KR102626238B1 - Method for analyzing block copolymer purity - Google Patents

Method for analyzing block copolymer purity Download PDF

Info

Publication number
KR102626238B1
KR102626238B1 KR1020180122336A KR20180122336A KR102626238B1 KR 102626238 B1 KR102626238 B1 KR 102626238B1 KR 1020180122336 A KR1020180122336 A KR 1020180122336A KR 20180122336 A KR20180122336 A KR 20180122336A KR 102626238 B1 KR102626238 B1 KR 102626238B1
Authority
KR
South Korea
Prior art keywords
homopolymer
block copolymer
monomer
purity
molecular weight
Prior art date
Application number
KR1020180122336A
Other languages
Korean (ko)
Other versions
KR20200042144A (en
KR102626238B9 (en
Inventor
오선옥
유진숙
오성준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020180122336A priority Critical patent/KR102626238B1/en
Publication of KR20200042144A publication Critical patent/KR20200042144A/en
Application granted granted Critical
Publication of KR102626238B1 publication Critical patent/KR102626238B1/en
Publication of KR102626238B9 publication Critical patent/KR102626238B9/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/42Selective adsorption, e.g. chromatography characterised by the development mode, e.g. by displacement or by elution
    • B01D15/424Elution mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/885Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 블록 공중합체 순도 분석방법에 관한 것으로, 제1단량체 유래의 제1블록 및 제2단량체 유래의 제2블록을 포함하는 블록 공중합체, 제1단량체의 제1호모폴리머, 제2단량체의 제2호모폴리머를 포함하는 혼합물에서 제1호모폴리머 및 제2호모폴리머를 분리하는 단계; 및 분리된 제1호모폴리머 및 제2호모폴리머의 농도를 각각 구한 후, 이를 이용하여 블록 공중합체의 순도를 구하는 단계를 포함하는 블록 공중합체 순도 분석방법을 제공한다.The present invention relates to a method for analyzing the purity of a block copolymer, and relates to a block copolymer comprising a first block derived from a first monomer and a second block derived from a second monomer, a first homopolymer of the first monomer, and a second monomer. separating the first homopolymer and the second homopolymer from the mixture containing the second homopolymer; and calculating the concentrations of the separated first homopolymer and the second homopolymer, respectively, and then using them to determine the purity of the block copolymer.

Description

블록 공중합체 순도 분석방법{Method for analyzing block copolymer purity}{Method for analyzing block copolymer purity}

본 발명은 블록 공중합체의 순도를 분석하는 방법에 관한 것이다.The present invention relates to a method for analyzing the purity of block copolymers.

블록 공중합체 제조 시, 모든 단분자가 블록 공중합체로 중합되는 것은 아니며, 블록 공중합체 내 부산물로 각 성분의 호모폴리머(homopolymer)가 존재하게 된다.When producing block copolymers, not all single molecules are polymerized into block copolymers, and homopolymers of each component exist as by-products in the block copolymer.

따라서, 블록 공중합체의 물성 평가에 있어서 부산물이 영향을 미칠 수밖에 없으므로, 이 호모폴리머 부산물들을 분리하고 블록 공중합체의 순도를 분석하는 것이 중요하다.Therefore, since by-products inevitably have an effect in evaluating the physical properties of block copolymers, it is important to separate these homopolymer by-products and analyze the purity of the block copolymer.

기존의 SEC(Size Exclusion Chromatography) 방법으로는 고분자를 분자량에 의해서만 분리하므로, 각 성분별 분리 및 이에 따른 순도 분석은 불가능하다.The existing SEC (Size Exclusion Chromatography) method separates polymers only by molecular weight, making it impossible to separate each component and analyze its purity.

따라서, 본 발명의 목적은 블록 공중합체 제조 시에 생성되는 생성물을 각 성분별로 분리하고 이에 따른 순도 분석이 가능한 블록 공중합체 순도 분석방법을 제공하는 것이다.Therefore, the purpose of the present invention is to provide a method for analyzing the purity of block copolymers that can separate the products produced during the production of block copolymers into each component and analyze the purity accordingly.

본 발명은 상술한 목적을 달성하기 위해, 제1단량체 유래의 제1블록 및 제2단량체 유래의 제2블록을 포함하는 블록 공중합체, 제1단량체의 제1호모폴리머, 제2단량체의 제2호모폴리머를 포함하는 혼합물에서 제1호모폴리머 및 제2호모폴리머를 분리하는 단계; 및 분리된 제1호모폴리머 및 제2호모폴리머의 농도를 각각 구한 후, 이를 이용하여 블록 공중합체의 순도를 구하는 단계를 포함하는 블록 공중합체 순도 분석방법을 제공한다.In order to achieve the above-described object, the present invention provides a block copolymer comprising a first block derived from a first monomer and a second block derived from a second monomer, a first homopolymer of the first monomer, and a second block of the second monomer. Separating the first homopolymer and the second homopolymer from the mixture containing the homopolymer; and calculating the concentrations of the separated first homopolymer and the second homopolymer, respectively, and then using them to determine the purity of the block copolymer.

본 발명에서 혼합물은 제1단량체 및 제2단량체의 중합반응으로 생성될 수 있다.In the present invention, the mixture can be produced through a polymerization reaction of the first monomer and the second monomer.

본 발명에서 제1단량체는 아크릴계 단량체, 제2단량체는 스티렌계 단량체일 수 있다.In the present invention, the first monomer may be an acrylic monomer and the second monomer may be a styrene monomer.

본 발명에서 분리는 GPEC(Gradient Polymer Elution Chromatography) 방법을 이용하여 수행할 수 있다.In the present invention, separation can be performed using GPEC (Gradient Polymer Elution Chromatography) method.

본 발명의 GPEC 방법에서 정지상으로 비극성 컬럼을 이용하고, 이동상으로 비극성 용매와 극성 용매의 혼합용매를 이용하며, 분리 중에 비극성 용매의 비율을 증가시키는 농도 구배 조건에서 분리할 수 있다.In the GPEC method of the present invention, a non-polar column is used as the stationary phase, and a mixed solvent of a non-polar solvent and a polar solvent is used as the mobile phase, and separation can be performed under concentration gradient conditions that increase the ratio of the non-polar solvent during separation.

본 발명에서 블록 공중합체의 순도는 하기 식으로 구할 수 있다.In the present invention, the purity of the block copolymer can be obtained by the following formula.

[수학식 1][Equation 1]

순도(%) = [(Ct - C1 - C2) / Ct] × 100(%)Purity (%) = [(C t - C 1 - C 2 ) / C t ] × 100(%)

= {[Ct - (A11) - (A22)] / Ct} × 100(%)= {[C t - (A 11 ) - (A 22 )] / C t } × 100(%)

상기 수학식에서, Ct는 혼합물 전체 농도, C1은 제1호모폴리머 농도, C2는 제2호모폴리머 농도, A1은 제1호모폴리머의 최대흡수파장에서의 피크 면적, ε1은 제1호모폴리머의 최대흡수파장에서의 흡광계수, A2 제2호모폴리머의 최대흡수파장에서의 피크 면적, ε2 제2호모폴리머의 최대흡수파장에서의 흡광계수이다.In the above equation, C t is the total concentration of the mixture, C 1 is the concentration of the first homopolymer, C 2 is the concentration of the second homopolymer, A 1 is the peak area at the maximum absorption wavelength of the first homopolymer, and ε 1 is the concentration of the first homopolymer. The extinction coefficient at the maximum absorption wavelength of the homopolymer, A 2 , is The peak area at the maximum absorption wavelength of the second homopolymer, ε 2 , is This is the extinction coefficient at the maximum absorption wavelength of the second homopolymer.

