 실시한 충북대학교병원 RNA 시퀀싱에서 NMIBC와 NAT 사이의 차등 발현 유전자 (FDR <0.05,> 2-fold differences in expression)(1) Differentially expressed genes between NMIBC and NAT in RNA sequencing at Chungbuk National University Hospital conducted by this researcher (FDR <0.05,> 2-fold differences in expression)

(2) E-MTAB-4321 코호트에서 T1 stage와 Ta stage 환자 조직 사이의 차등 발현 유전자 (FDR <0.001,> 1.7-fold differences in expression)(2) Differentially expressed genes between T1 stage and Ta stage patient tissues in the E-MTAB-4321 cohort (FDR <0.001, >1.7-fold differences in expression)

(3) E-MTAB-4321 코호트에서 high grade와 low grade 환자 조직 사이의 차등 발현 유전자 (FDR <0.001,> 1.7-fold differences in expression)(3) Differentially expressed genes between high grade and low grade patient tissues in the E-MTAB-4321 cohort (FDR <0.001, >1.7-fold differences in expression)

(4) TCGA 코호트에서 방광암과 정상 조직 사이의 차등 발현 유전자 (FDR <0.001,> 1.7-fold differences in expression)(4) Differentially expressed genes between bladder cancer and normal tissue in the TCGA cohort (FDR <0.001, >1.7-fold differences in expression)

한편, 유전자 온톨로지(GO) 분석을 통해 상기 23개의 유전자가 세포주기와 관련 유전자임을 확인하였다(도 2b 참조).Meanwhile, through gene ontology (GO) analysis, it was confirmed that the 23 genes were cell cycle-related genes (see Figure 2b).

또한, 23개의 후보 유전자 중 어떤 유전자가 환자의 결과를 예측할 수 있는지 조사하기 위해 GSE13507 코호트를 사용하여 해당 유전자의 발현 수준과 무재발 생존(Recurrence-free survival; RFS) 및 무진행 생존(Progression-free survival; PFS) 확률 간의 관련성을 테스트하였다. Univariate Cox regression이 테스트에 사용되었다. 그 결과 23개의 후보 유전자 중 10개의 유전자가 GSE13507 코호트에서 무진행 생존(PFS)과 유의한 연관성이 있는 것으로 나타났으며, 그 중 4개(SKA3, MKI67, CDK1 및 TTK) 유전자는 무재발 생존(RFS)과도 연관이 있는 것을 발견하였다(도 2c 참조). 특히, SKA3 유전자는 신규 마커로 방광암 환자의 나쁜 임상 결과와 관련이 있다는 것을 확인하였다.In addition, to investigate which of the 23 candidate genes can predict patient outcome, we used the GSE13507 cohort to determine the expression level of the corresponding gene and recurrence-free survival (RFS) and progression-free survival. The relationship between survival (PFS) probabilities was tested. Univariate Cox regression was used for testing. The results showed that 10 genes out of 23 candidate genes were significantly associated with progression-free survival (PFS) in the GSE13507 cohort, of which 4 genes (SKA3, MKI67, CDK1, and TTK) were associated with recurrence-free survival (PFS). RFS) was also found to be related (see Figure 2c). In particular, the SKA3 gene was confirmed to be associated with poor clinical outcomes in bladder cancer patients as a new marker.

방광암 환자 조직에서 SKA3 유전자 발현 확인Confirmation of SKA3 gene expression in bladder cancer patient tissue

NMIBC 환자의 예후 예측에 있어서 SKA3의 역할을 평가하기 위해 본 실험에서는 real-time PCR을 통해 NMIBC 조직에서의 SKA3 유전자 발현을 확인하였다.To evaluate the role of SKA3 in predicting the prognosis of NMIBC patients, this experiment confirmed SKA3 gene expression in NMIBC tissue through real-time PCR.

그 결과 NMIBC 조직에서 SKA3 유전자의 발현이 대조군(정상 방광 점막)보다 상당히 높은 것으로 나타났다(P <0.05)(도 3a 참조). The results showed that the expression of the SKA3 gene in NMIBC tissue was significantly higher than that in the control group (normal bladder mucosa) (P <0.05) (see Figure 3a).

그리고 SKA3 mRNA는 NMIBC의 등급(grade)과 예후 변화에 따라 다르게 발현되는 것을 확인하였다. 고등급(High grade) NMIBC 환자에서 SKA3 발현은 저등급(low grade) NMIBC 환자에서의 발현보다 유의하게 높게 나타났다(P <0.001; 도 3b 참조). 또한 SKA3 mRNA의 발현은 진행이 없는 NMIBC 환자보다 MIBC로 진행한 NMIBC 환자에서 더 높은 것으로 나타났다(P <0.05; 도 3c 참조).In addition, SKA3 mRNA was confirmed to be expressed differently depending on the grade and prognosis of NMIBC. SKA3 expression in high grade NMIBC patients was significantly higher than that in low grade NMIBC patients (P <0.001; see Figure 3b). Additionally, the expression of SKA3 mRNA was found to be higher in NMIBC patients who progressed to MIBC than in NMIBC patients without progression (P <0.05; see Figure 3c).

한편, 단변량(Univariate) 및 다변량(multivariate) Cox 회귀 분석은 NMIBC 환자에서 SKA3의 발현이 PFS의 독립적인 예측 인자임을 나타냈다(HR, 4.155; 95 % CI, 1.043-16.544; P = 0.043; 표 3 참조).Meanwhile, univariate and multivariate Cox regression analysis indicated that the expression of SKA3 was an independent predictor of PFS in NMIBC patients (HR, 4.155; 95% CI, 1.043-16.544; P = 0.043; Table 3 reference).

Kaplan-Meier 분석은 낮은 SKA3 발현 수준을 가진 NMIBC 환자가 높은 SKA3 발현 수준을 가진 NMIBC 환자보다 MIBC로의 진행을 덜 경험한 것으로 나타났다(log-rank test, P = 0.037; 도 3d 참조).Kaplan-Meier analysis showed that NMIBC patients with low SKA3 expression levels experienced less progression to MIBC than NMIBC patients with high SKA3 expression levels (log-rank test, P = 0.037; see Figure 3D).

NMIBC 진행을 예측하기 위한 단변량(Univariate) 및 다변량(multivariate) Cox 회귀 분석Univariate and multivariate Cox regression analysis to predict NMIBC progression VariablesVariables Univariate Cox analysisUnivariate Cox analysis Multivariate Cox analysisMultivariate Cox analysis HR (95% CI)HR (95% CI) P valueP value HR (95% CI)HR (95% CI) P valueP value AgeAge 1.086 (1.020-1.156)1.086 (1.020-1.156) 0.009*0.009* 1.083 (1.014-1.157)1.083 (1.014-1.157) 0.017*0.017* Gender
Male (Ref.) vs. Female
Gender
Male (Ref.) vs. Female
1.311 (0.290-5.932)1.311 (0.290-5.932) 0.7250.725
Tumor sizeTumor size ≤1cm (Ref.) vs. 2-3cm≤1cm (Ref.) vs. 2-3cm 1.310 (0.378-4.536)1.310 (0.378-4.536) 0.6700.670 MultiplicityMultiplicity SingleSingle Ref.Ref. 0.1060.106 2-72-7 2.176 (0.531-8.910)2.176 (0.531-8.910) 0.2800.280 >7>7 7.381 (1.153-47.252)7.381 (1.153-47.252) 0.035*0.035* 2004 WHO Grade
Low (Ref.) vs. High
2004 WHO Grade
Low (Ref.) vs. High
5.132 (1.757-14.987)5.132 (1.757-14.987) 0.003*0.003* 1.926 (0.580-6.390)1.926 (0.580-6.390) 0.2840.284
Stage
Ta (Ref.) vs. T1
Stage
Ta (Ref.) vs. T1
0.698 (0.233-2.087)0.698 (0.233-2.087) 0.5200.520
BCG
No (Ref.) vs. Yes
BCG
No (Ref.) vs. Yes
1.663 (0.575-4.808)1.663 (0.575-4.808) 0.3480.348
SKA3 expression
High expression (Ref.) vs. Low expression
SKA3 expression
High expression (Ref.) vs. Low expression
3.413 (1.065-10.930)3.413 (1.065-10.930) 0.039*0.039* 4.155 (1.043-16.544)4.155 (1.043-16.544) 0.043*0.043*

BCG, Bacillus Calmette-Guerin; CI, confidence interval; HR, hazard ratio; Ref., reference. *P<0.05.BCG, Bacillus Calmette-Guerin; CI, confidence interval; HR, hazard ratio; Ref., reference. *P<0.05.

다양한 방광암 환자 코호트에서 SKA3 유전자 발현 및 임상 결과와의 연관성 확인Identification of SKA3 gene expression and association with clinical outcomes in diverse bladder cancer patient cohorts

NMIBC에서 SKA3 유전자의 발현 증가를 추가로 검증하기 위해 추가적인 독립 코호트를 활용하여 SKA3 유전자 발현을 분석하였다. 그 결과 SKA3 발현이 GSE13507 코호트에서 정상 방광 조직에 비해 방광 종양에서 유의하게 향상되었음을 발견했으며(도 4a 참조), 이는 SKA3의 활성이 방광암 발병에 중요한 사건이 될 수 있음을 나타낸다.To further verify the increased expression of the SKA3 gene in NMIBC, we analyzed SKA3 gene expression using an additional independent cohort. As a result, we found that SKA3 expression was significantly enhanced in bladder tumors compared to normal bladder tissues in the GSE13507 cohort (see Figure 4A), indicating that the activity of SKA3 may be an important event in the development of bladder cancer.

한편, 질병의 생물학적 공격성을 나타내는 종양 단계 및 등급은 NMIBC의 재발 및 진행에 대한 중요한 예후 인자이다. 도 4에서 볼 수 있듯이 NMIBC 조직에서 증가된 SKA3 발현은 임상적 특성과 관련이 있었으며, SKA3은 종양 단계(도 4b-4c 참조) 및 등급(도 4d-4e 참조)에 따라 증가하는 것으로 나타났다.Meanwhile, tumor stage and grade, which indicate the biological aggressiveness of the disease, are important prognostic factors for recurrence and progression of NMIBC. As shown in Figure 4, increased SKA3 expression in NMIBC tissue was associated with clinical characteristics, and SKA3 was found to increase depending on tumor stage (see Figures 4B-4C) and grade (see Figures 4D-4E).

다음으로 SKA3 발현량이 임상적 의미를 갖는지 추정하기 위해 SKA3에 대한 median cut-off value (SKA3high 및 SKA3low)를 기준으로 NMIBC 환자를 두 그룹으로 분류하였다. Kaplan-Meier 생존 분석에 따르면 SKA3 high expression group의 환자는 GSE13507 코호트에서 무진행(P = 0.031) 및 무재발 생존율(P = 0.024)이 현저히 짧았으며(도 5a-5b 참조), 또한 E-MTAB-4321 코호트에서도 SKA3 high expression group의 환자의 무진행 생존율(P = 2e-04)이 더 짧은 것으로 나타났다(도 5c 참조).Next, to estimate whether SKA3 expression level has clinical significance, NMIBC patients were classified into two groups based on the median cut-off value for SKA3 (SKA3 high and SKA3 low ). Kaplan-Meier survival analysis showed that patients in the SKA3 high expression group had significantly shorter progression-free (P = 0.031) and recurrence-free survival (P = 0.024) in the GSE13507 cohort (see Figures 5A-5B), and also showed that patients in the E-MTAB- In the 4321 cohort, patients in the SKA3 high expression group also had a shorter progression-free survival rate (P = 2e-04) (see Figure 5c).

상기와 같은 결과를 종합한 결과, SKA3이 비근침윤성 방광암의 진행에 대한 매우 훌륭한 예후 예측 마커임을 알 수 있었다.As a result of combining the above results, it was found that SKA3 is a very good prognostic marker for the progression of non-muscle invasive bladder cancer.

SKA3 유전자를 넉다운시킨 방광암 세포주에서 암세포의 세포 증식 능력과 세포 주기의 변화 확인Confirmation of changes in cell proliferation ability and cell cycle of cancer cells in bladder cancer cell line with knockdown of SKA3 gene

SKA3이 방광암 세포에 어떠한 영향을 미치는지 확인하기 위해, 작은 간섭 RNA(siRNA)을 이용하여 SKA3 유전자를 넉다운(knockdown, KD)시킴으로써 방광암 세포주(5637 및 T24)에서 SKA3 발현을 조사하였다.To determine what effect SKA3 has on bladder cancer cells, SKA3 expression was examined in bladder cancer cell lines (5637 and T24) by knocking down the SKA3 gene using small interfering RNA (siRNA).

Real-time PCR을 통해 SKA3 발현을 조사한 결과, SKA3의 발현 수준이 siRNA로 형질주입된 세포에서 유의하게 감소하는 것으로 나타났다(도 6a-6b 참조). 넉다운(KD) 효율은 90-95%이었다. 방광암 세포주(5637 및 T24)에서 일관되게 비-표적 대조군(siNC)과 비교하여 SKA3을 작은 간섭 RNA(siRNA)를 이용하여 넉다운시키는 경우 암세포 증식이 현저하게 감소하는 것으로 나타났다(도 6c-6d 참조).As a result of examining SKA3 expression through real-time PCR, the expression level of SKA3 was found to be significantly decreased in cells transfected with siRNA (see Figures 6a-6b). Knockdown (KD) efficiency was 90-95%. Bladder cancer cell lines (5637 and T24) consistently showed a significant reduction in cancer cell proliferation when SKA3 was knocked down using small interfering RNA (siRNA) compared to non-targeting controls (siNC) (see Figures 6C-6D). .

또한, SKA3 유전자 넉다운(KD)에 따른 방광암 세포의 증식을 억제하는 기전을 이해하기 위해 유세포 분석을 통해 세포주기 분석을 수행하였다. SKA3 siRNA로 형질주입된 세포의 경우 G2/M 단계에서 비율을 크게 증가된 반면, G0/G1 단계에서 세포 비율은 감소하는 것으로 나타났다(도 6e-6f 참조). 따라서 SKA3 유전자 넉다운이 G2/M 단계로의 전이를 억제하는 것을 확인할 수 있었다.In addition, cell cycle analysis was performed using flow cytometry to understand the mechanism that inhibits proliferation of bladder cancer cells following SKA3 gene knockdown (KD). In the case of cells transfected with SKA3 siRNA, the ratio in the G2/M phase was greatly increased, while the ratio of cells in the G0/G1 phase was found to decrease (see Figures 6e-6f). Therefore, it was confirmed that SKA3 gene knockdown inhibits the transition to the G2/M phase.

상기와 같은 결과를 종합한 결과, SKA3 유전자가 방광암에서 세포 증식을 촉진하는 것은 상향 조절된 SKA3에 의한 세포주기 진행에 기인하는 것을 알 수 있었다.As a result of combining the above results, it was found that the SKA3 gene promotes cell proliferation in bladder cancer due to cell cycle progression by upregulated SKA3.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on its preferred embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

NMIBC: Non-Muscle Invasive Bladder Cancer
MIBC: Muscle invasive bladder cancer
NAT: Normal adjacent tissues
TURBT: Trans Urethral Resection of Bladder Tumor
BCG: Bacillus Calmette-Guerin
RFS: Recurrence-free survival
PFS: Progression-free survival
KD: knockdown
GO: gene ontology
NMIBC: Non-Muscle Invasive Bladder Cancer
MIBC: Muscle invasive bladder cancer
NAT: Normal adjacent tissues
TURBT: Trans Urethral Resection of Bladder Tumor
BCG: Bacillus Calmette-Guerin
RFS: Recurrence-free survival
PFS: Progression-free survival
KD: knockdown
GO: gene ontology