본 발명에서 흡광계수는 분자량을 알고 있는 별도의 호모폴리머에 대해, 분자량이 서로 다르도록 2종 이상의 호모폴리머를 선택한 후, 분자량별 흡광계수를 구한 다음, 그 평균값을 적용할 수 있다.In the present invention, the extinction coefficient can be determined by selecting two or more homopolymers with different molecular weights for separate homopolymers of known molecular weight, then calculating the extinction coefficient for each molecular weight, and then applying the average value.

본 발명에서 호모폴리머를 선택할 때, 호모폴리머의 최저 분자량은 1천 내지 8천 g/mol, 호모폴리머의 최대 분자량은 10천 내지 30천 g/mol, 인접하는 호모폴리머의 분자량 차이는 1천 내지 8천 g/mol로 설정할 수 있다.When selecting a homopolymer in the present invention, the lowest molecular weight of the homopolymer is 1,000 to 8,000 g/mol, the maximum molecular weight of the homopolymer is 10,000 to 30,000 g/mol, and the molecular weight difference between adjacent homopolymers is 1,000 to 1,000 g/mol. It can be set to 8,000 g/mol.

본 발명에서 블록 공중합체 순도 분석을 복수 회 실시할 경우, 블록 공중합체 순도의 표준편차는 1% 이하일 수 있다.In the present invention, when the block copolymer purity analysis is performed multiple times, the standard deviation of the block copolymer purity may be 1% or less.

본 발명에 따르면, 블록 공중합체 제조 시에 생성되는 생성물을 각 성분별로 분리하고 이에 따른 순도 분석이 가능하다.According to the present invention, it is possible to separate the products produced during the production of block copolymers into each component and analyze their purity accordingly.

도 1은 블록 공중합체 및 각 호모폴리머의 GPEC 크로마토그램으로, (a)는 PDPM-b-PPFS, (b)는 PPFS, (c)는 PDPM을 나타낸 것이다.
도 2는 파장에 따른 GPEC 크로마토그램으로, (a)는 UV 278 nm, (b)는 UV 260 nm를 나타낸 것이다.
도 3은 PDPM의 분자량에 따른 흡광계수를 나타낸 것이다.
도 4는 PPFS의 분자량에 따른 흡광계수를 나타낸 것이다.
도 5는 블록 공중합체 순도 분석을 15회 반복 실시한 결과를 나타낸 것이다.
Figure 1 is a GPEC chromatogram of block copolymers and each homopolymer, (a) showing PDPM-b-PPFS, (b) showing PPFS, and (c) showing PDPM.
Figure 2 is a GPEC chromatogram according to wavelength, (a) showing UV 278 nm and (b) showing UV 260 nm.
Figure 3 shows the extinction coefficient according to the molecular weight of PDPM.
Figure 4 shows the extinction coefficient according to the molecular weight of PPFS.
Figure 5 shows the results of block copolymer purity analysis repeated 15 times.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 블록 공중합체 순도 분석방법은 분리 단계 및 분석(계산) 단계로 구성될 수 있다.The block copolymer purity analysis method according to the present invention may consist of a separation step and an analysis (calculation) step.

먼저, 분리 단계에서는 제1단량체 유래의 제1블록 및 제2단량체 유래의 제2블록을 포함하는 블록 공중합체, 제1단량체의 제1호모폴리머, 제2단량체의 제2호모폴리머를 포함하는 혼합물에서 제1호모폴리머 및 제2호모폴리머를 분리한다. 블록 공중합체는 2종류 이상의 단량체로부터 형성되어지되, 동일 단량체 단위가 연속적으로 연결되어 블록을 형성하는 중합체를 의미할 수 있다. 호모폴리머는 한 종류의 단량체로부터 형성된 단독 중합체를 의미할 수 있다.First, in the separation step, a mixture containing a block copolymer including a first block derived from the first monomer and a second block derived from the second monomer, a first homopolymer of the first monomer, and a second homopolymer of the second monomer. Separate the first homopolymer and the second homopolymer. A block copolymer is formed from two or more types of monomers, and may refer to a polymer in which units of the same monomer are connected sequentially to form a block. Homopolymer may refer to a homopolymer formed from one type of monomer.

혼합물은 제1단량체 및 제2단량체의 중합반응으로 생성될 수 있고, 즉 혼합물은 중합반응 생성물일 수 있다. 혼합물(중합반응 생성물)은 목적 생성물인 블록 공중합체 그리고 부산물인 호모폴리머(제1호모폴리머 및 제2호모폴리머)를 포함할 수 있다. 중합반응 생성물에는 미반응 단량체 및 랜덤 공중합체가 없다. 미반응 단량체는 중합과정에서 제거되고, 중합과정 상 랜덤 공중합체는 생성되지 않는다.The mixture may be produced by polymerization of the first monomer and the second monomer, that is, the mixture may be a polymerization reaction product. The mixture (polymerization reaction product) may include a block copolymer as the target product and a homopolymer as a by-product (first homopolymer and second homopolymer). The polymerization product is free of unreacted monomers and random copolymers. Unreacted monomers are removed during the polymerization process, and random copolymers are not generated during the polymerization process.

제1단량체로는 예를 들어 아크릴계 단량체 등을 사용할 수 있고, 아크릴계 단량체로는 예를 들어 (알킬옥시)페닐 (메트)아크릴레이트 등을 사용할 수 있다. 구체적으로, 실시예처럼 제1단량체로서 4-(도데실옥시)페닐 메타크릴레이트(DPM: 4-(dodecyloxy)phenyl methacrylate)를 사용할 수 있고, 이에 따라 제1블록 및 제1호모폴리머는 폴리[4-(도데실옥시)페닐 메타크릴레이트](PDPM: poly[4-(dodecyloxy)phenyl methacrylate])일 수 있다.For example, an acrylic monomer can be used as the first monomer, and for example, (alkyloxy)phenyl (meth)acrylate can be used as an acrylic monomer. Specifically, as in the example, 4-(dodecyloxy)phenyl methacrylate (DPM: 4-(dodecyloxy)phenyl methacrylate) can be used as the first monomer, and accordingly, the first block and the first homopolymer are poly[ It may be 4-(dodecyloxy)phenyl methacrylate] (PDPM: poly[4-(dodecyloxy)phenyl methacrylate]).

제2단량체로는 예를 들어 스티렌계 단량체 등을 사용할 수 있고, 스티렌계 단량체로는 예를 들어 할로스티렌 등을 사용할 수 있다. 구체적으로, 실시예처럼 제2단량체로서 펜타플루오로스티렌(PFS: pentafluorostyrene)을 사용할 수 있고, 이에 따라 제2블록 및 제2호모폴리머는 폴리(펜타플루오로스티렌)(PPFS: poly(pentafluorostyrene))일 수 있다.As the second monomer, for example, a styrene-based monomer can be used, and as the styrene-based monomer, for example, halostyrene can be used. Specifically, as in the example, pentafluorostyrene (PFS: pentafluorostyrene) can be used as the second monomer, and accordingly, the second block and the second homopolymer are poly (pentafluorostyrene) (PPFS: poly(pentafluorostyrene)). It can be.

블록 공중합체를 제조하는 방식은 특별히 제한되지 않는다. 예를 들어, 블록 공중합체는 LRP(Living Radical Polymerization) 방식으로 중합할 수 있고, 그 예로는 유기 희토류 금속 복합체를 중합 개시제로 사용하거나, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 알칼리 금속 또는 알칼리 토금속의 염 등의 무기산 염의 존재 하에 합성하는 음이온 중합, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 유기 알루미늄 화합물의 존재 하에 합성하는 음이온 중합 방법, 중합 제어제로서 원자 이동 라디칼 중합제를 이용하는 원자이동 라디칼 중합법(ATRP), 중합 제어제로서 원자이동 라디칼 중합제를 이용하되 전자를 발생시키는 유기 또는 무기 환원제 하에서 중합을 수행하는 ARGET(Activators Regenerated by Electron Transfer) 원자이동 라디칼 중합법(ATRP), ICAR(Initiators for continuous activator regeneration) 원자이동 라디칼 중합법(ATRP), 무기 환원제 가역적 첨가/분절화 사슬 전달(RAFT: Reversible Addition/Fragmentation Chain Transfer) 제제를 이용하는 가역적 첨가/분절화 사슬 전달에 의한 중합법(RAFT), 유기 텔루륨 화합물을 개시제로서 이용하는 방법 등이 있으며, 이러한 방법 중에서 적절한 방법이 선택되어 적용될 수 있다.The method of producing the block copolymer is not particularly limited. For example, block copolymers can be polymerized by LRP (Living Radical Polymerization), for example, using an organic rare earth metal complex as a polymerization initiator, or using an organic alkali metal compound as a polymerization initiator to form an alkali metal or alkaline earth metal. Anionic polymerization synthesized in the presence of an inorganic acid salt such as a salt of ARGET (Activators Regenerated by Electron Transfer) Atom Transfer Radical Polymerization (ATRP), which uses an atom transfer radical polymerization agent as a polymerization control agent but performs polymerization under an organic or inorganic reducing agent that generates electrons. Atomic Transfer Radical Polymerization (ATRP), ICAR (Initiators) for continuous activator regeneration), atom transfer radical polymerization (ATRP), polymerization by reversible addition/fragmentation chain transfer (RAFT) using an inorganic reducing agent, and organic reversible addition/fragmentation chain transfer (RAFT) agents. There is a method using a tellurium compound as an initiator, and an appropriate method can be selected and applied among these methods.

예를 들어, 블록 공중합체는 라디칼 개시제 및 리빙 라디칼 중합 시약의 존재 하에, 고분자 세그먼트를 형성할 수 있는 단량체들을 포함하는 반응물을 리빙 라디칼 중합법으로 중합하는 것을 포함하는 방식으로 제조할 수 있다. 고분자 세그먼트공중합체의 제조 과정은, 예를 들면 상술한 과정을 거쳐서 생성된 중합 생성물을 비용매 내에서 침전시키는 과정을 추가로 포함할 수 있다.For example, the block copolymer can be prepared by polymerizing reactants containing monomers capable of forming polymer segments by living radical polymerization in the presence of a radical initiator and a living radical polymerization reagent. The manufacturing process of the polymer segment copolymer may further include, for example, a process of precipitating the polymerization product generated through the above-described process in a non-solvent.

라디칼 개시제의 종류는 특별히 제한되지 않고, 중합 효율을 고려하여 적절히 선택할 수 있으며, 예를 들어 AIBN(azobisisobutyronitrile), 2,2'-아조비스-2,4-디메틸발레로니트릴 등과 같은 아조 화합물; 벤조일 퍼옥사이드(BPO), 디-t-부틸 퍼옥사이드(DTBP) 등과 같은 과산화물 계열 등을 사용할 수 있다.The type of radical initiator is not particularly limited and can be appropriately selected in consideration of polymerization efficiency, and includes, for example, azo compounds such as AIBN (azobisisobutyronitrile), 2,2'-azobis-2,4-dimethylvaleronitrile, etc.; Peroxide series such as benzoyl peroxide (BPO), di-t-butyl peroxide (DTBP), etc. can be used.

리빙 라디칼 중합 과정은 예를 들어 메틸렌클로라이드, 1,2-디클로로에탄, 클로로벤젠, 디클로로벤젠, 벤젠, 톨루엔, 아세톤, 클로로포름, 테트라히드로푸란, 디옥산, 모노글라임, 디글라임, 디메틸포름아미드, 디메틸술폭사이드, 디메틸아세트아미드 등과 같은 용매 내에서 수행될 수 있다.Living radical polymerization processes include, for example, methylene chloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, dimethylformamide, It can be carried out in a solvent such as dimethyl sulfoxide, dimethylacetamide, etc.

비용매로는 예를 들어 메탄올, 에탄올, 노르말 프로판올, 이소프로판올 등과 같은 알코올; 에틸렌글리콜 등의 글리콜; n-헥산, 시클로헥산, n-헵탄 등의 탄화수소; 페트롤리움 에테르 등과 같은 에테르 계열 등이 사용될 수 있다.Non-solvents include, for example, alcohols such as methanol, ethanol, normal propanol, isopropanol, etc.; Glycols such as ethylene glycol; Hydrocarbons such as n-hexane, cyclohexane, and n-heptane; Ether series such as petroleum ether, etc. may be used.

분리는 크로마토그래피 방법, 바람직하게는 GPEC(Gradient Polymer Elution Chromatography) 방법을 이용하여 수행할 수 있다. 구체적으로, GPEC 방법에서 정지상(고정상)으로 비극성 컬럼을 이용하고, 이동상으로 비극성 용매와 극성 용매의 혼합용매를 이용하며, 분리 중에 비극성 용매의 비율을 증가시키는 농도 구배 조건에서 분리할 수 있다.Separation can be performed using a chromatographic method, preferably GPEC (Gradient Polymer Elution Chromatography). Specifically, in the GPEC method, a non-polar column is used as the stationary phase, and a mixed solvent of non-polar and polar solvents is used as the mobile phase, and separation can be performed under concentration gradient conditions that increase the ratio of the non-polar solvent during separation.

비극성(non-polar) 컬럼은 충진물로서 탄소수에 따라 C18계열 화합물 또는 C8계열 화합물 등이 결합 또는 코팅된 다공성 실리카 입자(비드)를 포함하는 C18 컬럼 또는 C8 컬럼 등을 사용할 수 있다. 입자 크기는 1 내지 10 ㎛일 수 있다. 입자의 포어(pore) 크기는 50 내지 500 Å일 수 있다.A non-polar column may use a C18 column or C8 column containing porous silica particles (beads) bonded or coated with a C18 series compound or a C8 series compound depending on the carbon number as a packing material. The particle size may be 1 to 10 μm. The pore size of the particle may be 50 to 500 Å.