<110> Chungbuk National University Industry-Academic Cooperation Foundation <120> Biomarker for predicting prognosis of Non-muscle invasive bladder cancer and uses thereof <130> NPDC-94523 <160> 23 <170> KoPatentIn 3.0 <210> 1 <211> 2869 <212> DNA <213> Artificial Sequence <220> <223> SKA3 cDNA polynucleotide sequence <400> 1 aaactagtgg cgggaggctg tgagctgagc ggtggggtct gcgtacgcct ggagtccttc 60 cccgctgtgc tcagcatgga ccctatccgg agcttctgcg ggaagctgcg gtctctggcc 120 agcacgctgg actgcgagac ggcccggctg cagcgagcgc tggacggaga ggaaagcgac 180 tttgaagatt atccaatgag aattttatat gaccttcatt cagaagttca gactctaaag 240 gatgatgtta atattcttct tgataaagca agattggaaa atcaagaagg cattgatttc 300 ataaaggcaa caaaagtact aatggaaaaa aattcaatgg atattatgaa aataagagag 360 tatttccaga agtatggata tagtccacgt gtcaagaaaa attcagtaca cgagcaagaa 420 gccattaact ctgacccaga gttgtctaat tgtgaaaatt ttcagaagac tgatgtgaaa 480 gatgatctgt ctgatcctcc tgttgcaagc agttgtattt ctgagaagtc tccacgtagt 540 ccacaacttt cagattttgg acttgagcgg tacatcgtat cccaagttct accaaaccct 600 ccacaggcag tgaacaacta taaggaagag cccgtaattg taaccccacc taccaaacaa 660 tcactagtaa aagtactaaa aactccaaaa tgtgcactaa aaatggatga ttttgagtgt 720 gtaactccta aattagaaca ctttggtatc tctgaatata ctatgtgttt aaatgaagat 780 tacacaatgg gacttaaaaa tgcgaggaat aataaaagtg aggaggccat agatacagaa 840 tccaggctca atgataatgt ttttgccact cccagcccca tcatccagca gttggaaaaa 900 agtgatgccg aatataccaa ctctcctttg gtacctacat tctgtactcc tggtttgaaa 960 attccatcta caaagaacag catagctttg gtatccacaa attacccatt atcaaaaaca 1020 aatagttcat caaatgattt ggaagttgaa gatcgtactt cgttggtttt aaattcagac 1080 acatgctttg agaatttaac agatccctct tcacctacga tttcttctta tgagaatctg 1140 ctcagaacac ctacacctcc ggaagtaact aaaattccag aagatattct ccagctttta 1200 tcaaaataca actcaaacct agctactcca atagcaatta aagcagtgcc acccagtaaa 1260 aggttcctta aacatggaca gaacatccga gatgtcagca acaaagaaaa ctgaaattcc 1320 agtggatcta tccaacacag aaactgaaca aaatgagatg aaagccgagc tggaccgatt 1380 ttaacattca cattgccctg cctctgtccc cctttaaacg ttgacccatt ttaaagacaa 1440 acatgaacat taacatcata atatgctttt tatgaagttt caataaggtt taaccttagt 1500 cttgttgaca tgtagcccag tcattcactc tttaaggatt attagtgttt cattgatact 1560 aaattaccca gcttaatcaa cagaatggtt taagtagtac caggaagtag gacaagtaat 1620 ttcaaaaata taaaggtgtt tgctactcag atgaggccgc ccctgacctt ctggccagag 1680 agacattgct gccagccagc tctgccttcc catcatctcc tttcaggacc gtcccacacc 1740 ttttacttgc tcagtgctgt ctgaagatgc agttgctgtt tgcaaacaac aggaacacca 1800 gttaaactaa ttaggaaaag agggagattt ccaggcctgg gtaactatat actgtgacca 1860 ttggaggtag agacaggtct caacagttgg aaccaggaac tctgctgtca ggttgagagt 1920 tttgtttctc ttccagcttt tcactgtgtg ggggtctttt ctcttatgtc agctctttct 1980 atcacatggc agctgacctc tcacgctcca ctctgcagct tggacaccca gtagaccctg 2040 aatttcactc tctctaaaag gttctgaggg ctcatcctgg gccaggggcc ctcctgtgca 2100 ctgttagcta tggccacggg agcctccaga gctgcctggt agcttcaggt tgacctgctt 2160 atcaggccta cgatccttct gatttaagta cagctggaaa gtattatcta attaagttca 2220 tgatagtgct tttggagaac ttgtcaaatt acagccaatg agaaaataag gacctagcat 2280 actgtggaga accattaaaa atttgagaag aaacaacaag tattatgtca acttacttca 2340 aaggcgtagt tttgggaatt tgatgcagta aagattaccc tgttttatga ttgttccttg 2400 aaagtcaaat gggggacctg tccattgtgc tctattaatc ttgtcagaaa actgtcacca 2460 aaacaaaact tgagtttgtc cttgttctag gagttactgg gtagttgtaa gtattatttt 2520 tattaaatat aatgtaaaat aaaatgttaa gatacttagt tttgtttttc aaagtaaagc 2580 tgtagtcagc cttatgtatg ccattgactc tgaaatgtat accagccttt cactgtgtac 2640 cgtgtgtata taaatccaca gaaccggatg agctgcttag ggagggaata tattcaaagt 2700 gtaccaagga ccaaatcctg gagttctccc aactttagag gatggaaagg ggcagagtaa 2760 tctagcaaag gagactgagg ccagtgaagt aggaagaaag tatttcaagg agagtgatga 2820 ttctgtgaat attgctgaga attcaaataa aaagaggact gagaactga 2869 <210> 2 <211> 4731 <212> DNA <213> Artificial Sequence <220> <223> ANLN cDNA polynucleotide sequence <400> 2 gagtccgtca ctggaagccg agaggagagg acagctggtt gtgggagagt tcccccgcct 60 cagactcctg gttttttcca ggagacacac tgagctgaga ctcacttttc tcttcctgaa 120 tttgaaccac cgtttccatc gtctcgtagt ccgacgcctg gggcgatgga tccgtttacg 180 gagaaactgc tggagcgaac ccgtgccagg cgagagaatc ttcagagaaa aatggctgag 240 aggcccacag cagctccaag gtctatgact catgctaagc gagctagaca gccactttca 300 gaagcaagta accagcagcc cctctctggt ggtgaagaga aatcttgtac aaaaccatcg 360 ccatcaaaaa aacgctgttc tgacaacact gaagtagaag tttctaactt ggaaaataaa 420 caaccagttg agtcgacatc tgcaaaatct tgttctccaa gtcctgtgtc tcctcaggtg 480 cagccacaag cagcagatac catcagtgat tctgttgctg tcccggcatc actgctgggc 540 atgaggagag ggctgaactc aagattggaa gcaactgcag cctcctcagt taaaacacgt 600 atgcaaaaac ttgcagagca acggcgccgt tgggataatg atgatatgac agatgacatt 660 cctgaaagct cactcttctc accaatgcca tcagaggaaa aggctgcttc ccctcccaga 720 cctctgcttt caaatgcctc ggcaactcca gttggcagaa ggggccgtct ggccaatctt 780 gctgcaacta tttgctcctg ggaagatgat gtaaatcact catttgcaaa acaaaacagt 840 gtacaagaac agcctggtac cgcttgttta tccaaatttt cctctgcaag tggagcatct 900 gctaggatca atagcagcag tgttaagcag gaagctacat tctgttccca aagggatggc 960 gatgcctctt tgaataaagc cctatcctca agtgctgatg atgcgtcttt ggttaatgcc 1020 tcaatttcca gctctgtgaa agctacttct ccagtgaaat ctactacatc tatcactgat 1080 gctaaaagtt gtgagggaca aaatcctgag ctacttccaa aaactcctat tagtcctctg 1140 aaaacggggg tatcgaaacc aattgtgaag tcaactttat cccagacagt tccatccaag 1200 ggagaattaa gtagagaaat ttgtctgcaa tctcaatcta aagacaaatc tacgacacca 1260 ggaggaacag gaattaagcc tttcctggaa cgctttggag agcgttgtca agaacatagc 1320 aaagaaagtc cagctcgtag cacaccccac agaaccccca ttattactcc aaatacaaag 1380 gccatccaag aaagattatt caagcaagac acatcttcat ctactaccca tttagcacaa 1440 cagctcaagc aggaacgtca aaaagaacta gcatgtcttc gtggccgatt tgacaagggc 1500 aatatatgga gtgcagaaaa aggcggaaac tcaaaaagca aacaactaga aaccaaacag 1560 gaaactcact gtcagagcac tcccctcaaa aaacaccaag gtgtttcaaa aactcagtca 1620 cttccagtaa cagaaaaggt gaccgaaaac cagataccag ccaaaaattc tagtacagaa 1680 cctaaaggtt tcactgaatg cgaaatgacg aaatctagcc ctttgaaaat aacattgttt 1740 ttagaagagg acaaatcctt aaaagtaaca tcagacccaa aggttgagca gaaaattgaa 1800 gtgatacgtg aaattgagat gagtgtggat gatgatgata tcaatagttc gaaagtaatt 1860 aatgacctct tcagtgatgt cctagaggaa ggtgaactag atatggagaa gagccaagag 1920 gagatggatc aagcattagc agaaagcagc gaagaacagg aagatgcact gaatatctcc 1980 tcaatgtctt tacttgcacc attggcacaa acagttggtg tggtaagtcc agagagttta 2040 gtgtccacac ctagactgga attgaaagac accagcagaa gtgatgaaag tccaaaacca 2100 ggaaaattcc aaagaactcg tgtccctcga gctgaatctg gtgatagcct tggttctgaa 2160 gatcgtgatc ttctttacag cattgatgca tatagatctc aaagattcaa agaaacagaa 2220 cgtccatcaa taaagcaggt gattgttcgg aaggaagatg ttacttcaaa actggatgaa 2280 aaaaataatg cctttccttg tcaagttaat atcaaacaga aaatgcagga actcaataac 2340 gaaataaata tgcaacagac agtgatctat caagctagcc aggctcttaa ctgctgtgtt 2400 gatgaagaac atggaaaagg gtccctagaa gaagctgaag cagaaagact tcttctaatt 2460 gcaactggga agagaacact tttgattgat gaattgaata aattgaagaa cgaaggacct 2520 cagaggaaga ataaggctag tccccaaagt gaatttatgc catccaaagg atcagttact 2580 ttgtcagaaa tccgcttgcc tctaaaagca gattttgtct gcagtacggt tcagaaacca 2640 gatgcagcaa attactatta cttaattata ctaaaagcag gagctgaaaa tatggtagcc 2700 acaccattag caagtacttc aaactctctt aacggtgatg ctctgacatt cactactaca 2760 tttactctgc aagatgtatc caatgacttt gaaataaata ttgaagttta cagcttggtg 2820 caaaagaaag atccctcagg ccttgataag aagaaaaaaa catccaagtc caaggctatt 2880 actccaaagc gactcctcac atctataacc acaaaaagca acattcattc ttcagtcatg 2940 gccagtccag gaggtcttag tgctgtgcga accagcaact tcgcccttgt tggatcttac 3000 acattatcat tgtcttcagt aggaaatact aagtttgttc tggacaaggt ccccttttta 3060 tcttctttgg aaggtcatat ttatttaaaa ataaaatgtc aagtgaattc cagtgttgaa 3120 gaaagaggtt ttctaaccat atttgaagat gttagtggtt ttggtgcctg gcatcgaaga 3180 tggtgtgttc tttctggaaa ctgtatatct tattggactt atccagatga tgagaaacgc 3240 aagaatccca taggaaggat aaatctggct aattgtacca gtcgtcagat agaaccagcc 3300 aacagagaat tttgtgcaag acgcaacact tttgaattaa ttactgtccg accacaaaga 3360 gaagatgacc gagagactct tgtcagccaa tgcagggaca cactctgtgt taccaagaac 3420 tggctgtctg cagatactaa agaagagcgg gatctctgga tgcaaaaact caatcaagtt 3480 cttgttgata ttcgcctctg gcaacctgat gcttgctaca aacctattgg aaagccttaa 3540 accgggaaat ttccatgcta tctagaggtt tttgatgtca tcttaagaaa cacacttaag 3600 agcatcagat ttactgattg cattttatgc tttaagtacg aaagggtttg tgccaatatt 3660 cactacgtat tatgcagtat ttatatcttt tgtatgtaaa actttaactg atttctgtca 3720 ttcatcaatg agtagaagta aatacattat agttgatttt gctaaatctt aatttaaaag 3780 cctcattttc ctagaaatct aattattcag ttattcatga caatattttt ttaaaagtaa 3840 gaaattctga gttgtcttct tggagctgta ggtcttgaag cagcaacgtc tttcaggggt 3900 tggagacaga aacccattct ccaatctcag tagttttttc gaaaggctgt gatcatttat 3960 tgatcgtgat atgacttgtt actagggtac tgaaaaaaat gtctaaggcc tttacagaaa 4020 catttttagt aatgaggatg agaacttttt caaatagcaa atatatattg gcttaaagca 4080 tgaggctgtc ttcagaaaag tgatgtggac ataggaggca atgtgtgaga cttgggggtt 4140 caatatttta tatagaagag ttaataagca catggtttac atttactcag ctactatata 4200 tgcagtgtgg tgcacatttt cacagaattc tggcttcatt aagatcatta tttttgctgc 4260 gtagcttaca gacttagcat attagttttt tctactccta caagtgtaaa ttgaaaaatc 4320 tttatattaa aaaagtaaac tgttatgaag ctgctatgta ctaataatac tttgcttgcc 4380 aaagtgtttg ggttttgttg ttgtttgttt gtttgtttgt ttttggttca tgaacaacag 4440 tgtctagaaa cccattttga aagtggaaaa ttattaagtc acctatcacc tttaaacgcc 4500 tttttttaaa attataaaat attgtaaagc agggtctcaa cttttaaata cactttgaac 4560 ttcttctctg aattattaaa gttctttatg acctcattta taaacactaa attctgtcac 4620 ctcctgtcat tttatttttt attcattcaa atgtattttt tcttgtgcat attataaaaa 4680 tatattttat gagctcttac tcaaataaat acctgtaaat gtctaaagga a 4731 <210> 3 <211> 1689 <212> DNA <213> Artificial Sequence <220> <223> ASF1B cDNA polynucleotide sequence <400> 3 gcacttcagt tctcggagag aagaggcggg agtggacctg gtcagcccta ccccactgac 60 cccaccggac ccaggcgcgg cctccgccac agccacagcc cctgcccctg ctgcggcgcg 120 gcgaggcgag gcgatggcca aggtgtcggt gctgaacgtg gcggtcctgg agaacccgag 180 ccctttccac agccccttcc ggttcgagat cagcttcgag tgcagtgaag ccctggcgga 240 cgacctggag tggaagatca tttatgttgg ctcggctgag agtgaggaat ttgatcagat 300 cctagactcg gtgctggtgg gccctgtgcc agcagggaga cacatgtttg tctttcaggc 360 cgacgccccc aacccatccc tcatcccaga gactgatgcc gtgggtgtga ctgtggtcct 420 catcacctgc acctaccatg gacaggagtt catccgagtg ggctactacg tcaacaacga 480 gtacctcaac cctgagctgc gtgagaaccc gcccatgaag ccagatttct cccagctcca 540 gcggaacatc ttggcctcga acccccgggt gacccgcttc catatcaact gggacaacaa 600 catggacagg ctggaggcca tagagaccca ggacccctcc ctgggctgcg gcctcccact 660 caactgcact cctatcaagg gcttggggct ccctggctgc atccctggcc tcctccctga 720 gaactccatg gactgcatct aactgcagga acccagagtg tcccagcacg ccgggagggg 780 caaccaggcc tcccagcgag tcctgcaggg cccatctaga ggactttggg ggccatcagc 840 tgcaatccag gtctgtcaaa ctcagcccct aggaaagaac aggccttggg tctcccctag 900 tcctggccag aaggatgatc tcgcttttcc tctacaggcc tataagaagc aggtacttca 960 gttctaaatt ctgacttgtg ttcttttcgt cttcataaat tctaactaag gccactgtgc 1020 cactgtgcac ccttgagtac cattgatcca aagctttccc acagacctcc ctggcccacc 1080 tagaggcttt cttggtcagt gcctgtcaag gctccagtcc tgctgagcca aaggctttgt 1140 cattcctttc tcttcctgta catctgagca gacccactcc agctttctgg tgtcacaggc 1200 gggaatgtta gttagtaggt agacttagat cccatttctg tcctgctccc aggaagattc 1260 ttaggtcctc ttcaatccag cagcccctcc cagaggtgtg atcagcagga tgctgaggaa 1320 ccatgttgcc tttcctgtca atcacagcca ccttcctgtt atctcctaaa tggatctggc 1380 ttttcctgga ggctgccatg gttggaagat ggtatcagag ggcctgcctg ggcagtctgt 1440 ctccgggcca gggtcaggga ccctctgcct ctggcagcct taacctgtcc tctgctagga 1500 ccagggtgat ttcaagccag ggaagcaact gggaccctga aaactgtccc tccccagccc 1560 gctccccctc tctgtgccct ggtccccttg ctgccatgtg gatgctgttg tgattgctgt 1620 ttgtatatta tcaaaatgtt tttatattaa aaatgtttgg tctgaaaatt aaaagcactt 1680 catttagaa 1689 <210> 4 <211> 1170 <212> DNA <213> Artificial Sequence <220> <223> AURKB cDNA polynucleotide sequence <400> 4 agttgtttgc gggcggccgg gagagtagca gtgccttgga ccccaggctc catctggcct 60 gagcaccctg ccccagcgag tcctccggaa agagcctgtc accccatctg cacttgtcct 120 catgagccgc tccaatgtcc agcccacagc tgcccctggc cagaaggtga tggagaatag 180 cagtgggaca cccgacatct taacgcggca cttcacaatt gatgactttg agattgggcg 240 tcctctgggc aaaggcaagt ttggaaacgt gtacttggct cgggagaaga aaagccattt 300 catcgtggcg ctcaaggtcc tcttcaagtc ccagatagag aaggagggcg tggagcatca 360 gctgcgcaga gagatcgaaa tccaggccca cctgcaccat cccaacatcc tgcgtctcta 420 caactatttt tatgaccgga ggaggatcta cttgattcta gagtatgccc cccgcgggga 480 gctctacaag gagctgcaga agagctgcac atttgacgag cagcgaacag ccacgatcat 540 ggaggagttg gcagatgctc taatgtactg ccatgggaag aaggtgattc acagagacat 600 aaagccagaa aatctgctct tagggctcaa gggagagctg aagattgctg acttcggctg 660 gtctgtgcat gcgccctccc tgaggaggaa gacaatgtgt ggcaccctgg actacctgcc 720 cccagagatg attgaggggc gcatgcacaa tgagaaggtg gatctgtggt gcattggagt 780 gctttgctat gagctgctgg tggggaaccc accctttgag agtgcatcac acaacgagac 840 ctatcgccgc atcgtcaagg tggacctaaa gttccccgct tccgtgccca tgggagccca 900 ggacctcatc tccaaactgc tcaggcataa cccctcggaa cggctgcccc tggcccaggt 960 ctcagcccac ccttgggtcc gggccaactc tcggagggtg ctgcctccct ctgcccttca 1020 atctgtcgcc tgatggtccc tgtcattcac tcgggtgcgt gtgtttgtat gtctgtgtat 1080 gtatagggga aagaagggat ccctaactgt tcccttatct gttttctacc tcctcctttg 1140 tttaataaag gctgaagctt tttgtactca 1170 <210> 5 <211> 2748 <212> DNA <213> Artificial Sequence <220> <223> CCNA2 cDNA polynucleotide sequence <400> 5 ggcgggctgc tcgctgcatc tctgggcgtc tttggctcgc cacgctgggc agtgcctgcc 60 tgcgcctttc gcaacctcct cggccctgcg tggtctcgag ctgggtgagc gagcgggcgg 120 gctggtaggc tggcctgggc tgcgaccggc ggctacgact attctttggc cgggtcggtg 180 cgagtggtcg gctgggcaga gtgcacgctg cttggcgccg caggctgatc ccgccgtcca 240 ctcccgggag cagtgatgtt gggcaactct gcgccggggc ctgcgacccg cgaggcgggc 300 tcggcgctgc tagcattgca gcagacggcg ctccaagagg accaggagaa tatcaacccg 360 gaaaaggcag cgcccgtcca acaaccgcgg acccgggccg cgctggcggt actgaagtcc 420 gggaacccgc ggggtctagc gcagcagcag aggccgaaga cgagacgggt tgcacccctt 480 aaggatcttc ctgtaaatga tgagcatgtc accgttcctc cttggaaagc aaacagtaaa 540 cagcctgcgt tcaccattca tgtggatgaa gcagaaaaag aagctcagaa gaagccagct 600 gaatctcaaa aaatagagcg tgaagatgcc ctggctttta attcagccat tagtttacct 660 ggacccagaa aaccattggt ccctcttgat tatccaatgg atggtagttt tgagtcacca 720 catactatgg acatgtcaat tatattagaa gatgaaaagc cagtgagtgt taatgaagta 780 ccagactacc atgaggatat tcacacatac cttagggaaa tggaggttaa atgtaaacct 840 aaagtgggtt acatgaagaa acagccagac atcactaaca gtatgagagc tatcctcgtg 900 gactggttag ttgaagtagg agaagaatat aaactacaga atgagaccct gcatttggct 960 gtgaactaca ttgataggtt cctgtcttcc atgtcagtgc tgagaggaaa acttcagctt 1020 gtgggcactg ctgctatgct gttagcctca aagtttgaag aaatataccc cccagaagta 1080 gcagagtttg tgtacattac agatgatacc tacaccaaga aacaagttct gagaatggag 1140 catctagttt tgaaagtcct tacttttgac ttagctgctc caacagtaaa tcagtttctt 1200 acccaatact ttctgcatca gcagcctgca aactgcaaag ttgaaagttt agcaatgttt 1260 ttgggagaat taagtttgat agatgctgac ccatacctca agtatttgcc atcagttatt 1320 gctggagctg cctttcattt agcactctac acagtcacgg gacaaagctg gcctgaatca 1380 ttaatacgaa agactggata taccctggaa agtcttaagc cttgtctcat ggaccttcac 1440 cagacctacc tcaaagcacc acagcatgca caacagtcaa taagagaaaa gtacaaaaat 1500 tcaaagtatc atggtgtttc tctcctcaac ccaccagaga cactaaatct gtaacaatga 1560 aagactgcct ttgttttcta agatgtaaat cactcaaagt atatggtgta cagtttttaa 1620 cttaggtttt aattttacaa tcatttctga atacagaagt tgtggccaag tacaaattat 1680 ggtatctatt actttttaaa tggttttaat ttgtatatct tttgtatatg tatctgtctt 1740 agatatttgg ctaattttaa gtggttttgt taaagtatta atgatgccag ctgtcaggat 1800 aataaattga tttggaaaac tttgcaagtc aaatttaact tcttcaggat tttgcttagt 1860 aaagaagttt acttggttta ctatataatg ggaagtgaaa agccttcctc taaaattaaa 1920 gtaggtttag gaaaacagac cctcaaattc tgacattcat tttcctaagc aactggatca 1980 atttgctgac ttgggcataa tctaatctaa gcatatctga atacagtatt cagagataga 2040 tacagtagag attccccaga ctttttcgct ctttgtaaaa cctgtttgtt taggttttgc 2100 gaggtaaact caacagaggt tgggagtgga agagggtggg aagcttatat gcaaattaac 2160 agacgagaaa tgctccagaa ggtttattat tttaaagcac attaaaaaca aaaaactatt 2220 tttaaaatcc tgctagattt tataatggat ttgtgaataa aaaataccca gggttctcag 2280 aatggaataa atatcccttt taatagttat atatacagat atacaactgt tagctttaat 2340 tggcagctct cttctttttt cttcttttca ctggcttttt acttggtgct ttttcttgtt 2400 ttgcactggt ggtctgtgtt ctgtgaataa agcaaagtaa gaatttacta agagtatgtt 2460 aagttttgga ttattgaaat aagaggcatt tcttagtttt ccagtaggat ctaaaatgtg 2520 tcagctatga gtaagactgg catccaagaa gtttatatta tagatttagg tcctaatttt 2580 tataaatcac aaggtaaaaa aatcacagaa cagatggatc tctaatgaaa aagggatgtc 2640 tttttgttta tagtcatgtg gcaagatgag agtaaaacca gagagcaaac ctctataagt 2700 gttgagtata tgtatacatt tgaaataaac cagaaatttg ttacctta 2748 <210> 6 <211> 1488 <212> DNA <213> Artificial Sequence <220> <223> CCNB2 cDNA polynucleotide sequence <400> 6 gaagatcccc agcgctgcgg gctcggagag cagtcctaac ggcgcctcgt acgctagtgt 60 cctccctttt cagtccgcgt ccctccctgg gccgggctgg cactcttgcc ttccccgtcc 120 ctcatggcgc tgctccgacg cccgacggtg tccagtgatt tggagaatat tgacacagga 180 gttaattcta aagttaagag tcatgtgact attaggcgaa ctgttttaga agaaattgga 240 aatagagtta caaccagagc agcacaagta gctaagaaag ctcagaacac caaagttcca 300 gttcaaccca ccaaaacaac aaatgtcaac aaacaactga aacctactgc ttctgtcaaa 360 ccagtacaga tggaaaagtt ggctccaaag ggtccttctc ccacacctga ggatgtctcc 420 atgaaggaag agaatctctg ccaagctttt tctgatgcct tgctctgcaa aatcgaggac 480 attgataacg aagattggga gaaccctcag ctctgcagtg actacgttaa ggatatctat 540 cagtatctca ggcagctgga ggttttgcag tccataaacc cacatttctt agatggaaga 600 gatataaatg gacgcatgcg tgccatccta gtggattggc tggtacaagt ccactccaag 660 tttaggcttc tgcaggagac tctgtacatg tgcgttggca ttatggatcg atttttacag 720 gttcagccag tttcccggaa gaagcttcaa ttagttggga ttactgctct gctcttggct 780 tccaagtatg aggagatgtt ttctccaaat attgaagact ttgtttacat cacagacaat 840 gcttatacca gttcccaaat ccgagaaatg gaaactctaa ttttgaaaga attgaaattt 900 gagttgggtc gacccttgcc actacacttc ttaaggcgag catcaaaagc cggggaggtt 960 gatgttgaac agcacacttt agccaagtat ttgatggagc tgactctcat cgactatgat 1020 atggtgcatt atcatccttc taaggtagca gcagctgctt cctgcttgtc tcagaaggtt 1080 ctaggacaag gaaaatggaa cttaaagcag cagtattaca caggatacac agagaatgaa 1140 gtattggaag tcatgcagca catggccaag aatgtggtga aagtaaatga aaacttaact 1200 aaattcatcg ccatcaagaa taagtatgca agcagcaaac tcctgaagat cagcatgatc 1260 cctcagctga actcaaaagc cgtcaaagac cttgcctccc cactgatagg aaggtcctag 1320 gctgccgtgg cccctgggga tgtgtgcttc attgtgccct ttttcttatt ggtttagaac 1380 tcttgatttt gtacatagtc ctctggtcta tctcatgaaa cctcttctca gaccagtttt 1440 ctaaacatat attgaggaaa aataaagcga ttggtttttc ttaaggta 1488 <210> 7 <211> 1649 <212> DNA <213> Artificial Sequence <220> <223> CDC20 cDNA polynucleotide sequence <400> 7 cggtcggaac tgctccggag ggcacgggct ccgtaggcac caactgcaag gacccctccc 60 cctgcgggcg ctcccatggc acagttcgcg ttcgagagtg acctgcactc gctgcttcag 120 ctggatgcac ccatccccaa tgcaccccct gcgcgctggc agcgcaaagc caaggaagcc 180 gcaggcccgg ccccctcacc catgcgggcc gccaaccgat cccacagcgc cggcaggact 240 ccgggccgaa ctcctggcaa atccagttcc aaggttcaga ccactcctag caaacctggc 300 ggtgaccgct atatccccca tcgcagtgct gcccagatgg aggtggccag cttcctcctg 360 agcaaggaga accagcctga aaacagccag acgcccacca agaaggaaca tcagaaagcc 420 tgggctttga acctgaacgg ttttgatgta gaggaagcca agatccttcg gctcagtgga 480 aaaccacaaa atgcgccaga gggttatcag aacagactga aagtactcta cagccaaaag 540 gccactcctg gctccagccg gaagacctgc cgttacattc cttccctgcc agaccgtatc 600 ctggatgcgc ctgaaatccg aaatgactat tacctgaacc ttgtggattg gagttctggg 660 aatgtactgg ccgtggcact ggacaacagt gtgtacctgt ggagtgcaag ctctggtgac 720 atcctgcagc ttttgcaaat ggagcagcct ggggaatata tatcctctgt ggcctggatc 780 aaagagggca actacttggc tgtgggcacc agcagtgctg aggtgcagct atgggatgtg 840 cagcagcaga aacggcttcg aaatatgacc agtcactctg cccgagtggg ctccctaagc 900 tggaacagct atatcctgtc cagtggttca cgttctggcc acatccacca ccatgatgtt 960 cgggtagcag aacaccatgt ggccacactg agtggccaca gccaggaagt gtgtgggctg 1020 cgctgggccc cagatggacg acatttggcc agtggtggta atgataactt ggtcaatgtg 1080 tggcctagtg ctcctggaga gggtggctgg gttcctctgc agacattcac ccagcatcaa 1140 ggggctgtca aggccgtagc atggtgtccc tggcagtcca atgtcctggc aacaggaggg 1200 ggcaccagtg atcgacacat tcgcatctgg aatgtgtgct ctggggcctg tctgagtgcc 1260 gtggatgccc attcccaggt gtgctccatc ctctggtctc cccattacaa ggagctcatc 1320 tcaggccatg gctttgcaca gaaccagcta gttatttgga agtacccaac catggccaag 1380 gtggctgaac tcaaaggtca cacatcccgg gtcctgagtc tgaccatgag cccagatggg 1440 gccacagtgg catccgcagc agcagatgag accctgaggc tatggcgctg ttttgagttg 1500 gaccctgcgc ggcggcggga gcgggagaag gccagtgcag ccaaaagcag cctcatccac 1560 caaggcatcc gctgaagacc aacccatcac ctcagttgtt ttttattttt ctaataaagt 1620 catgtctccc ttcatgtttt ttttttaaa 1649 <210> 8 <211> 1889 <212> DNA <213> Artificial Sequence <220> <223> CDK1 cDNA polynucleotide sequence <400> 8 gcacttggct tcaaagctgg ctcttggaaa ttgagcggag agcgacgcgg ttgttgtagc 60 tgccgctgcg gccgccgcgg aataataagc cgggatctac catacccatt gactaactat 120 ggaagattat accaaaatag agaaaattgg agaaggtacc tatggagttg tgtataaggg 180 tagacacaaa actacaggtc aagtggtagc catgaaaaaa atcagactag aaagtgaaga 240 ggaaggggtt cctagtactg caattcggga aatttctcta ttaaaggaac ttcgtcatcc 300 aaatatagtc agtcttcagg atgtgcttat gcaggattcc aggttatatc tcatctttga 360 gtttctttcc atggatctga agaaatactt ggattctatc cctcctggtc agtacatgga 420 ttcttcactt gttaagagtt atttatacca aatcctacag gggattgtgt tttgtcactc 480 tagaagagtt cttcacagag acttaaaacc tcaaaatctc ttgattgatg acaaaggaac 540 aattaaactg gctgattttg gccttgccag agcttttgga atacctatca gagtatatac 600 acatgaggta gtaacactct ggtacagatc tccagaagta ttgctggggt cagctcgtta 660 ctcaactcca gttgacattt ggagtatagg caccatattt gctgaactag caactaagaa 720 accacttttc catggggatt cagaaattga tcaactcttc aggattttca gagctttggg 780 cactcccaat aatgaagtgt ggccagaagt ggaatcttta caggactata agaatacatt 840 tcccaaatgg aaaccaggaa gcctagcatc ccatgtcaaa aacttggatg aaaatggctt 900 ggatttgctc tcgaaaatgt taatctatga tccagccaaa cgaatttctg gcaaaatggc 960 actgaatcat ccatatttta atgatttgga caatcagatt aagaagatgt agctttctga 1020 caaaaagttt ccatatgtta tatcaacaga tagttgtgtt tttattgtta actcttgtct 1080 atttttgtct tatatatatt tctttgttat caaacttcag ctgtacttcg tcttctaatt 1140 tcaaaaatat aacttaaaaa tgtaaatatt ctatatgaat ttaaatataa ttctgtaaat 1200 gtgtgtaggt ctcactgtaa caactatttg ttactataat aaaactataa tattgatgtc 1260 aggaatcagg aaaaaatttg agttggctta aatcatctca gtccttatgg cagttttatt 1320 ttcctgtagt tggaactact aaaatttagg aaaatgctaa gttcaagttt cgtaatgctt 1380 tgaagtattt ttatgctctg aatgtttaaa tgttctcatc agtttcttgc catgttgtta 1440 actatacaac ctggctaaag atgaatattt ttctactggt attttaattt ttgacctaaa 1500 tgtttaagca ttcggaatga gaaaactata cagatttgag aaatgatgct aaatttatag 1560 gagttttcag taacttaaaa agctaacatg agagcatgcc aaaatttgct aagtcttaca 1620 aagatcaagg gctgtccgca acagggaaga acagttttga aaatttatga actatcttat 1680 ttttaggtag gttttgaaag ctttttgtct aagtgaattc ttatgccttg gtcagagtaa 1740 taactgaagg agttgcttat cttggctttc gagtctgagt ttaaaactac acattttgac 1800 atagtgttta ttagcagcca tctaaaaagg ctctaatgta tatttaacta aaattactag 1860 ctttgggaat taaactgttt aacaaataa 1889 <210> 9 <211> 2516 <212> DNA <213> Artificial Sequence <220> <223> CEP55 cDNA polynucleotide sequence <400> 9 aaactcccgg aagcggcatc cacacctgat ggtgtgactc ggccgacgcg agcgccgcgc 60 ttcgcttcag ctgctagctg gcccaaggga ggcgaccgcg gagggtggcg aggggcggcc 120 aggacccgca gccccggggc cgggccggtc cggaccgcca gggagggcag accatttcag 180 agatgtcttc cagaagtacc aaagatttaa ttaaaagtaa gtggggatcg aagcctagta 240 actccaaatc cgaaactaca ttagaaaaat taaagggaga aattgcacac ttaaagacat 300 cagtggatga aatcacaagt gggaaaggaa agctgactga taaagagaga cacagacttt 360 tggagaaaat tcgagtcctt gaggctgaga aggagaagaa tgcttatcaa ctcacagaga 420 aggacaaaga aatacagcga ctgagagacc aactgaaggc cagatatagt actaccacat 480 tgcttgaaca gctggaagag acaacgagag aaggagaaag gagggagcag gtgttgaaag 540 ccttatctga agagaaagac gtattgaaac aacagttgtc tgctgcaacc tcacgaattg 600 ctgaacttga aagcaaaacc aatacactcc gtttatcaca gactgtggct ccaaactgct 660 tcaactcatc aataaataat attcatgaaa tggaaataca gctgaaagat gctctggaga 720 aaaatcagca gtggctcgtg tatgatcagc agcgggaagt ctatgtaaaa ggacttttag 780 caaagatctt tgagttggaa aagaaaacgg aaacagctgc tcattcactc ccacagcaga 840 caaaaaagcc tgaatcagaa ggttatcttc aagaagagaa gcagaaatgt tacaacgatc 900 tcttggcaag tgcaaaaaaa gatcttgagg ttgaacgaca aaccataact cagctgagtt 960 ttgaactgag tgaatttcga agaaaatatg aagaaaccca aaaagaagtt cacaatttaa 1020 atcagctgtt gtattcacaa agaagggcag atgtgcaaca tctggaagat gataggcata 1080 aaacagagaa gatacaaaaa ctcagggaag agaatgatat tgctagggga aaacttgaag 1140 aagagaagaa gagatccgaa gagctcttat ctcaggtcca gtttctttac acatctctgc 1200 taaagcagca agaagaacaa acaagggtag ctctgttgga acaacagatg caggcatgta 1260 ctttagactt tgaaaatgaa aaactcgacc gtcaacatgt gcagcatcaa ttgcatgtaa 1320 ttcttaagga gctccgaaaa gcaagaaatc aaataacaca gttggaatcc ttgaaacagc 1380 ttcatgagtt tgccatcaca gagccattag tcactttcca aggagagact gaaaacagag 1440 aaaaagttgc cgcctcacca aaaagtccca ctgctgcact caatgaaagc ctggtggaat 1500 gtcccaagtg caatatacag tatccagcca ctgagcatcg cgatctgctt gtccatgtgg 1560 aatactgttc aaagtagcaa aataagtatt tgttttgata ttaaaagatt caatactgta 1620 ttttctgtta gcttgtgggc attttgaatt atatatttca cattttgcat aaaactgcct 1680 atctaccttt gacactccag catgctagtg aatcatgtat cttttaggct gctgtgcatt 1740 tctcttggca gtgatacctc cctgacatgg ttcatcatca ggctgcaatg acagaatgtg 1800 gtgagcagcg tctactgaga ctactaacat tttgcactgt caaaatactt ggtgaggaaa 1860 agatagctca ggttattgct aatgggttaa tgcaccagca agcaaaatat tttatgtttt 1920 gggggttttg aaaaatcaaa gataattaac caaggatctt aactgtgttc gcatttttta 1980 tccaagcact tagaaaacct acaatcctaa ttttgatgtc cattgttaag aggtggtgat 2040 agatactatt ttttttttca tattgtatag cggttattag aaaagttggg gattttcttg 2100 atctttattg ctgcttacca ttgaaactta acccagctgt gttccccaac tctgttctgc 2160 gcacgaaaca gtatctgttt gaggcataat cttaagtggc cacacacaat gttttctctt 2220 atgttatctg gcagtaactg taacttgaat tacattagca cattctgctt agctaaaatt 2280 gttaaaataa actttaataa acccatgtag ccctctcatt tgattgacag tattttagtt 2340 atttttggca ttcttaaagc tgggcaatgt aatgatcaga tctttgtttg tctgaacagg 2400 tatttttata catgcttttt gtaaaccaaa aacttttaaa tttcttcagg ttttctaaca 2460 tgcttaccac tgggctactg taaatgagaa aagaataaaa ttatttaatg ttttaa 2516 <210> 10 <211> 3507 <212> DNA <213> Artificial Sequence <220> <223> FOXM1 cDNA polynucleotide sequence <400> 10 aacgctccgc cggcgccaat ttcaaacagc ggaacaaact gaaagctccg gtgccagacc 60 ccacccccgg ccccggcccg ggaccccctc ccctcccggg atcccccggg gttcccaccc 120 cgcccgcacc gccggggacc cggccggtcc ggcgcgagcc cccgtccggg gccctggctc 180 ggcccccagg ttggaggagc ccggagcccg ccttcggagc tacggcctaa cggcggcggc 240 gactgcagtc tggagggtcc acacttgtga ttctcaatgg agagtgaaaa cgcagattca 300 taatgaaaac tagcccccgt cggccactga ttctcaaaag acggaggctg ccccttcctg 360 ttcaaaatgc cccaagtgaa acatcagagg aggaacctaa gagatcccct gcccaacagg 420 agtctaatca agcagaggcc tccaaggaag tggcagagtc caactcttgc aagtttccag 480 ctgggatcaa gattattaac caccccacca tgcccaacac gcaagtagtg gccatcccca 540 acaatgctaa tattcacagc atcatcacag cactgactgc caagggaaaa gagagtggca 600 gtagtgggcc caacaaattc atcctcatca gctgtggggg agccccaact cagcctccag 660 gactccggcc tcaaacccaa accagctatg atgccaaaag gacagaagtg accctggaga 720 ccttgggacc aaaacctgca gctagggatg tgaatcttcc tagaccacct ggagcccttt 780 gcgagcagaa acgggagacc tgtgatggtg aggcagcagg ctgcactatc aacaatagcc 840 tatccaacat ccagtggctt cgaaagatga gttctgatgg actgggctcc cgcagcatca 900 agcaagagat ggaggaaaag gagaattgtc acctggagca gcgacaggtt aaggttgagg 960 agccttcgag accatcagcg tcctggcaga actctgtgtc tgagcggcca ccctactctt 1020 acatggccat gatacaattc gccatcaaca gcactgagag gaagcgcatg actttgaaag 1080 acatctatac gtggattgag gaccactttc cctactttaa gcacattgcc aagccaggct 1140 ggaagaactc catccgccac aacctttccc tgcacgacat gtttgtccgg gagacgtctg 1200 ccaatggcaa ggtctccttc tggaccattc accccagtgc caaccgctac ttgacattgg 1260 accaggtgtt taagcagcag cagaaacgac cgaatccaga gctccgccgg aacatgacca 1320 tcaaaaccga actccccctg ggcgcacggc ggaagatgaa gccactgcta ccacgggtca 1380 gctcatacct ggtacctatc cagttcccgg tgaaccagtc actggtgttg cagccctcgg 1440 tgaaggtgcc attgcccctg gcggcttccc tcatgagctc agagcttgcc cgccatagca 1500 agcgagtccg cattgccccc aaggtgctgc tagctgagga ggggatagct cctctttctt 1560 ctgcaggacc agggaaagag gagaaactcc tgtttggaga agggttttct cctttgcttc 1620 cagttcagac tatcaaggag gaagaaatcc agcctgggga ggaaatgcca cacttagcga 1680 gacccatcaa agtggagagc cctcccttgg aagagtggcc ctccccggcc ccatctttca 1740 aagaggaatc atctcactcc tgggaggatt cgtcccaatc tcccacccca agacccaaga 1800 agtcctacag tgggcttagg tccccaaccc ggtgtgtctc ggaaatgctt gtgattcaac 1860 acagggagag gagggagagg agccggtctc ggagaaaaca gcatctactg cctccctgtg 1920 tggatgagcc ggagctgctc ttctcagagg ggcccagtac ttcccgctgg gccgcagagc 1980 tcccgttccc agcagactcc tctgaccctg cctcccagct cagctactcc caggaagtgg 2040 gaggaccttt taagacaccc attaaggaaa cgctgcccat ctcctccacc ccgagcaaat 2100 ctgtcctccc cagaacccct gaatcctgga ggctcacgcc cccagccaaa gtagggggac 2160 tggatttcag cccagtacaa acctcccagg gtgcctctga ccccttgcct gaccccctgg 2220 ggctgatgga tctcagcacc actcccttgc aaagtgctcc cccccttgaa tcaccgcaaa 2280 ggctcctcag ttcagaaccc ttagacctca tctccgtccc ctttggcaac tcttctccct 2340 cagatataga cgtccccaag ccaggctccc cggagccaca ggtttctggc cttgcagcca 2400 atcgttctct gacagaaggc ctggtcctgg acacaatgaa tgacagcctc agcaagatcc 2460 tgctggacat cagctttcct ggcctggacg aggacccact gggccctgac aacatcaact 2520 ggtcccagtt tattcctgag ctacagtaga gccctgccct tgcccctgtg ctcaagctgt 2580 ccaccatccc gggcactcca aggctcagtg caccccaagc ctctgagtga ggacagcagg 2640 cagggactgt tctgctcctc atagctccct gctgcctgat tatgcaaaag tagcagtcac 2700 accctagcca ctgctgggac cttgtgttcc ccaagagtat ctgattcctc tgctgtccct 2760 gccaggagct gaagggtggg aacaacaaag gcaatggtga aaagagatta ggaacccccc 2820 agcctgtttc cattctctgc ccagcagtct cttaccttcc ctgatctttg cagggtggtc 2880 cgtgtaaata gtataaattc tccaaattat cctctaatta taaatgtaag cttatttcct 2940 tagatcatta tccagagact gccagaaggt gggtaggatg acctggggtt tcaattgact 3000 tctgttcctt gcttttagtt ttgatagaag ggaagacctg cagtgcacgg tttcttccag 3060 gctgaggtac ctggatcttg ggttcttcac tgcagggacc cagacaagtg gatctgcttg 3120 ccagagtcct ttttgcccct ccctgccacc tccccgtgtt tccaagtcag ctttcctgca 3180 agaagaaatc ctggttaaaa aagtcttttg tattgggtca ggagttgaat ttggggtggg 3240 aggatggatg caactgaagc agagtgtggg tgcccagatg tgcgctatta gatgtttctc 3300 tgataatgtc cccaatcata ccagggagac tggcattgac gagaactcag gtggaggctt 3360 gagaaggccg aaagggcccc tgacctgcct ggcttcctta gcttgcccct cagctttgca 3420 aagagccacc ctaggcccca gctgaccgca tgggtgtgag ccagcttgag aacactaact 3480 actcaataaa agcgaaggtg gacatgc 3507 <210> 11 <211> 3095 <212> DNA <213> Artificial Sequence <220> <223> KIF20A cDNA polynucleotide sequence <400> 11 ggagttgtgc tctgcggctg cgaaagtcca gcttcggcga ctaggtgtga gtaagccagt 60 atcccaggag gagcaagtgg cacgtcttcg gacctaggct gcccctgccg tcatgtcgca 120 agggatcctt tctccgccag cgggcttgct gtccgatgac gatgtcgtag tttctcccat 180 gtttgagtcc acagctgcag atttggggtc tgtggtacgc aagaacctgc tatcagactg 240 ctctgtcgtc tctacctccc tagaggacaa gcagcaggtt ccatctgagg acagtatgga 300 gaaggtgaaa gtatacttga gggttaggcc cttgttacct tcagagttgg aacgacagga 360 agatcagggt tgtgtccgta ttgagaatgt ggagaccctt gttctacaag cacccaagga 420 ctcttttgcc ctgaagagca atgaacgggg aattggccaa gccacacaca ggttcacctt 480 ttcccagatc tttgggccag aagtgggaca ggcatccttc ttcaacctaa ctgtgaagga 540 gatggtaaag gatgtactca aagggcagaa ctggctcatc tatacatatg gagtcactaa 600 ctcagggaaa acccacacga ttcaaggtac catcaaggat ggagggattc tcccccggtc 660 cctggcgctg atcttcaata gcctccaagg ccaacttcat ccaacacctg atctgaagcc 720 cttgctctcc aatgaggtaa tctggctaga cagcaagcag atccgacagg aggaaatgaa 780 gaagctgtcc ctgctaaatg gaggcctcca agaggaggag ctgtccactt ccttgaagag 840 gagtgtctac atcgaaagtc ggataggtac cagcaccagc ttcgacagtg gcattgctgg 900 gctctcttct atcagtcagt gtaccagcag tagccagctg gatgaaacaa gtcatcgatg 960 ggcacagcca gacactgccc cactacctgt cccggcaaac attcgcttct ccatctggat 1020 ctcattcttt gagatctaca acgaactgct ttatgaccta ttagaaccgc ctagccaaca 1080 gcgcaagagg cagactttgc ggctatgcga ggatcaaaat ggcaatccct atgtgaaaga 1140 tctcaactgg attcatgtgc aagatgctga ggaggcctgg aagctcctaa aagtgggtcg 1200 taagaaccag agctttgcca gcacccacct caaccagaac tccagccgca gtcacagcat 1260 cttctcaatc aggatcctac accttcaggg ggaaggagat atagtcccca agatcagcga 1320 gctgtcactc tgtgatctgg ctggctcaga gcgctgcaaa gatcagaaga gtggtgaacg 1380 gttgaaggaa gcaggaaaca ttaacacctc tctacacacc ctgggccgct gtattgctgc 1440 ccttcgtcaa aaccagcaga accggtcaaa gcagaacctg gttcccttcc gtgacagcaa 1500 gttgactcga gtgttccaag gtttcttcac aggccgaggc cgttcctgca tgattgtcaa 1560 tgtgaatccc tgtgcatcta cctatgatga aactcttcat gtggccaagt tctcagccat 1620 tgctagccag cttgtgcatg ccccacctat gcaactggga ttcccatccc tgcactcgtt 1680 catcaaggaa catagtcttc aggtatcccc cagcttagag aaaggggcta aggcagacac 1740 aggccttgat gatgatattg aaaatgaagc tgacatctcc atgtatggca aagaggagct 1800 cctacaagtt gtggaagcca tgaagacact gcttttgaag gaacgacagg aaaagctaca 1860 gctggagatg catctccgag atgaaatttg caatgagatg gtagaacaga tgcaacagcg 1920 ggaacagtgg tgcagtgaac atttggacac ccaaaaggaa ctattggagg aaatgtatga 1980 agaaaaacta aatatcctca aggagtcact gacaagtttt taccaagaag agattcagga 2040 gcgggatgaa aagattgaag agctagaagc tctcttgcag gaagccagac aacagtcagt 2100 ggcccatcag caatcagggt ctgaattggc cctacggcgg tcacaaaggt tggcagcttc 2160 tgcctccacc cagcagcttc aggaggttaa agctaaatta cagcagtgca aagcagagct 2220 aaactctacc actgaagagt tgcataagta tcagaaaatg ttagaaccac caccctcagc 2280 caagcccttc accattgatg tggacaagaa gttagaagag ggccagaaga atataaggct 2340 gttgcggaca gagcttcaga aacttggtga gtctctccaa tcagcagaga gagcttgttg 2400 ccacagcact ggggcaggaa aacttcgtca agccttgacc acttgtgatg acatcttaat 2460 caaacaggac cagactctgg ctgaactgca gaacaacatg gtgctagtga aactggacct 2520 tcggaagaag gcagcatgta ttgctgagca gtatcatact gtgttgaaac tccaaggcca 2580 ggtttctgcc aaaaagcgcc ttggtaccaa ccaggaaaat cagcaaccaa accaacaacc 2640 accagggaag aaaccattcc ttcgaaattt acttccccga acaccaacct gccaaagctc 2700 aacagactgc agcccttatg cccggatcct acgctcacgg cgttcccctt tactcaaatc 2760 tgggcctttt ggcaaaaagt actaaggctg tggggaaaga gaagagcagt catggccctg 2820 aggtgggtca gctactctcc tgaagaaata ggtctctttt atgctttacc atatatcagg 2880 aattatatcc aggatgcaat actcagacac tagctttttt ctcacttttg tattataacc 2940 acctatgtaa tctcatgttg ttgttttttt ttatttactt atatgatttc tatgcacaca 3000 aaaacagtta tattaaagat attattgttc acatttttta ttgaattcca aatgtagcaa 3060 aatcattaaa acaaattata aaagggacag aaaaa 3095 <210> 12 <211> 3620 <212> DNA <213> Artificial Sequence <220> <223> KIF23 cDNA polynucleotide sequence <400> 12 gcagagcacc gcgccttagc cgcgaagttc tagttcttgc tgccggtcct aacgtcccgc 60 agtcttcgcc agccagccgt cccgcatgcg cgtttgggcg gcgtggagcc tgctgccatg 120 aagtcagcga gagctaagac accccggaaa cctaccgtga aaaaagggtc ccaaacgaac 180 cttaaagacc cagttggggt atactgtagg gtgcgcccac tgggctttcc tgatcaagag 240 tgttgcatag aagtgatcaa taatacaact gttcagcttc atactcctga gggctacaga 300 ctcaaccgaa atggagacta taaggagact cagtattcat ttaaacaagt atttggcact 360 cacaccaccc agaaggaact ctttgatgtt gtggctaatc ccttggtcaa tgacctcatt 420 catggcaaaa atggtcttct ttttacatat ggtgtgacgg gaagtggaaa aactcacaca 480 atgactggtt ctccagggga aggagggctg cttcctcgtt gtttggacat gatctttaac 540 agtatagggt catttcaagc taaacgatat gttttcaaat ctaatgatag gaatagtatg 600 gatatacagt gtgaggttga tgccttatta gaacgtcaga aaagagaagc tatgcccaat 660 ccaaagactt cttctagcaa acgacaagta gatccagagt ttgcagatat gataactgta 720 caagaattct gcaaagcaga agaggttgat gaagatagtg tctatggtgt atttgtctct 780 tatattgaaa tatataataa ttacatatat gatctattgg aagaggtgcc gtttgatccc 840 ataaaaccca aacctccaca atctaaattg cttcgtgaag ataagaacca taacatgtat 900 gttgcaggat gtacagaagt tgaagtgaaa tctactgagg aggcttttga agttttctgg 960 agaggccaga aaaagagacg tattgctaat acccatttga atcgtgagtc cagccgttcc 1020 catagcgtgt tcaacattaa attagttcag gctcccttgg atgcagatgg agacaatgtc 1080 ttacaggaaa aagaacaaat cactataagt cagttgtcct tggtagatct tgctggaagt 1140 gaaagaacta accggaccag agcagaaggg aacagattac gtgaagctgg taatattaat 1200 cagtcactaa tgacgctaag aacatgtatg gatgtcctaa gagagaacca aatgtatgga 1260 actaacaaga tggttccata tcgagattca aagttaaccc atctgttcaa gaactacttt 1320 gatggggaag gaaaagtgcg gatgatcgtg tgtgtgaacc ccaaggctga agattatgaa 1380 gaaaacttgc aagtcatgag atttgcggaa gtgactcaag aagttgaagt agcaagacct 1440 gtagacaagg caatatgtgg tttaacgcct gggaggagat acagaaacca gcctcgaggt 1500 ccagttggaa atgaaccatt ggttactgac gtggttttgc agagttttcc acctttgcca 1560 tcatgcgaaa ttttggatat caacgatgag cagacacttc caaggctgat tgaagcctta 1620 gagaaacgac ataacttacg acaaatgatg attgatgagt ttaacaaaca atctaatgct 1680 tttaaagctt tgttacaaga atttgacaat gctgttttaa gtaaagaaaa ccacatgcaa 1740 gggaaactaa atgaaaagga gaagatgatc tcaggacaga aattggaaat agaacgactg 1800 gaaaagaaaa acaaaacttt agaatataag attgagattt tagagaaaac aactactatc 1860 tatgaggaag ataaacgcaa tttgcaacag gaacttgaaa ctcagaacca gaaacttcag 1920 cgacagtttt ctgacaaacg cagattagaa gccaggttgc aaggcatggt gacagaaacg 1980 acaatgaagt gggagaaaga atgtgagcgt agagtggcag ccaaacagct ggagatgcag 2040 aataaactct gggttaaaga tgaaaagctg aaacaactga aggctattgt taccgaacct 2100 aaaactgaga agccagagag accctctcgg gagcgagatc gagaaaaagt tactcaaaga 2160 tctgtttctc catcacctgt gcctctttct agtaactata ttgctcagat ttccaacggc 2220 cagcaactca tgagccagcc acagctacat aggcgctcta actcttgcag cagcatttct 2280 gtagcttcct gtatttcgga atgggagcag aaaattccta cgtacaacac acctctcaaa 2340 gtcacatcta ttgcaaggcg taggcagcag gagccaggac aaagcaaaac ttgtatcgtg 2400 tcagacagaa ggcgagggat gtactggact gaaggcaggg aggtggttcc tacattcaga 2460 aatgagatag aaatagaaga ggatcattgc ggcaggttac tctttcaacc tgatcagaac 2520 