비극성 용매는 혼합 용매 중 상대적으로 극성이 낮은 용매를 의미할 수 있는데, 예를 들어 아세토니트릴(ACN: Acetonitrile)보다 극성이 낮은 용매를 의미할 수 있다. 구체적으로, 극성 용매와 비극성 용매는 디옥산(dioxane)을 기준으로 구분될 수 있다. 즉, 디옥산보다 극성이 높은 용매는 극성 용매로 구분할 수 있고, 디옥산보다 극성이 낮은 용매는 비극성 용매로 구분할 수 있다.A non-polar solvent may mean a solvent with relatively low polarity among mixed solvents, for example, a solvent with lower polarity than acetonitrile (ACN). Specifically, polar solvents and non-polar solvents can be distinguished based on dioxane. In other words, solvents with higher polarity than dioxane can be classified as polar solvents, and solvents with lower polarity than dioxane can be classified as non-polar solvents.

디옥산보다 극성이 높은 용매인 극성 용매로는, 아세토니트릴(ACN), 물, 메탄올, 아세트산, 에탄올, 이소프로판올, 아세톤 등을 사용할 수 있다. 블록 공중합체의 단량체 종류 등에 따라 다르지만, 바람직하게는 극성 용매로서 아세토니트릴(ACN)을 사용할 수 있다.As polar solvents, which are solvents with higher polarity than dioxane, acetonitrile (ACN), water, methanol, acetic acid, ethanol, isopropanol, acetone, etc. can be used. Although it varies depending on the type of monomer of the block copolymer, acetonitrile (ACN) is preferably used as a polar solvent.

디옥산보다 극성이 낮은 용매인 비극성 용매로는, 테트라히드로푸란(THF), 메틸에틸케톤, 페놀, n-부탄올, 에틸아세톤, 에틸에테르, 니트로메탄, 클로로포름, 벤젠, 톨루엔, 크실렌, 사염화탄소, 이황화탄소, 시클로헥산, n-헥산, n-헵탄, 등유 등을 사용할 수 있다. 블록 공중합체의 단량체 종류 등에 따라 다르지만, 바람직하게는 비극성 용매로서 테트라히드로푸란(THF)을 사용할 수 있다.Nonpolar solvents that are less polar than dioxane include tetrahydrofuran (THF), methyl ethyl ketone, phenol, n-butanol, ethyl acetone, ethyl ether, nitromethane, chloroform, benzene, toluene, xylene, carbon tetrachloride, and disulfide. Carbon, cyclohexane, n-hexane, n-heptane, kerosene, etc. can be used. Although it varies depending on the type of monomer of the block copolymer, tetrahydrofuran (THF) can be preferably used as a nonpolar solvent.

농도 구배(gradient) 조건은 블록 공중합체의 단량체 종류 등에 따라 달라질 수 있고, 예를 들어 분리 중에 비극성 용매의 비율을 증가시키는 농도 구배 조건일 수 있다. 구체적으로, 비극성 용매 대 극성 용매의 부피비율은 초기에(로딩 시) 0:100 내지 70:30일 수 있고, 이후에(분리 중) 70:30 내지 100:0일 수 있다. 더욱 구체적으로는, 비극성 용매 대 극성 용매의 부피비율은 초기에(로딩 시에) 55:45 내지 65:35일 수 있고, 이후에(분리 중에) 75:25 내지 85:15일 수 있다. 용매 비율 변화는 일정 속도로 연속적으로 및/또는 간헐적으로 이루어질 수 있다.The concentration gradient condition may vary depending on the type of monomer of the block copolymer, etc., and may be, for example, a concentration gradient condition that increases the ratio of the non-polar solvent during separation. Specifically, the volume ratio of non-polar solvent to polar solvent may initially (during loading) be 0:100 to 70:30, and subsequently (during separation) may be 70:30 to 100:0. More specifically, the volume ratio of non-polar solvent to polar solvent may initially (during loading) be 55:45 to 65:35 and subsequently (during separation) may be 75:25 to 85:15. Solvent ratio changes can be made continuously and/or intermittently at a constant rate.

이와 같이, 블록 공중합체 중합 후 부산물 및 순수 블록 공중합체를 크로마토그래피 방법을 이용하여 분리할 수 있고, 상술한 크로마토그래피 방법을 사용함으로써 정량 분석이 가능하다. 블록 공중합체의 부산물로 존재하는 두 가지 호모폴리머 중, 하나의 호모폴리머는 SEC 메커니즘에 의해 용매 피크보다 앞에(빠른 시점에) 용출될 수 있고, 블록 공중합체 및 다른 한 성분의 호모폴리머는 컬럼 충진물과의 상호작용에 의해 용매 피크보다 뒤에(늦은 시점에) 용출되어 각 성분을 분리할 수 있다.In this way, after block copolymer polymerization, by-products and pure block copolymers can be separated using a chromatography method, and quantitative analysis is possible by using the above-described chromatography method. Of the two homopolymers that exist as by-products of block copolymers, one homopolymer can be eluted before the solvent peak by the SEC mechanism, and the block copolymer and the other homopolymer can be eluted from the column packing. Due to the interaction with , each component can be separated by eluting after the solvent peak (at a later time).

다음, 분리된 제1호모폴리머 및 제2호모폴리머의 농도를 각각 계산한다. 호모폴리머의 농도는 호모폴리머의 최대흡수파장(λmax)에서의 피크 면적(peak area) 및 최대흡수파장에서의 흡광계수로부터 계산할 수 있다. 구체적으로, 호모폴리머 농도(C)=피크 면적(A)/흡광계수(ε)일 수 있다.Next, calculate the concentrations of the separated first homopolymer and second homopolymer, respectively. The concentration of the homopolymer can be calculated from the peak area at the maximum absorption wavelength (λ max ) of the homopolymer and the extinction coefficient at the maximum absorption wavelength. Specifically, the homopolymer concentration (C) may be = peak area (A)/extinction coefficient (ε).

최대흡수파장(λmax)은 크로마토그램(chromatogram)(예를 들어, 시간(횡축)-흡광도(종축) 그래프 등)에서 가장 큰 흡광도나 흡수강도를 나타내는 파장을 의미할 수 있다. 피크 면적은 최대 피크에서의 면적을 의미할 수 있다. 최대 피크는 여러 피크 중에서 피크의 높이가 최대(최대 흡광도 또는 흡수강도)인 것을 의미할 수 있다. 최대 피크가 다른 피크와 인접할 경우, 두 피크의 경계점을 기준으로 구획할 수 있다. 예를 들어, 도 2에서 최대 피크의 경계를 점선으로 표시하였고, 최대 피크의 면적은 점선들과 피크 실선으로 둘러싸인 영역이다.The maximum absorption wavelength (λ max ) may refer to the wavelength that represents the greatest absorbance or absorption intensity in a chromatogram (e.g., time (horizontal axis) - absorbance (vertical axis) graph, etc.). Peak area may refer to the area at the maximum peak. The maximum peak may mean that the peak height (maximum absorbance or absorption intensity) is the maximum among several peaks. If the largest peak is adjacent to another peak, it can be divided based on the boundary point of the two peaks. For example, in Figure 2, the boundary of the maximum peak is indicated by a dotted line, and the area of the maximum peak is an area surrounded by dotted lines and solid peak lines.