gcaccaccaa ttcgtctccg acacagacga tcacgctctg caggagacag atgggtagat 2580 cataagcccg cctctaacat gcaaactgaa acagtcatgc agccacatgt ccctcatgcc 2640 atcacagtat ctgttgcaaa tgaaaaggca ctagctaagt gtgagaagta catgctgacc 2700 caccaggaac tagcctccga tggggagatt gaaactaaac taattaaggg tgatatttat 2760 aaaacaaggg gtggtggaca atctgttcag tttactgata ttgagacttt aaagcaagaa 2820 tcaccaaatg gtagtcgaaa acgaagatct tccacagtag cacctgccca accagatggt 2880 gcagagtctg aatggaccga tgtagaaaca aggtgttctg tggctgtgga gatgagagca 2940 ggatcccagc tgggacctgg atatcagcat cacgcacaac ccaagcgcaa aaagccatga 3000 actgacagtc ccagtactga aagaacattt tcatttgtgt ggatgatttc tcgaaagcca 3060 tgccagaagc agtcttccag gtcatcttgt agaactccag ctttgttgaa aatcacggac 3120 ctcagctaca tcatacactg acccagagca aagctttccc tatggttcca aagacaacta 3180 gtattcaaca aaccttgtat agtatatgtt ttgccatatt taatattaat agcagaggaa 3240 gactcctttt ttcatcactg tatgaatttt ttataatgtt tttttaaaat atatttcatg 3300 tatacttata aactaattca cacaagtgtt tgtcttagat gattaaggaa gactatatct 3360 agatcatgtc tgatttttta ttgtgacttc tccagccctg gtctgaattt cttaaggttt 3420 tataaacaaa tgctgctatt tattagctgc aagaatgcac tttagaacta tttgacaatt 3480 cagactttca aaataaagat gtaaatgact ggccaataat aaccatttta ggaaggtgtt 3540 ttgaattctg tatgtatata ttcactttct gacatttaga tatgccaaaa gaattaaaat 3600 caaaagcact aagaaataca 3620 <210> 13 <211> 12716 <212> DNA <213> Artificial Sequence <220> <223> MKI67 cDNA polynucleotide sequence <400> 13 agaaggaagt ggagggctga cgctgcgggc gggcgggcgg gcgggaggac tcgactcggt 60 gggagccgct agagccgggc gcccggggac gtagcctgta gggccaccgg gtccccgtca 120 gaggcggcgg cgggagcagc ggggactgca ggccggggtg cagcgaacgc gaccccgcgg 180 gctgcggccc ggtgtgtgcg gagcgtggcg ggcgcagctt accgggcgga ggtgagcgcg 240 gcgccggctc ctcctgcggc ggactttggg tgcgacttga cgagcggtgg ttcgacaagt 300 ggccttgcgg gccggatcgt cccagtggaa gagttgtaaa tttgcttctg gccttcccct 360 acggattata cctggccttc ccctacggat tatactcaac ttactgttta gaaaatgtgg 420 cccacgagac gcctggttac tatcaaaagg agcggggtcg acggtcccca ctttcccctg 480 agcctcagca cctgcttgtt tggaaggggt attgaatgtg acatccgtat ccagcttcct 540 gttgtgtcaa aacaacattg caaaattgaa atccatgagc aggaggcaat attacataat 600 ttcagttcca caaatccaac acaagtaaat gggtctgtta ttgatgagcc tgtacggcta 660 aaacatggag atgtaataac tattattgat cgttccttca ggtatgaaaa tgaaagtctt 720 cagaatggaa ggaagtcaac tgaatttcca agaaaaatac gtgaacagga gccagcacgt 780 cgtgtctcaa gatctagctt ctcttctgac cctgatgaga aagctcaaga ttccaaggcc 840 tattcaaaaa tcactgaagg aaaagtttca ggaaatcctc aggtacatat caagaatgtc 900 aaagaagaca gtaccgcaga tgactcaaaa gacagtgttg ctcagggaac aactaatgtt 960 cattcctcag aacatgctgg acgtaatggc agaaatgcag ctgatcccat ttctggggat 1020 tttaaagaaa tttccagcgt taaattagtg agccgttatg gagaattgaa gtctgttccc 1080 actacacaat gtcttgacaa tagcaaaaaa aatgaatctc ccttttggaa gctttatgag 1140 tcagtgaaga aagagttgga tgtaaaatca caaaaagaaa atgtcctaca gtattgtaga 1200 aaatctggat tacaaactga ttacgcaaca gagaaagaaa gtgctgatgg tttacagggg 1260 gagacccaac tgttggtctc gcgtaagtca agaccaaaat ctggtgggag cggccacgct 1320 gtggcagagc ctgcttcacc tgaacaagag cttgaccaga acaaggggaa gggaagagac 1380 gtggagtctg ttcagactcc cagcaaggct gtgggcgcca gctttcctct ctatgagccg 1440 gctaaaatga agacccctgt acaatattca cagcaacaaa attctccaca aaaacataag 1500 aacaaagacc tgtatactac tggtagaaga gaatctgtga atctgggtaa aagtgaaggc 1560 ttcaaggctg gtgataaaac tcttactccc aggaagcttt caactagaaa tcgaacacca 1620 gctaaagttg aagatgcagc tgactctgcc actaagccag aaaatctctc ttccaaaacc 1680 agaggaagta ttcctacaga tgtggaagtt ctgcctacgg aaactgaaat tcacaatgag 1740 ccatttttaa ctctgtggct cactcaagtt gagaggaaga tccaaaagga ttccctcagc 1800 aagcctgaga aattgggcac tacagctgga cagatgtgct ctgggttacc tggtcttagt 1860 tcagttgata tcaacaactt tggtgattcc attaatgaga gtgagggaat acctttgaaa 1920 agaaggcgtg tgtcctttgg tgggcaccta agacctgaac tatttgatga aaacttgcct 1980 cctaatacgc ctctcaaaag gggagaagcc ccaaccaaaa gaaagtctct ggtaatgcac 2040 actccacctg tcctgaagaa aatcatcaag gaacagcctc aaccatcagg aaaacaagag 2100 tcaggttcag aaatccatgt ggaagtgaag gcacaaagct tggttataag ccctccagct 2160 cctagtccta ggaaaactcc agttgccagt gatcaacgcc gtaggtcctg caaaacagcc 2220 cctgcttcca gcagcaaatc tcagacagag gttcctaaga gaggagggag aaagagtggc 2280 aacctgcctt caaagagagt gtctatcagc cgaagtcaac atgatatttt acagatgata 2340 tgttccaaaa gaagaagtgg tgcttcggaa gcaaatctga ttgttgcaaa atcatgggca 2400 gatgtagtaa aacttggtgc aaaacaaaca caaactaaag tcataaaaca tggtcctcaa 2460 aggtcaatga acaaaaggca aagaagacct gctactccaa agaagcctgt gggcgaagtt 2520 cacagtcaat ttagtacagg ccacgcaaac tctccttgta ccataataat agggaaagct 2580 catactgaaa aagtacatgt gcctgctcga ccctacagag tgctcaacaa cttcatttcc 2640 aaccaaaaaa tggactttaa ggaagatctt tcaggaatag ctgaaatgtt caagacccca 2700 gtgaaggagc aaccgcagtt gacaagcaca tgtcacatcg ctatttcaaa ttcagagaat 2760 ttgcttggaa aacagtttca aggaactgat tcaggagaag aacctctgct ccccacctca 2820 gagagttttg gaggaaatgt gttcttcagt gcacagaatg cagcaaaaca gccatctgat 2880 aaatgctctg caagccctcc cttaagacgg cagtgtatta gagaaaatgg aaacgtagca 2940 aaaacgccca ggaacaccta caaaatgact tctctggaga caaaaacttc agatactgag 3000 acagagcctt caaaaacagt atccactgca aacaggtcag gaaggtctac agagttcagg 3060 aatatacaga agctacctgt ggaaagtaag agtgaagaaa caaatacaga aattgttgag 3120 tgcatcctaa aaagaggtca gaaggcaaca ctactacaac aaaggagaga aggagagatg 3180 aaggaaatag aaagaccttt tgagacatat aaggaaaata ttgaattaaa agaaaacgat 3240 gaaaagatga aagcaatgaa gagatcaaga acttgggggc agaaatgtgc accaatgtct 3300 gacctgacag acctcaagag cttgcctgat acagaactca tgaaagacac ggcacgtggc 3360 cagaatctcc tccaaaccca agatcatgcc aaggcaccaa agagtgagaa aggcaaaatc 3420 actaaaatgc cctgccagtc attacaacca gaaccaataa acaccccaac acacacaaaa 3480 caacagttga aggcatccct ggggaaagta ggtgtgaaag aagagctcct agcagtcggc 3540 aagttcacac ggacgtcagg ggagaccacg cacacgcaca gagagccagc aggagatggc 3600 aagagcatca gaacgtttaa ggagtctcca aagcagatcc tggacccagc agcccgtgta 3660 actggaatga agaagtggcc aagaacgcct aaggaagagg cccagtcact agaagacctg 3720 gctggcttca aagagctctt ccagacacca ggtccctctg aggaatcaat gactgatgag 3780 aaaactacca aaatagcctg caaatctcca ccaccagaat cagtggacac tccaacaagc 3840 acaaagcaat ggcctaagag aagtctcagg aaagcagatg tagaggaaga attcttagca 3900 ctcaggaaac taacaccatc agcagggaaa gccatgctta cgcccaaacc agcaggaggt 3960 gatgagaaag acattaaagc atttatggga actccagtgc agaaactgga cctggcagga 4020 actttacctg gcagcaaaag acagctacag actcctaagg aaaaggccca ggctctagaa 4080 gacctggctg gctttaaaga gctcttccag actcctggtc acaccgagga attagtggct 4140 gctggtaaaa ccactaaaat accctgcgac tctccacagt cagacccagt ggacacccca 4200 acaagcacaa agcaacgacc caagagaagt atcaggaaag cagatgtaga gggagaactc 4260 ttagcgtgca ggaatctaat gccatcagca ggcaaagcca tgcacacgcc taaaccatca 4320 gtaggtgaag agaaagacat catcatattt gtgggaactc cagtgcagaa actggacctg 4380 acagagaact taaccggcag caagagacgg ccacaaactc ctaaggaaga ggcccaggct 4440 ctggaagacc tgactggctt taaagagctc ttccagaccc ctggtcatac tgaagaagca 4500 gtggctgctg gcaaaactac taaaatgccc tgcgaatctt ctccaccaga atcagcagac 4560 accccaacaa gcacaagaag gcagcccaag acacctttgg agaaaaggga cgtacagaag 4620 gagctctcag ccctgaagaa gctcacacag acatcagggg aaaccacaca cacagataaa 4680 gtaccaggag gtgaggataa aagcatcaac gcgtttaggg aaactgcaaa acagaaactg 4740 gacccagcag caagtgtaac tggtagcaag aggcacccaa aaactaagga aaaggcccaa 4800 cccctagaag acctggctgg cttgaaagag ctcttccaga caccagtatg cactgacaag 4860 cccacgactc acgagaaaac taccaaaata gcctgcagat cacaaccaga cccagtggac 4920 acaccaacaa gctccaagcc acagtccaag agaagtctca ggaaagtgga cgtagaagaa 4980 gaattcttcg cactcaggaa acgaacacca tcagcaggca aagccatgca cacacccaaa 5040 ccagcagtaa gtggtgagaa aaacatctac gcatttatgg gaactccagt gcagaaactg 5100 gacctgacag agaacttaac tggcagcaag agacggctac aaactcctaa ggaaaaggcc 5160 caggctctag aagacctggc tggctttaaa gagctcttcc agacacgagg tcacactgag 5220 gaatcaatga ctaacgataa aactgccaaa gtagcctgca aatcttcaca accagaccca 5280 gacaaaaacc cagcaagctc caagcgacgg ctcaagacat ccctggggaa agtgggcgtg 5340 aaagaagagc tcctagcagt tggcaagctc acacagacat caggagagac tacacacaca 5400 cacacagagc caacaggaga tggtaagagc atgaaagcat ttatggagtc tccaaagcag 5460 atcttagact cagcagcaag tctaactggc agcaagaggc agctgagaac tcctaaggga 5520 aagtctgaag tccctgaaga cctggccggc ttcatcgagc tcttccagac accaagtcac 5580 actaaggaat caatgactaa cgaaaaaact accaaagtat cctacagagc ttcacagcca 5640 gacctagtgg acaccccaac aagctccaag ccacagccca agagaagtct caggaaagca 5700 gacactgaag aagaattttt agcatttagg aaacaaacgc catcagcagg caaagccatg 5760 cacacaccca aaccagcagt aggtgaagag aaagacatca acacgttttt gggaactcca 5820 gtgcagaaac tggaccagcc aggaaattta cctggcagca atagacggct acaaactcgt 5880 aaggaaaagg cccaggctct agaagaactg actggcttca gagagctttt ccagacacca 5940 tgcactgata accccacgac tgatgagaaa actaccaaaa aaatactctg caaatctccg 6000 caatcagacc cagcggacac cccaacaaac acaaagcaac ggcccaagag aagcctcaag 6060 aaagcagacg tagaggaaga atttttagca ttcaggaaac taacaccatc agcaggcaaa 6120 gccatgcaca cgcctaaagc agcagtaggt gaagagaaag acatcaacac atttgtgggg 6180 actccagtgg agaaactgga cctgctagga aatttacctg gcagcaagag acggccacaa 6240 actcctaaag aaaaggccaa ggctctagaa gatctggctg gcttcaaaga gctcttccag 6300 acaccaggtc acactgagga atcaatgacc gatgacaaaa tcacagaagt atcctgcaaa 6360 tctccacaac cagacccagt caaaacccca acaagctcca agcaacgact caagatatcc 6420 ttggggaaag taggtgtgaa agaagaggtc ctaccagtcg gcaagctcac acagacgtca 6480 gggaagacca cacagacaca cagagagaca gcaggagatg gaaagagcat caaagcgttt 6540 aaggaatctg caaagcagat gctggaccca gcaaactatg gaactgggat ggagaggtgg 6600 ccaagaacac ctaaggaaga ggcccaatca ctagaagacc tggccggctt caaagagctc 6660 ttccagacac cagaccacac tgaggaatca acaactgatg acaaaactac caaaatagcc 6720 tgcaaatctc caccaccaga atcaatggac actccaacaa gcacaaggag gcggcccaaa 6780 acacctttgg ggaaaaggga tatagtggaa gagctctcag ccctgaagca gctcacacag 6840 accacacaca cagacaaagt accaggagat gaggataaag gcatcaacgt gttcagggaa 6900 actgcaaaac agaaactgga cccagcagca agtgtaactg gtagcaagag gcagccaaga 6960 actcctaagg gaaaagccca acccctagaa gacttggctg gcttgaaaga gctcttccag 7020 acaccaatat gcactgacaa gcccacgact catgagaaaa ctaccaaaat agcctgcaga 7080 tctccacaac cagacccagt gggtacccca acaatcttca agccacagtc caagagaagt 7140 ctcaggaaag cagacgtaga ggaagaatcc ttagcactca ggaaacgaac accatcagta 7200 gggaaagcta tggacacacc caaaccagca ggaggtgatg agaaagacat gaaagcattt 7260 atgggaactc cagtgcagaa attggacctg ccaggaaatt tacctggcag caaaagatgg 7320 ccacaaactc ctaaggaaaa ggcccaggct ctagaagacc tggctggctt caaagagctc 7380 ttccagacac caggcactga caagcccacg actgatgaga aaactaccaa aatagcctgc 7440 aaatctccac aaccagaccc agtggacacc ccagcaagca caaagcaacg gcccaagaga 7500 aacctcagga aagcagacgt agaggaagaa tttttagcac tcaggaaacg aacaccatca 7560 gcaggcaaag ccatggacac accaaaacca gcagtaagtg atgagaaaaa tatcaacaca 7620 tttgtggaaa ctccagtgca gaaactggac ctgctaggaa atttacctgg cagcaagaga 7680 cagccacaga ctcctaagga aaaggctgag gctctagagg acctggttgg cttcaaagaa 7740 ctcttccaga caccaggtca cactgaggaa tcaatgactg atgacaaaat cacagaagta 7800 tcctgtaaat ctccacagcc agagtcattc aaaacctcaa gaagctccaa gcaaaggctc 7860 aagatacccc tggtgaaagt ggacatgaaa gaagagcccc tagcagtcag caagctcaca 7920 cggacatcag gggagactac gcaaacacac acagagccaa caggagatag taagagcatc 7980 aaagcgttta aggagtctcc aaagcagatc ctggacccag cagcaagtgt aactggtagc 8040 aggaggcagc tgagaactcg taaggaaaag gcccgtgctc tagaagacct ggttgacttc 8100 aaagagctct tctcagcacc aggtcacact gaagagtcaa tgactattga caaaaacaca 8160 aaaattccct gcaaatctcc cccaccagaa ctaacagaca ctgccacgag cacaaagaga 8220 tgccccaaga cacgtcccag gaaagaagta aaagaggagc tctcagcagt tgagaggctc 8280 acgcaaacat cagggcaaag cacacacaca cacaaagaac cagcaagcgg tgatgagggc 8340 atcaaagtat tgaagcaacg tgcaaagaag aaaccaaacc cagtagaaga ggaacccagc 8400 aggagaaggc caagagcacc taaggaaaag gcccaacccc tggaagacct ggccggcttc 8460 acagagctct ctgaaacatc aggtcacact caggaatcac tgactgctgg caaagccact 8520 aaaataccct gcgaatctcc cccactagaa gtggtagaca ccacagcaag cacaaagagg 8580 catctcagga cacgtgtgca gaaggtacaa gtaaaagaag agccttcagc agtcaagttc 8640 acacaaacat caggggaaac cacggatgca gacaaagaac cagcaggtga agataaaggc 8700 atcaaagcat tgaaggaatc tgcaaaacag acaccggctc cagcagcaag tgtaactggc 8760 agcaggagac ggccaagagc acccagggaa agtgcccaag ccatagaaga cctagctggc 8820 ttcaaagacc cagcagcagg tcacactgaa gaatcaatga ctgatgacaa aaccactaaa 8880 ataccctgca aatcatcacc agaactagaa gacaccgcaa caagctcaaa gagacggccc 8940 aggacacgtg cccagaaagt agaagtgaag gaggagctgt tagcagttgg caagctcaca 9000 caaacctcag gggagaccac gcacaccgac aaagagccgg taggtgaggg caaaggcacg 9060 aaagcattta agcaacctgc aaagcggaag ctggacgcag aagatgtaat tggcagcagg 9120 agacagccaa gagcacctaa ggaaaaggcc caacccctgg aagatctggc cagcttccaa 9180 gagctctctc aaacaccagg ccacactgag gaactggcaa atggtgctgc tgatagcttt 9240 acaagcgctc caaagcaaac acctgacagt ggaaaacctc taaaaatatc cagaagagtt 9300 cttcgggccc ctaaagtaga acccgtggga gacgtggtaa gcaccagaga ccctgtaaaa 9360 tcacaaagca aaagcaacac ttccctgccc ccactgccct tcaagagggg aggtggcaaa 9420 gatggaagcg tcacgggaac caagaggctg cgctgcatgc cagcaccaga ggaaattgtg 9480 gaggagctgc cagccagcaa gaagcagagg gttgctccca gggcaagagg caaatcatcc 9540 gaacccgtgg tcatcatgaa gagaagtttg aggacttctg caaaaagaat tgaacctgcg 9600 gaagagctga acagcaacga catgaaaacc aacaaagagg aacacaaatt acaagactcg 9660 gtccctgaaa ataagggaat atccctgcgc tccagacgcc aaaataagac tgaggcagaa 9720 cagcaaataa ctgaggtctt tgtattagca gaaagaatag aaataaacag aaatgaaaag 9780 aagcccatga agacctcccc agagatggac attcagaatc cagatgatgg agcccggaaa 9840 cccataccta gagacaaagt cactgagaac aaaaggtgct tgaggtctgc tagacagaat 9900 gagagctccc agcctaaggt ggcagaggag agcggagggc agaagagtgc gaaggttctc 9960 atgcagaatc agaaagggaa aggagaagca ggaaattcag actccatgtg cctgagatca 10020 agaaagacaa aaagccagcc tgcagcaagc actttggaga gcaaatctgt gcagagagta 10080 acgcggagtg tcaagaggtg tgcagaaaat ccaaagaagg ctgaggacaa tgtgtgtgtc 10140 aagaaaataa gaaccagaag tcatagggac agtgaagata tttgacagaa aaatcgaact 10200 gggaaaaata taataaagtt agttttgtga taagttctag tgcagttttt gtcataaatt 10260 acaagtgaat tctgtaagta aggctgtcag tctgcttaag ggaagaaaac tttggatttg 10320 ctgggtctga atcggcttca taaactccac tgggagcact gctgggctcc tggactgaga 10380 atagttgaac accgggggct ttgtgaagga gtctgggcca aggtttgccc tcagctttgc 10440 agaatgaagc cttgaggtct gtcaccaccc acagccaccc tacagcagcc ttaactgtga 10500 cacttgccac actgtgtcgt cgtttgtttg cctatgtcct ccagggcacg gtggcaggaa 10560 caactatcct cgtctgtccc aacactgagc aggcactcgg taaacacgaa tgaatggatg 10620 agcgcacgga tgaatggagc ttacaagatc tgtctttcca atggccgggg gcatttggtc 10680 cccaaattaa ggctattgga catctgcaca ggacagtcct atttttgatg tcctttcctt 10740 tctgaaaata aagttttgtg ctttggagaa tgactcgtga gcacatcttt agggaccaag 10800 agtgactttc tgtaaggagt gactcgtggc ttgccttggt ctcttgggaa tacttttcta 10860 actagggttg ctctcacctg agacattctc cacccgcgga atctcagggt cccaggctgt 10920 gggccatcac gacctcaaac tggctcctaa tctccagctt tcctgtcatt gaaagcttcg 10980 gaagtttact ggctctgctc ccgcctgttt tctttctgac tctatctggc agcccgatgc 11040 cacccagtac aggaagtgac accagtactc tgtaaagcat catcatcctt ggagagactg 11100 agcactcagc accttcagcc acgatttcag gatcgcttcc ttgtgagccg ctgcctccga 11160 aatctccttt gaagcccaga catctttctc cagcttcaga cttgtagata taactcgttc 11220 atcttcattt actttccact ttgccccctg tcctctctgt gttccccaaa tcagagaata 11280 gcccgccatc ccccaggtca cctgtctgga ttcctcccca ttcacccacc ttgccaggtg 11340 caggtgagga tggtgcacca gacagggtag ctgtccccca aaatgtgccc tgtgcgggca 11400 gtgccctgtc tccacgtttg tttccccagt gtctggcggg gagccaggtg acatcataaa 11460 tacttgctga atgaatgcag aaatcagcgg tactgacttg tactatattg gctgccatga 11520 tagggttctc acagcgtcat ccatgatcgt aagggagaat gacattctgc ttgagggagg 11580 gaatagaaag gggcagggag gggacatctg agggcttcac agggctgcaa agggtacagg 11640 gattgcacca gggcagaaca ggggagggtg ttcaaggaag agtggctctt agcagaggca 11700 ctttggaagg tgtgaggcat aaatgcttcc ttctacgtag gccaacctca aaactttcag 11760 taggaatgtt gctatgatca agttgttcta acactttaga cttagtagta attatgaacc 11820 tcacatagaa aaatttcatc cagccatatg cctgtggagt ggaatattct gtttagtaga 11880 aaaatccttt agagttcagc tctaaccaga aatcttgctg aagtatgtca gcaccttttc 11940 tcaccctggt aagtacagta tttcaagagc acgctaaggg tggttttcat tttacagggc 12000 tgttgatgat gggttaaaaa tgttcattta agggctaccc ccgtgtttaa tagatgaaca 12060 ccacttctac acaaccctcc ttggtactgg gggagggaga gatctgacaa atactgccca 12120 ttcccctagg ctgactggat ttgagaacaa atacccaccc atttccacca tggtatggta 12180 acttctctga gcttcagttt ccaagtgaat ttccatgtaa taggacattc ccattaaata 12240 caagctgttt ttactttttc gcctcccagg gcctgtggga tctggtcccc cagcctctct 12300 tgggctttct tacactaact ctgtacctac catctcctgc ctcccttagg caggcacctc 12360 caaccaccac acactccctg ctgttttccc tgcctggaac tttccctcct gccccaccaa 12420 gatcatttca tccagtcctg agctcagctt aagggaggct tcttgcctgt gggttccctc 12480 acccccatgc ctgtcctcca ggctggggca ggttcttagt ttgcctggaa ttgttctgta 12540 cctctttgta gcacgtagtg ttgtggaaac taagccacta attgagtttc tggctcccct 12600 cctggggttg taagttttgt tcattcatga gggccgactg catttcctgg ttactctatc 12660 ccagtgacca gccacaggag atgtccaata aagtatgtga tgaaatggtc ttaaaa 12716 <210> 14 <211> 2218 <212> DNA <213> Artificial Sequence <220> <223> NUSAP1 cDNA polynucleotide sequence <400> 14 gtggcgccag ggatttgaac cgcgctgacg aagtttggtg atccatcttc cgagtatcgc 60 cgggatttcg aatcgcgatg atcatcccct ctctagagga gctggactcc ctcaagtaca 120 gtgacctgca gaacttagcc aagagtctgg gtctccgggc caacctgagg gcaaccaagt 180 tgttaaaagc cttgaaaggc tacattaaac atgaggcaag aaaaggaaat gagaatcagg 240 atgaaagtca aacttctgca tcctcttgtg atgagactga gatacagatc agcaaccagg 300 aagaagctga gagacagcca cttggccatg tcaccaaaac aaggagaagg tgcaagactg 360 tccgtgtgga ccctgactca cagaatcatg aaaagcagga aagccaggat ctcagagcta 420 ctgcaaaagt tccttctcca ccagacgagc accaagaagc tgagaatgct gtttcctcag 480 gtaacagaga ttcaaaggta ccttcagaag gaaagaaatc tctctacaca gatgagtcat 540 ccaaacctgg aaaaaataaa agaactgcaa tcactactcc aaactttaag aagcttcatg 600 aagctcattt taaggaaatg gagtccattg atcaatatat tgagagaaaa aagaaacatt 660 ttgaagaaca caattccatg aatgaactga agcagcagcc catcaataag ggaggggtca 720 ggactccagt acctccaaga ggaagactct ctgtggcttc tactcccatc agccaacgac 780 gctcgcaagg ccggtcttgt ggccctgcaa gtcagagtac cttgggtctg aaggggtcac 840 tcaagcgctc tgctatctct gcagctaaaa cgggtgtcag gttttcagct gctactaaag 900 ataatgagca taagcgttca ctgaccaaga ctccagccag aaagtctgca catgtgaccg 960 tgtctggggg caccccaaaa ggcgaggctg tgcttgggac acacaaatta aagaccatca 1020 cggggaattc tgctgctgtt attaccccat tcaagttgac aactgaggca acgcagactc 1080 cagtctccaa taagaaacca gtgtttgatc ttaaagcaag tttgtctcgt cccctcaact 1140 atgaaccaca caaaggaaag ctaaaaccat gggggcaatc taaagaaaat aattatctaa 1200 atcaacatgt caacagaatt aacttctaca agaaaactta caaacaaccc catctccaga 1260 caaaggaaga gcaacggaag aaacgcgagc aagaacgaaa ggagaagaaa gcaaaggttt 1320 tgggaatgcg aaggggcctc attttggctg aagattaata attttttaac atcttgtaaa 1380 tattcctgta ttctcaactt ttttcctttt gtaaattttt tttttttgct gtcatcccca 1440 ctttagtcac gagatctttt tctgctaact gttcatagtc tgtgtagtgt ccatgggttc 1500 ttcatgtgct atgatctctg aaaagacgtt atcaccttaa agctcaaatt ctttgggatg 1560 gtttttactt aagtccatta acaattcagg tttctaacga gacccatcct aaaattctgt 1620 ttctagattt ttaatgtcaa gttcccaagt tccccctgct ggttctaata ttaacagaac 1680 tgcagtcttc tgctagccaa tagcatttac ctgatggcag ctagttatgc aagcttcagg 1740 agaatttgaa caataacaag aatagggtaa gctgggatag aaaggccacc tcttcactct 1800 ctatagaata tagtaacctt tatgaaacgg ggccatatag tttggttatg acatcaatat 1860 tttacctagg tgaaattgtt taggcttatg taccttcgtt caaatatcct catgtaattg 1920 ccatctgtca ctcactatat tcacaaaaat aaaactctac aactcattct aacattgctt 1980 acttaaaagc tacatagccc tatcgaaatg cgaggattaa tgctttaatg cttttagaga 2040 cagggtctca ctgtgttgcc caggctggtc tcaaactcca ccaaatgtac ttcttattca 2100 ttttatggaa aagactaggc tttgcttagt atcatgtcca tgtttccttc acctcagtgg 2160 agcttctgag ttttatactg ctcaagatcg tcataaataa aattttttct cattgtca 2218 <210> 15 <211> 2160 <212> DNA <213> Artificial Sequence <220> <223> PLK1 cDNA polynucleotide sequence <400> 15 ggaggctctg ctcggatcga ggtctgcagc gcagcttcgg gagcatgagt gctgcagtga 60 ctgcagggaa gctggcacgg gcaccggccg accctgggaa agccggggtc cccggagttg 120 cagctcccgg agctccggcg gcggctccac cggcgaaaga gatcccggag gtcctagtgg 180 acccacgcag ccggcggcgc tatgtgcggg gccgcttttt gggcaagggc ggctttgcca 240 agtgcttcga gatctcggac gcggacacca aggaggtgtt cgcgggcaag attgtgccta 300 agtctctgct gctcaagccg caccagaggg agaagatgtc catggaaata tccattcacc 360 gcagcctcgc ccaccagcac gtcgtaggat tccacggctt tttcgaggac aacgacttcg 420 tgttcgtggt gttggagctc tgccgccgga ggtctctcct ggagctgcac aagaggagga 480 aagccctgac tgagcctgag gcccgatact acctacggca aattgtgctt ggctgccagt 540 acctgcaccg aaaccgagtt attcatcgag acctcaagct gggcaacctt ttcctgaatg 600 aagatctgga ggtgaaaata ggggattttg gactggcaac caaagtcgaa tatgacgggg 660 agaggaagaa gaccctgtgt gggactccta attacatagc tcccgaggtg ctgagcaaga 720 aagggcacag tttcgaggtg gatgtgtggt ccattgggtg tatcatgtat accttgttag 780 tgggcaaacc accttttgag acttcttgcc taaaagagac ctacctccgg atcaagaaga 840 atgaatacag tattcccaag cacatcaacc ccgtggccgc ctccctcatc cagaagatgc 900 ttcagacaga tcccactgcc cgcccaacca ttaacgagct gcttaatgac gagttcttta 960 cttctggcta tatccctgcc cgtctcccca tcacctgcct gaccattcca ccaaggtttt 1020 cgattgctcc cagcagcctg gaccccagca accggaagcc cctcacagtc ctcaataaag 1080 gcttggagaa ccccctgcct gagcgtcccc gggaaaaaga agaaccagtg gttcgagaga 1140 caggtgaggt ggtcgactgc cacctcagtg acatgctgca gcagctgcac agtgtcaatg 1200 cctccaagcc ctcggagcgt gggctggtca ggcaagagga ggctgaggat cctgcctgca 1260 tccccatctt ctgggtcagc aagtgggtgg actattcgga caagtacggc cttgggtatc 1320 agctctgtga taacagcgtg ggggtgctct tcaatgactc aacacgcctc atcctctaca 1380 atgatggtga cagcctgcag tacatagagc gtgacggcac tgagtcctac ctcaccgtga 1440 gttcccatcc caactccttg atgaagaaga tcaccctcct taaatatttc cgcaattaca 1500 tgagcgagca cttgctgaag gcaggtgcca acatcacgcc gcgcgaaggt gatgagctcg 1560 cccggctgcc ctacctacgg acctggttcc gcacccgcag cgccatcatc ctgcacctca 1620 gcaacggcag cgtgcagatc aacttcttcc aggatcacac caagctcatc ttgtgcccac 1680 tgatggcagc cgtgacctac atcgacgaga agcgggactt ccgcacatac cgcctgagtc 1740 tcctggagga gtacggctgc tgcaaggagc tggccagccg gctccgctac gcccgcacta 1800 tggtggacaa gctgctgagc tcacgctcgg ccagcaaccg tctcaaggcc tcctaatagc 1860 tgccctcccc tccggactgg tgccctcctc actcccacct gcatctgggg cccatactgg 1920 ttggctcccg cggtgccatg tctgcagtgt gccccccagc cccggtggct gggcagagct 1980 gcatcatcct tgcaggtggg ggttgctgta taagttattt ttgtacatgt tcgggtgtgg 2040 gttctacagc cttgtccccc tccccctcaa ccccaccata tgaattgtac agaatatttc 2100 tattgaattc ggaactgtcc tttccttggc tttatgcaca ttaaacagat gtgaatattc 2160 2160 <210> 16 <211> 2830 <212> DNA <213> Artificial Sequence <220> <223> PRC1 cDNA polynucleotide sequence <400> 16 aacggctcgc ggagcggcta cgcggagtga catcgccggt gtttgcgggt ggttgttgct 60 ctcggggccg tgtggagtag gtctggacct ggactcacgg ctgcttggag cgtccgccat 120 gaggagaagt gaggtgctgg cggaggagtc catagtatgt ctgcagaaag ccctaaatca 180 ccttcgggaa atatgggagc taattgggat tccagaggac cagcggttac aaagaactga 240 ggtggtaaag aagcatatca aggaagaagg agagacgacc atcttgcaac tagaaaaaga 300 tttgcgcacc caagtggaat tgatgcgaaa acagaaaaag gagagaaaac aggaactgaa 360 gctacttcaa gagcaagatc aagaactgtg cgaaattctt tgtatgcccc actatgatat 420 tgacagtgcc tcagtgccca gcttagaaga gctgaaccag ttcaggcaac atgtgacaac 480 tttgagggaa acaaaggctt ctaggcgtga ggagtttgtc agtataaaga gacagatcat 540 actgtgtatg gaagcattag accacacccc agacacaagc tttgaaagag atgtggtgtg 600 tgaagacgaa gatgcctttt gtttgtcttt ggagaatatt gcaacactac aaaagttgct 660 acggcagctg gaaatgcaga aatcacaaaa tgaagcagtg tgtgaggggc tgcgtactca 720 aatccgagag ctctgggaca ggttgcaaat acctgaagaa gaaagagaag ctgtggccac 780 cattatgtct gggtcaaagg ccaaggtccg gaaagcgctg caattagaag tggatcggtt 840 ggaagaactg aaaatgcaaa acatgaagaa agtgattgag gcaattcgag tggagctggt 900 tcagtactgg gaccagtgct tttatagcca ggagcagaga caagcttttg cccctttctg 960 tgctgaggac tacacagaaa gtctgctcca gctccacgat gctgagattg tgcggttaaa 1020 aaactactat gaagttcaca aggaactctt tgaaggtgtc cagaagtggg aagaaacctg 1080 gaggcttttc ttagagtttg agagaaaagc ttcagatcca aatcgattta caaaccgagg 1140 aggaaatctt ctaaaagaag aaaaacaacg agccaagctc cagaaaatgc tgcccaagct 1200 ggaagaagag ttgaaggcac gaattgaatt gtgggaacag gaacattcaa aggcatttat 1260 ggtgaatggg cagaaattca tggagtatgt ggcagaacaa tgggagatgc atcgattgga 1320 gaaagagaga gccaagcagg aaagacaact gaagaacaaa aaacagacag agacagagat 1380 gctgtatggc agcgctcctc gaacacctag caagcggcga ggactggctc ccaatacacc 1440 gggcaaagca cgtaagctga acactaccac catgtccaat gctacggcca atagtagcat 1500 tcggcctatc tttggaggga cagtctacca ctcccccgtg tctcgacttc ctccttctgg 1560 cagcaagcca gtcgctgctt ccacctgttc agggaagaaa acaccccgta ctggcaggca 1620 tggagccaac aaggagaacc tggagctcaa cggcagcatc ctgagtgcga gaactttcaa 1680 aggcttccaa atctgatgct acttctggaa tcctcaattc aaccaacatc cagtcctgag 1740 aagccctgat cagtcaacca gctgtggctt cctgtgccta gactggacct aattatatgg 1800 gggtgacttt agtttttctt cagcttaggc gtgcttgaaa ccttggccag gttccatgac 1860 catgggccta acttaaagat gtgaatgagt gttacagttg aaagcccatc ataggtttag 1920 tggtcctagg agacttggtt ttgacttata tacatgaaaa gtttatggca agaagtgcaa 1980 attttagcat atggggcctg acttctctac cacataattc tacttgctga agcatgatca 2040 aagcttgttt tatttcacca ctgtaggaaa atgattgact atgcccatcc ctgggggtaa 2100 ttttggcatg tatacctgta actagtaatt aacatctttt ttgtttaggc atgttcaatt 2160 aatgctgtag ctatcatagc tttgctctta cctgaagcct tgtccccacc acacaggaca 2220 gccttcctcc tgaagagaat gtctttgtgt gtccgaagtt gagatggcct gccctactgc 2280 caaagaggtg acaggaaggc tgggagcagc tttgttaaat tgtgttcagt tctgttacac 2340 agtgcattgc cctttgttgg gggtatgcat gtatgaacac acatgcttgt cggaacgctt 2400 tctcggcgtt tgtcccttgg ctctcatctc ccccattcct gtgcctactt tgcctgagtt 2460 cttctacccc cgcagttgcc agccacattg ggagtctgtt tgttccaatg ggttgagctg 2520 tctttgtcgt ggagatctgg aactttgcac atgtcactac tggggaggtg ttcctgctct 2580 agcttccacg atgaggcgcc ctctttacct atcctctcaa tcactactct tcttgaagca 2640 ctattattta ttcttccgct gtctgcctgc agcagtacta ctgtcaacat agtgtaaatg 2700 gttctcaaaa gcttaccagt gtggacttgg tgttagccac gctgtttact catacagtac 2760 gtgtcctgtt tttaaaatat acaattattc ttaaaaataa attaaaatct gtatacttac 2820 atttcaaaaa 2830 <210> 17 <211> 3819 <212> DNA <213> Artificial Sequence <220> <223> RECQL4 cDNA polynucleotide sequence <400> 17 agattcgctg gacgatcgca agcgcggagg ccgggcgggc gcgcgcgcca tggagcggct 60 gcgggacgtg cgggagcggc tgcaggcgtg ggagcgcgcg ttccgacggc agcgcgggcg 120 gcgaccgagc caggacgacg tggaggcggc gccggaggag acccgcgcgc tctaccggga 180 ataccgcact ctgaagcgta ccacgggcca ggccggcggc gggctccgca gctccgagtc 240 gctccccgcg gcggccgaag aggcgccaga gccccgctgc tgggggcccc atctgaatcg 300 ggctgcgacc aagagtccac agtctacgcc agggcggagc cgccagggct cggtgccgga 360 ctacgggcag cggctcaagg ccaatctgaa aggcaccctg caggccggac cagccctggg 420 ccgcagaccg tggcctctag gaagagcctc atctaaggca tccaccccaa agcccccagg 480 tacagggcct gtcccctcct ttgcagaaaa agtcagtgat gagcctccac agctccctga 540 gccccagcca aggccaggcc ggctccagca tctgcaggca tccctgagcc agcggctggg 600 ctccctagat cctggctggt tacagcgatg tcacagtgag gtcccagatt ttctgggggc 660 ccccaaagcc tgcaggcctg atctaggctc agaggaatca caacttctga tccctggtga 720 gtcggctgtc cttggtcctg gtgctggctc ccagggccca gaggcttcag ccttccaaga 780 agtcagcatc cgtgtgggga gcccccagcc cagcagcagt ggaggcgaga agcggagatg 840 gaacgaggag ccctgggaga gccccgcaca ggtccagcag gagagcagcc aagctggacc 900 cccatcggag ggggctgggg ctgtagcagt tgaggaagac cctccagggg aacctgtaca 960 ggcacagcca cctcagccct gcagcagccc atcgaacccc aggtaccacg gactcagccc 1020 ctccagtcaa gctagggctg ggaaggctga gggcacagcc cccctgcaca tcttccctcg 1080 gctggcccgc catgacaggg gcaattacgt acggctcaac atgaagcaga aacactacgt 1140 gcggggccgg gcactccgta gcaggctcct ccgcaagcag gcatggaagc agaagtggcg 1200 gaagaaaggg gagtgttttg ggggtggtgg tgccacagtc acaaccaagg agtcttgttt 1260 cctgaacgag cagttcgatc actgggcagc ccagtgtccc cggccagcaa gtgaggaaga 1320 cacagatgct gttgggcctg agccactggt tccttcacca caacctgtac ctgaggtgcc 1380 cagcctggac cccaccgtgc tgccactcta ctccctgggg ccctcagggc agttggcaga 1440 gacgccggct gaggtgttcc aggccctgga gcagctgggg caccaagcct ttcgccctgg 1500 gcaggagcgt gcagtcatgc ggatcctgtc tggcatctcc acgctgctgg tgctgcctac 1560 aggtgccggc aagtccctgt gctaccagct cccagcgctg ctctacagcc ggcgcagccc 1620 ctgcctcacg ttggtcgtct ctcccctgct gtcactcatg gatgaccagg tgtctggcct 1680 gccaccgtgt ctcaaggcgg cctgcataca ctcgggcatg accaggaagc aacgggaatc 1740 tgtcctgcag aagattcggg cagcccaggt acacgtgctg atgctgacac ctgaggcact 1800 ggtgggggcg ggaggcctcc ctccagccgc acagctgcct ccagttgctt ttgcctgcat 1860 tgatgaggcc cactgcctct cccagtggtc ccacaacttc cggccctgct acctgcgcgt 1920 ctgcaaggtg cttcgggagc gcatgggcgt gcactgcttc ctgggcctca cagccacagc 1980 cacacgccgc actgccagtg acgtggcaca gcacctggct gtggctgaag agcctgacct 2040 ccacgggcca gccccagttc ccaccaacct gcacctttcc gtgtccatgg acagggacac 2100 agaccaggca ctgttgacgc tgctgcaagg caaacgtttt caaaacctcg attccattat 2160 catttactgc aaccggcgcg aggacacaga gcggatcgct gcgctcctcc gaacctgcct 2220 gcacgcagcc tgggtcccag ggtctggagg tcgtgccccc aaaaccacag ccgaggccta 2280 ccacgcgggc atgtgcagcc gggaacggcg gcgggtacag cgagccttca tgcagggcca 2340 gttgcgggtg gtggtggcca cggtggcctt tgggatgggg ctggaccggc cagatgtgcg 2400 ggctgtgctg catctggggc tgcccccaag cttcgagagc tacgtgcagg ccgtgggccg 2460 ggccgggcgt gacgggcagc ctgcccactg ccacctcttc ctgcagcccc agggcgaaga 2520 cctgcgagag ctgcgcagac atgtgcacgc cgacagcacg gacttcctgg ctgtgaagag 2580 gctggtacag cgcgtgttcc cagcctgcac ctgcacctgc accaggccgc cctcggagca 2640 ggaaggggcc gtgggtgggg agaggcctgt gcccaagtac ccccctcaag aggctgagca 2700 gcttagccac caagcagccc caggacccag aagggtctgc atgggccatg agcgggcact 2760 cccaatacag cttaccgtac aggctttgga catgccggag gaggccatcg agactttgct 2820 gtgctacctg gagctgcacc cacaccactg gctggagctg ctggcgacca cctataccca 2880 ttgccgtctg aactgccctg ggggccctgc ccagctccag gccctggccc acaggtgtcc 2940 ccctttggct gtgtgcttgg cccagcagct gcctgaggac ccagggcaag gcagcagctc 3000 cgtggagttt gacatggtca agctggtgga ctccatgggc tgggagctgg cctctgtgcg 3060 gcgggctctc tgccagctgc agtgggacca cgagcccagg acaggtgtgc ggcgtgggac 3120 aggggtgctt gtggagttca gtgagctggc cttccacctt cgcagcccgg gggacttgac 3180 cgctgaggag aaggaccaga tatgtgactt cctctatggc cgtgtgcagg cccgggagcg 3240 ccaggccctg gcccgtctgc gcagaacctt ccaggccttt cacagcgtag ccttccccag 3300 ctgcgggccc tgcctggagc agcaggatga ggagcgcagc accaggctca aggacctgct 3360 cggccgctac tttgaggaag aggaagggca ggagccggga ggcatggagg acgcacaggg 3420 ccccgagcca gggcaggcca gactccagga ttgggaggac caggtccgct gcgacatccg 3480 ccagttcctg tccctgaggc cagaggagaa gttctccagc agggctgtgg cccgcatctt 3540 ccacggcatc ggaagcccct gctacccggc ccaggtgtac gggcaggacc gacgcttctg 3600 gagaaaatac ctgcacctga gcttccatgc cctggtgggc ctggccacgg aagagctcct 3660 gcaggtggcc cgctgactgc actgcattgg gggatgtcgg gtagagctgg ggttgtcaga 3720 ggctagggca gtgactgagg acctgggcaa aacctgccac agggtgtggg aacgaggagg 3780 ctccaaaatg cagaataaaa aatgctcact ttgttttta 3819 <210> 18 <211> 3258 <212> DNA <213> Artificial Sequence <220> <223> RRM2 cDNA polynucleotide sequence <400> 18 gtgcaccctg tcccagccgt cctgtcctgg ctgctcgctc tgcttcgctg cgcctccact 60 atgctctccc tccgtgtccc gctcgcgccc atcacggacc cgcagcagct gcagctctcg 120 ccgctgaagg ggctcagctt ggtcgacaag gagaacacgc cgccggccct gagcgggacc 180 cgcgtcctgg ccagcaagac cgcgaggagg atcttccagg agcccacgga gccgaaaact 240 aaagcagctg cccccggcgt ggaggatgag ccgctgctga gagaaaaccc ccgccgcttt 300 gtcatcttcc ccatcgagta ccatgatatc tggcagatgt ataagaaggc agaggcttcc 360 ttttggaccg ccgaggaggt ggacctctcc aaggacattc agcactggga atccctgaaa 420 cccgaggaga gatattttat atcccatgtt ctggctttct ttgcagcaag cgatggcata 480 gtaaatgaaa acttggtgga gcgatttagc caagaagttc agattacaga agcccgctgt 540 ttctatggct tccaaattgc catggaaaac atacattctg aaatgtatag tcttcttatt 600 gacacttaca taaaagatcc caaagaaagg gaatttctct tcaatgccat tgaaacgatg 660 ccttgtgtca agaagaaggc agactgggcc ttgcgctgga ttggggacaa agaggctacc 720 tatggtgaac gtgttgtagc ctttgctgca gtggaaggca ttttcttttc cggttctttt 780 gcgtcgatat tctggctcaa gaaacgagga ctgatgcctg gcctcacatt ttctaatgaa 840 cttattagca gagatgaggg tttacactgt gattttgctt gcctgatgtt caaacacctg 900 gtacacaaac catcggagga gagagtaaga gaaataatta tcaatgctgt tcggatagaa 960 caggagttcc tcactgaggc cttgcctgtg aagctcattg ggatgaattg cactctaatg 1020 aagcaataca ttgagtttgt ggcagacaga cttatgctgg aactgggttt tagcaaggtt 1080 ttcagagtag agaacccatt tgactttatg gagaatattt cactggaagg aaagactaac 1140 ttctttgaga agagagtagg cgagtatcag aggatgggag tgatgtcaag tccaacagag 1200 aattctttta ccttggatgc tgacttctaa atgaactgaa gatgtgccct tacttggctg 1260 attttttttt tccatctcat aagaaaaatc agctgaagtg ttaccaacta gccacaccat 1320 gaattgtccg taatgttcat taacagcatc tttaaaactg tgtagctacc tcacaaccag 1380 tcctgtctgt ttatagtgct ggtagtatca ccttttgcca gaaggcctgg ctggctgtga 1440 cttaccatag cagtgacaat ggcagtcttg gctttaaagt gaggggtgac cctttagtga 1500 gcttagcaca gcgggattaa acagtccttt aaccagcaca gccagttaaa agatgcagcc 1560 tcactgcttc aacgcagatt ttaatgttta cttaaatata aacctggcac tttacaaaca 1620 aataaacatt gtttgtactc acaaggcgat aatagcttga tttatttggt ttctacacca 1680 aatacattct cctgaccact aatgggagcc aattcacaat tcactaagtg actaaagtaa 1740 gttaaacttg tgtagactaa gcatgtaatt tttaagtttt attttaatga attaaaatat 1800 ttgttaacca actttaaagt cagtcctgtg tatacctaga tattagtcag ttggtgccag 1860 atagaagaca ggttgtgttt ttatcctgtg gcttgtgtag tgtcctggga ttctctgccc 1920 cctctgagta gagtgttgtg ggataaagga atctctcagg gcaaggagct tcttaagtta 1980 aatcactaga aatttagggg tgatctgggc cttcatatgt gtgagaagcc gtttcatttt 2040 atttctcact gtattttcct caacgtctgg ttgatgagaa aaaattcttg aagagttttc 2100 atatgtggga gctaaggtag tattgtaaaa tttcaagtca tccttaaaca aaatgatcca 2160 cctaagatct tgcccctgtt aagtggtgaa atcaactaga ggtggttcct acaagttgtt 2220 cattctagtt ttgtttggtg taagtaggtt gtgtgagtta attcatttat atttactatg 2280 tctgttaaat cagaaatttt ttattatcta tgttcttcta gattttacct gtagttcata 2340 cttcagtcac ccagtgtctt attctggcat tgtctaaatc tgagcattgt ctagggggat 2400 cttaaacttt agtaggaaac catgagctgt taatacagtt tccattcaaa tattaatttc 2460 agaatgaaac ataatttttt tttttttttt tgagatggag tctcgctctg ttgcccaggc 2520 tggagtgcag tggcgcgatt ttggctcact gtaacctcca tctcctgggt tcaagcaatt 2580 ctcctgtctc agcctcccta gtagctggga ctgcaggtat gtgctaccac acctggctaa 2640 tttttgtatt tttagtagag atggagtttc accatattgg tcaggctggt cttgaactcc 2700 tgacctcagg tgatccaccc acctcggcct cccaaagtgc tgggattgca ggcgtgataa 2760 acaaatattc ttaatagggc tactttgaat taatctgcct ttatgtttgg gagaagaaag 2820 ctgagacatt gcatgaaaga tgatgagaga taaatgttga tcttttggcc ccatttgtta 2880 attgtattca gtatttgaac gtcgtcctgt ttattgttag ttttcttcat catttattgt 2940 atagacaatt tttaaatctc tgtaatatga tacattttcc tatcttttaa gttattgtta 3000 cctaaagtta atccagatta tatggtcctt atatgtgtac aacattaaaa tgaaaggctt 3060 tgtcttgcat tgtgaggtac aggcggaagt tggaatcagg ttttaggatt ctgtctctca 3120 ttagctgaat aatgtgagga ttaacttctg ccagctcaga ccatttccta atcagttgaa 3180 agggaaacaa gtatttcagt ctcaaaattg aataatgcac aagtcttaag tgattaaaat 3240 aaaactgttc ttatgtca 3258 <210> 19 <211> 3786 <212> DNA <213> Artificial Sequence <220> <223> SPAG5 cDNA polynucleotide sequence <400> 19 aggttcaaac acagacggcg ggtgaacatg gcgtcctcga cttggtctga gacgtgatag 60 gcctgccttc tggttgaaga tgtggcgagt gaaaaaactg agcctcagcc tgtcgccttc 120 gccccagacg ggaaaaccat ctatgagaac tcctctccgt gaacttaccc tgcagcccgg 180 tgccctcacc aactctggaa aaagatcccc cgcttgctcc tcgctgaccc catcactgtg 240 caagctgggg ctgcaggaag gcagcaacaa ctcatctcca gtggattttg taaataacaa 300 gaggacagac ttatcttcag aacatttcag tcattcctca aagtggctag aaacttgtca 360 gcatgaatca gatgagcagc ctctagatcc aattccccaa attagctcta ctcctaaaac 420 gtctgaggaa gcagtagacc cactgggcaa ttatatggtt aaaaccatcg tccttgtacc 480 atctccactg gggcagcaac aagacatgat atttgaggcc cgtttagata ccatggcaga 540 gacaaacagc atatctttaa atggaccttt gagaacagac gatctggtga gagaggaggt 600 ggcaccctgc atgggagaca ggttttcaga agttgctgct gtatctgaga aacctatctt 660 tcaggaatct ccgtcccatc tcttagagga gtctccacca aatccctgtt ctgaacaact 720 acattgctcc aaggaaagcc tgagcagtag aactgaggct gtgcgtgagg acttagtacc 780 ttctgaaagt aacgccttct tgccttcctc tgttctctgg ctttcccctt caactgcctt 840 ggcagcagat ttccgtgtca atcatgtgga cccagaggag gaaattgtag agcatggagc 900 tatggaggaa agagaaatga ggtttcccac acatcctaag gagtctgaaa cagaagatca 960 agcacttgtc tcaagtgtgg aagatattct gtccacatgc ctgacaccaa atctagtaga 1020 aatggaatcc caagaagctc caggcccagc agtagaagat gttggtagga ttcttggctc 1080 tgatacagag tcttggatgt ccccactggc ctggctggaa aaaggtgtaa atacctccgt 1140 catgctggaa aatctccgcc aaagcttatc ccttccctcg atgcttcggg atgctgcaat 1200 tggcactacc cctttctcta cttgctcggt ggggacttgg tttactcctt cagcaccaca 1260 ggaaaagagt acaaacacat cccagacagg cctggttggc accaagcaca gtacttctga 1320 gacagagcag ctcctgtgtg gccggcctcc agatctgact gccttgtctc gacatgactt 1380 ggaagataac ctgctgagct ctcttgtcat tctggaggtt ctctcccgcc agcttcggga 1440 ctggaagagc cagctggctg tccctcaccc agaaacccag gacagtagca cacagactga 1500 cacatctcac agtgggataa ctaataaact tcagcatctt aaggagagcc atgagatggg 1560 acaggcccta cagcaggcca gaaatgtcat gcaatcatgg gtgcttatct ctaaagagct 1620 gatatccttg cttcacctat ccctgttgca tttagaagaa gataagacta ctgtgagtca 1680 ggagtctcgg cgtgcagaaa cattggtctg ttgctgtttt gatttgctga agaaattgag 1740 ggcaaagctc cagagcctca aagcagaaag ggaggaggca aggcacagag aggaaatggc 1800 tctcagaggc aaggatgcgg cagagatagt gttggaggct ttctgtgcac acgccagcca 1860 gcgcatcagc cagctggaac aggacctagc atccatgcgg gaattcagag gccttctgaa 1920 ggatgcccag acccaactgg tagggcttca tgccaagcaa gaagagctgg ttcagcagac 1980 agtgagtctt acttctacct tgcaacaaga ctggaggtcc atgcaactgg attatacaac 2040 atggacagct ttgctgagtc ggtcccgaca actcacagag aaactcacag tcaagagcca 2100 gcaagccctg caggaacgtg atgtggcaat tgaggaaaag caggaggttt ctagggtgct 2160 ggaacaagtc tctgcccagt tagaggagtg caaaggccaa acagaacaac tggagttgga 2220 aaacagtcgt ctagcaacag atctccgggc tcagttgcag attctggcca acatggacag 2280 ccagctaaaa gagctacaga