흡광계수는 별도의 호모폴리머에 대해 분자량이 다른 2종 이상의 호모폴리머를 선택하여 흡광계수를 구한 후, 분자량별 흡광계수의 평균값을 적용할 수 있다. 구체적으로, 말단기의 영향으로 분자량에 따라 흡광계수의 차이가 발생할 수 있으므로, 각 단량체 성분의 호모폴리머에 대해 각각 분자량이 다른 2종 이상을 선택하여 흡광계수를 구하고 그 평균값을 구할 수 있다.The extinction coefficient can be calculated by selecting two or more types of homopolymers with different molecular weights for separate homopolymers, and then applying the average value of the extinction coefficient for each molecular weight. Specifically, since differences in extinction coefficient may occur depending on molecular weight due to the influence of end groups, two or more types of homopolymers of each monomer component with different molecular weights can be selected to obtain the extinction coefficient, and the average value can be obtained.

분자량은 수평균분자량(Mn)을 의미할 수 있다. 수평균분자량은 예를 들어 GPC(Gel Permeation Chromatograph)를 사용하여 측정한 표준 폴리스티렌에 대한 환산 수치일 수 있다.Molecular weight may refer to number average molecular weight (Mn). The number average molecular weight may be a converted value to standard polystyrene measured using, for example, GPC (Gel Permeation Chromatograph).

흡광계수를 구할 때 사용하는 호모폴리머는 중합반응 생성물이 아니라, 별도로 제조되거나 구입한 호모폴리머일 수 있다. 따라서, 이미 분자량 등의 정보를 알고 있는 호모폴리머들 중에서 복수 개를 선택하여 분자량별 흡광계수의 평균값을 구할 수 있다.The homopolymer used to calculate the extinction coefficient may not be a polymerization product, but may be a separately manufactured or purchased homopolymer. Therefore, the average value of the extinction coefficient for each molecular weight can be obtained by selecting a plurality of homopolymers for which information such as molecular weight is already known.

중합반응 생성물에서 분리된 호모폴리머의 농도를 계산할 때, 분자량별 흡광계수의 평균값을 적용하면, 분자량에 따른 영향을 최소화하여 호모폴리머의 농도를 정확하고 재현성 있게 구할 수 있다.When calculating the concentration of the homopolymer separated from the polymerization reaction product, if the average value of the extinction coefficient for each molecular weight is applied, the influence of the molecular weight can be minimized and the concentration of the homopolymer can be obtained accurately and reproducibly.

흡광계수(ε)=피크 면적(A)/호모폴리머 농도(C)이므로, 분자량을 알고 있는 호모폴리머를 특정 농도로 제조한 후, GPEC 크로마토그램으로부터 피크 면적을 얻으면, 흡광계수를 계산할 수 있다.Since extinction coefficient (ε) = peak area (A)/homopolymer concentration (C), the extinction coefficient can be calculated by preparing a homopolymer with a known molecular weight at a specific concentration and then obtaining the peak area from the GPEC chromatogram.

분자량이 서로 다른 호모폴리머들의 개수는 예를 들어 2 내지 10개, 바람직하게는 3 내지 8개, 더욱 바람직하게는 4 내지 6개일 수 있다.The number of homopolymers having different molecular weights may be, for example, 2 to 10, preferably 3 to 8, and more preferably 4 to 6.

호모폴리머들을 분자량별로 선택할 때, 호모폴리머의 최저 분자량은 예를 들어 1천 내지 8천 g/mol, 바람직하게는 2천 내지 7천 g/mol, 더욱 바람직하게는 3천 내지 6천 g/mol로 설정할 수 있다.When selecting homopolymers by molecular weight, the lowest molecular weight of the homopolymer is, for example, 1,000 to 8,000 g/mol, preferably 2,000 to 7,000 g/mol, more preferably 3,000 to 6,000 g/mol. It can be set to .

호모폴리머들을 분자량별로 선택할 때, 호모폴리머의 최대 분자량은 예를 들어 10천 내지 30천 g/mol, 바람직하게는 12천 내지 25천 g/mol, 더욱 바람직하게는 15천 내지 22천 g/mol로 설정할 수 있다.When selecting homopolymers by molecular weight, the maximum molecular weight of the homopolymer is, for example, 10,000 to 30,000 g/mol, preferably 12,000 to 25,000 g/mol, more preferably 15,000 to 22,000 g/mol. It can be set to .

호모폴리머들을 분자량별로 선택할 때, 인접하는 각 호모폴리머의 분자량 차이는 예를 들어 1천 내지 8천 g/mol, 바람직하게는 2천 내지 7천 g/mol, 더욱 바람직하게는 3천 내지 6천 g/mol로 설정할 수 있다.When selecting homopolymers by molecular weight, the molecular weight difference between each adjacent homopolymer is, for example, 1,000 to 8,000 g/mol, preferably 2,000 to 7,000 g/mol, more preferably 3,000 to 6,000. It can be set in g/mol.

다음, 계산된 제1호모폴리머 및 제2호모폴리머의 농도를 이용하여 블록 공중합체의 순도를 계산한다. 블록 공중합체의 순도는 하기 식으로 구할 수 있다.Next, calculate the purity of the block copolymer using the calculated concentrations of the first homopolymer and the second homopolymer. The purity of the block copolymer can be obtained by the following formula.

[수학식 1][Equation 1]

순도(%) = [(Ct - C1 - C2) / Ct] × 100(%)Purity (%) = [(C t - C 1 - C 2 ) / C t ] × 100(%)

= {[Ct - (A11) - (A22)] / Ct} × 100(%)= {[C t - (A 11 ) - (A 22 )] / C t } × 100(%)

상기 수학식에서,In the above equation,

Ct는 혼합물 전체 농도(전체 시료의 농도)이고, 이때 전체 시료의 농도는 전처리한 시료/용액 무게로부터 계산할 수 있다.C t is the total concentration of the mixture (concentration of the entire sample), and in this case, the concentration of the entire sample can be calculated from the weight of the pretreated sample/solution.

C1은 혼합물로부터 분리된 제1호모폴리머(예: PDPM) 농도이고, 이 농도는 피크 면적/흡광계수로부터 계산할 수 있다.C 1 is the concentration of the first homopolymer (e.g. PDPM) separated from the mixture, and this concentration can be calculated from peak area/extinction coefficient.

C2는 혼합물로부터 분리된 제2호모폴리머(예: PPFS) 농도이고, 이 농도는 피크 면적/흡광계수로부터 계산할 수 있다.C 2 is the concentration of the second homopolymer (e.g. PPFS) separated from the mixture, which can be calculated from peak area/extinction coefficient.