gtcagcatac ccattgtgcc caggacctgg ctatgaagga 2340 tgagttactc tgccagctta cccagagcaa tgaggagcag gctgctcaat ggcaaaagga 2400 agagatggca ctaaaacaca tgcaggcaga actgcagcag caacaagctg tcctggccaa 2460 agaggtgcgg gacctgaaag agaccttgga gtttgcagac caggagaatc aggttgctca 2520 cctggagctg ggtcaggttg agtgtcaatt gaaaaccaca ctggaagtgc tccgggagcg 2580 cagcttgcag tgtgagaacc tcaaggacac tgtagagaac ctaacggcta aactggccag 2640 caccatagca gataaccagg agcaagatct ggagaaaaca cggcagtact ctcaaaagct 2700 agggctgctg actgagcaac tacagagcct gactctcttt ctacagacaa aactaaagga 2760 gaagactgaa caagagaccc ttctgctgag tacagcctgt cctcccaccc aggaacaccc 2820 tctgcctaat gacaggacct tcctgggaag catcttgaca gcagtggcag atgaagagcc 2880 agaatcaact cctgtgccct tgcttggaag tgacaagagt gctttcaccc gagtagcatc 2940 aatggtttcc cttcagcccg cagagacccc aggcatggag gagagcctgg cagaaatgag 3000 tattatgact actgagcttc agagtctttg ttccctgcta caagagtcta aagaagaagc 3060 catcaggact ctgcagcgaa aaatttgtga gctgcaagct aggctgcagg cccaggaaga 3120 acagcatcag gaagtccaga aggcaaaaga agcagacata gagaagctga accaggcctt 3180 gtgcttgcgc tacaagaatg aaaaggagct ccaggaagtg atacagcagc agaatgagaa 3240 gatcctagaa cagatagaca agagtggcga gctcataagc cttagagagg aggtgaccca 3300 ccttacccgc tcacttcggc gtgcggagac agagaccaaa gtgctccagg aggccctggc 3360 aggccagctg gactccaact gccagcctat ggccaccaat tggatccagg agaaagtgtg 3420 gctctctcag gaggtggaca aactgagagt gatgttcctg gagatgaaaa atgagaagga 3480 aaaactcatg atcaagttcc agagccatag aaatatccta gaggagaacc ttcggcgctc 3540 tgacaaggag ttagaaaaac tagatgacat tgttcagcat atttataaga ccctgctctc 3600 tattccagag gtggtgaggg gatgcaaaga actacaggga ttgctggaat ttctgagcta 3660 agaaactgaa agccagaatc tgcttcacct ctttttacct gcaatacccc cttaccccaa 3720 taccaagacc aactggcata gagccaactg agataaatgc tatttaaata aagtgtattt 3780 aatgaa 3786 <210> 20 <211> 1431 <212> DNA <213> Artificial Sequence <220> <223> TK1 cDNA polynucleotide sequence <400> 20 ggcttactgc gggacggcct tggagagtac tcgggttcgt gaacttcccg gaggcgcaat 60 gagctgcatt aacctgccca ctgtgctgcc tggctccccc agcaagaccc gggggcagat 120 ccaggtgatt ctcgggccga tgttctcagg aaaaagcaca gagttgatga gacgcgtccg 180 tcgcttccag attgctcagt acaagtgcct ggtgatcaag tatgccaaag acactcgcta 240 cagcagcagc ttctgcacac atgaccggaa caccatggag gcactgcccg cctgcctgct 300 ccgagacgtg gcccaggagg ccctgggcgt ggctgtcata ggcatcgacg aggggcagtt 360 tttccctgac atcgtggagt tctgcgaggc catggccaac gccgggaaga ccgtaattgt 420 ggctgcactg gatgggacct tccagaggaa gccatttggg gccatcctga acctggtgcc 480 gctggccgag agcgtggtga agctgacggc ggtgtgcatg gagtgcttcc gggaagccgc 540 ctataccaag aggctcggca cagagaagga ggtcgaggtg attgggggag cagacaagta 600 ccactccgtg tgtcggctct gctacttcaa gaaggcctca ggccagcctg ccgggccgga 660 caacaaagag aactgcccag tgccaggaaa gccaggggaa gccgtggctg ccaggaagct 720 ctttgcccca cagcagattc tgcaatgcag ccctgccaac tgagggacct gcgagggccg 780 cccgctccct tcctgccact gccgcctact ggacgctgcc ctgcatgctg cccagccact 840 ccaggaggaa gtcgggaggc gtggagggtg accacacctt ggccttctgg gaactctcct 900 ttgtgtggct gccccacctg ccgcatgctc cctcctctcc tacccactgg tctgcttaaa 960 gcttccctct cagctgctgg gacgatcgcc caggctggag ctggccccgc ttggtggcct 1020 gggatctggc acactccctc tccttggggt gagggacaga gccccacgct gttgacatca 1080 gcctgcttct tcccctctgc ggctttcact gctgagtttc tgttctccct gggaagcctg 1140 tgccagcacc tttgagcctt ggcccacact gaggcttagg cctctctgcc tgggatgggc 1200 tcccaccctc ccctgaggat ggcctggatt cacgccctct tgtttccttt tgggctcaaa 1260 gcccttccta cctctggtga tggtttccac aggaacaaca gcatctttca ccaagatggg 1320 tggcaccaac cttgctggga cttggatccc aggggcttat ctcttcaagt gtggagaggg 1380 cagggtccac gcctctgctg tagcttatga aattaactaa ttgaaaattc a 1431 <210> 21 <211> 5695 <212> DNA <213> Artificial Sequence <220> <223> TOP2A cDNA polynucleotide sequence <400> 21 aaccgacgcg cgtctgtgga gaagcggctt ggtcgggggt ggtctcgtgg ggtcctgcct 60 gtttagtcgc tttcagggtt cttgagcccc ttcacgaccg tcaccatgga agtgtcacca 120 ttgcagcctg taaatgaaaa tatgcaagtc aacaaaataa agaaaaatga agatgctaag 180 aaaagactgt ctgttgaaag aatctatcaa aagaaaacac aattggaaca tattttgctc 240 cgcccagaca cctacattgg ttctgtggaa ttagtgaccc agcaaatgtg ggtttacgat 300 gaagatgttg gcattaacta tagggaagtc acttttgttc ctggtttgta caaaatcttt 360 gatgagattc tagttaatgc tgcggacaac aaacaaaggg acccaaaaat gtcttgtatt 420 agagtcacaa ttgatccgga aaacaattta attagtatat ggaataatgg aaaaggtatt 480 cctgttgttg aacacaaagt tgaaaagatg tatgtcccag ctctcatatt tggacagctc 540 ctaacttcta gtaactatga tgatgatgaa aagaaagtga caggtggtcg aaatggctat 600 ggagccaaat tgtgtaacat attcagtacc aaatttactg tggaaacagc cagtagagaa 660 tacaagaaaa tgttcaaaca gacatggatg gataatatgg gaagagctgg tgagatggaa 720 ctcaagccct tcaatggaga agattataca tgtatcacct ttcagcctga tttgtctaag 780 tttaaaatgc aaagcctgga caaagatatt gttgcactaa tggtcagaag agcatatgat 840 attgctggat ccaccaaaga tgtcaaagtc tttcttaatg gaaataaact gccagtaaaa 900 ggatttcgta gttatgtgga catgtatttg aaggacaagt tggatgaaac tggtaactcc 960 ttgaaagtaa tacatgaaca agtaaaccac aggtgggaag tgtgtttaac tatgagtgaa 1020 aaaggctttc agcaaattag ctttgtcaac agcattgcta catccaaggg tggcagacat 1080 gttgattatg tagctgatca gattgtgact aaacttgttg atgttgtgaa gaagaagaac 1140 aagggtggtg ttgcagtaaa agcacatcag gtgaaaaatc acatgtggat ttttgtaaat 1200 gccttaattg aaaacccaac ctttgactct cagacaaaag aaaacatgac tttacaaccc 1260 aagagctttg gatcaacatg ccaattgagt gaaaaattta tcaaagctgc cattggctgt 1320 ggtattgtag aaagcatact aaactgggtg aagtttaagg cccaagtcca gttaaacaag 1380 aagtgttcag ctgtaaaaca taatagaatc aagggaattc ccaaactcga tgatgccaat 1440 gatgcagggg gccgaaactc cactgagtgt acgcttatcc tgactgaggg agattcagcc 1500 aaaactttgg ctgtttcagg ccttggtgtg gttgggagag acaaatatgg ggttttccct 1560 cttagaggaa aaatactcaa tgttcgagaa gcttctcata agcagatcat ggaaaatgct 1620 gagattaaca atatcatcaa gattgtgggt cttcagtaca agaaaaacta tgaagatgaa 1680 gattcattga agacgcttcg ttatgggaag ataatgatta tgacagatca ggaccaagat 1740 ggttcccaca tcaaaggctt gctgattaat tttatccatc acaactggcc ctctcttctg 1800 cgacatcgtt ttctggagga atttatcact cccattgtaa aggtatctaa aaacaagcaa 1860 gaaatggcat tttacagcct tcctgaattt gaagagtgga agagttctac tccaaatcat 1920 aaaaaatgga aagtcaaata ttacaaaggt ttgggcacca gcacatcaaa ggaagctaaa 1980 gaatactttg cagatatgaa aagacatcgt atccagttca aatattctgg tcctgaagat 2040 gatgctgcta tcagcctggc ctttagcaaa aaacagatag atgatcgaaa ggaatggtta 2100 actaatttca tggaggatag aagacaacga aagttacttg ggcttcctga ggattacttg 2160 tatggacaaa ctaccacata tctgacatat aatgacttca tcaacaagga acttatcttg 2220 ttctcaaatt ctgataacga gagatctatc ccttctatgg tggatggttt gaaaccaggt 2280 cagagaaagg ttttgtttac ttgcttcaaa cggaatgaca agcgagaagt aaaggttgcc 2340 caattagctg gatcagtggc tgaaatgtct tcttatcatc atggtgagat gtcactaatg 2400 atgaccatta tcaatttggc tcagaatttt gtgggtagca ataatctaaa cctcttgcag 2460 cccattggtc agtttggtac caggctacat ggtggcaagg attctgctag tccacgatac 2520 atctttacaa tgctcagctc tttggctcga ttgttatttc caccaaaaga tgatcacacg 2580 ttgaagtttt tatatgatga caaccagcgt gttgagcctg aatggtacat tcctattatt 2640 cccatggtgc tgataaatgg tgctgaagga atcggtactg ggtggtcctg caaaatcccc 2700 aactttgatg tgcgtgaaat tgtaaataac atcaggcgtt tgatggatgg agaagaacct 2760 ttgccaatgc ttccaagtta caagaacttc aagggtacta ttgaagaact ggctccaaat 2820 caatatgtga ttagtggtga agtagctatt cttaattcta caaccattga aatctcagag 2880 cttcccgtca gaacatggac ccagacatac aaagaacaag ttctagaacc catgttgaat 2940 ggcaccgaga agacacctcc tctcataaca gactataggg aataccatac agataccact 3000 gtgaaatttg ttgtgaagat gactgaagaa aaactggcag aggcagagag agttggacta 3060 cacaaagtct tcaaactcca aactagtctc acatgcaact ctatggtgct ttttgaccac 3120 gtaggctgtt taaagaaata tgacacggtg ttggatattc taagagactt ttttgaactc 3180 agacttaaat attatggatt aagaaaagaa tggctcctag gaatgcttgg tgctgaatct 3240 gctaaactga ataatcaggc tcgctttatc ttagagaaaa tagatggcaa aataatcatt 3300 gaaaataagc ctaagaaaga attaattaaa gttctgattc agaggggata tgattcggat 3360 cctgtgaagg cctggaaaga agcccagcaa aaggttccag atgaagaaga aaatgaagag 3420 agtgacaacg aaaaggaaac tgaaaagagt gactccgtaa cagattctgg accaaccttc 3480 aactatcttc ttgatatgcc cctttggtat ttaaccaagg aaaagaaaga tgaactctgc 3540 aggctaagaa atgaaaaaga acaagagctg gacacattaa aaagaaagag tccatcagat 3600 ttgtggaaag aagacttggc tacatttatt gaagaattgg aggctgttga agccaaggaa 3660 aaacaagatg aacaagtcgg acttcctggg aaagggggga aggccaaggg gaaaaaaaca 3720 caaatggctg aagttttgcc ttctccgcgt ggtcaaagag tcattccacg aataaccata 3780 gaaatgaaag cagaggcaga aaagaaaaat aaaaagaaaa ttaagaatga aaatactgaa 3840 ggaagccctc aagaagatgg tgtggaacta gaaggcctaa aacaaagatt agaaaagaaa 3900 cagaaaagag aaccaggtac aaagacaaag aaacaaacta cattggcatt taagccaatc 3960 aaaaaaggaa agaagagaaa tccctggtct gattcagaat cagataggag cagtgacgaa 4020 agtaattttg atgtccctcc acgagaaaca gagccacgga gagcagcaac aaaaacaaaa 4080 ttcacaatgg atttggattc agatgaagat ttctcagatt ttgatgaaaa aactgatgat 4140 gaagattttg tcccatcaga tgctagtcca cctaagacca aaacttcccc aaaacttagt 4200 aacaaagaac tgaaaccaca gaaaagtgtc gtgtcagacc ttgaagctga tgatgttaag 4260 ggcagtgtac cactgtcttc aagccctcct gctacacatt tcccagatga aactgaaatt 4320 acaaacccag ttcctaaaaa gaatgtgaca gtgaagaaga cagcagcaaa aagtcagtct 4380 tccacctcca ctaccggtgc caaaaaaagg gctgccccaa aaggaactaa aagggatcca 4440 gctttgaatt ctggtgtctc tcaaaagcct gatcctgcca aaaccaagaa tcgccgcaaa 4500 aggaagccat ccacttctga tgattctgac tctaattttg agaaaattgt ttcgaaagca 4560 gtcacaagca agaaatccaa gggggagagt gatgacttcc atatggactt tgactcagct 4620 gtggctcctc gggcaaaatc tgtacgggca aagaaaccta taaagtacct ggaagagtca 4680 gatgaagatg atctgtttta aaatgtgagg cgattatttt aagtaattat cttaccaagc 4740 ccaagactgg ttttaaagtt acctgaagct cttaacttcc tcccctctga atttagtttg 4800 gggaaggtgt ttttagtaca agacatcaaa gtgaagtaaa gcccaagtgt tctttagctt 4860 tttataatac tgtctaaata gtgaccatct catgggcatt gttttcttct ctgctttgtc 4920 tgtgttttga gtctgctttc ttttgtcttt aaaacctgat ttttaagttc ttctgaactg 4980 tagaaatagc tatctgatca cttcagcgta aagcagtgtg tttattaacc atccactaag 5040 ctaaaactag agcagtttga tttaaaagtg tcactcttcc tccttttcta ctttcagtag 5100 atatgagata gagcataatt atctgtttta tcttagtttt atacataatt taccatcaga 5160 tagaacttta tggttctagt acagatactc tactacactc agcctcttat gtgccaagtt 5220 tttctttaag caatgagaaa ttgctcatgt tcttcatctt ctcaaatcat cagaggccga 5280 agaaaaacac tttggctgtg tctataactt gacacagtca atagaatgaa gaaaattaga 5340 gtagttatgt gattatttca gctcttgacc tgtcccctct ggctgcctct gagtctgaat 5400 ctcccaaaga gagaaaccaa tttctaagag gactggattg cagaagactc ggggacaaca 5460 tttgatccaa gatcttaaat gttatattga taaccatgct cagcaatgag ctattagatt 5520 cattttggga aatctccata atttcaattt gtaaactttg ttaagacctg tctacattgt 5580 tatatgtgtg tgacttgagt aatgttatca acgtttttgt aaatatttac tatgtttttc 5640 tattagctaa attccaacaa ttttgtactt taataaaatg ttctaaacat tgcaa 5695 <210> 22 <211> 3473 <212> DNA <213> Artificial Sequence <220> <223> TPX2 cDNA polynucleotide sequence <400> 22 gaatgagtcc cgcggcgggt tggctcgcgc ttcgttgtca gatctgaggc gaggctaggt 60 gagccgtggg aagaaaagag ggagcagcta gggcgcgggt ctccctcctc ccggagtttg 120 gaacggctga agttcacctt ccagccccta gcgccgttcg cgccgctagg cctggcttct 180 gaggcggttg cggtgctcgg tcgccgccta ggcggggcag ggtgcgagca ggggcttcgg 240 gccacgcttc tcttggcgac aggattttgc tgtgaagtcc gtccgggaaa cggaggaaaa 300 aaagagttgc gggaggctgt cggctaataa cggttcttga tacatatttg ccagacttca 360 agatttcaga aaaggggtga aagagaagat tgcaactttg agtcagacct gtaggcctga 420 tagactgatt aaaccacaga aggtgacctg ctgagaaaag tggtacaaat actgggaaaa 480 acctgctctt ctgcgttaag tgggagacaa tgtcacaagt taaaagctct tattcctatg 540 atgccccctc ggatttcatc aatttttcat ccttggatga tgaaggagat actcaaaaca 600 tagattcatg gtttgaggag aaggccaatt tggagaataa gttactgggg aagaatggaa 660 ctggagggct ttttcagggc aaaactcctt tgagaaaggc taatcttcag caagctattg 720 tcacaccttt gaaaccagtt gacaacactt actacaaaga ggcagaaaaa gaaaatcttg 780 tggaacaatc cattccgtca aatgcttgtt cttccctgga agttgaggca gccatatcaa 840 gaaaaactcc agcccagcct cagagaagat ctcttaggct ttctgctcag aaggatttgg 900 aacagaaaga aaagcatcat gtaaaaatga aagccaagag atgtgccact cctgtaatca 960 tcgatgaaat tctaccctct aagaaaatga aagtttctaa caacaaaaag aagccagagg 1020 aagaaggcag tgctcatcaa gatactgctg aaaagaatgc atcttcccca gagaaagcca 1080 agggtagaca tactgtgcct tgtatgccac ctgcaaagca gaagtttcta aaaagtactg 1140 aggagcaaga gctggagaag agtatgaaaa tgcagcaaga ggtggtggag atgcggaaaa 1200 agaatgaaga attcaagaaa cttgctctgg ctggaatagg gcaacctgtg aagaaatcag 1260 tgagccaggt caccaaatca gttgacttcc acttccgcac agatgagcga atcaaacaac 1320 atcctaagaa ccaggaggaa tataaggaag tgaactttac atctgaacta cgaaagcatc 1380 cttcatctcc tgcccgagtg actaagggat gtaccattgt taagcctttc aacctgtccc 1440 aaggaaagaa aagaacattt gatgaaacag tttctacata tgtgcccctt gcacagcaag 1500 ttgaagactt ccataaacga acccctaaca gatatcattt gaggagcaag aaggatgata 1560 ttaacctgtt accctccaaa tcttctgtga ccaagatttg cagagaccca cagactcctg 1620 tactgcaaac caaacaccgt gcacgggctg tgacctgcaa aagtacagca gagctggagg 1680 ctgaggagct cgagaaattg caacaataca aattcaaagc acgtgaactt gatcccagaa 1740 tacttgaagg tgggcccatc ttgcccaaga aaccacctgt gaaaccaccc accgagccta 1800 ttggctttga tttggaaatt gagaaaagaa tccaggagcg agaatcaaag aagaaaacag 1860 aggatgaaca ctttgaattt cattccagac cttgccctac taagattttg gaagatgttg 1920 tgggtgttcc tgaaaagaag gtacttccaa tcaccgtccc caagtcacca gcctttgcat 1980 tgaagaacag aattcgaatg cccaccaaag aagatgagga agaggacgaa ccggtagtga 2040 taaaagctca acctgtgcca cattatgggg tgccttttaa gccccaaatc ccagaggcaa 2100 gaactgtgga aatatgccct ttctcgtttg attctcgaga caaagaacgt cagttacaga 2160 aggagaagaa aataaaagaa ctgcagaaag gggaggtgcc caagttcaag gcacttccct 2220 tgcctcattt tgacaccatt aacctgccag agaagaaggt aaagaatgtg acccagattg 2280 aacctttctg cttggagact gacagaagag gtgctctgaa ggcacagact tggaagcacc 2340 agctggaaga agaactgaga cagcagaaag aagcagcttg tttcaaggct cgtccaaaca 2400 ccgtcatctc tcaggagccc tttgttccca agaaagagaa gaaatcagtt gctgagggcc 2460 tttctggttc tctagttcag gaaccttttc agctggctac tgagaagaga gccaaagagc 2520 ggcaggagct ggagaagaga atggctgagg tagaagccca gaaagcccag cagttggagg 2580 aggccagact acaggaggaa gagcagaaaa aagaggagct ggccaggcta cggagagaac 2640 tggtgcataa ggcaaatcca atacgcaagt accagggtct ggagataaag tcaagtgacc 2700 agcctctgac tgtgcctgta tctcccaaat tctccactcg attccactgc taaactcagc 2760 tgtgagctgc ggataccgcc cggcaatggg acctgctctt aacctcaaac ctaggaccgt 2820 cttgctttgt cattgggcat ggagagaacc catttctcca gacttttacc tacccgtgcc 2880 tgagaaagca tacttgacaa ctgtggactc cagttttgtt gagaattgtt ttcttacatt 2940 actaaggcta ataatgagat gtaactcatg aatgtctcga ttagactcca tgtagttact 3000 tcctttaaac catcagccgg ccttttatat gggtcttcac tctgactaga atttagtctc 3060 tgtgtcagca cagtgtaatc tctattgcta ttgcccctta cgactctcac cctctcccca 3120 ctttttttaa aaattttaac cagaaaataa agatagttaa atcctaagat agagattaag 3180 tcatggttta aatgaggaac aatcagtaaa tcagattctg tcctcttctc tgcataccgt 3240 gaatttatag ttaaggatcc ctttgctgtg agggtagaaa acctcaccaa ctgcaccagt 3300 gaggaagaag actgcgtgga ttcatgggga gcctcacagc agccacgcag caggctctgg 3360 gtggggctgc cgttaaggca cgttctttcc ttactggtgc tgataacaac agggaaccgt 3420 gcagtgtgca ttttaagacc tggcctggaa taaatacgtt ttgtctttcc ctc 3473 <210> 23 <211> 2975 <212> DNA <213> Artificial Sequence <220> <223> TTK cDNA polynucleotide sequence <400> 23 caaacgtgtt tgcggaaagg agtttgggtt ccatcttttc atttccccag cgcagctttc 60 tgtagttttt ttcttagaaa tggaatccga ggatttaagt ggcagagaat tgacaattga 120 ttccataatg aacaaagtga gagacattaa aaataagttt aaaaatgaag accttactga 180 tgaactaagc ttgaataaaa tttctgctga tactacagat aactcgggaa ctgttaacca 240 aattatgatg atggcaaaca acccagagga ctggttgagt ttgttgctca aactagagaa 300 aaacagtgtt ccgctaagtg atgctctttt aaataaattg attggtcgtt acagtcaagc 360 aattgaagcg cttcccccag ataaatatgg ccaaaatgag agttttgcta gaattcaagt 420 gagatttgct gaattaaaag ctattcaaga gccagatgat gcacgtgact actttcaaat 480 ggccagagca aactgcaaga aatttgcttt tgttcatata tcttttgcac aatttgaact 540 gtcacaaggt aatgtcaaaa aaagtaaaca acttcttcaa aaagctgtag aacgtggagc 600 agtaccacta gaaatgctgg aaattgccct gcggaattta aacctccaaa aaaagcagct 660 gctttcagag gaggaaaaga agaatttatc agcatctacg gtattaactg cccaagaatc 720 attttccggt tcacttgggc atttacagaa taggaacaac agttgtgatt ccagaggaca 780 gactactaaa gccaggtttt tatatggaga gaacatgcca ccacaagatg cagaaatagg 840 ttaccggaat tcattgagac aaactaacaa aactaaacag tcatgcccat ttggaagagt 900 cccagttaac cttctaaata gcccagattg tgatgtgaag acagatgatt cagttgtacc 960 ttgttttatg aaaagacaaa cctctagatc agaatgccga gatttggttg tgcctggatc 1020 taaaccaagt ggaaatgatt cctgtgaatt aagaaattta aagtctgttc aaaatagtca 1080 tttcaaggaa cctctggtgt cagatgaaaa gagttctgaa cttattatta ctgattcaat 1140 aaccctgaag aataaaacgg aatcaagtct tctagctaaa ttagaagaaa ctaaagagta 1200 tcaagaacca gaggttccag agagtaacca gaaacagtgg caatctaaga gaaagtcaga 1260 gtgtattaac cagaatcctg ctgcatcttc aaatcactgg cagattccgg agttagcccg 1320 aaaagttaat acagagaaac ataccacttt tgagcaacct gtcttttcag tttcaaaaca 1380 gtcaccacca atatcaacat ctaaatggtt tgacccaaaa tctatttgta agacaccaag 1440 cagcaatacc ttggatgatt acatgagctg ttttagaact ccagttgtaa agaatgactt 1500 tccacctgct tgtcagttgt caacacctta tggccaacct gcctgtttcc agcagcaaca 1560 gcatcaaata cttgccactc cacttcaaaa tttacaggtt ttagcatctt cttcagcaaa 1620 tgaatgcatt tcggttaaag gaagaattta ttccatatta aagcagatag gaagtggagg 1680 ttcaagcaag gtatttcagg tgttaaatga aaagaaacag atatatgcta taaaatatgt 1740 gaacttagaa gaagcagata accaaactct tgatagttac cggaacgaaa tagcttattt 1800 gaataaacta caacaacaca gtgataagat catccgactt tatgattatg aaatcacgga 1860 ccagtacatc tacatggtaa tggagtgtgg aaatattgat cttaatagtt ggcttaaaaa 1920 gaaaaaatcc attgatccat gggaacgcaa gagttactgg aaaaatatgt tagaggcagt 1980 tcacacaatc catcaacatg gcattgttca cagtgatctt aaaccagcta actttctgat 2040 agttgatgga atgctaaagc taattgattt tgggattgca aaccaaatgc aaccagatac 2100 aacaagtgtt gttaaagatt ctcaggttgg cacagttaat tatatgccac cagaagcaat 2160 caaagatatg tcttcctcca gagagaatgg gaaatctaag tcaaagataa gccccaaaag 2220 tgatgtttgg tccttaggat gtattttgta ctatatgact tacgggaaaa caccatttca 2280 gcagataatt aatcagattt ctaaattaca tgccataatt gatcctaatc atgaaattga 2340 atttcccgat attccagaga aagatcttca agatgtgtta aagtgttgtt taaaaaggga 2400 cccaaaacag aggatatcca ttcctgagct cctggctcat ccatatgttc aaattcaaac 2460 tcatccagtt aaccaaatgg ccaagggaac cactgaagaa atgaaatatg ttctgggcca 2520 acttgttggt ctgaattctc ctaactccat tttgaaagct gctaaaactt tatatgaaca 2580 ctatagtggt ggtgaaagtc ataattcttc atcctccaag acttttgaaa aaaaaagggg 2640 aaaaaaatga tttgcagtta ttcgtaatgt cagataccac ctataaaata tattggactg 2700 ttatactctt gaatccctgt ggaaatctac atttgaagac aacatcactc tgaagtgtta 2760 tcagcaaaaa aaattcagta gattatcttt aaaagaaaac tgtaaaaata gcaaccactt 2820 atggcactgt atatattgta gacttgtttt ctctgtttta tgctcttgtg taatctactt 2880 gacatcattt tactcttgga atagtgggtg gatagcaagt atattctaaa aaactttgta 2940 aataaagttt tgtggctaaa atgacactaa cattt 2975 <110> Chungbuk National University Industry-Academic Cooperation Foundation <120> Biomarker for predicting prognosis of Non-muscle invasive bladder cancer and uses thereof <130> NPDC-94523 <160> 23 <170> KoPatentIn 3.0 <210> 1 <211> 2869 <212> DNA <213> Artificial Sequence <220> <223> SKA3 cDNA polynucleotide sequence <400> 1 aaactagtgg cgggaggctg tgagctgagc ggtggggtct gcgtacgcct ggagtccttc 60 cccgctgtgc tcagcatgga ccctatccgg agcttctgcg ggaagct gcg gtctctggcc 120 agcacgctgg actgcgagac ggcccggctg cagcgagcgc tggacggaga ggaaagcgac 180 tttgaagatt atccaatgag aattttatat gaccttcatt cagaagttca gactctaaag 240 gatgatgtta atattcttct tgataaagca agattggaaa atcaagaagg cattgatttc 300 ataaaggcaa caaaagtact aatggaaaaa aattcaatgg atattatgaa aataagagag 360 tatttccaga agtatggata tagtccacgt gtcaagaaaa attcagtaca cgagcaagaa 420 gcc attaact ctgacccaga gttgtctaat tgtgaaaatt ttcagaagac tgatgtgaaa 480 gatgatctgt ctgatcctcc tgttgcaagc agttgtattt ctgagaagtc tccacgtagt 540 ccacaacttt cagattttgg acttgagcgg tacatcgtat cccaagttct accaaaccct 60 0 ccacaggcag tgaacaacta taaggaagag cccgtaattg taaccccacc taccaaaacaa 660 tcactagtaa aagtactaaa aactccaaaa tgtgcactaa aaatggatga ttttgagtgt 720 gtaactccta aattagaaca ctttggtatc tctgaatata ctatgtgttt aaatgaagat 780 tacacaatgg gacttaaaaa tgcgaggaat aataaaagtg aggaggccat agatacagaa 840 tccaggctca atgataatgt ttttgccact cccagccccca tcatccagca gttggaaaaaa 900 agtgatgccg aatataccaa ctctcctttg gtacctacat tctgtactcc tggtttgaaa 960 attccatcta caaagaacag catagctttg gtatccacaa attacccatt atcaaaaaca 102 0 aatagttcat caaatgattt ggaagttgaa gatcgtactt cgttggtttt aaattcagac 1080 acatgctttg agaatttaac agatccctct tcacctacga tttcttctta tgagaatctg 1140 ctcagaacac ctacacctcc ggaagtaact aaaattccag aagatattct ccagctttta 1200 tcaaaataca actcaaacct agctactcca atagcaatta aagcagtgcc acccagtaaa 1260 aggttcctta aacatggaca gaacatccga gatgtcagca acaaagaaaa ctgaaattcc 1320 agtggatcta tccaacacag aaactgaaca aaatgagatg aaagccgagc tggaccgatt 1380 ttaacattca cattgccctg cctctgtccc cctttaaacg ttgacccatt ttaaagacaa 1440 acatgaa cat taacatcata atatgctttt tatgaagttt caataaggtt taaccttagt 1500 cttgttgaca tgtagcccag tcattcactc tttaaggatt attagtgttt cattgatact 1560 aaattaccca gcttaatcaa cagaatggtt taagtagtac caggaagtag gacaagtaat 1620 ttcaaaaata taaaggtgtt tgctactcag atgaggccgc ccctgacctt ctggccagag 1680 agacattgct gccag ccagc tctgccttcc catcatctcc tttcaggacc gtcccacacc 1740 ttttacttgc tcagtgctgt ctgaagatgc agttgctgtt tgcaaacaac aggaacacca 1800 gttaaactaa ttaggaaaag agggagattt ccaggcctgg gtaactatat actgtgacca 1860 ttggaggtag agaca ggtct caacagttgg aaccaggaac tctgctgtca ggttgagagt 1920 tttgtttctc ttccagcttt tcactgtgtg ggggtctttt ctcttatgtc agctctttct 1980 atcacatggc agctgacctc tcacgctcca ctctgcagct tggacaccca gtagaccctg 2040 aatttcactc tctctaaaag gttctgaggg ctcatcctgg gccaggggcc ctcctgtgca 2100 ctgttagcta tggccacggg agcctccaga gctgcctggt agcttcaggt tgacctgctt 2160 atcaggccta cgatccttct gatttaagta cagctggaaa gtattatcta attaagttca 2220 tgatagtgct tttggagaac ttgtcaaatt acagccaatg agaaaataag gacctagcat 2280 actgtggaga accattaaaa atttgagaag aaacaacaag tattatgtca acttacttca 2340 aaggcgtagt tttgggaatt tgatgcagta aagattaccc tgttttatga ttgttccttg 2400 aaagtcaaat gggggacctg tccattgtgc tctattaatc ttgtcagaaa actgtcacca 2460 aaacaaaact tgagtttgtc cttgttctag gagttactgg gtagttgtaa gtattatttt 2520 tattaaatat aatgtaaaat a aaatgttaa gatacttagt tttgtttttc aaagtaaagc 2580 tgtagtcagc cttatgtatg ccattgactc tgaaatgtat accagccttt cactgtgtac 2640 cgtgtgtata taaatccaca gaaccggatg agctgcttag ggagggaata tattcaaagt 2700 gtaccaag ga ccaaatcctg gagttctccc aactttagag gatggaaagg ggcagagtaa 2760 tctagcaaag gagactgagg ccagtgaagt aggaagaaag tatttcaagg agagtgatga 2820 ttctgtgaat attgctgaga attcaaataa aaagaggact gagaactga 2869 <210> 2 <211> 4731 <212> DNA <213> Artificial Sequence <220> <223> ANLN cDNA polynucleotide sequence <400> 2 gagtccgtca ctggaagccg aga ggagagg acagctggtt gtgggagagt tcccccgcct 60 cagactcctg gttttttcca ggagacacac tgagctgaga ctcacttttc tcttcctgaa 120 tttgaaccac cgtttccatc gtctcgtagt ccgacgcctg gggcgatgga tccgtttacg 180 gagaaactgc tggagcgaac ccgtgccagg cgagagaatc ttcagagaaa aatggctgag 240 aggcccacag cagctcca ag gtctatgact catgctaagc gagctagaca gccactttca 300 gaagcaagta accagcagcc cctctctggt ggtgaagaga aatcttgtac aaaaccatcg 360 ccatcaaaaa aacgctgttc tgacaacact gaagtagaag tttctaactt ggaaaataaa 420 caaccagttg agtcgacatc tgcaaa atct tgttctccaa gtcctgtgtc tcctcaggtg 480 cagccacaag cagcagatac catcagtgat tctgttgctg tcccggcatc actgctgggc 540 atgaggagag ggctgaactc aagattggaa gcaactgcag cctcctcagt taaaacacgt 600 atgcaaaaac ttgcagagca acggcgccgt tggggataatg atgatatgac agatgacatt 660 cctgaaagct cactcttctc accaatgcca tcagaggaaa agg ctgcttc ccctcccaga 720 cctctgcttt caaatgcctc ggcaactcca gttggcagaa ggggccgtct ggccaatctt 780 gctgcaacta tttgctcctg ggaagatgat gtaaatcact catttgcaaa acaaaacagt 840 gtacaagaac agcctggtac cgcttgttta tccaaatt tt cctctgcaag tggagcatct 900 gctaggatca atagcagcag tgttaagcag gaagctacat tctgttccca aagggatggc 960 gatgcctctt tgaataaagc cctatcctca agtgctgatg atgcgtcttt ggttaatgcc 1020 tcaatttcca gctctgtgaa agctacttct ccagtgaaat ctactacatc tatcactgat 1080 gctaaaagtt gtgagggaca aaatcctgag ctacttcc aa aaactcctat tagtcctctg 1140 aaaacggggg tatcgaaacc aattgtgaag tcaactttat cccagacagt tccatccaag 1200 ggagaattaa gtagagaaat ttgtctgcaa tctcaatcta aagacaaatc tacgacacca 1260 ggaggaacag gaattaagcc tttcctggaa cgctttggag ag cgttgtca agaacatagc 1320 aaagaaagtc cagctcgtag cacaccccac agaacccccca ttattactcc aaatacaaag 1380 gccatccaag aaagattatt caagcaagac acatcttcat ctactaccca tttagcacaa 1440 cagctcaagc aggaacgtca aaaagaacta gcatgtcttc gtggccgatt tgacaagggc 1500 aatatatgga gtgcagaaaa aggcggaaac tcaaaaagca aacaactaga aaccaaacag 156 0 gaaactcact gtcagagcac tcccctcaaa aaacaccaag gtgtttcaaa aactcagtca 1620 cttccagtaa cagaaaaggt gaccgaaaac cagataccag ccaaaaattc tagtacagaa 1680 cctaaaggtt tcactgaatg cgaaatgacg aaatctagcc ctttgaaaat aacattgttt 1740 ttagaagagg acaaatcctt aaaagtaaca tcagacccaa aggttgagca gaaaattgaa 1800 gtgatacgtg aaattgagat gagtgtggat gatgatgata tcaatagttc gaaagtaatt 1860 aatgacctct tcagtgatgt cctagaggaa ggtgaactag atatggagaa gagccaagag 1920 gagatggatc aagcattagc agaaagcagc gaagaacagg aagatgcact gaatatctcc 1980 tcaatgtctt tacttgcacc attggcacaa acagttggtg tggtaagtcc agagagttta 2040 gtgtccacac ctagactgga attgaaagac accagcagaa gtgatgaaag tccaaaacca 2100 ggaaaattcc aaagaactcg tgtccctcga gctgaatctg gtgatagcct tggttctgaa 21 60 gatcgtgatc ttctttacag cattgatgca tatagatctc aaagattcaa agaaacagaa 2220 cgtccatcaa taaagcaggt gattgttcgg aaggaagatg ttacttcaaa actggatgaa 2280 aaaaataatg cctttccttg tcaagttaat atcaaacaga aaatgcagga actcaataac 2340 gaaataaata tgcaacagac agtgatctat caagctagcc aggctcttaa ctgctgtgtt 2400 gatgaagaac atggaaaagg gtccctagaa gaagctgaag cagaaagact tcttctaatt 2460 gcaactggga agagaacact tttgattgat gaattgaata aattgaagaa cgaaggacct 2520 cagaggaaga ataaggctag tccccaaagt gaatttatgc catccaaagg atcagttact 2580 ttgtcagaaa tccgcttgcc tc taaaagca gattttgtct gcagtacggt tcagaaacca 2640 gatgcagcaa attactatta cttaatta ctaaaagcag gagctgaaaa tatggtagcc 2700 acaccattag caagtacttc aaactctctt aacggtgatg ctctgacatt cactactaca 2760 tttactctgc aagatgtatc caatgacttt gaaataaata ttgaagttta cagcttggtg 2820 caaaagaaag atccctcagg ccttgataag aagaaaaaaa catccaagtc caaggctatt 2880 actccaaagc gactcctcac atctataacc acaaaaagca acattcattc ttcagtcatg 2940 gccagtccag gaggtcttag tgctgtgcga accagcaact tcgcccttgt tggatcttac 3000 acattatcat tgtcttcagt aggaaatact aagt ttgttc tggacaaggt ccccttttta 3060 tcttctttgg aaggtcatat ttatttaaaa ataaaatgtc aagtgaattc cagtgttgaa 3120 gaaagaggtt ttctaaccat atttgaagat gttagtggtt ttggtgcctg gcatcgaaga 3180 tggtgtgttc tttctggaaaa ctgtatatct tattggactt atccagatga tgagaaacgc 3240 aagaatccca taggaagga t aaatctggct aattgtacca gtcgtcagat agaaccagcc 3300 aacagagaat tttgtgcaag acgcaacact tttgaattaa ttactgtccg accacaaaga 3360 gaagatgacc gagagactct tgtcagccaa tgcagggaca cactctgtgt taccaagaac 3420 tggctgtctg cagatactaa aga agagcgg gatctctgga tgcaaaaact caatcaagtt 3480 cttgttgata ttcgcctctg gcaacctgat gcttgctaca aacctattgg aaagccttaa 3540 accgggaaat ttccatgcta tctagaggtt tttgatgtca tcttaagaaa cacacttaag 3600 agcatcagat ttactgattg cattttatgc tttaagtacg aaagggtttg tgccaatatt 3660 cactacgtat tatgcagtat ttatatcttt tgta tgtaaa actttaactg atttctgtca 3720 ttcatcaatg agtagaagta aatacattat agttgatttt gctaaatctt aatttaaaag 3780 cctcattttc ctagaaatct aattattcag ttattcatga caatattttt ttaaaagtaa 3840 gaaattctga gttgtcttct tggagctgta ggtct tgaag cagcaacgtc tttcaggggt 3900 tggagacaga aacccattct ccaatctcag tagttttttc gaaaggctgt gatcatttat 3960 tgatcgtgat atgacttgtt actagggtac tgaaaaaaaat gtctaaggcc tttacagaaa 4020 catttttagt aatgaggatg agaacttttt caaatagcaa atatatattg gcttaaagca 4080 tgaggctgtc ttcagaaaag tgatgtggac ataggaggca atgtgtgaga cttgggggtt 4140 caatatttta tatagaagag ttaataagca catggtttac atttactcag ctactatata 4200 tgcagtgtgg tgcacatttt cacagaattc tggcttcatt aagatcatta tttttgctgc 4260 gtagcttaca gacttagcat attagttttt tctactccta caagtgtaaa ttgaaaaat c 4320 tttatattaa aaaagtaaac tgttatgaag ctgctatgta ctaataatac tttgcttgcc 4380 aaagtgtttg ggttttgttg ttgtttgttt gtttgtttgt ttttggttca tgaacaacag 4440 tgtctagaaa cccatttga aagtggaaaa ttattaagtc acctatcacc tttaaacgcc 4500 tttttttaaa attataaaat attgtaaagc a gggtctcaa cttttaaata cactttgaac 4560 ttcttctctg aattattaaa gttctttatg acctcattta taaacactaa attctgtcac 4620 ctcctgtcat tttattttt attcattcaa atgtattttt tcttgtgcat attataaaaa 4680 tatattttat gagctcttac tcaaataaat a cctgtaaat gtctaaagga a 4731 <210> 3 <211> 1689 <212> DNA <213> Artificial Sequence <220> <223> ASF1B cDNA polynucleotide sequence <400> 3 gcacttcagt tctcggagag aagaggcggg agtggacctg gtcagcccta ccccactgac 60 cccaccggac ccaggcgcgg cctccgccac agccacagcc cctgcccctg ct gcggcgcg 120 gcgaggcgag gcgatggcca aggtgtcggt gctgaacgtg gcggtcctgg agaacccgag 180 ccctttccac agccccttcc ggttcgagat cagcttcgag tgcagtgaag ccctggcgga 240 cgacctggag tggaagatca tttatgttgg ctcggctgag agtgaggaat ttgatcagat 300 cctagactcg gtgctggtgg gccctgtgcc agcagggaga cacatgtttg tctttcaggc 360 cgacgccccc aacccatccc tcatcccaga gactgatgcc g tgggtgtga ctgtggtcct 420 catcacctgc acctaccatg gacaggagtt catccgagtg ggctactacg tcaacaacga 480 gtacctcaac cctgagctgc gtgagaaccc gcccatgaag ccagatttct cccagctcca 540 gcggaacatc ttggcctcga acccccgggt gacccgct tc catatcaact gggacaacaa 600 catggacagg ctggaggcca tagagaccca ggacccctcc ctgggctgcg gcctcccact 660 caactgcact cctatcaagg gcttggggct ccctggctgc atccctggcc tcctccctga 720 gaactccatg gactgcatct aactgcagga acccagagtg tcccagcacg ccgggagggg 780 caaccaggcc tcccagcgag tcctgcaggg cccatctaga ggactttggg ggccatcagc 84 0 tgcaatccag gtctgtcaaa ctcagcccct aggaaagaac aggccttggg tctcccctag 900 tcctggccag aaggatgatc tcgcttttcc tctacaggcc tataagaagc aggtacttca 960 gttctaaatt ctgacttgtg ttcttttcgt cttcataaat tctaactaag gccactgtg c 1020 cactgtgcac ccttgagtac cattgatcca aagctttccc acagacctcc ctggcccacc 1080 tagaggcttt cttggtcagt gcctgtcaag gctccagtcc tgctgagcca aaggctttgt 1140 cattcctttc tcttcctgta catctgagca gacccactcc agctttctgg tgtcacaggc 1200 gggaatgtta gttagtaggt agacttagat cccatttctg tcctgctccc aggaag attc 1260 ttaggtcctc ttcaatccag cagcccctcc cagaggtgtg atcagcagga tgctgaggaa 1320 ccatgttgcc tttcctgtca atcacagcca ccttcctgtt atctcctaaa tggatctggc 1380 ttttcctgga ggctgccatg gttggaagat ggtatcagag ggcctgcctg ggcagtctgt 1440 ctccgggcca gggtcaggga ccctctgcct ctggcagcct taacctgtcc tctgctagga 1500 ccagggtgat ttcaagccag ggaagcaact gggaccctga aaactgtccc tccccagccc 1560 gctccccctc tctgtgccct ggtccccttg ctgccatgtg gatgctgttg tgattgctgt 1620 ttgtatatta tcaaaatgtt tttatattaa aaatgtttgg tctgaaaatt aaaagcactt 16 80 catttagaa 1689 <210> 4 <211> 1170 <212> DNA <213> Artificial Sequence <220> <223> AURKB cDNA polynucleotide sequence < 400> 4 agttgtttgc gggcggccgg gagagtagca gtgccttgga ccccaggctc catctggcct 60 gagcaccctg ccccagcgag tcctccggaa agagcctgtc accccatctg cacttgtcct 120 catgagccgc tccaatgtcc agcccacagc tgcccctggc cagaaggt ga tggagaatag 180 cagtgggaca cccgacatct taacgcggca cttcacaatt gatgactttg agattgggcg 240 tcctctgggc aaaggcaagt ttggaaacgt gtacttggct cgggagaaga aaagccattt 300 catcgtggcg ctcaaggtcc tcttcaagtc ccagatagag aaggagggcg tggagcatca 360 gctgcgcaga gagatcgaaa tccaggccca cctgcaccat cccaacatcc tgcgtctcta 420 caactatttt tatgaccgga ggaggatcta cttgattcta gagtatgccc cccgcgggga 480 gctctacaag gagctgcaga agagctgcac atttgacgag cagcgaacag ccacgatcat 540 ggaggagttg gcagatgctc taatgtactg ccatgggaag aaggtg attc acagagacat 600 aaagccagaa aatctgctct tagggctcaa gggagagctg aagattgctg acttcggctg 660 gtctgtgcat gcgccctccc tgaggaggaa gacaatgtgt ggcaccctgg actacctgcc 720 cccagagatg attgaggggc gcatgcacaa tgagaaggtg gatctgtggt gcattggagt 780 gctttgctat gagctgctgg tggggaaccc accctttgag agtgcatcac acaacgagac 840 ctatcgccgc atcgtcaagg tggacctaaa gttccccgct tccgtgccca tgggagccca 900 ggacctcatc tccaaactgc tcaggcataa cccctcggaa cggctgcccc tggcccaggt 960 ctcagcccac ccttgggtcc gggccaactc tcggagggtg ctgcctccct ct gcccttca 1020 atctgtcgcc tgatggtccc tgtcattcac tcgggtgcgt gtgtttgtat gtctgtgtat 1080 gtatagggga aagaagggat ccctaactgt tcccttatct gttttctacc tcctcctttg 1140 tttaataaag gctgaagctt tttgtactca 1 170 <210> 5 <211> 2748 <212 > DNA <213> Artificial Sequence <220> <223> CCNA2 cDNA polynucleotide sequence <400> 5 ggcgggctgc tcgctgcatc tctgggcgtc tttggctcgc cacgctgggc agtgcctgcc 60 tgcgcctttc gcaacctcct cggccctgcg tggtctcgag ctgggtgagc gagcgggcgg 120 gctggtaggc tggcctgggc tgcgaccggc ggctacgact attctttggc cgggtcggtg 180 cgagtggtcg gctgggcaga gtgcacgctg cttggcgccg caggctgatc ccgccgtcca 240 ctcccgggag cagtgatgtt gggcaactct gcgccggggc ctgcgacccg cgaggcgggc 300 tcggcgctgc tagcattgca gcagacggcg ctccaagagg accaggagaa tatcaacccg 360 gaaaaggcag cgcccgtcca acaaccgcgg acccgggccg cgctggcggt actgaagtcc 42 0 gggaacccgc ggggtctagc gcagcagcag aggccgaaga cgagacgggt tgcacccctt 480 aaggatcttc ctgtaaatga tgagcatgtc accgttcctc cttggaaagc aaacagtaaa 540 cagcctgcgt tcaccattca tgtggatgaa gcagaaaaag aagctcagaa ga agccagct 600 gaatctcaaa aaatagagcg tgaagatgcc ctggctttta attcagccat tagtttacct 660 ggacccagaa aaccattggt ccctcttgat tatccaatgg atggtagttt tgagtcacca 720 catactatgg acatgtcaat tatattagaa gatgaaaagc cagtgagtgt taatgaagta 780 ccagactacc atgaggatat tcacacatac cttagggaaa tggaggttaa atgtaaacct 840 aaagtgggtt acatgaagaa acagccagac at cactaaca gtatgagagc tatcctcgtg 900 gactggttag ttgaagtagg agaagaatat aaactacaga atgagaccct gcatttggct 960 gtgaactaca ttgataggtt cctgtcttcc atgtcagtgc tgagaggaaaa acttcagctt 1020 gtgggcactg ctgctatgct gttagcctca a agtttgaag aaatataccc cccagaagta 1080 gcagagtttg tgtacattac agatgatacc tacaccaaga aacaagttct gagaatggag 1140 catctagttt tgaaagtcct tacttttgac ttagctgctc caacagtaaa tcagtttctt 1200 acccaatact ttctgcatca gcagcctgca aactgcaaag ttgaaagttt agcaatgttt 1260 ttggggagaat taagtttgat a gatgctgac ccatacctca agtatttgcc atcagttatt 1320 gctggagctg cctttcattt agcactctac acagtcacgg gacaaagctg gcctgaatca 1380 ttaatacgaa agactggata taccctggaa agtcttaagc cttgtctcat ggaccttcac 1440 cagacctacc tcaaagca cc acagcatgca caacagtcaa taagagaaaa gtacaaaaat 1500 tcaaagtatc atggtgtttc tctcctcaac ccaccagaga cactaaatct gtaacaatga 1560 aagactgcct ttgttttcta agatgtaaat cactcaaagt atatggtgta cagtttttaa 1620 cttaggtttt aattttacaa tcatttctga atacagaagt tgtggccaag tacaaattat 1680 ggtatctatt actttttaaa tggttttaat ttgtata tct tttgtatatg tatctgtctt 1740 agatatttgg ctaattttaa gtggttttgt taaagtatta atgatgccag ctgtcaggat 1800 aataaattga tttggaaaac tttgcaagtc aaatttaact tcttcaggat tttgcttagt 1860 aaagaagttt acttggttta ctatataat g ggaagtgaaa agccttcctc taaaattaaa 1920 gtaggtttag gaaaacagac cctcaaattc tgacattcat tttcctaagc aactggatca 1980 atttgctgac ttgggcataa tctaatctaa gcatatctga atacagtatt cagagataga 2040 tacagtagag attccccaga ctttttcgct ctttgtaaaa cctgtttgtt taggttttgc 2100 gaggtaaact caacagaggt tgggagtgga agagggtggg aag cttatat gcaaattaac 2160 agacgagaaa tgctccagaa ggtttattat tttaaagcac attaaaaaca aaaaactatt 2220 tttaaaatcc tgctagattt tataatggat ttgtgaataa aaaataccca gggttctcag 2280 aatggaataa atatcccttt taatagttat atatacagat atacaactgt tagctttaat 2340 tggcagctct cttctttttt cttcttttca ctggcttttt acttggtgct ttttcttgtt 2400 ttgcactggt ggtctgtgtt ctgtgaataa agcaaagtaa gaatttacta agagtatgtt 2460 aagttttgga ttattgaaat aagaggcatt tcttagtttt ccagtaggat ctaaaatgtg 2520 tcagctatga gtaagactgg catccaagaa gtttatatta tagatttagg t cctaatttt 2580 tataaatcac aaggtaaaaa aatcacagaa cagatggatc tctaatgaaa aagggatgtc 2640 tttttgttta tagtcatgtg gcaagatgag agtaaaacca gagagcaaac ctctataagt 2700 gttgagtata tgtatacatt tgaaataaac cagaaatttg ttacctta 2748 <210> 6 <211> 1488 <212> DNA <213> Artificial Sequence <220> <223> CCNB2 cDNA polynucleotide sequence <400> 6 gaagatcccc agcgctgcgg gctcggagag cagtcctaac ggcgcc tcgt acgctagtgt 60 cctccctttt cagtccgcgt ccctccctgg gccgggctgg cactcttgcc ttccccgtcc 120 ctcatggcgc tgctccgacg cccgacggtg tccagtgatt tggagaatat tgacacagga 180 gttaattcta aagttaagag tcatgtgact attaggcgaa ctgttttaga agaaattgga 240 aatagagtta caaccagagc agcacaagta gctaagaaag ctcagaacac caaagttcca 300 gttcaaccca ccaaaacaac aaatgtcaac aaacaactga aacctactgc ttctgtcaaa 360 ccagtacaga tggaaaaagtt ggctccaaag ggtccttctc ccacacctga ggatgtctcc 420 atgaaggaag agaatctctg ccaagctttt tctgatgcct tgctctgcaa aatcgaggac 480 attgataacg aagattggga gaaccctcag ctctgcagtg actacgttaa ggatatctat 540 cagtatctca ggcagctgga ggttttgcag tccataaacc cacatttctt agatggaaga 600 gatataaatg gacgcatgcg tgccatccta gtggattggc tggtacaagt ccactccaag 660 tttaggcttc tgcaggagac tctgtacatg tgcgttggca ttatggatcg atttttacag 720 gttcagccag tttcccggaa gaagcttcaa ttagttggga ttactgctct gctcttggct 780 tccaagtatg aggagatgtt ttctccaaat attgaagact ttgtttacat cacagacaat 840 gcttatacca gttcccaaat ccgagaaatg gaaactctaa ttttgaaaga attgaaattt 900 gagttgggtc gacccttgcc actacacttc ttaaggcgag catcaaaagc cggggaggtt 960 gatgttgaac agcacacttt agccaagtat ttgatggagc tgactctcat cgactatgat 1020 atggtgcatt atcatccttc taaggtagca gcagctgctt cctgcttgtc tcagaaggtt 1080 ctaggacaag gaaaatggaa cttaaagcag cagtattaca caggatacac agagaatgaa 1140 gtattgga ag tcatgcagca catggccaag aatgtggtga aagtaaatga aaacttaact 1200 aaattcatcg ccatcaagaa taagtatgca agcagcaaac tcctgaagat cagcatgatc 1260 cctcagctga actcaaaagc cgtcaaagac cttgcctccc cactgatagg aaggtcctag 1320 gctgccgtgg cccctgggga tgtgtgcttc attgtgccct ttttcttatt ggtttagaac 1380 tcttgatttt gtacatagtc ctctggtcta tctcatgaaa cctcttctca gaccagtttt 1440 ctaaacatat attgaggaaa aataaagcga ttggtttttc ttaaggta 1488 <210> 7 <211> 1649 <212> DNA <213> Artificial Sequence <220> <223> CDC20 cDNA polynucleotide sequence <400> 7 cggtcggaac tgctccggag ggcacgggct ccgtaggcac caactgcaag gacccctccc 60 cctgcgggcg ctcccatggc acagttcgcg ttcgagagtg acctgcactc gctgcttcag 120 ctggatgcac ccatccccaa tgcaccccct gcgcgctggc agcgcaaagc caaggaagcc 180 gcaggcccgg ccccctcacc catgcgggcc gccaaccgat cccacagcgc cggcaggact 240 ccgggccgaa ctcctggcaa atccagttcc aaggttcaga ccactcctag caaacctggc 300 ggtgaccgct atatccccca tcgcagtgct gcccagatgg aggtggccag cttcctcctg 360 agcaaggaga accagcctga aaacagccag acgcccacca agaaggaaca tcagaaagcc 42 0 tgggctttga acctgaacgg ttttgatgta gaggaagcca agatccttcg gctcagtgga 480 aaaccacaaa atgcgccaga gggttatcag aacagactga aagtactcta cagccaaaag 540 gccactcctg gctccagccg gaagacctgc cgttacattc cttccctgcc agaccgtatc 600 ctggatgcgc ctgaaatccg aaatgactat tacctgaacc ttgtggattg gagttctggg 660 aatgtactgg ccgt ggcact ggacaacagt gtgtacctgt ggagtgcaag ctctggtgac 720 atcctgcagc ttttgcaaat ggagcagcct ggggaatata tatcctctgt ggcctggatc 780 aaagagggca actacttggc tgtgggcacc agcagtgctg aggtgcagct atgggatgtg 840 ca gcagcaga aacggcttcg aaatatgacc agtcactctg cccgagtggg ctccctaagc 900 tggaacagct atatcctgtc cagtggttca cgttctggcc acatccacca ccatgatgtt 960 cgggtagcag aacaccatgt ggccacactg agtggccaca gccaggaagt gtgtgggctg 1020 cgctgggccc cagatggacg acatttggcc agtggtggta atgataactt ggtcaatgtg 1080 tggcctagtg ctcctggaga ggg tggctgg gttcctctgc agacattcac ccagcatcaa 1140 ggggctgtca aggccgtagc atggtgtccc tggcagtcca atgtcctggc aacaggagg 1200 ggcaccagtg atcgacacat tcgcatctgg aatgtgtgct ctggggcctg tctgagtgcc 1260 gtggatgcc c attcccaggt gtgctccatc ctctggtctc cccattacaa ggagctcatc 1320 tcaggccatg gctttgcaca gaaccagcta gttattgga agtacccaac catggccaag 1380 gtggctgaac tcaaaggtca cacatcccgg gtcctgagtc tgaccatgag cccagatggg 1440 gccacagtgg catccgcagc agcagatgag accctgaggc tatggcgctg ttttgagttg 1500 gaccctgcgc ggcggcggga gcgggaga ag gccagtgcag ccaaaagcag cctcatccac 1560 caaggcatcc gctgaagacc aacccatcac ctcagttgtt ttttattttt ctaataaagt 1620 catgtctccc ttcatgtttt ttttttaaa 1649 <210> 8 <211> 1889 <212> DNA <213> Artificial Sequence <220> <223> CDK1 cDNA polynucleotide sequence <400> 8 gcacttggct tcaaagctgg ctcttggaaa ttgagcggag agcgacgcgg ttgttgtagc 60 tgccgctgcg gccgccgcgg aataataagc cgggatctac catacccatt gactaactat 120 ggaagattat accaaaata g agaaaattgg agaaggtacc tatggagttg tgtataaggg 180 tagacacaaa actacaggtc aagtggtagc catgaaaaaa atcagactag aaagtgaaga 240 ggaaggggtt cctagtactg caattcggga aatttctcta ttaaaggaac ttcgtcatcc 300 aaatatagtc agtcttcagg atgtgcttat gcaggattcc aggttatatc tcatctttga 360 gtttctttcc atggatctga agaaatactt ggattctatc cctcctggtc agtacatgga 420 ttcttcactt gttaagagtt atttatacca aatcctacag gggattgtgt tttgtcact c 480 tagaagagtt cttcacagag acttaaaacc tcaaaatctc ttgattgatg acaaaggaac 540 aattaaactg gctgattttg gccttgccag agcttttgga atacctatca gagtatatac 600 acatgaggta gtaacactct ggtacagatc tccagaagta ttgctggggt cagctcgtta 66 0 ctcaactcca gttgacattt ggagtatagg caccatattt gctgaactag caactaagaa 720 accacttttc catggggatt cagaaattga tcaactcttc aggattttca gagctttggg 780 cactcccaat aatgaagtgt ggccagaagt ggaatcttta caggactata agaatacatt 840 tcccaaatgg aaaccaggaa gcctagcatc ccatgtcaaa aacttggatg aaaatggctt 900 ggatttgctc tcgaaaat gt taatctatga tccagccaaa cgaatttctg gcaaaatggc 960 actgaatcat ccatatttta atgatttgga caatcagatt aagaagatgt agctttctga 1020 caaaaagttt ccatatgtta tatcaacaga tagttgtgtt tttatgtta actcttgtct 1080 atttttgtct tatatatatt tcttt gttat caaacttcag ctgtacttcg tcttctaatt 1140 tcaaaaatat aacttaaaaa tgtaaatatt ctatatgaat ttaaatataa ttctgtaaat 1200 gtgtgtaggt ctcactgtaa caactatttg ttactataat aaaactataa tattgatgtc 1260 aggaatcagg aaaaaatttg agttggctta aatcatctca gtccttatgg cagttttatt 1320 ttcctg tagt tggaactact aaaatttagg aaaatgctaa gttcaagttt cgtaatgctt 1380 tgaagtattt ttatgctctg aatgtttaaa tgttctcatc agtttcttgc catgttgtta 1440 actatacaac ctggctaaag atgaatattt ttctactggt attttaattt ttgacctaaa 1500 tgttta agca ttcggaatga gaaaactata cagatttgag aaatgatgct aaatttatag 1560 gagttttcag taacttaaaa agctaacatg agagcatgcc aaaatttgct aagtcttaca 1620 aagatcaagg gctgtccgca acagggaaga acagttttga aaatttatga actatcttat 1680 ttttaggtag gttttgaaag ctttttgtct aagtgaattc ttatgccttg gtcagagtaa 1740 taactgaagg agttgcttat cttggctttc gagtctgagt ttaaaactac acattttgac 1800 atagtgttta ttagcagcca tctaaaaagg ctctaatgta tatttaacta aaattactag 1860 ctttgggaat taaactgttt aacaaataa 1889 <210> 9 <211> 2516 <212> DNA < 213> Artificial Sequence <220> <223> CEP55 cDNA polynucleotide sequence <400> 9 aaactcccgg aagcggcatc cacacctgat ggtgtgactc ggccgacgcg agcgccgcgc 60 ttcgcttcag ctgctagctg gcccaaggga ggcgaccgcg gagggtggcg aggggcggcc 120 aggacccgca gccccggggc cgggccggtc cggaccgcca gggagggcag accatttcag 180 agatgtcttc cagaagtacc aaagatttaa ttaaaagtaa gtggggatcg aagcctagta 240 actccaaatc cgaaactaca ttagaaaaat taaagggaga aattgcacac ttaaagacat 300 cagtggatga aatcacaagt gggaaaggaa agctgactga taaagagaga cacagacttt 360 tggagaaaat tcgagtcctt gaggctgaga aggagaagaa tgcttatcaa ctcacagaga 420 aggacaaaga aatacagcga ctgagagacc aactgaaggc cagatatagtacca act cat 480 tgcttgaaca gctggaagag acaacgagag aaggagaaag gagggagcag gtgttgaaag 540 ccttatctga agagaaagac gtattgaaac aacagttgtc tgctgcaacc tcacgaattg 600 ctgaacttga aagcaaaacc aatacactcc gtttatcaca gactgtggct ccaaactgct 660 tcaactcatc aataaataat attcatgaaa tggaaataca gctgaaagat gctctggaga 720 aaaatcagca gtggctcgtg tatgatcagc agcgggaagt ctatgtaaaa ggacttttag 780 caaagatctt tgagttggaa aagaaaacgg aaacagctgc tcattcactc ccacagcaga 840 caaaaaagcc tgaatcagaa ggttatcttc aagaagagaa gcagaaatg t tacaacgatc 900 tcttggcaag tgcaaaaaaa gatcttgagg ttgaacgaca aaccataact cagctgagtt 960 ttgaactgag tgaatttcga agaaaatatg aagaaaccca aaaagaagtt cacaatttaa 1020 atcagctgtt gtattcacaa agaagggcag atgtgcaaca tctggaagat gataggcata 1080 aaacagagaa gatacaaaaa ctcagggaag agaatgatat tgctagggga aaacttgaag 1140 aagagaagaa gagatccgaa gagctcttat ctcaggtcca gtttctttac acatctctgc 1200 taaagcagca agaagaacaa acaagggtag ctctgttgga acaacagatg caggcatgta 1260 ctttagactt tgaaaatgaa aaactcgacc gtcaacatgt gcagcatcaa ttgcatgtaa 1320 ttcttaagga gctccgaaaa gcaagaaatc aaataacaca gttggaatcc ttgaaacagc 1380 ttcatgagtt tgccatcaca gagccattag tcactttcca aggagagact gaaaacagag 1440 aaaaagttgc cgcctcacca aaaagtccca ctgctgcact caatgaaagc ctggtgg aat 1500 gtcccaagtg caatatacag tatccagcca ctgagcatcg cgatctgctt gtccatgtgg 1560 aatactgttc aaagtagcaa aataagtatt tgttttgata ttaaaagatt caatactgta 1620 ttttctgtta gcttgtgggc attttgaatt atatatttca cattttgcat aaaactgcct 1680 atctaccttt gacactccag catgctagtg aatcatgtat cttttaggct gctgtgcatt 174 0 tctcttggca gtgatacctc cctgacatgg ttcatcatca ggctgcaatg acagaatgtg 1800 gtgagcagcg tctactgaga ctactaacat tttgcactgt caaaatactt ggtgaggaaaa 1860 agatagctca ggttattgct aatgggttaa tgcaccagca agcaaaatat tttatgtttt 1920 gggggttttg aaaaatcaaa gataattaac caaggatctt aactgtgttc gcatttttta 1980 tccaagcact tagaaaacct acaatcctaa ttttgatgtc cattgttaag aggtggtgat 2040 agatactatt ttttttttca tattgtatag cggttattag aaaagttggg gattttcttg 2100 atctttattg ctgcttacca ttgaaactta acccagctgt gttcccccaac tctgttctgc 216 0 gcacgaaaca gtatctgttt gaggcataat cttaagtggc cacacacaat gttttctctt 2220 atgttatctg gcagtaactg taacttgaat tacattagca cattctgctt agctaaaatt 2280 gttaaaataa actttaataa acccatgtag ccctctcatt tgattgacag tattttagtt 2340 atttttggca ttcttaaagc tgggcaatgt aatgatcaga tctttgtttg tctgaacagg 2400 tatttttata catgcttttt gtaaaccaaa aacttttaaa tttcttcagg ttttctaaca 2460 tgcttaccac tgggctactg taaatgagaa aagaataaaa ttatttaatg ttttaa 2516 <210> 10 <211> 3507 <212> DNA <213> Artificial Sequence <220> <223> FOXM1 cDNA polynucleotide sequence <400 > 10 aacgctccgc cggcgccaat ttcaaacagc ggaacaaact gaaagctccg gtgccagacc 60 ccacccccgg ccccggcccg ggaccccctc ccctcccggg atcccccggg gttccccacc 120 cgcccgcacc gccggggacc cggccggtcc ggcgcgagcc cccgtccggg gccctggctc 180 ggcccccagg ttggaggagc ccggagcccg ccttcggagc tacggcctaa cggc ggcggc 240 gactgcagtc tggagggtcc acacttgtga ttctcaatgg agagtgaaaa cgcagattca 300 taatgaaaac tagcccccgt cggccactga ttctcaaaag acggaggctg ccccttcctg 360 ttcaaaatgc cccaagtgaa acatcagagg aggaacctaa gagatcccct gcccaac agg 420 agtctaatca agcagaggcc tccaaggaag tggcagagtc caactcttgc aagtttccag 480 ctgggatcaa gattattaac caccccacca tgcccaacac gcaagtagtg gccatcccca 540 acaatgctaa tattcacagc atcatcacag cactgactgc caagggaaaa gagagtggca 600 gtagtgggcc caacaaattc atcctcatca gctgtggggg agccccaact cagcctccag 660 gactccggcc tcaaacccaa accagctatg at gccaaaag gacagaagtg accctggaga 720 ccttgggacc aaaacctgca gctagggatg tgaatcttcc tagaccacct ggagcccttt 780 gcgagcagaa acgggagacc tgtgatggtg aggcagcagg ctgcactatc aacaatagcc 840 tatccaacat ccagtggctt cgaaagatga gttctga tgg actgggctcc cgcagcatca 900 agcaagagat ggaggaaaag gagaattgtc acctggagca gcgacaggtt aaggttgagg 960 agccttcgag accatcagcg tcctggcaga actctgtgtc tgagcggcca ccctactctt 1020 acatggccat gatacaattc gccatcaaca gcactgagag gaagcgcatg actttgaaag 1080 acatctatac gtgg attgag gaccactttc cctactttaa gcacattgcc aagccaggct 1140 ggaagaactc catccgccac aacctttccc tgcacgacat gtttgtccgg gagacgtctg 1200 ccaatggcaa ggtctccttc tggaccattc accccagtgc caaccgctac ttgacattgg 1260 accaggtgtt ta agcagcag cagaaacgac cgaatccaga gctccgccgg aacatgacca 1320 tcaaaaccga actccccctg ggcgcacggc ggaagatgaa gccactgcta ccacgggtca 1380 gctcatacct ggtacctatc cagttcccgg tgaaccagtc actggtgttg cagccctcgg 1440 tgaaggtgcc attgcccctg gcggcttccc tcatgagctc agagcttgcc cgccatagca 1500 agcgagtccg cattgc cccc aaggtgctgc tagctgagga ggggatagct cctctttctt 1560 ctgcaggacc agggaaagag gagaaactcc tgtttggaga agggttttct cctttgcttc 1620 cagttcagac tatcaaggag gaagaaatcc agcctgggga ggaaatgcca cacttagcga 1680 gacccatca a agtggagagc cctcccttgg aagagtggcc ctccccggcc ccatctttca 1740 aagaggaatc atctcactcc tgggaggatt cgtcccaatc tcccacccca agacccaaga 1800 agtcctacag tgggcttagg tccccaaccc ggtgtgtctc ggaaatgctt gtgattcaac 1860 acagggagag gagggagagg agccggtctc ggagaaaaca gcatctactg cctccctgtg 1920 tggatgagcc ggagctgctc ttctcagagg ggcc cagtac ttcccgctgg gccgcagagc 1980 tcccgttccc agcagactcc tctgaccctg cctcccagct cagctactcc caggaagtgg 2040 gaggaccttt taagacaccc attaaggaaa cgctgcccat ctcctccacc ccgagcaaat 2100 ctgtcctccc cagaacccct gaatcctgg a ggctcacgcc cccagccaaa gtagggggac 2160 tggatttcag cccagtacaa acctcccagg gtgcctctga ccccttgcct gaccccctgg 2220 ggctgatgga tctcagcacc actcccttgc aaagtgctcc cccccttgaa tcaccgcaaa 2280 ggctcctcag ttcagaaccc ttagacctca tctccgtccc ctttggcaac tcttctccct 2340 cagatataga cgtccccaag ccaggctccc cggagccaca gg tttctggc cttgcagcca 2400 atcgttctct gacagaaggc ctggtcctgg acacaatgaa tgacagcctc agcaagatcc 2460 tgctggacat cagctttcct ggcctggacg aggacccact gggccctgac aacatcaact 2520 ggtcccagtt tattcctgag ctacagtaga g ccctgccct tgcccctgtg ctcaagctgt 2580 ccaccatccc gggcactcca aggctcagtg caccccaagc ctctgagtga ggacagcagg 2640 cagggactgt tctgctcctc atagctccct gctgcctgat tatgcaaaag tagcagtcac 2700 accctagcca ctgctgggac cttgtgttcc ccaagagtat ctgattcctc tgctgtccct 2760 gccaggagct gaagggtggg aacaaacaaag gcaatggtga aaagagatta ggaacccccc 2820 agcctgtttc cattctctgc ccagcagtct cttaccttcc ctgatctttg cagggtggtc 2880 cgtgtaaata gtataaattc tccaaattat cctctaatta taaatgtaag cttatttcct 2940 tagatcatta tccagagact gccagaaggt gggtaggatg acctgg ggtt tcaattgact 3000 tctgttcctt gcttttagtt ttgatagaag ggaagacctg cagtgcacgg tttcttccag 3060 gctgaggtac ctggatcttg ggttcttcac tgcagggacc cagacaagtg gatctgcttg 3120 ccagagtcct ttttgcccct ccctgccacc tccccgtgtt tccaagtcag ctttcctgca 3180 agaagaaatc ctggttaaaa aagtcttttg tattgggtca ggag ttgaat ttggggtggg 3240 aggatggatg caactgaagc agagtgtggg tgcccagatg tgcgctatta gatgtttctc 3300 tgataatgtc cccaatcata ccagggac tggcattgac gagaactcag gtggaggctt 3360 gagaaggccg aaagggcccc tgacctgcct ggcttcc tta gcttgcccct cagctttgca 3420 aagagccacc ctaggccccca gctgaccgca tgggtgtgag ccagcttgag aacactaact 3480 actcaataaa agcgaaggtg gacatgc 3507 <210> 11 <211> 3095 <212> DNA <213> Artificial Sequence <220> <223> KIF20A cDNA polynucleotide sequence <400> 11 ggagttgtgc tctgcggctg cgaaagtcca gcttcggcga ctaggtgtga gtaagccagt 60 atcccaggag gagcaagtgg cacgtcttcg gacctaggct gcccctgccg tcatgtcgca 120 agggatcctt tctccgccag cgggcttgct gtccgatgac gatgtcgtag tttctcccat 180 gtttgagtcc acagctgcag atttggggtc tgtggtacgc aagaacctgc tatcagactg 240 ctctgtcgtc tctacctccc tagaggacaa gcagcaggtt ccatctgagg acagtatgga 300 gaagg tgaaa gtatacttga gggttaggcc cttgttacct tcagagttgg aacgacagga 360 agatcagggt tgtgtccgta ttgagaatgt ggagaccctt gttctacaag cacccaagga 420 ctcttttgcc ctgaagagca atgaacgggg aattggccaa gccacacaca ggttcacctt 480 t tcccagatc tttgggccag aagtgggaca ggcatccttc ttcaacctaa ctgtgaagga 540 gatggtaaag gatgtactca aagggcagaa ctggctcatc tatacatatg gagtcactaa 600 ctcagggaaa acccacacga ttcaaggtac catcaaggat ggagggattc tcccccggtc 660 cctggcgctg atcttcaata gcctccaagg ccaacttcat ccaacacctg atctgaagcc 720 cttgctctcc aatgaggtaa tctggctaga cagcaagcag at ccgacagg aggaaatgaa 780 gaagctgtcc ctgctaaatg gaggcctcca agaggaggag ctgtccactt ccttgaagag 840 gagtgtctac atcgaaagtc ggataggtac cagcaccagc ttcgacagtg gcattgctgg 900 gctctcttct atcagtcagt gtaccagcag tagccagctg g atgaaacaa gtcatcgatg 960 ggcacagcca gacactgccc cactacctgt cccggcaaac attcgcttct ccatctggat 1020 ctcattcttt gagatctaca acgaactgct ttatgaccta ttagaaccgc ctagccaaca 1080 gcgcaagagg cagactttgc ggctatgcga ggatcaaaat ggcaatccct atgtgaaaga 1140 tctcaactgg attcatgtgc aagatgctga ggaggcct gg aagctcctaa aagtgggtcg 1200 taagaaccag agctttgcca gcacccacct caaccagaac tccagccgca gtcacagcat 1260 cttctcaatc aggatcctac accttcaggg ggaaggagat atagtcccca agatcagcga 1320 gctgtcactc tgtgatctgg ctggctcaga gc gctgcaaa gatcagaaga gtggtgaacg 1380 gttgaaggaa gcaggaaaca ttaacacctc tctacacacc ctgggccgct gtattgctgc 1440 ccttcgtcaa aaccagcaga accggtcaaa gcagaacctg gttcccttcc gtgacagcaa 1500 gttgactcga gtgttccaag gtttcttcac aggccgaggc cgttcctgca tgattgtcaa 1560 tgtgaatccc tgtgcatcta cctatgat ga aactcttcat gtggccaagt tctcagccat 1620 tgctagccag cttgtgcatg ccccacctat gcaactggga ttcccatccc tgcactcgtt 1680 catcaaggaa catagtcttc aggtatcccc cagcttagag aaaggggcta aggcagacac 1740 aggccttgat gatgatattg aaaatgaag c tgacatctcc atgtatggca aagaggagct 1800 cctacaagtt gtggaagcca tgaagacact gcttttgaag gaacgacagg aaaagctaca 1860 gctggagatg catctccgag atgaaatttg caatgagatg gtagaacaga tgcaacagcg 1920 ggaacagtgg tgcagtgaac atttggacac ccaaaaggaa ctattggagg aaatgtatga 1980 agaaaaacta aatatcctca aggagtcact gacaagtttt taccaagaag agattcagga 2040 gcgggatgaa aagattgaag agctagaagc tctcttgcag gaagccagac aacagtcagt 2100 ggcccatcag caatcagggt ctgaattggc cctacggcgg tcacaaaggt tggcagcttc 2160 tgcctccacc cagcagcttc aggaggttaa agctaaatta cagcagtgca aagcagagct 2220 aaactctacc actgaagagt tgcataagta tcagaaaatg ttagaaccac caccctcagc 2280 caagcccttc accattgatg tggacaagaa gttagaagag ggccagaaga atataaggct 2340 gttgc ggaca gagcttcaga aacttggtga gtctctccaa tcagcagaga gagcttgttg 2400 ccacagcact ggggcaggaa aacttcgtca agccttgacc acttgtgatg acatcttaat 2460 caaacaggac cagactctgg ctgaactgca gaacaacatg gtgctagtga aactggacct 2520 tcggaaga ag gcagcatgta ttgctgagca gtatcatact gtgttgaaac tccaaggcca 2580 ggtttctgcc aaaaagcgcc ttggtaccaa ccaggaaaat cagcaaccaa accaacaacc 2640 accagggaag aaaccattcc ttcgaaattt acttccccga acaccaacct gccaaagctc 2700 aacagactgc agcccttatg cccggatcct acgctcacgg cgttcccctt tactcaaatc 2760 tgggcctt tt ggcaaaaagt actaaggctg tggggaaaga gaagagcagt catggccctg 2820 aggtgggtca gctactctcc tgaagaaata ggtctctttt atgctttacc atatatcagg 2880 aattatatcc aggatgcaat actcagacac tagctttttt ctcacttttg tattataacc 2940 acctatgtaa t ctcatgttg ttgttttttt ttatttactt atatgatttc tatgcacaca 3000 aaaacagtta tattaaagat attattgttc acatttttta ttgaattcca aatgtagcaa 3060 aatcattaaa acaaattata aaagggacag aaaaa 3095 <210> 12 <211> 3620 <212> DNA <213> Artificial Sequence <220> <223> KIF23 cDNA polynucleotide sequence <400> 12 gcagagcacc gc gccttagc cgcgaagttc tagttcttgc tgccggtcct aacgtcccgc 60 agtcttcgcc agccagccgt cccgcatgcg cgtttgggcg gcgtggagcc tgctgccatg 120 aagtcagcga gagctaagac accccggaaa cctaccgtga aaaaagggtc ccaaacgaac 180 cttaaagacc cagttggggt atactgtagg gtgcgcccac tgggctttcc tgatcaagag 240 tgttgcata g aagtgatcaa taatacaact gttcagcttc atactcctga gggctacaga 300 ctcaaccgaa atggagacta taaggagact cagtattcat ttaaacaagt atttggcact 360 cacaccaccc agaaggaact ctttgatgtt gtggctaatc ccttggtcaa tgacctcatt 420 catggcaaaa atggtctt ct ttttacatat ggtgtgacgg gaagtggaaa aactcacaca 480 atgactggtt ctccagggga aggagggctg cttcctcgtt gtttggacat gatctttaac 540 agtatagggt catttcaagc taaacgatat gttttcaaat ctaatgatag gaatagtatg 600 gatatacagt gtgaggttga tgccttatta gaacgtcaga aaagagaagc tatgcccaat 660 ccaaagactt cttctagcaa acga caagta gatccagagt ttgcagatat gataactgta 720 caagaattct gcaaagcaga agaggttgat gaagatagtg tctatggtgt atttgtctct 780 tatattgaaa tatataataa ttacatatat gatctattgg aagaggtgcc gtttgatccc 840 ataaaaccca aacctccaca atctaaattg cttcg tgaag ataagaacca taacatgtat 900 gttgcaggat gtacagaagt tgaagtgaaa tctactgagg aggcttttga agttttctgg 960 agaggccaga aaaagagacg tattgctaat acccatttga atcgtgagtc cagccgttcc 1020 catagcgtgt tcaacattaa attagttcag gctcccttgg atgcagatgg agacaatgtc 1080 ttacaggaaa aagaacaaat cactataagt cagtt gtcct tggtagatct tgctggaagt 1140 gaaagaacta accggaccag agcagaaggg aacagattac gtgaagctgg taatattaat 1200 cagtcactaa tgacgctaag aacatgtatg gatgtcctaa gagagaacca aatgtatgga 1260 actaacaaga tggttccata tcgagattca aagttaaccc atctgt tcaa gaactacttt 1320 gatggggaag gaaaagtgcg gatgatcgtg tgtgtgaacc ccaaggctga agattatgaa 1380 gaaaacttgc aagtcatgag atttgcggaa gtgactcaag aagttgaagt agcaagacct 1440 gtagacaagg caatatgtgg tttaacgcct gggaggagat acagaaacca gcctcgaggt 1500 ccagttggaa atgaaccatt ggttactgac gtggttttgc aga gttttcc acctttgcca 1560 tcatgcgaaa ttttggatat caacgatgag cagacacttc caaggctgat tgaagcctta 1620 gagaaacgac ataacttacg acaaatgatg attgatgagt ttaacaaaca atctaatgct 1680 tttaaagctt tgttacaaga atttgacaat gctgtttta a gtaaagaaaa ccacatgcaa 1740 gggaaactaa atgaaaagga gaagatgatc tcaggacaga aattggaaat agaacgactg 1800 gaaaagaaaa acaaaacttt agaatataag attgagattt tagagaaaac aactactatc 1860 tatgaggaag ataaacgcaa tttgcaacag gaacttgaaa ctcagaacca gaaacttcag 1920 cgacagtttt ctgacaaacg cagattagaa gccaggttgc aaggcatggt gacagaaacg 1980 acaatgaagt gggagaaaga atgtgagcgt agagtggcag ccaaacagct ggagatgcag 2040 aataaactct gggttaaaga tgaaaagctg aaacaactga aggctattgt taccgaacct 2100 aaaactgaga agccagagag accctctcgg gagcgagatc gagaaaaagt tactcaaaga 2160 t ctgtttctc catcacctgt gcctctttct agtaactata ttgctcagat ttccaacggc 2220 cagcaactca tgagccagcc acagctacat aggcgctcta actcttgcag cagcatttct 2280 gtagcttcct gtatttcgga atgggagcag aaaattccta cgtacaacac acctctcaaa 2340 gtcacatcta ttgcaaggcg taggcagcag gagccaggac aaagcaaaac ttgtatcgtg 2 400 tcagacagaa ggcgagggat gtactggact gaaggcaggg aggtggttcc tacattcaga 2460 aatgagatag aaatagaaga ggatcattgc ggcaggttac tctttcaacc tgatcagaac 2520 gcaccacaa ttcgtctccg acacagacga tcacgctctg caggagacag atgggtagat 25 80 cataagcccg cctctaacat gcaaactgaa acagtcatgc agccacatgt ccctcatgcc 2640 atcacagtat ctgttgcaaa tgaaaaggca ctagctaagt gtgagaagta catgctgacc 2700 caccaggaac tagcctccga tggggagatt gaaactaaac taattaaggg tgatatttat 2760 aaaacaaggg gtggtggaca atctgttcag tttactgata ttgagacttt aaagcaagaa 2820 tcaccaaatg gtagt cgaaa acgaagatct tccacagtag cacctgccca accagatggt 2880 gcagagtctg aatggaccga tgtagaaaca aggtgttctg tggctgtgga gatgagagca 2940 ggatcccagc tgggacctgg atatcagcat cacgcacaac ccaagcgcaa aaagccatga 3000 actgacagtc ccagtactga aagaacattt tcatttgtgt ggatgatttc tcgaaagcca 3060 tgccagaagc agtcttccag gtcatcttgt agaactccag ctttgttgaa aatcacggac 3120 ctcagctaca tcatacactg acccagagca aagctttccc tatggttcca aagacaacta 3180 gtattcaaca aaccttgtat agtatatgtt ttgccatatt taatattaat agcagaggaa 3240 gactcctttt t tcatcactg tatgaatttt ttataatgtt tttttaaaat atatttcatg 3300 tatacttata aactaattca cacaagtgtt tgtcttagat gattaaggaa gactatatct 3360 agatcatgtc tgatttttta ttgtgacttc tccagccctg gtctgaattt cttaaggttt 3420 tataaacaaa tgct gctatt tattagctgc aagaatgcac tttagaacta tttgacaatt 3480 cagactttca aaataaagat gtaaatgact ggccaataat aaccattta ggaaggtgtt 3540 ttgaattctg tatgtatata ttcactttct gacatttaga tatgccaaaa gaattaaaat 3600 caaaagcact aagaaataca 3620 <210> 13 <211> 12716 <212> DNA <213> Artificial Sequence <220> <223 > MKI67 cDNA polynucleotide sequence <400> 13 agaaggaagt ggagggctga cgctgcgggc gggcgggcgg gcgggaggac tcgactcggt 60 gggagccgct agagccgggc gcccggggac gtagcctgta gggccaccgg gtccccgtca 120 gaggcggcgg cgggagcagc ggggactgca ggccggggtg cagcgaacgc gaccccgcgg 180 gctgcggccc ggtgtgtgcg gagcgtggcg ggcg cagctt accgggcgga ggtgagcgcg 240 gcgccggctc ctcctgcggc ggactttggg tgcgacttga cgagcggtgg ttcgacaagt 300 ggccttgcgg gccggatcgt cccagtggaa gagttgtaaa tttgcttctg gccttcccct 360 acggattata cctgg ccttc ccctacggat tatactcaac ttactgttta gaaaatgtgg 420 cccacgagac gcctggttac tatcaaaagg agcggggtcg acggtcccca ctttcccctg 480 agcctcagca cctgcttgtt tggaaggggt attgaatgtg acatccgtat ccagcttcct 540 gttgtgtcaa aacaacattg caaaattgaa atccatgagc aggaggcaat attacataat 600 ttcagttcca caaatccaac acaagtaaat gggtctgtta ttgatgagcc tg tacggcta 660 aaacatggag atgtaataac tattattgat cgttccttca ggtatgaaaa tgaaagtctt 720 cagaatggaa ggaagtcaac tgaatttcca agaaaaatac gtgaacagga gccagcacgt 780 cgtgtctcaa gatctagctt ctcttctgac cctgatgaga aagctcaaga ttcc aaggcc 840 tattcaaaaa tcactgaagg aaaagtttca ggaaatcctc aggtacatat caagaatgtc 900 aaagaagaca gtaccgcaga tgactcaaaa gacagtgttg ctcagggaac aactaatgtt 960 cattcctcag aacatgctgg acgtaatggc agaaatgcag ctgatcccat ttctggggat 1020 tttaaagaaa tttccagcgt taaattagtg agccgttatg gagaattgaa gtctgttccc 1080 actacacaat gtcttgacaa tagcaaaaaa aatgaatctc ccttttggaa gctttatgag 1140 tcagtgaaga aagagttgga tgtaaaatca caaaaagaaa atgtcctaca gtattgtaga 1200 aaatctggat tacaaactga ttacgcaaca gagaaagaaa gtgctgatgg tttacagggg 126 0 gagacccaac tgttggtctc gcgtaagtca agaccaaaat ctggtgggag cggccacgct 1320 gtggcagagc ctgcttcacc tgaacaagag cttgaccaga acaaggggaa gggaagagac 1380 gtggagtctg ttcagactcc cagcaaggct gtgggcgcca gctttcctct ctatgagccg 1440 gctaaaatga agacccctgt acaatattca cagcaacaaa attctccaca aaaacataag 1500 aac aaagacc tgtatactac tggtagaaga gaatctgtga atctgggtaa aagtgaaggc 1560 ttcaaggctg gtgataaaac tcttactccc aggaagcttt caactagaaa tcgaacacca 1620 gctaaagttg aagatgcagc tgactctgcc actaagccag aaaatctctc ttccaaaacc 1680 agagga agta ttcctacaga tgtggaagtt ctgcctacgg aaactgaaat tcacaatgag 1740 ccatttttaa ctctgtggct cactcaagtt gagaggaaga tccaaaagga ttccctcagc 1800 aagcctgaga aattgggcac tacagctgga cagatgtgct ctgggttacc tggtcttagt 1860 tcagttgata tcaacaactt tggtgattcc attaatgaga gtgagggaat acctttgaaa 1920 agaaggcgtg tgtcc tttgg tgggcaccta agacctgaac tatttgatga aaacttgcct 1980 cctaatacgc ctctcaaaag gggagaagcc ccaaccaaaa gaaagtctct ggtaatgcac 2040 actccacctg tcctgaagaa aatcatcaag gaacagcctc aaccatcagg aaaacaagag 2100 tcaggttcag aaat ccatgt ggaagtgaag gcacaaagct tggttataag ccctccagct 2160 cctagtccta ggaaaactcc agttgccagt gatcaacgcc gtaggtcctg caaaacagcc 2220 cctgcttcca gcagcaaatc tcagacagag gttcctaaga gaggagggag aaagagtggc 2280 aacctgcctt caaagagagt gtctatcagc cgaagtcaac atgatatttt acagatgata 2340 tgttccaaaa gaagaagtgg tg cttcggaa gcaaatctga ttgttgcaaa atcatgggca 2400 gatgtagtaa aacttggtgc aaaaaaaca caaactaaag tcataaaaca tggtcctcaa 2460 aggtcaatga acaaaaggca aagaagacct gctactccaa agaagcctgt gggcgaagtt 2520 cacagtcaat ttagtacagg ccac gcaaac tctccttgta ccataataat agggaaagct 2580 catactgaaa aagtacatgt gcctgctcga ccctacagag tgctcaacaa cttcatttcc 2640 aaccaaaaaa tggactttaa ggaagatctt tcaggaatag ctgaaatgtt caagacccca 2700 gtgaaggagc aaccgcagtt gacaagcaca tgtcacatcg ctatttcaaa ttcagagaat 2760 ttgcttggaa aacagtttca aggaactgat tca ggagaag aacctctgct ccccacctca 2820 gagagttttg gaggaaatgt gttcttcagt gcacagaatg cagcaaaaca gccatctgat 2880 aaatgctctg caagccctcc cttaagacgg cagtgtatta gagaaaatgg aaacgtagca 2940 aaaacgccca ggaacaccta caaaatgact tctctggaga caaaaacttc agatactgag 3000 acagagcctt caaaaacagt atccactgca aacaggtcag gaaggtctac agagttcagg 3060 aatatacaga agctacctgt ggaaagtaag agtgaagaaa caaatacaga aattgttgag 3120 tgcatcctaa aaagaggtca gaaggcaaca ctactacaac aaaggagaga aggagagatg 3180 aaggaaatag aaagaccttt tgagacatat aaggaaaata ttgaattaaa agaaa acgat 3240 gaaaagatga aagcaatgaa gagatcaaga acttgggggc agaaatgtgc accaatgtct 3300 gacctgacag acctcaagag cttgcctgat acagaactca tgaaagacac ggcacgtggc 3360 cagaatctcc tccaaaccca agatcatgcc aaggcaccaa agagtgagaa agg caaaatc 3420 actaaaatgc cctgccagtc attacaacca gaaccaataa acaccccaac acacacaaaa 3480 caacagttga aggcatccct ggggaaagta ggtgtgaaag aagagctcct agcagtcggc 3540 aagttcacac ggacgtcagg ggagaccacg cacacgcaca gagagccagc aggagatggc 3600 aagagcatca gaacgtttaa ggagtctcca aagcagatcc tggacccagc ag cccgtgta 3660 actggaatga agaagtggcc aagaacgcct aaggaagagg cccagtcact agaagacctg 3720 gctggcttca aagagctctt ccagacacca ggtccctctg aggaatcaat gactgatgag 3780 aaaactacca aaatagcctg caaatctcca ccaccagaat cagtggacac tccaacaagc 3840 acaaagcaat ggcctaagag aagtctcagg aaagcagatg tagaggaaga attcttagca 3900 ctcaggaaac taacaccatc agcagggaaa gccatgctta cgcccaaacc agcaggaggt 3960 gatgagaaag acattaaagc atttatggga actccagtgc agaaactgga cctggcagga 4020 actttacctg gcagcaaaag acagctacag actcctaagg aaaaggccca ggctctagaa 4080 gacctgg ctg gctttaaaga gctcttccag actcctggtc acaccgagga attagtggct 4140 gctggtaaaa ccactaaaat accctgcgac tctccacagt cagacccagt ggacacccca 4200 acaagcacaa agcaacgacc caagagaagt atcaggaaag cagatgtaga gggagaactc 4260 ttagcgtgca ggaat ctaat gccatcagca ggcaaagcca tgcacacgcc taaaccatca 4320 gtaggtgaag agaaagacat catcatattt gtgggaactc cagtgcagaa actggacctg 4380 acagagaact taaccggcag caagagacgg ccaaaactc ctaaggaaga ggcccaggct 4440 ctggaagacc tgactggctt taaagagctc ttccagaccc ctggtcatac tgaagaagca 4500 gtggctgctg gcaaaactac taaa atgccc tgcgaatctt ctccaccaga atcagcagac 4560 accccacaa gcacaagaag gcagcccaag acacctttgg agaaaaggga cgtacagaag 4620 gagctctcag ccctgaagaa gctcacacag acatcagggg aaaccacaca cacagataaa 4680 gtaccaggag gtgaggataa aagcatcaac gcgt ttaggg aaactgcaaa acagaaactg 4740 gacccagcag caagtgtaac tggtagcaag aggcacccaa aaactaagga aaaggcccaa 4800 cccctagaag acctggctgg cttgaaagag ctcttccaga caccagtatg cactgacaag 4860 cccacgactc acgagaaaac taccaaaata gcctgcagat cacaaccaga cccagtggac 4920 acaccaacaa gctccaagcc acagtccaag agaagtctca ggaaagtgga cgtagaagaa 4980 gaattcttcg cactcaggaa acgaacacca tcagcaggca aagccatgca cacacccaaa 5040 ccagcagtaa gtggtgagaa aaacatctac gcatttatgg gaactccagt gcagaaactg 5100 gacctgacag agaacttaac tggcagcaag agacgg ctac aaactcctaa ggaaaaggcc 5160 caggctctag aagacctggc tggctttaaa gagctcttcc agacacgagg tcacactgag 5220 gaatcaatga ctaacgataa aactgccaaa gtagcctgca aatcttcaca accagaccca 5280 gacaaaaacc cagcaagctc caagcgacgg ctcaagacat ccctggggaa agtgggcgtg 5340 aaagaagagc tcctagcagt tggcaagctc a cacagacat caggagagac tacacacaca 5400 cacacagagc caacaggaga tggtaagagc atgaaagcat ttatggagtc tccaaagcag 5460 atcttagact cagcagcaag tctaactggc agcaagaggc agctgagaac tcctaaggga 5520 aagtctgaag tccctgaaga cctggccggc ttcatcgagc tctt ccagac accaagtcac 5580 actaaggaat caatgactaa cgaaaaaact accaaagtat cctacagagc ttcacagcca 5640 gacctagtgg acaccccaac aagctccaag ccacagccca agagaagtct caggaaagca 5700 gacactgaag aagaattttt agcatttagg aaacaaacgc catcagcagg caaagccatg 5760 cacacaccca aaccagcagt aggtgaagag aaagacatca acacgt tttt gggaactcca 5820 gtgcagaaac tggaccagcc aggaaattta cctggcagca atagacggct acaaactcgt 5880 aaggaaaagg cccaggctct agaagaactg actggcttca gagagctttt ccagacacca 5940 tgcactgata accccacgac tgatgagaaa actaccaaaa aaatactctg caaatct ccg 6000 caatcagacc cagcggacac cccaacaaac acaaagcaac ggcccaagag aagcctcaag 6060 aaagcagacg tagaggaaga atttttagca ttcaggaaac taacaccatc agcaggcaaa 6120 gccatgcaca cgcctaaagc agcagtaggt gaagagaaag acatcaacac atttgtgggg 6180 actccagtgg agaaactgga cctgctagga aatttacctg gcagcaagag ac ggccacaa 6240 actcctaaag aaaaggccaa ggctctagaa gatctggctg gcttcaaaga gctcttccag 6300 acaccaggtc acactgagga atcaatgacc gatgacaaaa tcacagaagt atcctgcaaa 6360 tctccacaac cagacccagt caaaacccca acaagctcca agcaacgact caagatatcc 6 420 ttggggaaag taggtgtgaa agaagaggtc ctaccagtcg gcaagctcac acagacgtca 6480 gggaagacca cacagacaca cagagagaca gcaggagatg gaaagagcat caaagcgttt 6540 aaggaatctg caaagcagat gctggaccca gcaaactatg gaactgggat ggagaggtgg 6600 ccaagaacac ctaaggaaga ggcccaatca ctagaagacc tggccggctt caaagagctc 6660 ttccagacac cagaccacac tgaggaatca acaactgatg acaaaactac caaaatagcc 6720 tgcaaatctc caccaccaga atcaatggac actccaacaa gcacaaggag gcggcccaaa 6780 acacctttgg ggaaaaggga tatagtggaa gagctctcag ccctgaagca gctcacacag 6840 accacacaca cagacaa agt accaggagat gaggataaag gcatcaacgt gttcagggaa 6900 actgcaaaac agaaactgga cccagcagca agtgtaactg gtagcaagag gcagccaaga 6960 actcctaagg gaaaagccca acccctagaa gacttggctg gcttgaaaga gctcttccag 7020 acaccaatat gcactgacaa gcccacgact catgagaaaa ctaccaaaat agcctgcaga 7080 tctccacaac cagacccagt gggtacccca acaatcttca agccacagtc caagagaagt 7140 ctcaggaaag cagacgtaga ggaagaatcc ttagcactca ggaaacgaac accatcagta 7200 gggaaagcta tggacacacc caaaccagca ggaggtgatg agaaagacat gaaagcattt 7260 atgggaactc cagtg cagaa attggacctg ccaggaaatt tacctggcag caaaagatgg 7320 ccacaaactc ctaaggaaaa ggcccaggct ctagaagacc tggctggctt caaagagctc 7380 ttccagacac caggcactga caagcccacg actgatgaga aaactaccaa aatagcctgc 7440 aaatctccac aaccagaccc agtggacacc ccagcaagca caaagcaacg gcccaagaga 7500 aacctcagga aagcagac gt agaggaagaa tttttagcac tcaggaaacg aacaccatca 7560 gcaggcaaag ccatggacac accaaaacca gcagtaagtg atgagaaaaa tatcaacaca 7620 tttgtggaaa ctccagtgca gaaactggac ctgctaggaa atttacctgg cagcaagaga 7680 cagccacaga ctcctaagga aaa ggctgag gctctagagg acctggttgg cttcaaagaa 7740 ctcttccaga caccaggtca cactgaggaa tcaatgactg atgacaaaat cacagaagta 7800 tcctgtaaat ctccacagcc agagtcattc aaaacctcaa gaagctccaa gcaaaggctc 7860 aagatacccc tggtgaaagt ggacatgaaa gaagagcccc tagcagtcag caagctcaca 7920 cggacatcag gggagactac gcaaacac ac acagagccaa caggagatag taagagcatc 7980 aaagcgttta aggagtctcc aaagcagatc ctggacccag cagcaagtgt aactggtagc 8040 aggaggcagc tgagaactcg taaggaaaag gcccgtgctc tagaagacct ggttgacttc 8100 aaagagctct tctcagcacc aggtcac act gaagagtcaa tgactattga caaaaacaca 8160 aaaattccct gcaaatctcc cccaccagaa ctaacagaca ctgccacgag cacaaagaga 8220 tgccccaaga cacgtcccag gaaagaagta aaagaggagc tctcagcagt tgagaggctc 8280 acgcaaacat cagggcaaag cacacacaca cacaaagaac cagcaagcgg tgatgagggc 8340 atcaaagtat tgaagcaacg tgcaaagaag a aaccaaacc cagtagaaga ggaacccagc 8400 aggagaaggc caagagcacc taaggaaaag gcccaacccc tggaagacct ggccggcttc 8460 acagagctct ctgaaacatc aggtcacact caggaatcac tgactgctgg caaagccact 8520 aaaataccct gcgaatctcc cccactagaa gtggtagaca ccac agcaag cacaaagagg 8580 catctcagga cacgtgtgca gaaggtacaa gtaaaagaag agccttcagc agtcaagttc 8640 acacaaacat caggggaaac cacggatgca gacaaagaac cagcaggtga agataaaggc 8700 atcaaagcat tgaaggaatc tgcaaaacag acaccggctc cagcagcaag tgtaactggc 8760 agcaggagac ggccaagagc acccagggaa agtgcc caag ccatagaaga cctagctggc 8820 ttcaaagacc cagcagcagg tcacactgaa gaatcaatga ctgatgacaa aaccactaaa 8880 ataccctgca aatcatcacc agaactagaa gacaccgcaa caagctcaaa gagacggccc 8940 aggacacgtg cccagaaagt agaagtgaag gaggagctgt tagcagt tgg caagctcaca 9000 caaacctcag gggagaccac gcacaccgac aaagagccgg taggtgaggg caaaggcacg 9060 aaagcattta agcaacctgc aaagcggaag ctggacgcag aagatgtaat tggcagcagg 9120 agacagccaa gagcacctaa ggaaaaggcc caacccctgg aagatctggc cagcttccaa 9180 gagct ctctc aaacaccagg ccacactgag gaactggcaa atggtgctgc tgatagcttt 9240 acaagcgctc caaagcaaac acctgacagt ggaaaacctc taaaaatatc cagaagagtt 9300 cttcgggccc ctaaagtaga acccgtggga gacgtggtaa gcaccagaga ccctgtaaaa 936 0 tcacaaagca aaagcaacac ttccctgccc ccactgccct tcaagagggg aggtggcaaa 9420 gatggaagcg tcacgggaac caagaggctg cgctgcatgc cagcaccaga ggaaattgtg 9480 gaggagctgc cagccagcaa gaagcagagg gttgctccca gggcaagagg caaatcatcc 9540 gaacccgtgg tcatcatgaa gagaagtttg aggacttctg caaaaagaat tgaacctgcg 9600 gaagagctga a cagcaacga catgaaaacc aacaaagagg aacacaaatt acaagactcg 9660 gtccctgaaa ataagggaat atccctgcgc tccagacgcc aaaataagac tgaggcagaa 9720 cagcaaataa ctgaggtctt tgtattagca gaaagaatag aaataaacag aaatgaaaag 9780 aagcccatga agacctcccc a gagatggac attcagaatc cagatgatgg agcccggaaa 9840 cccataccta gagacaaagt cactgagaac aaaaggtgct tgaggtctgc tagacagaat 9900 gagagctccc agcctaaggt ggcagaggag agcggagggc agaagagtgc gaaggttctc 9960 atgcagaatc agaaagggaa aggagaagca ggaaattcag actccatgtg cctgagatca 10020 agaaagacaa aaagcc agcc tgcagcaagc actttggaga gcaaatctgt gcagagagta 10080 acgcggagtg tcaagaggtg tgcagaaaat ccaaagaagg ctgaggacaa tgtgtgtgtc 10140 aagaaaataa gaaccagaag tcatagggac agtgaagata tttgacagaa aaatcgaact 10200 gggaa aaata taataaagtt agttttgtga taagttctag tgcagttttt gtcataaatt 10260 acaagtgaat tctgtaagta aggctgtcag tctgcttaag ggaagaaaac tttggatttg 10320 ctgggtctga atcggcttca taaactccac tgggagcact gctgggctcc tggactgaga 10380 atagttgaac accgggggct ttgtgaagga gtctgggcca aggtttgccc tcagctttgc 10440 agaatgaagc cttgagg tct gtcaccaccc acagccaccc tacagcagcc ttaactgtga 10500 cacttgccac actgtgtcgt cgtttgtttg cctatgtcct ccagggcacg gtggcaggaa 10560 caactatcct cgtctgtccc aacactgagc aggcactcgg taaacacgaa tgaatggatg 10620 agcgcacgga tgaatggagc ttacaagatc tgtctttcca atggccgggg gcatttggtc 10680 cccaaattaa ggctattgga catctgcaca ggacagtcct atttttgatg tcctttcctt 10740 tctgaaaata aagttttgtg ctttggagaa tgactcgtga gcacatcttt agggaccaag 10800 agtgactttc tgtaaggagt gactcgtggc ttgccttggt ctcttgggaa tacttttcta 10860 actagggttg ctctcacctg agacattctc cacccgcgga atctcagggt cccaggctgt 10920 gggccatcac gacctcaaac tggctcctaa tctccagctt tcctgtcatt gaaagcttcg 10980 gaagtttact ggctctgctc ccgcctgttt tctttctgac tctatctggc agcccgatg c 11040 cacccagtac aggaagtgac accagtactc tgtaaagcat catcatcctt ggagagactg 11100 agcactcagc accttcagcc acgatttcag gatcgcttcc ttgtgagccg ctgcctccga 11160 aatctccttt gaagcccaga catctttctc cagcttcaga cttgtagata taactcgttc 11220 atcttcattt actttccact ttgccccctg tcctctctgt gttcccccaaa tcagagaata 11280 gcccgccatc ccccaggtca cctgtctgga ttcct cccca ttcacccacc ttgccaggtg 11340 caggtgagga tggtgcacca gacagggtag ctgtccccca aaatgtgccc tgtgcgggca 11400 gtgccctgtc tccacgtttg tttccccagt gtctggcggg gagccaggtg acatcataaa 11460 tacttgctga atgaatg cag aaatcagcgg tactgacttg tactatattg gctgccatga 11520 tagggttctc acagcgtcat ccatgatcgt aagggagaat gacattctgc ttgagggagg 11580 gaatagaaag gggcagggag gggacatctg agggcttcac agggctgcaa agggtacagg 11640 gattgcacca gggcagaaca ggggagggtg ttcaaggaag agtggctctt agcagaggca 11700 ctttggaagg tgtgaggcat aaatgcttcc ttctacgtag gccaacct ca aaactttcag 11760 taggaatgtt gctatgatca agttgttcta acactttaga cttagtagta attatgaacc 11820 tcacatagaa aaatttcatc cagccatatg cctgtggagt ggaatattct gtttagtaga 11880 aaaatccttt agagttcagc tctaaccaga aatcttgctg aagtatgtca gcaccttttc 11940 tcaccctggt aagtacagta tttcaagagc acgctaaggg tggttttcat tttacagggc 12000 tgttgatgat gggttaaaaa tgttcattta agggctaccc ccgtgtttaa tagatgaaca 12060 ccacttctac acaaccctcc ttggtactgg gggagggaga gatctgacaa atactgccca 12120 ttcccctagg ctgactggat ttgagaacaa atacccaccc atttccacca tggtatggta 12180 acttctctga gcttcagttt ccaagtgaat ttccatgtaa taggacattc ccattaaata 12240 caagctgttt ttactttttc gcctcccagg gcctgtggga tctggtcccc cagcctctct 12300 tgggctttct tacactaact ctgtacctac catctcctgc ctcccttagg caggcacctc 12360 caaccaccac acactccctg ctgttttccc tgcctggaac tttccctcct gccccaccaa 12420 gatcatttca tccagtcctg agctcagctt aagggaggct tcttgcctgt gggttccctc 12480 acccccatgc ctgtcctcca ggctggggca ggttcttagt ttgcctggaa ttgttctgta 12540 cctctttgta gcacgtagtg ttgtggaaac taagccacta attgagtttc t ggctcccct 12600 cctggggttg taagttttgt tcattcatga gggccgactg catttcctgg ttactctatc 12660 ccagtgacca gccacaggag atgtccaata aagtatgtga tgaaatggtc ttaaaa 12716 <210> 14 <211> 2218 <212> DNA <213 > Artificial Sequence <220> <223> NUSAP1 cDNA polynucleotide sequence <400> 14 gtggcgccag ggatttgaac cgcgctgacg aagtttggtg atccatcttc cgagtatcgc 60 cgggatttcg aatcgcgatg atcatcccct ctctagagga gctggactcc ctcaagtaca 120 gtgacctgca gaacttagcc aagagtctgg gtctccgggc caacctgagg gcaaccaagt 180 tgttaaaagc cttgaaaggc tacattaaac atgaggcaag aaaaggaaat gagaatcagg 240 atgaaagtca aacttctgca tcctcttgtg atgagactga gatacagatc agcaaccagg 300 aagaagctga gagacagcca cttggccatg tcaccaaaac aaggagaagg tgcaagactg 360 tccgtgtgga ccctgactca cagaatcatg aaaagcagga aagccaggat ctcagagcta 420 ctgcaaaagt tccttctcca ccagacgagc accaagaagc tgagaatgct gtttcctcag 480 gtaacagaga ttcaaaggta ccttcagaag gaaagaaatc tctctacaca gatgagtcat 540 ccaaacctgg aaaaaataaa agaactgcaa tcactactcc aaactttaag aagcttcatg 600 aagctcattt taaggaaatg gagtccattg atcaatatat tgagagaaaa aagaaacatt 660 ttgaagaaca caattccatg aatgaactga agcagcagcc catcaataag ggaggggtca 720 ggactccagt acctccaaga ggaagactct ctgtggcttc tactcccatc agccaacgac 780 gctcgcaagg ccggtcttgt ggccctgcaa gtcagagtac cttgggtctg aaggggtcac 840 tcaagcgctc tgctatctct gcagctaaaa cgggtgtcag gttttcagct gctactaaag 900 ataatgagca taagcgttca ctgaccaaga ctccagccag aaagtctgca catgtgaccg 960 tgtctggggg caccccaaaa ggcgaggctg tgcttgggac acacaaatta aagaccatca 1020 cggggaattc tgctgctgtt attaccccat tcaagttgac aactgaggca acgcagactc 1 080 cagtctccaa taagaaacca gtgtttgatc ttaaagcaag tttgtctcgt cccctcaact 1140 atgaaccaca caaaggaaag ctaaaaccat gggggcaatc taaagaaaat aattatctaa 1200 atcaacatgt caacagaatt aacttctaca agaaaactta caaacaaccc catctccaga 1260 caaaggaaga gcaacggaag aaacgcgagc aagaacgaaa ggagaagaaa gcaaaggttt 1320 tgggaatgcg aaggggcctc attttggctg a agattaata attttttaac atcttgtaaa 1380 tattcctgta ttctcaactt ttttcctttt gtaaattttt tttttttgct gtcatcccca 1440 ctttagtcac gagatctttt tctgctaact gttcatagtc