A1은 혼합물로부터 분리된 제1호모폴리머(예: PDPM)의 최대흡수파장(λmax1)(예: UV 278 nm)에서 혼합물로부터 분리된 제1호모폴리머의 피크 면적이다.A 1 is the peak area of the first homopolymer (e.g., PDPM) separated from the mixture at the maximum absorption wavelength (λ max1 ) (e.g., UV 278 nm).

ε1은 혼합물로부터 분리된 제1호모폴리머(예: PDPM)의 최대흡수파장(λmax1)(예: UV 278 nm)에서 혼합물로부터 분리된 제1호모폴리머의 흡광계수이고, 이 흡광계수는 상술한 바와 같은 분자량별 흡광계수의 평균값이다.ε 1 is the extinction coefficient of the first homopolymer (e.g., PDPM) separated from the mixture at the maximum absorption wavelength (λ max1 ) (e.g., UV 278 nm), and this extinction coefficient is as described above. This is the average value of the extinction coefficient for each molecular weight as described above.

A2 혼합물로부터 분리된 제2호모폴리머(예: PPFS)의 최대흡수파장(λmax2)(예: UV 260 nm)에서 혼합물로부터 분리된 제2호모폴리머의 피크 면적이다.A 2 is It is the peak area of the second homopolymer (e.g., PPFS) separated from the mixture at the maximum absorption wavelength (λ max2 ) (e.g., UV 260 nm).

ε2 혼합물로부터 분리된 제2호모폴리머(예: PPFS)의 최대흡수파장(λmax2)(예: UV 260 nm)에서 혼합물로부터 분리된 제2호모폴리머의 흡광계수이고, 이 흡광계수는 상술한 바와 같은 분자량별 흡광계수의 평균값이다.ε 2 is It is the extinction coefficient of the second homopolymer (e.g., PPFS) separated from the mixture at the maximum absorption wavelength (λ max2 ) (e.g., UV 260 nm), and this extinction coefficient is as described above. This is the average value of extinction coefficient for each molecular weight.

상술한 바와 같은 블록 공중합체 순도 분석을 복수 회 실시할 경우, 블록 공중합체 순도의 표준편차는 1% 이하로서, 우수한 재현성을 확인할 수 있다.When the block copolymer purity analysis as described above is performed multiple times, the standard deviation of the block copolymer purity is 1% or less, which confirms excellent reproducibility.

이하, 실시예를 들어 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail through examples.

[실시예][Example]

제1단량체로서 DPM 그리고 제2단량체로서 PFS를 중합하여 얻어진 PDPM-b-PPFS 블록 공중합체, PDPM 호모폴리머, PPFS 호모폴리머의 혼합물을 GPEC를 이용하여 분리하였다.A mixture of PDPM-b-PPFS block copolymer, PDPM homopolymer, and PPFS homopolymer obtained by polymerizing DPM as the first monomer and PFS as the second monomer was separated using GPEC.

상호작용(Interaction)의 정도는 정지상으로 비극성 C18 컬럼을 사용하였을 때, 상대적으로 비극성인 테트라히드로푸란(THF)과 극성인 아세토니트릴(ACN)을 선택하여, 시간에 따라 THF의 부피비율을 60%에서 80%로 증가시키는 구배 조건을 통해 조절하였다.The degree of interaction can be determined by selecting relatively non-polar tetrahydrofuran (THF) and polar acetonitrile (ACN) when using a non-polar C18 column as the stationary phase, increasing the volume ratio of THF to 60% over time. It was controlled through gradient conditions increasing from to 80%.

블록 공중합체의 부산물로 존재하는 두 가지 호모폴리머 중, 하나의 호모폴리머는 SEC 메커니즘에 의해 용매 피크보다 앞에 용출되고, 블록 공중합체 및 다른 한 성분의 호모폴리머는 컬럼 충진물과의 상호작용에 의해 용매 피크보다 뒤에 용출되어 각 성분을 분리하였다.Among the two homopolymers that exist as by-products of the block copolymer, one homopolymer elutes before the solvent peak by the SEC mechanism, and the block copolymer and the other homopolymer elute in the solvent by interaction with the column packing. Each component was separated by elution after the peak.

검출기로는 PDA(photo diode array)(260 nm, 278 nm)를 사용하였다. 전체 시료 농도에서 각 호모폴리머의 농도를 빼주어, 순수한 블록 공중합체의 농도를 계산하여 블록 공중합체의 순도를 계산하였다.A photo diode array (PDA) (260 nm, 278 nm) was used as a detector. The purity of the block copolymer was calculated by subtracting the concentration of each homopolymer from the total sample concentration to calculate the concentration of the pure block copolymer.

도 1 및 2는 GPEC를 이용한 블록 공중합체 분리조건 확립 결과를 나타낸 것으로, GPEC-UV 크로마토그램을 나타낸 것이다.Figures 1 and 2 show the results of establishing block copolymer separation conditions using GPEC, and show a GPEC-UV chromatogram.

도 1에서 확인할 수 있듯이, 시료 내 블록 공중합체와 각 호모폴리머를 성분별로 분리 가능한 조건을 확립하였다.As can be seen in Figure 1, conditions were established to separate the block copolymer and each homopolymer in the sample by component.

도 2는 동일한 시료를 UV 278 nm, 260 nm로 검출한 크로마토그램으로, λmax가 278 nm인 PDPM은 278 nm의 크로마토그램에서 함량(농도)을 계산하였고, λmax가 260 nm인 PPFS는 260 nm의 크로마토그램에서 함량(농도)을 계산하였다.Figure 2 is a chromatogram of the same sample detected at UV 278 nm and 260 nm. For PDPM with λ max of 278 nm, the content (concentration) was calculated from the chromatogram at 278 nm, and for PPFS with λ max of 260 nm, it was 260 nm. The content (concentration) was calculated from the nm chromatogram.

표 1은 분석조건을 나타낸 것이다. 표 1에서 용매 구배 조건은 THF/ACN 혼합용매를 60/40 v/v%에서 로딩한 후, 15분간 연속적으로 80/20 v/v%까지 조절한 것을 의미한다.Table 1 shows the analysis conditions. The solvent gradient conditions in Table 1 mean that the THF/ACN mixed solvent was loaded at 60/40 v/v% and then continuously adjusted to 80/20 v/v% for 15 minutes.

컬럼column Capcellpak C18(5 ㎛, 4.6×250 mm, 120 Å)Capcellpak C18 (5 ㎛, 4.6×250 mm, 120 Å) 용매menstruum THF/ACN = 60/40(0분) → 80/20(15분)THF/ACN = 60/40 (0 minutes) → 80/20 (15 minutes) 유속flow rate 0.6 mL/min0.6mL/min 컬럼 온도column temperature 35℃35℃ 주입량Injection amount 100 ㎕100 μl

도 3 및 4는 중합반응 생성물이 아니라, 별도로 중합한 호모폴리머에 대한 흡광계수 분석을 나타낸 것으로, 별도의 각 호모폴리머의 분자량에 따른 흡광계수를 나타낸 것이다. 도 3에서 각 PDPM 호모폴리머간의 분자량 차이는 5.9k, 3.8k, 6k로 설정하였다. 도 4에서 각 PPFS 호모폴리머간의 분자량 차이는 3.7k, 3.3k, 4.9k로 설정하였다.도 3 및 4에서 나타낸 바와 같이, 각 호모폴리머의 λmax인 278 nm(PDPM), 260 nm(PPFS)에서의 흡광계수를 계산하였다. 구체적으로, 말단기의 영향으로 분자량에 따라 흡광계수의 차이가 발생할 수 있으므로, 각 단량체 성분의 호모폴리머에 대해 각각 분자량이 다른 4종을 선택한 후, 표에 나타낸 농도로 제조한 다음, GPEC 크로마토그램으로부터 피크 면적을 얻은 후, 흡광계수(ε)=피크 면적(A)/호모폴리머 농도(C)의 식으로부터 각각의 흡광계수를 계산하고 그 평균값을 구하였다.Figures 3 and 4 show the extinction coefficient analysis of separately polymerized homopolymers, not the polymerization reaction products, and show the extinction coefficients according to the molecular weight of each homopolymer. In Figure 3, the molecular weight difference between each PDPM homopolymer was set to 5.9k, 3.8k, and 6k. In Figure 4, the molecular weight difference between each PPFS homopolymer is set to 3.7k, 3.3k, and 4.9k. As shown in Figures 3 and 4, the λ max of each homopolymer is 278 nm (PDPM) and 260 nm (PPFS). The extinction coefficient was calculated. Specifically, since differences in extinction coefficient may occur depending on molecular weight due to the influence of the terminal group, four types of homopolymers of each monomer component with different molecular weights were selected, prepared at the concentrations shown in the table, and then GPEC chromatograms were obtained. After obtaining the peak area, each extinction coefficient was calculated from the formula of extinction coefficient (ε) = peak area (A) / homopolymer concentration (C), and the average value was obtained.

도 5는 GPEC를 이용한 블록 공중합체 순도 분석 결과를 나타낸 것으로, 블록 공중합체 순도는 하기 식으로 구하였다.Figure 5 shows the results of block copolymer purity analysis using GPEC, and the block copolymer purity was obtained by the following equation.

[수학식 2][Equation 2]

상기 수학식에서,In the above equation,

Ctotal은 전체 시료의 농도(전처리한 시료/용액 무게로부터 계산),C total is the concentration of the entire sample (calculated from the weight of the pretreated sample/solution),

CPDPM은 PDPM 농도(피크 면적/흡광계수로 계산),C PDPM is PDPM concentration (calculated as peak area/extinction coefficient),

CPPFS는 PPFS 농도(피크 면적/흡광계수로 계산),C PPFS is the PPFS concentration (calculated as peak area/extinction coefficient);

A278,PDPM은 UV 278 nm에서의 PDPM 피크 면적,A 278,PDPM is the PDPM peak area at UV 278 nm,

ε278,PDPM은 UV 278 nm에서의 PDPM 흡광계수(도 3의 평균값),ε 278,PDPM is the PDPM extinction coefficient at UV 278 nm (average value in Figure 3),

A260,PPFS는 UV 260 nm에서의 PPFS 피크 면적,A 260,PPFS is the PPFS peak area at UV 260 nm,

ε260,PPFS는 UV 260 nm에서의 PPFS 흡광계수(도 4의 평균값)이다.ε 260,PPFS is the PPFS extinction coefficient at UV 260 nm (average value in Figure 4).

도 5에 나타낸 바와 같이, 위의 순도 계산식으로부터 동일 시료에 대해 15회 반복하여 순도를 분석한 결과, 순도 표준편차(SD)는 0.6%, 상대표준편차(RSD)는 0.7%로서, 우수한 재현성을 확인하였다.As shown in Figure 5, as a result of analyzing the purity of the same sample 15 times from the above purity calculation formula, the purity standard deviation (SD) was 0.6% and the relative standard deviation (RSD) was 0.7%, showing excellent reproducibility. Confirmed.

Claims (9)

제1단량체 유래의 제1블록 및 제2단량체 유래의 제2블록을 포함하는 블록 공중합체, 제1단량체의 제1호모폴리머, 제2단량체의 제2호모폴리머를 포함하는 혼합물에서 제1호모폴리머 및 제2호모폴리머를 분리하는 단계; 및
분리된 제1호모폴리머 및 제2호모폴리머의 농도를 각각 구한 후, 이를 이용하여 블록 공중합체의 순도를 구하는 단계를 포함하며,
분리는 GPEC(Gradient Polymer Elution Chromatography) 방법을 이용하여 수행하고,
블록 공중합체의 순도는 하기 식으로 구하는 블록 공중합체 순도 분석방법:
[수학식 1]
순도(%) = [(Ct - C1 - C2) / Ct] × 100(%)
= {[Ct - (A11) - (A22)] / Ct} × 100(%)
상기 수학식에서, Ct는 혼합물 전체 농도, C1은 제1호모폴리머 농도, C2는 제2호모폴리머 농도, A1은 제1호모폴리머의 최대흡수파장에서의 피크 면적, ε1은 제1호모폴리머의 최대흡수파장에서의 흡광계수, A2 제2호모폴리머의 최대흡수파장에서의 피크 면적, ε2 제2호모폴리머의 최대흡수파장에서의 흡광계수이다.
A block copolymer comprising a first block derived from a first monomer and a second block derived from a second monomer, a first homopolymer of the first monomer, and a second homopolymer of the second monomer, the first homopolymer and separating the second homopolymer; and
It includes calculating the concentrations of the separated first homopolymer and the second homopolymer, respectively, and then using these to determine the purity of the block copolymer,
Separation is performed using GPEC (Gradient Polymer Elution Chromatography) method,
Block copolymer purity analysis method determines the purity of the block copolymer using the following formula:
[Equation 1]
Purity (%) = [(C t - C 1 - C 2 ) / C t ] × 100(%)
= {[C t - (A 11 ) - (A 22 )] / C t } × 100(%)
In the above equation, C t is the total concentration of the mixture, C 1 is the concentration of the first homopolymer, C 2 is the concentration of the second homopolymer, A 1 is the peak area at the maximum absorption wavelength of the first homopolymer, and ε 1 is the concentration of the first homopolymer. The extinction coefficient at the maximum absorption wavelength of the homopolymer, A 2 , is The peak area at the maximum absorption wavelength of the second homopolymer, ε 2 , is This is the extinction coefficient at the maximum absorption wavelength of the second homopolymer.
제1항에 있어서,
혼합물은 제1단량체 및 제2단량체의 중합반응으로 생성되는 블록 공중합체 순도 분석방법.
According to paragraph 1,
A method for analyzing the purity of a block copolymer in which the mixture is produced by the polymerization reaction of the first monomer and the second monomer.
제1항에 있어서,
제1단량체는 아크릴계 단량체, 제2단량체는 스티렌계 단량체인 블록 공중합체 순도 분석방법.
According to paragraph 1,
A method for analyzing the purity of a block copolymer in which the first monomer is an acrylic monomer and the second monomer is a styrene monomer.
삭제delete 제1항에 있어서,
GPEC 방법에서 정지상으로 비극성 컬럼을 이용하고, 이동상으로 비극성 용매와 극성 용매의 혼합용매를 이용하며, 분리 중에 비극성 용매의 비율을 증가시키는 농도 구배 조건에서 분리하는 블록 공중합체 순도 분석방법.
According to paragraph 1,
In the GPEC method, a block copolymer purity analysis method uses a non-polar column as the stationary phase, a mixed solvent of non-polar and polar solvents as the mobile phase, and separates under concentration gradient conditions that increase the proportion of the non-polar solvent during separation.
삭제delete 제1항에 있어서,
흡광계수는 분자량을 알고 있는 별도의 호모폴리머에 대해, 분자량이 서로 다르도록 2종 이상의 호모폴리머를 선택한 후, 분자량별 흡광계수를 구한 다음, 그 평균값을 적용하는 블록 공중합체 순도 분석방법.
According to paragraph 1,
The extinction coefficient is a block copolymer purity analysis method that selects two or more homopolymers with different molecular weights for separate homopolymers of known molecular weight, calculates the extinction coefficient for each molecular weight, and then applies the average value.
제7항에 있어서,
호모폴리머를 선택할 때, 호모폴리머의 최저 분자량은 1천 내지 8천 g/mol, 호모폴리머의 최대 분자량은 10천 내지 30천 g/mol, 인접하는 호모폴리머의 분자량 차이는 1천 내지 8천 g/mol로 설정하는 블록 공중합체 순도 분석방법.
In clause 7,
When selecting a homopolymer, the lowest molecular weight of the homopolymer is 1,000 to 8,000 g/mol, the maximum molecular weight of the homopolymer is 10,000 to 30,000 g/mol, and the molecular weight difference between adjacent homopolymers is 1,000 to 8,000 g. Block copolymer purity analysis method set to /mol.
제1항에 있어서,
블록 공중합체 순도 분석을 복수 회 실시할 경우, 블록 공중합체 순도의 표준편차는 1% 이하인 블록 공중합체 순도 분석방법.
According to paragraph 1,
A block copolymer purity analysis method in which the standard deviation of block copolymer purity is 1% or less when the block copolymer purity analysis is performed multiple times.
KR1020180122336A 2018-10-15 2018-10-15 Method for analyzing block copolymer purity KR102626238B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180122336A KR102626238B1 (en) 2018-10-15 2018-10-15 Method for analyzing block copolymer purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180122336A KR102626238B1 (en) 2018-10-15 2018-10-15 Method for analyzing block copolymer purity