tgtgtagtgt ccatgggttc 1500 ttcatgtgct atgatct ctg aaaagacgtt atcaccttaa agctcaaatt ctttgggatg 1560 gtttttactt aagtccatta acaattcagg tttctaacga gacccatcct aaaattctgt 1620 ttctagattt ttaatgtcaa gttcccaagt tccccctgct ggttctaata ttaacagaac 1680 tgcagtcttc tgctagccaa tagcatttac ctgatggcag ctagttatgc aagcttcagg 1740 agaatttgaa caataacaag aataggg taa gctgggatag aaaggccacc tcttcactct 1800 ctatagaata tagtaacctt tatgaaacgg ggccatatag tttggttatg acatcaatat 1860 tttacctagg tgaaattgtt taggcttatg taccttcgtt caaatatcct catgtaattg 1920 ccatctgtca ctcactatat tcacaaaaat aaaact ctac aactcattct aacattgctt 1980 acttaaaagc tacatagccc tatcgaaatg cgaggattaa tgctttaatg cttttagaga 2040 cagggtctca ctgtgttgcc caggctggtc tcaaactcca ccaaatgtac ttcttattca 2100 ttttatggaa aagactaggc tttgcttagt atcatgtcca tgtttccttc acctcagtgg 2160 agcttctgag ttttatactg ctca agatcg tcataaataa aattttttct cattgtca 2218 <210> 15 <211> 2160 <212> DNA <213> Artificial Sequence <220> <223> PLK1 cDNA polynucleotide sequence <400> 15 ggaggctctg ctcggatcga ggtctgcagc gcagcttcgg gagcatgagt gctgcagtga 60 ctgcagggaa gctggcacgg gcaccggccg accctgggaa agccggggtc cccggagttg 120 cagctcccgg agctccggcg gcggctccac cggcgaaaga gatccc ggag gtcctagtgg 180 acccacgcag ccggcggcgc tatgtgcggg gccgcttttt gggcaagggc ggctttgcca 240 agtgcttcga gatctcggac gcggacacca aggaggtgtt cgcgggcaag attgtgccta 300 agtctctgct gctcaagccg caccagaggg a gaagatgtc catggaaata tccattcacc 360 gcagcctcgc ccaccagcac gtcgtaggat tccacggctt tttcgaggac aacgacttcg 420 tgttcgtggt gttggagctc tgccgccgga ggtctctcct ggagctgcac aagaggagga 480 aagccctgac tgagcctgag gcccgatact acctacggca aattgtgctt ggctgccagt 540 acctgcaccg aaaccga gtt attcatcgag acctcaagct gggcaacctt ttcctgaatg 600 aagatctgga ggtgaaaata ggggattttg gactggcaac caaagtcgaa tatgacgggg 660 agaggaagaa gaccctgtgt gggactccta attacatagc tcccgaggtg ctgagcaaga 720 aagggcacag tttcga ggtg gatgtgtggt ccattgggtg tatcatgtat accttgttag 780 tgggcaaacc accttttgag acttcttgcc taaaagagac ctacctccgg atcaagaaga 840 atgaatacag tattcccaag cacatcaacc ccgtggccgc ctccctcatc cagaagatgc 900 ttcagacaga tcccactgcc cgcccaacca ttaacgagct gcttaatgac gagttcttta 960 cttctggcta tatccctgcc cgtctcccca tcacctgcct gaccattcca ccaaggtttt 1020 cgattgctcc cagcagcctg gaccccagca accggaagcc cctcacagtc ctcaataaag 1080 gcttggagaa ccccctgcct gagcgtcccc gggaaaaaga agaaccagtg gttcgagaga 1140 caggtgaggt ggtcgactgc cacctcagtg acatgctg ca gcagctgcac agtgtcaatg 1200 cctccaagcc ctcggagcgt gggctggtca ggcaagagga ggctgaggat cctgcctgca 1260 tccccatctt ctgggtcagc aagtgggtgg actattcgga caagtacggc cttgggtatc 1320 agctctgtga taacagcgtg ggggtgctct tcaatgactc aacacgcctc atcctctaca 1380 atgatggtga cagcctgcag tacatagagc gtgac ggcac tgagtcctac ctcaccgtga 1440 gttcccatcc caactccttg atgaagaaga tcaccctcct taaatatttc cgcaattaca 1500 tgagcgagca cttgctgaag gcaggtgcca acatcacgcc gcgcgaaggt gatgagctcg 1560 cccggctgcc ctacctacgg acctggtt cc gcacccgcag cgccatcatc ctgcacctca 1620 gcaacggcag cgtgcagatc aacttcttcc aggatcacac caagctcatc ttgtgcccac 1680 tgatggcagc cgtgacctac atcgacgaga agcgggactt ccgcacatac cgcctgagtc 1740 tcctggagga gtacggctgc tgcaaggagc tggccagccg gctccgctac gcccgcacta 1800 tggtggacaa gctgctgagc tcacgctcgg ccagcaaccg tct caaggcc tcctaatagc 1860 tgccctcccc tccggactgg tgccctcctc actcccacct gcatctgggg cccatactgg 1920 ttggctcccg cggtgccatg tctgcagtgt gccccccagc cccggtggct gggcagagct 1980 gcatcatcct tgcaggtggg ggttgctgta taagttattt t tgtacatgt tcgggtgtgg 2040 gttctacagc cttgtccccc tccccctcaa ccccaccata tgaattgtac agaatatttc 2100 tattgaattc ggaactgtcc tttccttggc tttatgcaca ttaaacagat gtgaatattc 2160 2160 <210> 16 <211> 2830 <212> DNA <213> Artificial Sequence <220> <223> PRC1 cDNA polynucleotide sequence <400> 16 aacggctcgc ggagcggcta cg cggagtga catcgccggt gtttgcgggt ggttgttgct 60 ctcggggccg tgtggagtag gtctggacct ggactcacgg ctgcttggag cgtccgccat 120 gaggagaagt gaggtgctgg cggaggagtc catagtatgt ctgcagaaag ccctaaatca 180 ccttcgggaa atatgggagc taattgggat tccagaggac cagcggttac aaagaactga 240 ggtggtaaag aagcatatca aggaagaagg agagacgacc atctt gcaac tagaaaaaga 300 tttgcgcacc caagtggaat tgatgcgaaa acagaaaaag gagagaaaac aggaactgaa 360 gctacttcaa gagcaagatc aagaactgtg cgaaattctt tgtatgcccc actatgatat 420 tgacagtgcc tcagtgccca gcttagaaga gctgaaccag ttcaggcaac atgtga caac 480 tttgagggaa acaaaggctt ctaggcgtga ggagtttgtc agtataaaga gacagatcat 540 actgtgtatg gaagcattag accacacccc agacacaagc tttgaaagag atgtggtgtg 600 tgaagacgaa gatgcctttt gtttgtcttt ggagaatatt gcaacactac aaaagttgct 660 acggcagctg gaaatgcaga aatcacaaaa tgaagcagtg tg tgaggggc tgcgtactca 720 aatccgagag ctctgggaca ggttgcaaat acctgaagaa gaaagagaag ctgtggccac 780 cattatgtct gggtcaaagg ccaaggtccg gaaagcgctg caattagaag tggatcggtt 840 ggaagaactg aaaatgcaaa acatgaagaa agtgattgag g caattcgag tggagctggt 900 tcagtactgg gaccagtgct tttatagcca ggagcagaga caagcttttg cccctttctg 960 tgctgaggac tacacagaaa gtctgctcca gctccacgat gctgagattg tgcggttaaa 1020 aaactactat gaagttcaca aggaactctt tgaaggtgtc cagaagtggg aagaaacctg 1080 gaggcttttc ttagagtttg agagaaaagc ttcagatcca aatcgattta caaacc gagg 1140 aggaaatctt ctaaaagaag aaaaacaacg agccaagctc cagaaaatgc tgcccaagct 1200 ggaagaagag ttgaaggcac gaattgaatt gtgggaacag gaacattcaa aggcatttat 1260 ggtgaatggg cagaaattca tggagtatgt ggcagaacaa tgggagatgc atcgattgga 1320 gaaagagaga gccaagcagg aaagacaact gaagaacaaa aaacagacag agacagagat 1380 gctgtatggc agcgctcctc gaacacctag caagcggcga ggactggctc ccaatacacc 1440 gggcaaagca cgtaagctga acactaccac catgtccaat gctacggcca atagtagcat 1500 tcggcctatc tttggaggga cagtctacca ctcccccgtg tctcgacttc ctccttctgg 1 560 cagcaagcca gtcgctgctt ccacctgttc agggaagaaa acaccccgta ctggcaggca 1620 tggagccaac aaggagaacc tggagctcaa cggcagcatc ctgagtgcga gaactttcaa 1680 aggcttccaa atctgatgct acttctggaa tcctcaattc aaccaacatc cagtcctga g 1740 aagccctgat cagtcaacca gctgtggctt cctgtgccta gactggacct aattatatgg 1800 gggtgacttt agtttttctt cagcttaggc gtgcttgaaa ccttggccag gttccatgac 1860 catgggccta acttaaagat gtgaatgagt gttacagttg aaagcccatc ataggtttag 1920 tggtcctagg agacttggtt ttgacttata tacatgaaaa gtttatggca agaagtgcaa 1980 at tttagcat atggggcctg acttctctac cacataattc tacttgctga agcatgatca 2040 aagcttgttt tatttcacca ctgtaggaaa atgattgact atgcccatcc ctgggggtaa 2100 ttttggcatg tatacctgta actagtaatt aacatctttt ttgtttaggc atgttcaatt 2160 aatgctgtag ctatcatagc tttgctctta cctgaagcct tgtccccacc acacaggaca 2220 gccttcctcc tgaagagaat gtctttgtgt gtccgaagtt gagatggcct gccctactgc 2280 caaagaggtg acaggaaggc tgggagcagc tttgttaaat tgtgttcagt tctgttacac 2340 agtgcattgc cctttgttgg gggtatgcat gtatgaacac acatgcttgt cggaacgctt 240 0 tctcggcgtt tgtcccttgg ctctcatctc ccccattcct gtgcctactt tgcctgagtt 2460 cttctacccc cgcagttgcc agccacattg ggagtctgtt tgttccaatg ggttgagctg 2520 tctttgtcgt ggagatctgg aactttgcac atgtcact ac tggggaggtg ttcctgctct 2580 agcttccacg atgaggcgcc ctctttacct atcctctcaa tcactactct tcttgaagca 2640 ctattattta ttcttccgct gtctgcctgc agcagtacta ctgtcaacat agtgtaaatg 2700 gttctcaaaa gcttaccagt gtggacttgg tgttagccac gctgtttact catacagtac 2760 gtgtcctgtt tttaaaatat acaattattc ttaaaaataa attaaaatct gtatacttac 2820 atttcaaaaa 2830 <210 > 17 <211> 3819 <212> DNA <213> Artificial Sequence <220> <223> RECQL4 cDNA polynucleotide sequence <400> 17 agattcgctg gacgatcgca agcgcggagg ccgggcgggc gcgcgcgcca tggagcggct 60 gcgggacgtg cgggagcggc tgcaggcgtg gggagcgcgcg ttccgacggc agcgcgggcg 120 gcgaccgagc caggacgacg tggaggcggc g ccggaggag acccgcgcgc tctaccggga 180 ataccgcact ctgaagcgta ccacgggcca ggccggcggc gggctccgca gctccgagtc 240 gctccccgcg gcggccgaag aggcgccaga gccccgctgc tgggggcccc atctgaatcg 300 ggctgcgacc aagagtccac ag tctacgcc agggcggagc cgccagggct cggtgccgga 360 ctacgggcag cggctcaagg ccaatctgaa aggcaccctg caggccggac cagccctggg 420 ccgcagaccg tggcctctag gaagagcctc atctaaggca tccaccccaa agcccccagg 480 tacagggcct gtcccctcct ttgcagaaaa agtcagtgat gagcctccac agctccctga 540 gccccagcca aggccaggcc ggctccagca tctgcaggca tccctgagcc agcggctggg 60 0 ctccctagat cctggctggt tacagcgatg tcacagtgag gtcccagatt ttctgggggc 660 ccccaaagcc tgcaggcctg atctaggctc agaggaatca caacttctga tccctggtga 720 gtcggctgtc cttggtcctg gtgctggctc ccagggccca gaggcttagag ccttcca 780 agtcagcatc cgtgtgggga gcccccagcc cagcagcagt ggaggcgaga agcggagatg 840 gaacgaggag ccctgggaga gccccgcaca ggtccagcag gagagcagcc aagctggacc 900 cccatcggag ggggctgggg ctgtagcagt tgaggaagac cctccagggg aacctgtaca 960 ggcacagcca cctcagccct gcagcagccc atcgaacccc aggtaccacg gactcagccc 1020 ctccagtca a gctagggctg ggaaggctga gggcacagcc cccctgcaca tcttccctcg 1080 gctggcccgc catgacaggg gcaattacgt acggctcaac atgaagcaga aacactacgt 1140 gcggggccgg gcactccgta gcaggctcct ccgcaagcag gcatggaagc agaagtggcg 1200 gaagaaag gg gagtgttttg ggggtggtgg tgccacagtc acaaccaagg agtcttgttt 1260 cctgaacgag cagttcgatc actgggcagc ccagtgtccc cggccagcaa gtgaggaaga 1320 cacagatgct gttgggcctg agccactggt tccttcacca caacctgtac ctgaggtgcc 1380 cagcctggac cccaccgtgc tgccactcta ctccctgggg ccctcagggc agttggcaga 1440 gacgcc ggct gaggtgttcc aggccctgga gcagctgggg caccaagcct ttcgccctgg 1500 gcaggagcgt gcagtcatgc ggatcctgtc tggcatctcc acgctgctgg tgctgcctac 1560 aggtgccggc aagtccctgt gctaccagct cccagcgctg ctctacagcc ggcgcagccc 1620 ctgcctcacg ttggtcgtct ctcccctgct gtcactcatg gatgaccagg tgtctggcct 1680 gccaccgtgt ctcaaggcgg cctgcataca ctcgggcatg accaggaagc aacgggaatc 1740 tgtcctgcag aagattcggg cagcccaggt acacgtgctg atgctgacac ctgaggcact 1800 ggtggggggcg ggaggcctcc ctccagccgc acagctgcct ccagttgctt ttgcctgcat 1860 tgatgaggcc c actgcctct cccagtggtc ccacaacttc cggccctgct acctgcgcgt 1920 ctgcaaggtg cttcgggagc gcatgggcgt gcactgcttc ctgggcctca cagccacagc 1980 cacacgccgc actgccagtg acgtggcaca gcacctggct gtggctgaag agcctgacct 2040 ccacgggcca gccccagttc ccaccaacct gcacctttcc gtgtccatgg acagggacac 2100 agaccaggca ctgttgacgc tgctgcaagg caaacgtttt CAACCTCG ATTCCATAT 2160 catttactGCGCGCGACGAGACAGA GCGACAGA GCGACTCT GCGCTCTCTCTGCTGCT 2220 GCACGCAG GGTCCAG GGTCCAGGTGAGGGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGCCCCCCCCCCCCC AAACCACAG CCGAGGCCTA 2280 CCACGGGCGGCGGCGCCCGGGGGCGGGGCGGGGGTAG GCGGTAG GCGGTAG CGGCTTCA TGCAGGGCA 2340 G CTGGACCGGC CAGAGTGTGCG 2400 GGCTGTGGGGGGGGGGGGCCCAAG CCGTGTGTGGTGGTGGTGGGGGGGGGGGGGGGGGGGGGGGGGCG 2460 ggccgggcgt gacgggcagc ctgcccactg ccacctcttc ctgcagcccc agggcgaaga 2520 cctgcgagag ctgcgcagac atgtgcacgc cgacagcacg gacttcctgg ctgtgaagag 2580 gctggtacag cgcgtgttcc cagcctgcac ctgcacctg c accaggccgc cctcggagca 2640 ggaaggggcc gtgggtgggg agaggcctgt gcccaagtac ccccctcaag aggctgagca 2700 gcttagccac caagcagccc caggacccag aagggtctgc atgggccatg agcgggcact 2760 cccaatacag cttaccgtac aggctttgga catgccgg ag gaggccatcg agactttgct 2820 gtgctacctg gagctgcacc cacaccactg gctggagctg ctggcgacca cctataccca 2880 ttgccgtctg aactgccctg ggggccctgc ccagctccag gccctggccc acaggtgtcc 2940 ccctttggct gtgtgcttgg cccagcagct gcctgaggac ccagggcaag gcagcagctc 3000 cgtggagttt gacatggtca agctggtgga ctccatgggc tgggagctgg cctctgtgcg 3060 gcgggctctc tgccagctgc agtgggacca cgagcccagg acaggtgtgc ggcgtgggac 3120 aggggtgctt gtggagttca gtgagctggc cttccacctt cgcagcccgg gggacttgac 3180 cgctgaggag aaggaccaga tatgtgactt cctctatggc cgt gtgcagg cccgggagcg 3240 ccaggccctg gcccgtctgc gcagaacctt ccaggccttt cacagcgtag ccttccccag 3300 ctgcgggccc tgcctggagc agcaggatga ggagcgcagc accaggctca aggacctgct 3360 cggccgctac tttgaggaag aggaagggca ggagccggga ggcatggagg acgcacaggg 3420 ccccgagcca gggcaggcca gactccagga ttgggaggac caggtccgct gcgacatccg 3480 ccagttcctg tcc ctgaggc cagaggagaa gttctccagc agggctgtgg cccgcatctt 3540 ccacggcatc ggaagcccct gctacccggc ccaggtgtac gggcaggacc gacgcttctg 3600 gagaaaatac ctgcacctga gcttccatgc cctggtgggc ctggccacgg aagagctcct 3660 gcaggtgg cc cgctgactgc actgcattgg gggatgtcgg gtagagctgg ggttgtcaga 3720 ggctagggca gtgactgagg acctgggcaa aacctgccac agggtgtggg aacgaggagg 3780 ctccaaaatg cagaataaaa aatgctcact ttgttttta 3819 <210> 18 <211> 3258 <212> DNA <213> Artificial Sequence <220> <223> RRM2 cDNA polynucleotide sequence <400> 18 gtgcaccctg t cccagccgt cctgtcctgg ctgctcgctc tgcttcgctg cgcctccact 60 atgctctccc tccgtgtccc gctcgcgccc atcacggacc cgcagcagct gcagctctcg 120 ccgctgaagg ggctcagctt ggtcgacaag gagaacacgc cgccggccct gagcgggacc 180 cgcgtcctgg ccagcaagac cgcgaggagg atcttccagg agcccacgga gccgaaaact 240 aaagcagctg cccccggcgt g gaggatgag ccgctgctga gagaaaaccc ccgccgcttt 300 gtcatcttcc ccatcgagta ccatgatatc tggcagatgt ataagaaggc agaggcttcc 360 ttttggaccg ccgaggaggt ggacctctcc aaggacattc agcactggga atccctgaaa 420 cccgaggaga gatattttat atcccat gtt ctggctttct ttgcagcaag cgatggcata 480 gtaaatgaaa acttggtgga gcgatttagc caagaagttc agattacaga agcccgctgt 540 ttctatggct tccaaattgc catggaaaac atacattctg aaatgtatag tcttcttatt 600 gacacttaca taaaagatcc caaagaaagg gaatttctct tcaatgccat tgaaacgatg 660 ccttgtgtca agaagaaggc agactgggcc ttgcgctgga ttgg ggacaa agaggctacc 720 tatggtgaac gtgttgtagc ctttgctgca gtggaaggca ttttcttttc cggttctttt 780 gcgtcgatat tctggctcaa gaaacgagga ctgatgcctg gcctcacatt ttctaatgaa 840 cttattagca gagatgaggg tttacactgt g attttgctt gcctgatgtt caaacacctg 900 gtacacaaac catcggagga gagagtaaga gaaataatta tcaatgctgt tcggatagaa 960 caggagttcc tcactgaggc cttgcctgtg aagctcattg ggatgaattg cactctaatg 1020 aagcaataca ttgagtttgt ggcagacaga cttatgctgg aactgggttt tagcaaggtt 1080 ttcagagtag agaacccatt tgactttatg gagaatattt cactggaa gg aaagactaac 1140 ttctttgaga agagagtagg cgagtatcag aggatgggag tgatgtcaag tccaacagag 1200 aattctttta ccttggatgc tgacttctaa atgaactgaa gatgtgccct tacttggctg 1260 attttttttt tccatctcat aagaaaaatc agctgaagtg t taccaacta gccacaccat 1320 gaattgtccg taatgttcat taacagcatc tttaaaactg tgtagctacc tcacaaccag 1380 tcctgtctgt ttatagtgct ggtagtatca ccttttgcca gaaggcctgg ctggctgtga 1440 cttaccatag cagtgacaat ggcagtcttg gctttaaagt gaggggtgac cctttagtga 1500 gcttagcaca gcgggattaa acagtccttt aaccagcaca gccagttaaa a gatgcagcc 1560 tcactgcttc aacgcagatt ttaatgttta cttaaatata aacctggcac tttacaaaca 1620 aataaacatt gtttgtactc acaaggcgat aatagcttga tttatttggt ttctacacca 1680 aatacattct cctgaccact aatgggagcc aattcacaat tcactaagtg actaaag taa 1740 gttaaacttg tgtagactaa gcatgtaatt tttaagtttt attttaatga attaaaatat 1800 ttgttaacca actttaaagt cagtcctgtg tatacctaga tattagtcag ttggtgccag 1860 atagaagaca ggttgtgttt ttatcctgtg gcttgtgtag tgtcctggga ttctctgccc 1920 cctctgagta gagtgttgtg ggataaagga atctctcagg gcaaggagct tcttaag tta 1980 aatcactaga aatttagggg tgatctgggc cttcatatgt gtgagaagcc gtttcatttt 2040 atttctcact gtattttcct caacgtctgg ttgatgagaa aaaattcttg aagagttttc 2100 atatgtggga gctaaggtag tattgtaaaa tttcaagtca tccttaaaca aa atgatcca 2160 cctaagatct tgcccctgtt aagtggtgaa atcaactaga ggtggttcct acaagttgtt 2220 cattctagtt ttgtttggtg taagtaggtt gtgtgagtta attcatttat atttactatg 2280 tctgttaaat cagaaatttt ttattatcta tgttcttcta gattttacct gtagttcata 2340 cttcagtcac ccagtgtctt attctggcat tgtctaaatc tgagcattgt ctagggggat 2400 c ttaaacttt agtaggaaac catgagctgt taatacagtt tccattcaaa tattaatttc 2460 agaatgaaac ataatttttt ttttttttt tgagatggag tctcgctctg ttgcccaggc 2520 tggagtgcag tggcgcgatt ttggctcact gtaacctcca tctcctgggt tcaagcaatt 2580 ctcctgtctc agcctcccta gtagctggga ctgcaggtat gtgctaccac acctggctaa 2640 tttttgtatt tttagtagag atggagtttc accatattgg tcaggctggt cttgaactcc 2700 tgacctcagg tgatccaccc acctcggcct cccaaagtgc tgggattgca ggcgtgataa 2760 acaaatattc ttaatagggc tactttgaat taatctgcct ttatgtttgg gagaagaaag 2820 ctgagacatt g catgaaaga tgatgagaga taaatgttga tcttttggcc ccatttgtta 2880 attgtattca gtatttgaac gtcgtcctgt ttattgttag ttttcttcat catttattgt 2940 atagacaatt tttaaatctc tgtaatatga tacattttcc tatcttttaa gttattgtta 3000 cctaaagtta atccagatta tatggtcctt atatgtgtac aacattaaaa tgaaaggctt 3060 tgtcttgcat tgtgaggtac aggcggaagt tggaatcagg ttttaggatt ctgtctctca 3120 ttagctgaat aatgtgagga ttaacttctg ccagctcaga ccatttccta atcagttgaa 3180 agggaaacaa gtatttcagt ctcaaaattg aataatgcac aagtcttaag tgattaaaat 3240 aaaactgttc ttatgtca 3258 <210> 19 <211> 3786 <212> DNA <213> Artificial Sequence <220> <223> SPAG5 cDNA polynucleotide sequence <400 > 19 aggttcaaac acagacggcg ggtgaacatg gcgtcctcga cttggtctga gacgtgatag 60 gcctgccttc tggttgaaga tgtggcgagt gaaaaaactg agcctcagcc tgtcgccttc 120 gccccagacg ggaaaaccat ctatgagaac tcctctccgt gaact taccc tgcagcccgg 180 tgccctcacc aactctggaa aaagatcccc cgcttgctcc tcgctgaccc catcactgtg 240 caagctgggg ctgcaggaag gcagcaacaa ctcatctcca gtggattttg taaataacaa 300 gaggacagac ttatcttcag aacatttcag tcattcctca aagtggctag aaacttgtca 360 gcatgaatca gatgagcagc ctctagatcc aattccccaa attagctcta ctcctaaaac 420 gtctgaggaa gcagtagacc cactgggcaa ttatatggtt aaaaccatcg tccttgtacc 480 atctccactg gggcagcaac aagacatgat atttgaggcc cgtttagata ccatggcaga 540 gacaaacagc atatctttaa atggaccttt gagaacagac gatctggtga gagaggaggt 600 ggca ccctgc atgggagaca ggttttcaga agttgctgct gtatctgaga aacctatctt 660 tcaggaatct ccgtcccatc tcttagagga gtctccacca aatccctgtt ctgaacaact 720 acattgctcc aaggaaagcc tgagcagtag aactgaggct gtgcgtgagg acttagtacc 780 ttctgaa agt aacgccttct tgccttcctc tgttctctgg ctttcccctt caactgcctt 840 ggcagcagat ttccgtgtca atcatgtgga cccagaggag gaaattgtag agcatggagc 900 tatggaggaa agagaaatga ggtttcccac acatcctaag gagtctgaaa cagaagatca 960 agcacttgtc tcaagtgtgg aagatattct gtccacatgc ctgacaccaa atctagtaga 1020 aatggaatcc caagaagctc caggcccagc agtagaagat gttggtagga ttcttggctc 1080 tgatacagag tcttggatgt ccccactggc ctggctggaa aaaggtgtaa atacctccgt 1140 catgctggaa aatctccgcc aaagcttatc ccttccctcg atgcttcggg atgctgcaat 12 00 tggcactacc cctttctcta cttgctcggt ggggacttgg tttactcctt cagcaccaca 1260 ggaaaagagt acaaacacat cccagacagg cctggttggc accaagcaca gtacttctga 1320 gacagagcag ctcctgtgtg gccggcctcc agatctgact gccttgtctc gacatgactt 1380 ggaagataac ctgctgagct ctcttgtcat tctggaggtt ctctcccgcc agcttcggga 1440 ctggaagagc cagctggctg tccctcaccc agaaacccag gacagtagca cacagactga 1500 cacatctcac agtgggataa ctaataaact tcagcatctt aaggagagcc atgagatggg 1560 acaggcccta cagcaggcca gaaatgtcat gcaatcatgg gtgcttatct ctaaagagct 1620 gatat ccttg cttcacctat ccctgttgca tttagaagaa gataagacta ctgtgagtca 1680 ggagtctcgg cgtgcagaaa cattggtctg ttgctgtttt gatttgctga agaaattgag 1740 ggcaaagctc cagagcctca aagcagaaag ggaggaggca aggcacagag aggaaatggc 1800 tctcagaggc aaggatgcgg cagagatagt gttggaggct ttctgtgcac acgccagcca 1860 gcgcatca gc cagctggaac aggacctagc atccatgcgg gaattcagag gccttctgaa 1920 ggatgcccag acccaactgg tagggcttca tgccaagcaa gaagagctgg ttcagcagac 1980 agtgagtctt acttctacct tgcaacaaga ctggaggtcc atgcaactgg attatacaac 2040 atggacag ct ttgctgagtc ggtcccgaca actcacagag aaactcacag tcaagagcca 2100 gcaagccctg caggaacgtg atgtggcaat tgaggaaaag caggaggttt ctagggtgct 2160 ggaacaagtc tctgcccagt tagaggagtg caaaggccaa acagaacaac tggagttgga 2220 aaacagtcgt ctagcaacag atctccgggc tcagttgcag attctggcca acatggacag 2280 ccagctaaaa gagctacaga gtcag catac ccattgtgcc caggacctgg ctatgaagga 2340 tgagttactc tgccagctta cccagagcaa tgaggagcag gctgctcaat ggcaaaagga 2400 agagatggca ctaaaacaca tgcaggcaga actgcagcag caacaagctg tcctggccaa 2460 agaggtgcgg gacctgaaag agacctt gga gtttgcagac caggagaatc aggttgctca 2520 cctggagctg ggtcaggttg agtgtcaatt gaaaaccaca ctggaagtgc tccgggagcg 2580 cagcttgcag tgtgagaacc tcaaggacac tgtagagaac ctaacggcta aactggccag 2640 caccatagca gataaccagg agcaagatct ggagaaaaca cggcagtact ctcaaaagct 2700 agggctgctg actgagcaac tacagagcct gactctcttt ct acagacaa aactaaagga 2760 gaagactgaa caagagaccc ttctgctgag tacagcctgt cctcccaccc aggaacaccc 2820 tctgcctaat gacaggacct tcctgggaag catcttgaca gcagtggcag atgaagagcc 2880 agaatcaact cctgtgccct tgcttggaag tgacaagagt gcttt caccc gagtagcatc 2940 aatggtttcc cttcagcccg cagagacccc aggcatggag gagagcctgg cagaaatgag 3000 tattatgact actgagcttc agagtctttg ttccctgcta caagagtcta aagaagaagc 3060 catcaggact ctgcagcgaa aaatttgtga gctgcaagct aggctgcagg cccaggaaga 3120 acagcatcag gaagtccaga aggcaaaaga agcagacata gagaagctga accagg cctt 3180 gtgcttgcgc tacaagaatg aaaaggagct ccaggaagtg atacagcagc agaatgagaa 3240 gatcctagaa cagatagaca agagtggcga gctcataagc cttagagagg aggtgaccca 3300 ccttacccgc tcacttcggc gtgcggagac agagaccaaa gtgctccagg agg ccctggc 3360 aggccagctg gactccaact gccagcctat ggccaccaat tggatccagg agaaagtgtg 3420 gctctctcag gaggtggaca aactgagagt gatgttcctg gagatgaaaa atgagaagga 3480 aaaactcatg atcaagttcc agagccatag aaatatccta gaggagaacc ttcggcgctc 3540 tgacaaggag ttagaaaaac tagatgacat tgttcagcat atttataaga ccctgctctc 36 00 tattccagag gtggtgaggg gatgcaaaga actacaggga ttgctggaat ttctgagcta 3660 agaaactgaa agccagaatc tgcttcacct ctttttacct gcaatacccc cttaccccaa 3720 taccaagacc aactggcata gagccaactg agataaatgc tatttaaata aagtgtattt 3780 aatga a 3786 <210> 20 < 211> 1431 <212> DNA <213> Artificial Sequence <220> <223> TK1 cDNA polynucleotide sequence <400> 20 ggcttactgc gggacggcct tggagagtac tcgggttcgt gaacttcccg gaggcgcaat 60 gagctgcatt aacctgccca ctgtgctgcc tggctccccc ag caagaccc gggggcagat 120 ccaggtgatt ctcgggccga tgttctcagg aaaaagcaca gagttgatga gacgcgtccg 180 tcgcttccag attgctcagt acaagtgcct ggtgatcaag tatgccaaag acactcgcta 240 cagcagcagc ttctgcacac atgaccggaa caccatggag gcactgcccg cctgcctgct 300 ccgagacgtg gcccaggagg ccctgggcgt ggctgtcata ggcatcgacg aggggcagtt 360 tttccctgac atcgtgg agt tctgcgaggc catggccaac gccgggaaga ccgtaattgt 420 ggctgcactg gatgggacct tccagaggaa gccatttggg gccatcctga acctggtgcc 480 gctggccgag agcgtggtga agctgacggc ggtgtgcatg gagtgcttcc gggaagccgc 540 ctataccaag aggct cggca cagagaagga ggtcgaggtg attgggggag cagacaagta 600 ccactccgtg tgtcggctct gctacttcaa gaaggcctca ggccagcctg ccgggccgga 660 caacaaagag aactgcccag tgccaggaaa gccaggggaa gccgtggctg ccaggagct 720 ctttgcccca cagcagattc tgcaatgcag ccctgccaac tgagggacct gcgagggccg 780 cccgctccct tcctgccact gccgcctact ggac gctgcc ctgcatgctg cccagccact 840 ccaggaggaa gtcgggaggc gtggagggtg accacacctt ggccttctgg gaactctcct 900 ttgtgtggct gccccacctg ccgcatgctc cctcctctcc tacccactgg tctgcttaaa 960 gcttccctct cagctgctgg gacgatcgcc ca ggctggag ctggccccgc ttggtggcct 1020 gggatctggc acactccctc tccttggggt gagggacaga gccccacgct gttgacatca 1080 gcctgcttct tcccctctgc ggctttcact gctgagtttc tgttctccct gggaagcctg 1140 tgccagcacc tttgagcctt ggccccacact gaggcttagg cctctctgcc tgggatgggc 1200 tcccaccctc ccctgaggat ggcctggatt cacgcc ctct tgtttccttt tgggctcaaa 1260 gcccttccta cctctggtga tggtttccac aggaacaaaca gcatctttca ccaagatggg 1320 tggcaccaac cttgctggga cttggatccc aggggcttat ctcttcaagt gtggagaggg 1380 cagggtccac gcctctgctg tagcttatga aattaactaa ttgaaaattc a 1431 <210> 21 <211 > 5695 <212> DNA <213> Artificial Sequence <220> <223> TOP2A cDNA polynucleotide sequence <400> 21 aaccgacgcg cgtctgtgga gaagcggctt ggtcggggggt ggtctcgtgg ggtcctgcct 60 gtttagtcgc tttcagggtt cttgagcccc t tcacgaccg tcaccatgga agtgtcacca 120 ttgcagcctg taaatgaaaa tatgcaagtc aacaaaataa agaaaaatga agatgctaag 180 aaaagactgt ctgttgaaag aatctatcaa aagaaaacac aattggaaca tattttgctc 240 cgcccagaca cctacattgg ttctgtggaa ttagtgaccc agcaaatgtg ggtttacgat 300 gaagatgttg gcattaacta tagggaagtc acttttgttc ctggtttgta caaaatcttt 360 gatgagattc tagttaatgc tgcggacaac aa acaaaggg acccaaaaat gtcttgtatt 420 agagtcacaa ttgatccgga aaacaattta attagtatat ggaataatgg aaaaggtatt 480 cctgttgttg aacacaaagt tgaaaagatg tatgtcccag ctctcatatt tggacagctc 540 ctaacttcta gtaactatga tgatgatgaa aagaaag tga caggtggtcg aaatggctat 600 ggagccaaat tgtgtaacat attcagtacc aaatttactg tggaaacagc cagtagagaa 660 tacaagaaaa tgttcaaaca gacatggatg gataatatgg gaagagctgg tgagatggaa 720 ctcaagccct tcaatggaga agattataca tgtatcacct ttcagcctga tttgtctaag 780 tttaaaatgc aaagcctgga caaagatatt gttgcactaa tggtcagaag agcata tgat 840 attgctggat ccaccaaaga tgtcaaagtc tttcttaatg gaaataaact gccagtaaaa 900 ggatttcgta gttatgtgga catgtatttg aaggacaagt tggatgaaac tggtaactcc 960 ttgaaagtaa tacatgaaca agtaaaccac aggtgggaag tgtgtttaac tatgag tgaa 1020 aaaggctttc agcaaattag ctttgtcaac agcattgcta catccaaggg tggcagacat 1080 gttgattatg tagctgatca gattgtgact aaacttgttg atgttgtgaa gaagaagaac 1140 aagggtggtg ttgcagtaaa agcacatcag gtgaaaaatc acatgtggat ttttgtaaat 1200 gccttaattg aaaacccaac ctttgactct cagacaaaag aaaacatgac tttacaaccc 1260 aagagctttg gatcaacatg ccaattgagt gaaaaaattta tcaaagctgc cattggctgt 1320 ggtattgtag aaagcatact aaactgggtg aagtttaagg cccaagtcca gttaaacaag 1380 aagtgttcag ctgtaaaaca taatagaatc aagggaattc ccaaactc ga tgatgccaat 1440 gatgcagggg gccgaaactc cactgagtgt acgcttatcc tgactgaggg agattcagcc 1500 aaaactttgg ctgtttcagg ccttggtgtg gttgggagag acaaatatgg ggttttccct 1560 cttagaggaa aaatactcaa tgttcgagaa gcttctcata agcagatcat ggaaaatgct 1620 gagattaaca atatcatcaa gattgtgggt cttcagtaca agaaaaacta tgaagatgaa 1680 gattcattga agacgcttcg ttatgggaag ataatgatta tgacagatca ggaccaagat 1740 ggttcccaca tcaaaggctt gctgattaat tttatccatc acaactggcc ctctcttctg 1800 cgacatcgtt ttctggagga atttatcact cccattgtaa aggtatctaa aaacaagcaa 18 60 gaaatggcat tttacagcct tcctgaattt gaagagtgga agagttctac tccaaatcat 1920 aaaaaatgga aagtcaaata ttacaaaggt ttgggcacca gcacatcaaa ggaagctaaa 1980 gaatactttg cagatatgaa aagacatcgt atccagttca aatattctgg tcctgaagat 2040 gatgctgcta tcagcctggc ctttagcaaa aaacagatag atgatcgaaa ggaatggtta 2100 actaatttca tggag gatag aagacaacga aagttacttg ggcttcctga ggattacttg 2160 tatggacaaa ctaccacata tctgacatat aatgacttca tcaacaagga acttatcttg 2220 ttctcaaatt ctgataacga gagatctatc ccttctatgg tggatggttt gaaaccaggt 2280 cagagaaagg ttttgtttac tt gcttcaaa cggaatgaca agcgagaagt aaaggttgcc 2340 caattagctg gatcagtggc tgaaatgtct tcttatcatc atggtgagat gtcactaatg 2400 atgaccatta tcaatttggc tcagaatttt gtgggtagca ataatctaaa cctcttgcag 2460 cccattggtc agtttggtac caggctacat ggtggcaagg attctgctag tccacgatac 2520 atctttacaa tgctcag ctc tttggctcga ttgttatttc caccaaaaga tgatcacacg 2580 ttgaagtttt tatatgatga caaccagcgt gttgagcctg aatggtacat tcctattatt 2640 cccatggtgc tgataaatgg tgctgaagga atcggtactg ggtggtcctg caaaatcccc 2700 aactttgat g tgcgtgaaat tgtaaataac atcaggcgtt tgatggatgg agaagaacct 2760 ttgccaatgc ttccaagtta caagaacttc aagggtacta ttgaagaact ggctccaaat 2820 caatatgtga ttagtggtga agtagctatt cttaattcta caaccatga aatctcagag 2880 cttcccgtca gaacatggac ccagacatac aaagaacaag ttctagaacc catgttgaat 2940 ggcaccgaga agacacctcc tctcataaca gactataggg aataccatac agataccact 3000 gtgaaatttg ttgtgaagat gactgaagaa aaactggcag aggcagagag agttggacta 3060 cacaaagtct tcaaactcca aactagtctc acatgcaact ctatggtgct ttttgaccac 3120 gtaggctgtt taaagaaata tgacacggtg ttggatattc taagagactt ttttgaactc 3180 agacttaaat attatggatt aagaaaagaa tggctcctag gaatgcttgg tgctgaatct 3240 gctaaactga ataatcaggc tcgctttatc ttagagaaaa tagatggcaa aataatcatt 3300 gaaaataagc ctaagaaaga attaattaaa gttctgattc agaggggata tgattcggat 3360 cctgtgaagg cctggaaaga agcccagcaa aaggttccag atgaagaaga aaatgaagag 3420 agtgacaacg aaaaggaaac tgaaaagagt gactccgtaa cagattctgg accaaccttc 3480 aactatcttc ttgatatgcc cctttggtat ttaaccaagg aaaagaaaga tgaactctgc 3540 aggctaagaa atgaaaaaga acaagagctg gacacattaa aaagaaagag tccatca gat 3600 ttgtggaaag aagacttggc tacatttatt gaagaattgg aggctgttga agccaaggaa 3660 aaacaagatg aacaagtcgg acttcctggg aaagggggga aggccaaggg gaaaaaaaca 3720 caaatggctg aagttttgcc ttctccgcgt ggtcaaagag tcattccacg aataaccata 3 780 gaaatgaaag cagaggcaga aaagaaaaat aaaaagaaaa ttaagaatga aaatactgaa 3840 ggaagccctc aagaagatgg tgtggaacta gaaggcctaa aacaaagatt agaaaagaaa 3900 cagaaaagag aaccaggtac aaagacaaag aaacaaacta cattggcatt taagccaatc 3960 aaaaaag gaa agaagagaaa tccctggtct gattcagaat cagataggag cagtgacgaa 4020 agtaattttg atgtccctcc acgagaaaca gagccacgga gagcagcaac aaaaaacaaaa 4080 ttcacaatgg atttggattc agatgaagat ttctcagatt ttgatgaaaa aactgatgat 4140 gaagattttg tcccatcaga tgctagtcca cctaagacca aaacttcccc aaaacttagt 4200 aacaaagaac tgaaacca ca gaaaagtgtc gtgtcagacc ttgaagctga tgatgttaag 4260 ggcagtgtac cactgtcttc aagccctcct gctacacatt tcccagatga aactgaaatt 4320 acaaacccag ttcctaaaaa gaatgtgaca gtgaagaaga cagcagcaaa aagtcagtct 4380 tccacctcca cta ccggtgc caaaaaaagg gctgccccaa aaggaactaa aagggatcca 4440 gctttgaatt ctggtgtctc tcaaaagcct gatcctgcca aaaccaagaa tcgccgcaaa 4500 aggaagccat ccacttctga tgattctgac tctaattttg agaaaattgt ttcgaaagca 4560 gtcacaagca agaaatccaa gggggagagt gatgacttcc atatggactt tgactcagct 4620 gtggctcctc gggcaaa atc tgtacgggca aagaaaccta taaagtacct ggaagagtca 4680 gatgaagatg atctgtttta aaatgtgagg cgattattt aagtaattat cttaccaagc 4740 ccaagactgg ttttaaagtt acctgaagct cttaacttcc tcccctctga atttagtttg 4800 gggaaggtgt ttttag taca agacatcaaa gtgaagtaaa gcccaagtgt tctttagctt 4860 tttataatac tgtctaaata gtgaccatct catgggcatt gttttcttct ctgctttgtc 4920 tgtgttttga gtctgctttc ttttgtcttt aaaacctgat ttttaagttc ttctgaactg 4980 tagaaatagc tatctgatca cttcagcgta aagcagtgtg tttattaacc atccactaag 5040 ctaaaactag agcagtttga tttaaaagtg tcactcttcc tccttttcta ctttcagtag 5100 atatgagata gagcataatt atctgtttta tcttagttt atacataatt taccatcaga 5160 tagaacttta tggttctagt acagatactc tactacactc agcctcttat gtgccaagtt 5220 tttctttaag caat gagaaa ttgctcatgt tcttcatctt ctcaaatcat cagaggccga 5280 agaaaaacac tttggctgtg tctataactt gacacagtca atagaatgaa gaaaattaga 5340 gtagttatgt gattattca gctcttgacc tgtcccctct ggctgcctct gagtctgaat 5400 ctcccaaaga gagaaaccaa tttctaagag gactggattg cagaagactc ggggacaaca 5460 tttgatccaa gatcttaaat gttatattga taaccatgct cagcaatgag ctattagatt 5520 cattttggga aatctccata atttcaattt gtaaactttg ttaagacctg tctacattgt 5580 tatatgtgtg tgacttgagt aatgttatca acgtttttgt aaatatttac tatgtttttc 5640 tattagctaa attccaaacaa ttttgtactt taataaaatg ttctaaacat tgcaa 5695 <210> 22 < 211> 3473 <212> DNA <213> Artificial Sequence <220> <223> TPX2 cDNA polynucleotide sequence <400> 22 gaatgagtcc cgcggcgggt tggctcgcgc ttcgttgtca gatctgaggc gaggctaggt 60 gagccgtggg aagaaaagag ggagcagcta gggcgc gggt ctccctcctc ccggagtttg 120 gaacggctga agttcacctt ccagccccta gcgccgttcg cgccgctagg cctggcttct 180 gaggcggttg cggtgctcgg tcgccgccta ggcggggcag ggtgcgagca ggggcttcgg 240 gccacgcttc tcttggcgac aggattttgc tgtgaagtcc gtccgggaaa cggaggaaaa 300 aaagagttgc gggaggctgt cggctaataa cggttcttga tacatatttg ccagacttca 360 agatttcaga aaaggggt ga aagagaagat tgcaactttg agtcagacct gtaggcctga 420 tagactgatt aaaccacaga aggtgacctg ctgagaaaag tggtacaaat actgggaaaa 480 acctgctctt ctgcgttaag tgggagacaa tgtcacaagt taaaagctct tattcctatg 540 atgccccctc ggatttcatc aatttt tcat ccttggatga tgaaggagat actcaaaaca 600 tagattcatg gtttgaggag aaggccaatt tggagaataa gttactgggg aagaatggaa 660 ctggagggct ttttcagggc aaaactcctt tgagaaaggc taatcttcag caagctattg 720 tcacaccttt gaaaccagtt gacaacactt actacaaaga ggcagaaaaa gaaaatcttg 780 tggaacaatc cattccgtca aatgcttgtt cttccctgga a gttgaggca gccatatcaa 840 gaaaaactcc agcccagcct cagagaagat ctcttaggct ttctgctcag aaggatttgg 900 aacagaaaga aaagcatcat gtaaaaatga aagccaagag atgtgccact cctgtaatca 960 tcgatgaaat tctaccctct aagaaaatga aagtttctaa caacaaaaag aagccagagg 1020 aagaaggcag tgctcatcaa gatactgctg aaaagaatgc atcttcccca gagaaagcca 1080 agggtagaca tactgtgcct tgtatgccac ctgcaaagca gaagtttcta aaaagtactg 1140 aggagcaaga gctggagaag agtatgaaaa tgcagcaaga ggtggtggag atgcggaaaa 1200 agaatgaaga attcaagaaa cttgctctgg ctggaatagg gcaacct gtg aagaaatcag 1260 tgagccaggt caccaaatca gttgacttcc acttccgcac agatgagcga atcaaacaac 1320 atcctaagaa ccaggaggaa tataaggaag tgaactttac atctgaacta cgaaagcatc 1380 cttcatctcc tgcccgagtg actaagggat gtaccattgt taagccttt c aacctgtccc 1440 aaggaaagaa aagaacattt gatgaaacag tttctacata tgtgcccctt gcacagcaag 1500 ttgaagactt ccataaacga acccctaaca gatatcattt gaggagcaag aaggatgata 1560 ttaacctgtt accctccaaa tcttctgtga ccaagatttg cagagaccca cagactcctg 1620 tactgcaaac caaacaccgt gcacgggctg tgacctgcaa aagtacagca gagctggagg 1680 ctgaggagct cgagaaattg caacaataca aattcaaagc acgtgaactt gatcccagaa 1740 tacttgaagg tgggcccatc ttgcccaaga aaccacctgt gaaaccaccc accgagccta 1800 ttggctttga tttggaaatt gagaaaagaa tccaggagcg agaatcaaag aagaaaacag 18 60 aggatgaaca ctttgaattt cattccagac cttgccctac taagattttg gaagatgttg 1920 tgggtgttcc tgaaaagaag gtacttccaa tcaccgtccc caagtcacca gcctttgcat 1980 tgaagaacag aattcgaatg cccaccaaag aagatgagga agaggacgaa ccggtagtga 2040 taaaagctca acctgtgcca cattatgggg tgccttttaa gccccaaatc ccagaggcaa 2100 gaactgtgga aatatgccct ttctcgtttg attctcgaga caaagaacgt cagttacaga 2160 aggagaagaa aataaaagaa ctgcagaaag gggaggtgcc caagttcaag gcacttccct 2220 tgcctcattt tgacaccatt aacctgccag agaagaaggt aaagaatgtg acccagattg 22 80 aacctttctg cttggagact gacagaagag gtgctctgaa ggcacagact tggaagcacc 2340 agctggaaga agaactgaga cagcagaaag aagcagcttg tttcaaggct cgtccaaaca 2400 ccgtcatctc tcaggagccc tttgttccca agaaagagaa gaaatcagtt gctgagggcc 2460 tttctggttc tctagttcag gaaccttttc agctggctac tgagaagaga gccaaagagc 2520 ggcaggagct ggagaagaga atggctgagg tagaagccca gaaagcccag cagttggagg 2580 aggccagact acaggaggaa gagcagaaaa aagaggagct ggccaggcta cggagagaac 2640 tggtgcataa ggcaaatcca atacgcaagt accagggtct ggagataaag tcaagtgacc 2700 a gcctctgac tgtgcctgta tctcccaaat tctccactcg attccactgc taaactcagc 2760 tgtgagctgc ggataccgcc cggcaatggg acctgctctt aacctcaaac ctaggaccgt 2820 cttgctttgt cattgggcat ggagagaacc catttctcca gacttttacc tacccgtgcc 2880 tgagaaagca tacttgacaa ctgtggactc cagttttgtt gagaattgtt ttcttacatt 2940 actaaggcta at aatgagat gtaactcatg aatgtctcga ttagactcca tgtagttact 3000 tcctttaaac catcagccgg ccttttatat gggtcttcac tctgactaga atttagtctc 3060 tgtgtcagca cagtgtaatc tctattgcta ttgcccctta cgactctcac cctctcccca 3120 ctttttttaa a aattttaac cagaaaataa agatagttaa atcctaagat agagattaag 3180 tcatggttta aatgaggaac aatcagtaaa tcagattctg tcctcttctc tgcataccgt 3240 gaatttatag ttaaggatcc ctttgctgtg agggtagaaa acctcaccaa ctgcaccagt 3300 gaggaagaag actgcgtgga ttcatgggga gcctcacagc agccacgcag caggctctgg 3360 gtggggctgc cgttaaggca cg ttctttcc ttactggtgc tgataacaac agggaaccgt 3420 gcagtgtgca ttttaagacc tggcctggaa taaatacgtt ttgtctttcc ctc 3473 <210> 23 <211> 2975 <212> DNA <213> Artificial Sequence < 220> <223> TTK cDNA polynucleotide sequence <400> 23 caaacgtgtt tgcggaaagg agtttgggtt ccatcttttc atttccccag cgcagctttc 60 tgtagttttt ttcttagaaa tggaatccga ggatttaagt ggcagagaat tgacaattga 120 ttccataatg aacaa agtga gagacattaa aaataagttt aaaaatgaag accttactga 180 tgaactaagc ttgaataaaa tttctgctga tactacagat aactcgggaa ctgttaacca 240 aattatgatg atggcaaaca acccagagga ctggttgagt ttgttgctca aactagagaa 300 aaacagtgtt ccgctaagt g atgctctttt aaataaattg attggtcgtt acagtcaagc 360 aattgaagcg cttcccccag ataaatatgg ccaaaatgag agttttgcta gaattcaagt 420 gagatttgct gaattaaaag ctattcaaga gccagatgat gcacgtgact actttcaaat 480 ggccagagca aactgcaaga aatttgcttt tgttcatata tcttttgcac aatttgaact 540 gtcacaaggt aatgtcaaaa aaagtaaaca acttcttcaa aaagctgtag aacgtggagc 600 agtaccacta gaaatgctgg aaattgccct gcggaattta aacctccaaa aaaagcagct 660 gctttcagag gaggaaaaga agaatttatc agcatctacg gtattaactg cccaagaatc 720 attttccggt tcacttgggc atttacagaa taggaacaac agttgtgatt ccagaggaca 780 gactactaaa gccaggtttt tatatggaga gaacatgcca ccacaagatg cagaaatagg 840 ttaccggaat tcattgagac aaactaacaa aactaaacag tcatgcccat ttggaagagt 900 cccagttaac cttctaaata gcccagattg tgatgt gaag acagatgatt cagttgtacc 960 ttgttttatg aaaagacaaa cctctagatc agaatgccga gatttggttg tgcctggatc 1020 taaaccaagt ggaaatgatt cctgtgaatt aagaaattta aagtctgttc aaaatagtca 1080 tttcaaggaa cctctggtgt cagatgaaaa gag ttctgaa cttatatta ctgattcaat 1140 aaccctgaag aataaaacgg aatcaagtct tctagctaaa ttagaagaaa ctaaagagta 1200 tcaagaacca gaggttccag agagtaacca gaaacagtgg caatctaaga gaaagtcaga 1260 gtgtattaac cagaatcctg ctgcatcttc aaatcactgg cagattccgg agttagcccg 1320 aaaagttaat acagagaaac ataccacttt tgagcaacct gtcttt tcag tttcaaaaca 1380 gtcaccacca atatcaacat ctaaatggtt tgacccaaaa tctatttgta agacaccaag 1440 cagcaatacc ttggatgatt acatgagctg ttttagaact ccagttgtaa agaatgactt 1500 tccacctgct tgtcagttgt caacacctta tggccaacct gcctg tttcc agcagcaaca 1560 gcatcaaata cttgccactc cacttcaaaa tttacaggtt ttagcatctt cttcagcaaa 1620 tgaatgcatt tcggttaaag gaagaattta ttccatatta aagcagatag gaagtggagg 1680 ttcaagcaag gtatttcagg tgttaaatga aaagaaacag atatatgcta taaaatatgt 1740 gaacttagaa gaagcagata accaaactct tgatagttac cggaacgaaa tagcttattt 1800 gaataaacta caacaacaca gtgataagat catccgactt tatgattatg aaatcacgga 1860 ccagtacatc tacatggtaa tggagtgtgg aaatattgat cttaatagtt ggcttaaaaa 1920 gaaaaaatcc attgatccat gggaacgcaa gagttactgg aaaaatatgt tagaggcagt 19 80 tcacacaatc catcaacatg gcattgttca cagtgatctt aaaccagcta actttctgat 2040 agttgatgga atgctaaagc taattgattt tgggattgca aaccaaatgc aaccagatac 2100 aacaagtgtt gttaaagatt ctcaggttgg cacagttaat tatatgccac cagaagcaat 2160 caaagatatg tcttcctcca gagagaatgg gaaatctaag tcaaagataa gccccaaaag 2220 tgatgtttgg tccttaggat gtattttgta ctatatgact tacgggaaaa caccatttca 2280 gcagataatt aatcagattt ctaaattaca tgccataatt gatcctaatc atgaaattga 2340 atttcccgat attccagaga aagatcttca agatgtgtta aagtgttgtt taaaaaggga 24 00 cccaaaacag aggatatcca ttcctgagct cctggctcat ccatatgttc aaattcaaac 2460 tcatccagtt aaccaaatgg ccaagggaac cactgaagaa atgaaatatg ttctgggcca 2520 acttgttggt ctgaattctc ctaactccat tttgaaagct gctaaaactt tatatgaaca 2580 ctatagtggt ggtgaaagtc ataattcttc atcctccaag acttttgaaa aaaaaagggg 264 0 aaaaaaatga tttgcagtta ttcgtaatgt cagataccac ctataaaata tattggactg 2700 ttatactctt gaatccctgt ggaaatctac atttgaagac aacatcactc tgaagtgtta 2760 tcagcaaaaa aaattcagta gattatcttt aaaagaaaac tgtaaaaata gcaaccactt 2820 atgg cactgt atatattgta gacttgtttt ctctgtttta tgctcttgtg taatctactt 2880 gacatcattt tactcttgga atagtgggtg gatagcaagt atattctaaa aaactttgta 2940aataaagttt tgtggctaaa atgacactaa cattt 2975

Claims (10)

SKA3, MKI67 및 TTK 유전자를 유효성분으로 포함하는 비근침윤성 방광암의 예후 예측용 바이오마커 조성물.A biomarker composition for predicting the prognosis of non-muscle invasive bladder cancer comprising SKA3, MKI67, and TTK genes as active ingredients. 제1항에 있어서,
ANLN, CCNA2, CDC20, CDK1, NUSAP1, PRC1 및 TPX2로 이루어진 군으로부터 선택되는 하나 이상의 유전자를 더 포함하는 것을 특징으로 하는 비근침윤성 방광암의 예후 예측용 바이오마커 조성물.
According to paragraph 1,
A biomarker composition for predicting the prognosis of non-muscle invasive bladder cancer, further comprising one or more genes selected from the group consisting of ANLN, CCNA2, CDC20, CDK1, NUSAP1, PRC1 and TPX2.
SKA3, MKI67 및 TTK 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 포함하는, 비근침윤성 방광암의 예후 예측용 조성물.A composition for predicting the prognosis of non-muscle invasive bladder cancer, comprising an agent for measuring the expression level of the mRNA of the SKA3, MKI67, and TTK genes or the protein encoded by the genes. 제3항에 있어서,
ANLN, CCNA2, CDC20, CDK1, NUSAP1, PRC1 및 TPX2로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 추가로 포함하는 것을 특징으로 하는 비근침윤성 방광암의 예후 예측용 조성물.
According to paragraph 3,
Non-muscle invasive, characterized in that it further comprises an agent for measuring the expression level of the mRNA or protein encoded by one or more genes selected from the group consisting of ANLN, CCNA2, CDC20, CDK1, NUSAP1, PRC1 and TPX2. Composition for predicting prognosis of bladder cancer.
제3항에 있어서,
mRNA의 발현수준을 측정하는 제제는 선택된 유전자에 특이적으로 결합하는 안티센스 올리고뉴클레오티드, 프라이머 쌍 또는 프로브이며; 단백질의 발현수준을 측정하는 제제는 선택된 유전자로부터 코딩되는 단백질에 특이적인 항체인 것을 특징으로 하는 비근침윤성 방광암의 예후 예측용 조성물.
According to paragraph 3,
The agent for measuring the expression level of mRNA is an antisense oligonucleotide, primer pair, or probe that specifically binds to the selected gene; A composition for predicting the prognosis of non-muscle invasive bladder cancer, wherein the agent for measuring the expression level of a protein is an antibody specific for a protein encoded by a selected gene.
제3항 내지 제5항 중 어느 한 항의 조성물을 포함하는 비근침윤성 방광암의 예후 예측용 키트.A kit for predicting the prognosis of non-muscle invasive bladder cancer, comprising the composition of any one of claims 3 to 5. 제3항 내지 제5항 중 어느 한 항의 조성물을 포함하는 비근침윤성 방광암의 예후 예측용 마이크로어레이.A microarray for predicting the prognosis of non-muscle invasive bladder cancer comprising the composition of any one of claims 3 to 5. 개체로부터 분리된 생물학적 시료에서 SKA3, MKI67 및 TTK 유전자의 mRNA 발현수준 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 단계를 포함하는, 비근침윤성 방광암의 예후 예측을 위한 정보를 제공하는 방법.A method of providing information for predicting the prognosis of non-muscle invasive bladder cancer, comprising measuring the mRNA expression level of the SKA3, MKI67, and TTK genes or the expression level of the protein encoded by the genes in a biological sample isolated from an individual. 제8항에 있어서,
상기 단계는 ANLN, CCNA2, CDC20, CDK1, NUSAP1, PRC1 및 TPX2로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 mRNA 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 더 측정하는 것을 특징으로 하는 비근침윤성 방광암의 예후 예측을 위한 정보를 제공하는 방법.
According to clause 8,
The step further includes measuring the expression level of the mRNA of one or more genes selected from the group consisting of ANLN, CCNA2, CDC20, CDK1, NUSAP1, PRC1, and TPX2 or the protein encoded by the gene. A method of providing information for predicting prognosis.
제8항에 있어서,
상기 생물학적 시료는 환자의 조직, 세포, 혈액, 혈청, 혈장, 타액 및 뇨로 이루어진 군에서 선택되는 것을 특징으로 하는 비근침윤성 방광암의 예후 예측을 위한 정보를 제공하는 방법.
According to clause 8,
A method of providing information for predicting the prognosis of non-muscle invasive bladder cancer, wherein the biological sample is selected from the group consisting of the patient's tissues, cells, blood, serum, plasma, saliva, and urine.
KR1020210026520A 2021-02-26 2021-02-26 Biomarker for predicting prognosis of Non-muscle invasive bladder cancer and uses thereof KR102632423B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210026520A KR102632423B1 (en) 2021-02-26 2021-02-26 Biomarker for predicting prognosis of Non-muscle invasive bladder cancer and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210026520A KR102632423B1 (en) 2021-02-26 2021-02-26 Biomarker for predicting prognosis of Non-muscle invasive bladder cancer and uses thereof