Publications (3)

Publication Number Publication Date
KR20200042144A KR20200042144A (en) 2020-04-23
KR102626238B1 true KR102626238B1 (en) 2024-01-18
KR102626238B9 KR102626238B9 (en) 2024-02-16

Family

ID=70472661

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180122336A KR102626238B1 (en) 2018-10-15 2018-10-15 Method for analyzing block copolymer purity

Country Status (1)

Country Link
KR (1) KR102626238B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE156911T1 (en) * 1994-03-04 1997-08-15 Waters Investments Ltd METHOD FOR DETECTING POLYMERS IN A SOLUTION, DETECTOR SYSTEM AND A CHROMATOGRAPHY DEVICE INCLUDING SUCH A DETECTOR SYSTEM
KR20170036995A (en) * 2015-09-25 2017-04-04 삼성전자주식회사 Evaluation systems of block copolymer patterns

Also Published As

Publication number Publication date
KR20200042144A (en) 2020-04-23
KR102626238B9 (en) 2024-02-16

Similar Documents

Publication Publication Date Title
Venkatesh et al. Olefin copolymerization via controlled radical polymerization: copolymerization of methyl methacrylate and 1-octene
Costello et al. Branched methacrylate copolymers from multifunctional monomers: chemical composition and physical architecture distributions
Percec et al. Metal‐catalyzed living radical graft copolymerization of olefins initiated from the structural defects of poly (vinyl chloride)
Nagelsdiek et al. Synthesis of polymers containing cross-linkable groups by atom transfer radical polymerization: poly (allyl methacrylate) and copolymers of allyl methacrylate and styrene
Raust et al. Two dimensional chromatographic characterization of block copolymers of 2-ethylhexyl acrylate and methyl acrylate, P2EHA-b-PMA, produced via RAFT-mediated polymerization in organic dispersion
Dag et al. Multiarm star block copolymers via Diels‐Alder click reaction
Venkatesh et al. Novel brush copolymers via controlled radical polymerization
Rocha et al. Facile Synthesis of Well‐Defined Telechelic Alkyne‐Terminated Polystyrene in Polar Media Using ATRP With Mixed Fe/Cu Transition Metal Catalyst
Percec et al. Metal‐catalyzed living radical graft copolymerization of butyl methacrylate and styrene initiated from the structural Defects of narrow molecular weight distribution poly (vinyl chloride)
Janco et al. Discrimination of poly (ethyl methacrylate) s according to their molar mass and tacticity by coupling size exclusion chromatography and liquid chromatography at the critical adsorption point
Wu et al. Block copolymer PEO‐b‐PHPMA synthesis using controlled radical polymerization on a chip
KR102626238B1 (en) Method for analyzing block copolymer purity
McEwan et al. Combining catalytic chain transfer polymerisation (CCTP) and thio-Michael addition: enabling the synthesis of peripherally functionalised branched polymers
Knecht et al. Multidimensional chromatographic techniques for hydrophilic copolymers: II. Analysis of poly (ethylene glycol)-poly (vinyl acetate) graft copolymers
Kowalczuk-Bleja et al. Controlled radical polymerization of p-(iodomethyl) styrene—a route to branched and star-like structures
Percec et al. Ultrafast single‐electron‐transfer/degenerative‐chain‐transfer mediated living radical polymerization of acrylates initiated with iodoform in water at room temperature and catalyzed by sodium dithionite
Borkar et al. Controlled copolymerization of vinyl acetate with 1‐alkenes and their fluoro derivatives by degenerative transfer
Coelho et al. Influence of the isomeric structures of butyl acrylate on its single‐electron transfer‐degenerative chain transfer living radical polymerization in water Catalyzed by Na2S2O4
US4174430A (en) Process for producing porous polystyrene gel
Flynn et al. Using temperature to modify the reaction conditions and outcomes of polymers formed using transfer-dominated branching radical telomerisation (TBRT)
Greesh et al. Preparation of poly (styrene‐b‐2‐hydroxyethyl acrylate) block copolymer using reverse iodine transfer polymerization
Chiu et al. Synthesis of macromonomers via catalytic chain transfer (CCT) polymerization and their characterization via NMR spectroscopy and electrospray ionization mass spectrometry (ESI‐MS)
Zetterlund et al. Propagation and termination kinetics in high conversion free radical co-polymerization of styrene/divinylbenzene investigated by electron spin resonance and Fourier-transform near-infrared spectroscopy
Zhu et al. Determination of head addition incidence of (meth) acrylate and styrene in radical polymerization by RAFT block polymerization derivation and gradient polymer elution chromatography
CN109154587A (en) Liquid chromatogram filler

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
G170 Re-publication after modification of scope of protection [patent]