Publications (2)

Publication Number Publication Date
KR20220122197A KR20220122197A (en) 2022-09-02
KR102632423B1 true KR102632423B1 (en) 2024-01-31

Family

ID=83281164

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210026520A KR102632423B1 (en) 2021-02-26 2021-02-26 Biomarker for predicting prognosis of Non-muscle invasive bladder cancer and uses thereof

Country Status (1)

Country Link
KR (1) KR102632423B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507233A (en) * 2013-01-31 2016-03-10 フィナ、ビオテク、ソシエダッド、リミターダFina Biotech, S.L Non-invasive diagnostic method for diagnosing bladder cancer
WO2018174862A1 (en) * 2017-03-21 2018-09-27 Mprobe Inc. Methods and compositions for detecting early stage bladder cancer with rna-seq expression profiling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661199B (en) * 2004-07-23 2019-06-01 太平洋愛吉生技股份有限公司 Urine markers for detection of bladder cancer
KR101750146B1 (en) 2014-12-30 2017-06-23 충북대학교 산학협력단 Use of RSPH9 for Prognostic Marker Diagnosis of Bladder Cancer
KR102029775B1 (en) 2018-01-23 2019-10-08 충북대학교 산학협력단 Biomarkers for diagnosis of Non-muscle invasive bladder cancer and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507233A (en) * 2013-01-31 2016-03-10 フィナ、ビオテク、ソシエダッド、リミターダFina Biotech, S.L Non-invasive diagnostic method for diagnosing bladder cancer
WO2018174862A1 (en) * 2017-03-21 2018-09-27 Mprobe Inc. Methods and compositions for detecting early stage bladder cancer with rna-seq expression profiling

Also Published As

Publication number Publication date
KR20220122197A (en) 2022-09-02

Similar Documents

Publication Publication Date Title
AU2020270508B2 (en) C/EBP alpha short activating RNA compositions and methods of use
AU2019201577B2 (en) Cancer diagnostics using biomarkers
DK2681333T3 (en) EVALUATION OF RESPONSE TO GASTROENTEROPANCREATIC NEUROENDOCRINE NEOPLASIS (GEP-NENE) THERAPY
US20220389519A1 (en) Biomarkers predictive of anti-immune checkpoint response
AU2018210695A1 (en) Molecular subtyping, prognosis, and treatment of bladder cancer
WO2003042661A2 (en) Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
CA2442820A1 (en) Microarray gene expression profiling in clear cell renal cell carcinoma: prognosis and drug target identification
KR20110015409A (en) Gene expression markers for inflammatory bowel disease
KR20140006898A (en) Colon cancer gene expression signatures and methods of use
CN101573453A (en) Methods of predicting distant metastasis of lymph node-negative primary breast cancer using biological pathway gene expression analysis
MXPA05005653A (en) Heart failure gene determination and therapeutic screening.
KR20070099564A (en) Methods for assessing patients with acute myeloid leukemia
US20230022417A1 (en) Chemical compositions and methods of use
AU2016377391A1 (en) Triage biomarkers and uses therefor
KR20140113021A (en) Biomarkers for confirmation of drug addiction and dependence
KR102632423B1 (en) Biomarker for predicting prognosis of Non-muscle invasive bladder cancer and uses thereof
KR101767524B1 (en) Low-density SNP chip considering the economic costs in Berkshire
KR20190126812A (en) Biomarkers for Disease Diagnosis
US20030175704A1 (en) Genes expressed in lung cancer
EP1497454A2 (en) Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
KR102631854B1 (en) Use of BUB1 as a biomarker for predicting the prognosis of Non-muscle invasive bladder cancer
KR20230081427A (en) Method for diagnosing canine lymphoma using blood-based gene expression patterns
KR20070032074A (en) Method of predicting the responsiveness of a tumour to erbb receptor drugs
JP2003310272A (en) Method for searching out vasohypotonic substance by using change in expression of vasohypotonic agent response gene as indicator
CN101827948A (en) New molecular markers for detection of squamous cell carcinomas and adenocarcinomas and high-grade precursor lesions thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant