KR102626229B1 - C50 carotenoid producing optimization method using an extremely halophilic archaeon halorubrum sodomense strain mlba0099 - Google Patents

C50 carotenoid producing optimization method using an extremely halophilic archaeon halorubrum sodomense strain mlba0099 Download PDF

Info

Publication number
KR102626229B1
KR102626229B1 KR1020210074286A KR20210074286A KR102626229B1 KR 102626229 B1 KR102626229 B1 KR 102626229B1 KR 1020210074286 A KR1020210074286 A KR 1020210074286A KR 20210074286 A KR20210074286 A KR 20210074286A KR 102626229 B1 KR102626229 B1 KR 102626229B1
Authority
KR
South Korea
Prior art keywords
carotenoid
strain
carotenoid production
medium
carotenoids
Prior art date
Application number
KR1020210074286A
Other languages
Korean (ko)
Other versions
KR20220165532A (en
Inventor
서명지
황치영
조의상
Original Assignee
주식회사 엠제이바이오랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠제이바이오랩 filed Critical 주식회사 엠제이바이오랩
Priority to KR1020210074286A priority Critical patent/KR102626229B1/en
Publication of KR20220165532A publication Critical patent/KR20220165532A/en
Application granted granted Critical
Publication of KR102626229B1 publication Critical patent/KR102626229B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 C50 카로티노이드를 생산하는 균주인 할로루브럼 소도멘스(Halorubrum sodomense) MBLA0099을 제공하며, 상기 균주의 배양 최적화에 따른 카로티노이드 생산 최적화에 대한 방법을 제공하고, 생산된 카로티노이드를 추출하고 확인하는 방법을 제공하는 것으로, 본 발명에 따른 Halorubrum sodomense MBLA0099 균주는 modified ATCC 1176 배지에서 배양액 1 ml을 기준으로 기존 대비 2.06 배의 카로티노이드 생산량 증가가 확인되었으며, 이를 통해 생성된 C50 카로티노이드인 박테리오루베린과 그 전구체인 모노안하이드로박테리오루베린, 비스안하이드로박테리오루베린 및 2-이소펜테닐-3,4-디하이드로로돕신 중 어느 하나를 생산할 수 있다는 것을 확인하였다.The present invention provides Halorubrum sodomense MBLA0099, a strain that produces C50 carotenoids, provides a method for optimizing carotenoid production by optimizing the culture of the strain, and a method for extracting and confirming the produced carotenoids. By providing, the Halorubrum sodomense MBLA0099 strain according to the present invention was confirmed to have a 2.06-fold increase in carotenoid production compared to the existing one based on 1 ml of culture medium in modified ATCC 1176 medium, and the C50 carotenoid produced through this, bacterioruberin and its precursor It was confirmed that any one of monoanhydrobacterioruberin, bisanhydrobacterioruberin, and 2-isopentenyl-3,4-dihydrorhodopsin could be produced.

Description

극호염성 고균인 할로루브럼 소도멘스 MBLA0099 균주를 이용한 C50 카로티노이드 생산 방법{C50 CAROTENOID PRODUCING OPTIMIZATION METHOD USING AN EXTREMELY HALOPHILIC ARCHAEON HALORUBRUM SODOMENSE STRAIN MLBA0099}Method for producing C50 carotenoids using the extremely halophilic archaebacterium Halorubrum SODOMENSE MBLA0099 strain {C50 CAROTENOID PRODUCING OPTIMIZATION METHOD USING AN EXTREMELY HALOPHILIC ARCHAEON HALORUBRUM SODOMENSE STRAIN MLBA0099}

본 발명은 C50 카로티노이드를 생산하는 극호염성 고균인 할로루브럼 소도멘스 (Halorubrum sodomense) MBLA0099 균주의 배양 최적화에 따른 카로티노이드 생산을 최적화하는 방법에 관한 것이다.The present invention relates to a method for optimizing carotenoid production by optimizing the culture of the Halorubrum sodomense MBLA0099 strain, an extremely halophilic archaeon that produces C50 carotenoids.

카로티노이드(carotenoid)는 식물, 조류 및 미생물에 의해 합성되는 천연 이소프레노이드 화합물(isoprenoid compounds)의 색소 군으로 자연계에 널리 분포되어 있다. 화합물 중에서 분자 내에 산소를 함유하지 않은 카로틴류와 산소를 함유하는 크산토필류(Xanthophyll)로 분류가 되는데 카로틴류의 경우 대표적으로 라이코펜(lycopene, 붉은색), 알파카로틴(α-carotene, 주황색), 베타카로틴(β-carotene, 주황색)이 있으며 크산토필류는 아스타잔틴(astaxanthin, 주황색), 제아잔틴(zeaxanthin, 노란색) 푸코잔틴(fucoxanthin, 갈색)등이 있다. 또한 화합물을 구성하고 있는 탄소의 수에 따라 C30 계열, C40 계열, C50 계열로 나뉜다. 자연계에서 카로티노이드는 식물의 광합성 기관에서 빛에너지 흡수, 광산화적 손상에 대한 보호와 미생물 세포의 세포벽에 구조적 안정성을 높이는 역할을 한다.Carotenoids are a group of pigments of natural isoprenoid compounds synthesized by plants, algae, and microorganisms and are widely distributed in nature. Among the compounds, they are classified into carotenes, which do not contain oxygen in the molecule, and xanthophylls, which contain oxygen. Representative examples of carotenes include lycopene (red), alpha-carotene (orange), There is beta-carotene (orange), and xanthophylls include astaxanthin (orange), zeaxanthin (yellow), and fucoxanthin (brown). Also, depending on the number of carbons constituting the compound, it is divided into C 30 series, C 40 series, and C 50 series. In the natural world, carotenoids play a role in absorbing light energy in the photosynthetic organs of plants, protecting against photo-oxidative damage, and increasing structural stability in the cell walls of microbial cells.

이러한 카로티노이드의 다양한 효능이 밝혀지면서 단순히 천연 색소로 사용될 뿐 아니라 기능성 식품산업에 이용되고 있다. 비타민 A의 전구체로 알려져 눈건강을 높이는 루테인과 지아잔틴, 체내 활성산소 소거 및 항산화 기능이 있는 라이코펜과 아스타잔틴의 경우 이미 시판되는 제품이 존재하며 이외에도 항암, 심장질환, 면역기능 향상, 피부손상 예방 및 미백 효과가 있어 고기능성 의약품, 화장품 소재로 각광을 받고 있다.As the various effects of these carotenoids have been revealed, they are being used not only as natural pigments but also in the functional food industry. There are already commercially available products for lutein and zeaxanthin, which are known to be precursors of vitamin A and improve eye health, and lycopene and astaxanthin, which have antioxidant properties and scavenge free radicals in the body. In addition, there are products for anti-cancer, heart disease, immune function improvement, and skin damage. Due to its preventive and whitening effects, it is in the spotlight as a highly functional medicine and cosmetic material.

카로티노이드는 주로 식물이나 과일로부터 추출하거나 화학 합성을 통해 생산되어 왔다. 그러나 이러한 기존의 방법은 생산수율이 낮고 부산물이 생성되며 합성의 경우 부작용이 발생하여 직접적으로 식품 및 의약품 산업에 이용하기에는 적절하지 못하다. 따라서 최근 미세조류나 효모, 세균등의 미생물을 이용하여 카로티노이드를 생산하는 방법이 주목을 받고 있다. 하지만 미생물을 이용한 카로티노이드 생산은 아직 생산 시스템이 제대로 구축되지 않았으며 생산 단가가 높다는 단점이 있다. β-카로틴과 아스타잔틴과 같이 극소수의 카로티노이드만이 산업적으로 생산이 가능한 실정이다. 최근에 이러한 한계를 극복하고자 카로티노이드를 생산하는 새로운 계열의 미생물 분리, 배양 시스템 구축, 분리 및 정제 시스템 개발, 배양 배지의 저렴화를 통해 미생물을 이용한 카로티노이드 생산이 시도되고 있다.Carotenoids have mainly been extracted from plants or fruits or produced through chemical synthesis. However, these existing methods have low production yields, generate by-products, and have side effects in the case of synthesis, making them unsuitable for direct use in the food and pharmaceutical industries. Therefore, methods for producing carotenoids using microorganisms such as microalgae, yeast, and bacteria have recently received attention. However, carotenoid production using microorganisms has the disadvantage that the production system has not yet been properly established and the production cost is high. Only a few carotenoids, such as β-carotene and astaxanthin, can be produced industrially. Recently, in order to overcome these limitations, attempts have been made to produce carotenoids using microorganisms by isolating new types of microorganisms that produce carotenoids, establishing culture systems, developing separation and purification systems, and making culture media cheaper.

극호염성 고균(Haloarchaea)은 euryarchaeota 문에 속해있는 고세균으로 염수호, 천일염, 염전 토양 및 염분 식품과 같은 고염분 환경에 널리 분포한다. 대부분의 극호염성 고균은 적절한 생장과 삼투압으로부터 세포를 보호하기 위해 10-30%의 염분이 필요하다. 또한 균주 특성상 C40 계열 라이코펜과 C50 계열 박테리오루베린(bacterioruberin)과 같은 카로티노이드를 생합성하는데, 이는 극호염성 고균이 고염 환경으로부터 세포벽의 구조적 안정성을 높여 생존을 위한 것이라고 알려져 있다. 특히 Halococcus morrhuaeHalobacterium salinarum 등의 극호염성 고균이 생산하는 주요 카로티노이드인 박테리오루베린은 강력한 항산화 능력으로 인해 Ionizing Radiation (IR) 및 UV 등으로부터 DNA가 손상되는 것을 막는다는 연구가 있다.Haloarchaea are archaea belonging to the phylum euryarchaeota and are widely distributed in high-saline environments such as saline lakes, sea salt, salt pan soils, and saline foods. Most extreme halophilic archaea require 10-30% salt content for proper growth and to protect cells from osmotic stress. In addition, due to the nature of the strain, it biosynthesizes carotenoids such as C 40 series lycopene and C 50 series bacterioruberin, which is known to be used by extreme halophilic archaea to survive by increasing the structural stability of the cell wall in a high-salt environment. In particular, studies have shown that bacterioruberin, a major carotenoid produced by hyperhalophilic archaea such as Halococcus morrhuae and Halobacterium salinarum, prevents DNA damage from ionizing radiation (IR) and UV due to its strong antioxidant ability.

미생물 생장에 영향을 미치는 영양물질 중 질소원은 미생물 생육에 필요한 기본적인 영양물질이며, 생합성과 에너지 생산에 사용되는 물질로 세포의 성장에 필수적인 생장인자로 배양배지 중의 질소량과 종류에 따라 미생물의 생장이 달라질 수 있다. 또한 대부분의 미생물이 생산하는 카로티노이드는 메발론산 경로를 통해 생성되는데 이러한 생합성 경로에서 사용되는 전구물질 (글루코오스, 글리세롤, 피루베이트)과 같이 미생물이 탄소원으로 이용할 수 있는 물질이 카로티노이드 생합성 경로의 전구체로 사용될 수 있기 때문에 극호염성 고균의 배양에 탄소원의 종류와 농도가 카로티노이드 생산에 영향을 끼지는 인자로 작용할 수 있다.Among nutrients that affect microbial growth, nitrogen source is a basic nutrient required for microbial growth. It is a substance used for biosynthesis and energy production and is an essential growth factor for cell growth. The growth of microorganisms varies depending on the amount and type of nitrogen in the culture medium. You can. In addition, most carotenoids produced by microorganisms are produced through the mevalonic acid pathway, and substances that microorganisms can use as carbon sources, such as precursors (glucose, glycerol, and pyruvate) used in this biosynthetic pathway, can be used as precursors in the carotenoid biosynthetic pathway. Therefore, the type and concentration of carbon source in the culture of extremely halophilic archaea can act as a factor affecting carotenoid production.

극호염성 고균 유래 카로티노이드 생산은 다른 미생물 유래 생산에 비해 다양한 장점이 있다. 첫째, 기존 카로티노이드를 생산한다고 알려진 다른 일반 미생물에 비해 상대적으로 고농도의 카로티노이드를 생산한다. 둘째, 생존에 필요한 고염 환경이 다른 미생물의 생장을 저해하여 오염 가능성이 낮다. 셋째, 저염 환경에서 쉽게 세포가 파괴되기 때문에 세포 내에 존재하는 카로티노이드를 쉽게 추출이 가능하다.Carotenoid production from hyperhalophilic archaea has various advantages over production from other microorganisms. First, it produces a relatively high concentration of carotenoids compared to other common microorganisms known to produce existing carotenoids. Second, the high-salt environment necessary for survival inhibits the growth of other microorganisms, so the possibility of contamination is low. Third, because cells are easily destroyed in a low-salt environment, carotenoids present within the cells can be easily extracted.

하지만, 극호염성 고균이 생산하는 카로티노이드는 신규성과 응용성이 매우 높고 다양한 장점이 있음에도 불구하고 관련 연구가 상대적으로 다른 미생물에 비해 미흡한 편인데 이는 극호염성 고균을 배양하는데 고염 환경 조성, 복잡한 배지 성분, 그리고 배양 시 낮은 균체량을 생성한다는 문제점이 있다. 이로 인해 극호염성 고균은 카로티노이드 생산 연구를 위한 훌륭한 미생물 자원임에도 불구하고 산업적 및 경제적인 관점에서 활용가치가 떨어지는 자원으로 인식되어 왔다. 이러한 한계를 극복하고자 본 연구과제에서는 극호염성 고균을 분리하여 배양 최적화를 통한 카로티노이드의 생산 최적화를 진행하고 생산된 카로티노이드를 추출 및 확인하고자 한다. However, although carotenoids produced by extreme halophilic archaea are highly novel and applicable, and have various advantages, related research is relatively insufficient compared to other microorganisms. This is due to the high-salt environment, complex media components, and Additionally, there is a problem of producing a low bacterial mass during cultivation. For this reason, although extreme halophilic archaea are excellent microbial resources for research on carotenoid production, they have been recognized as a resource with little utility from an industrial and economic perspective. To overcome these limitations, this research project seeks to isolate extremely halophilic archaea, optimize the production of carotenoids through culture optimization, and extract and confirm the produced carotenoids.

한국공개특허 제10-2020-0087383Korean Patent Publication No. 10-2020-0087383

본 발명은 선별 배지를 활용하여 한국 소래 지역의 염전으로부터 분리한 Halorubrum sodomense MBLA0099을 개시하며, 카로티노이드 생산량 증가를 위한 배양 최적화 방법을 제공한다. 또한 생산된 C50 카로티노이드인 박테리오루베린의 추출 및 분석 조건을 제공한다.The present invention discloses Halorubrum sodomense MBLA0099, which was isolated from a salt farm in the Sorae region of Korea using a selection medium, and provides a culture optimization method for increasing carotenoid production. In addition, extraction and analysis conditions for bacterioruberin, a produced C50 carotenoid, are provided.

본 발명의 일 실시예에 따르면, 카로티노이드를 생산하는 극호염성 고균을 분리하기 위해 국내 염전 시료를 포함한 바닷물, 갯벌 시료, 염생 식물 등을 수집한 후, 각 샘플로부터 극호염성 고균 분리용 배지인 DBCM2를 이용하여 농화 배양을 진행하였다. 그 후 극호염성 고균이 생장 가능하다고 알려진 ATCC 1176 (4 g KCl, 20 g MgSO4·7H2O, 13 g MgCl2·6H2O, 156 g NaCl, 1 g CaCl2·6H2O, 0.5 g NaBr, 0.2 g NaHCO3, 1 g Gluocse, 5 g Yeast extract, adjusted pH 7.0 using 1 M Tris-base buffer) 고체 배지에 희석하여 도말한 후 37℃에서 배양하여 붉은색 계열의 균 집락을 가지는 미생물을 대상으로 최소 3번 이상 동일 배지에 streaking하여 극호염성 고균을 순수 분리하였다. According to one embodiment of the present invention, in order to isolate extremely halophilic archaea that produce carotenoids, seawater, tidal flat samples, halophytes, etc., including domestic salt pan samples, are collected, and then DBCM2, a medium for isolating extremely halophilic archaea, is used from each sample. Enrichment culture was performed using this method. Afterwards, ATCC 1176 (4 g KCl, 20 g MgSO 4 ·7H 2 O, 13 g MgCl 2 ·6H 2 O, 156 g NaCl, 1 g CaCl 2 ·6H 2 O, 0.5 g, which is known to be capable of growing extremely halophilic archaea) NaBr, 0.2 g NaHCO 3 , 1 g Gluocse, 5 g Yeast extract, adjusted pH 7.0 using 1 M Tris-base buffer) diluted in solid medium, smeared, and cultured at 37°C to produce microorganisms with red-colored bacterial colonies. Ultrahalophilic archaea were purified by streaking on the same medium at least three times.

분리한 미생물을 동정하기 위해 고균용 16S rRNA 유전자 염기서열을 확인할 수 있는 PCR primer인 0018F (5'-ATTCCGGTTGATCCTGCC-3')과 1518R (5'-AGGAGGTGATCCAGCCGC-3')를 이용하여 동정을 진행하고 동정 결과 MBLA0099 균주가 극호염성 고균인 할로루브럼 속(Halorubrum sp.) Halorubrum sodomense DSM 3755 균주와 가장 높은 유사성(99.05 %)을 보였다.To identify the isolated microorganism, identification was performed using PCR primers 0018F (5'-ATTCCGGTTGATCCTGCC-3') and 1518R (5'-AGGAGGTGATCCAGCCGC-3'), which can confirm the 16S rRNA gene base sequence for archaea. As a result, strain MBLA0099 showed the highest similarity (99.05%) to DSM 3755 strain of Halorubrum sodomense, an extremely halophilic archaeon ( Halorubrum sp.).

배지의 영양 성분에 따른 균주 생장 및 카로티노이드 생산량을 비교하기 위해 모든 실험은 배양액 1 ml 당 흡광도(OD600, OD490)값을 기준으로 실험을 진행하였다. 또한 모든 실험은 37℃, 80 rpm, 6일 동안 배양을 진행하였다.In order to compare strain growth and carotenoid production according to the nutritional components of the medium, all experiments were conducted based on the absorbance (OD600, OD490) values per 1 ml of culture medium. In addition, all experiments were cultured at 37°C, 80 rpm, for 6 days.

질소원(Yeast extract, Beef extract, Tryptone, Peptone, Fish peptone, Casamino acid, Ammonium sulfate, MSG, Sodium nitrate, Ammonium citrate)을 각각 0.5 % (w/v)씩 첨가하여 배양을 진행하여 균주 생장과 카로티노이드 생산량을 비교한 결과 yeast extract를 사용한 경우 가장 높은 카로티노이드 생산량을 보였다. 또한 탄소원(Glucose, Galactose, Strach, Maltose, Sucrose, Mannitol, Fructose, Mannose, Acetate, Lactose, Glycerol)을 각각 0.1 % (w/v)씩 첨가하여 배양한 결과 sucrose가 가장 높은 카로티노이드 생산량을 보였다. 카로티노이드 생산에 영향을 주는 탄소원을 다양한 농도 (0-8 %, w/v)로 첨가하여 실험을 진행한 결과, sucrose 농도가 0.2 % (w/v) 이상인 경우에는 균주 생장과 카로티노이드 생산량이 거의 동일하였다. Sucrose 농도를 0.2 % (w/v)로 고정한 뒤 탄소원과 질소원의 분자량 비율인 C/N ratio에 따른 균주의 카로티노이드 생산량을 확인하고자 질소원의 농도를 조절하여 다양한 비율(10:1, 5:1, 3:1, 2:1, 1.5:1, 1:1, 1:1.5, 1:2, 1:3, 1:5, 1:10)로 배양을 진행한 결과, 탄소원과 질소원의 비율이 1:1인 경우 가장 높은 카로티노이드 생산량을 보였다. Culture was performed by adding 0.5% (w/v) of each nitrogen source (Yeast extract, Beef extract, Tryptone, Peptone, Fish peptone, Casamino acid, Ammonium sulfate, MSG, Sodium nitrate, Ammonium citrate) to increase strain growth and carotenoid production. As a result of the comparison, the use of yeast extract showed the highest carotenoid production. In addition, 0.1% (w/v) of each carbon source (Glucose, Galactose, Strach, Maltose, Sucrose, Mannitol, Fructose, Mannose, Acetate, Lactose, Glycerol) was added and cultured, and sucrose showed the highest carotenoid production. As a result of experiments conducted by adding carbon sources that affect carotenoid production at various concentrations (0-8 %, w/v), strain growth and carotenoid production were almost the same when the sucrose concentration was 0.2 % (w/v) or more. did. After fixing the sucrose concentration at 0.2% (w/v), the concentration of the nitrogen source was adjusted to check the carotenoid production of the strain according to the C/N ratio, which is the molecular weight ratio of the carbon source and nitrogen source, and the concentration was adjusted to various ratios (10:1, 5:1, As a result of culturing (3:1, 2:1, 1.5:1, 1:1, 1:1.5, 1:2, 1:3, 1:5, 1:10), the ratio of carbon source and nitrogen source was 1. :1 showed the highest carotenoid production.

추가적으로 극호염성 고균의 특성상 염분 농도에 따라 카로티노이드의 생산량이 변화할 수 있으므로 저염부터 고염(5-30 %, w/v) 환경을 조성하여 배양하여 카로티노이드 생산량을 확인한 결과, 배지 내 염분 농도가 20 %일 때 가장 높은 카로티노이드 생산량을 보였다.Additionally, due to the nature of extremely halophilic archaea, the production of carotenoids may vary depending on the salt concentration, so the production of carotenoids was confirmed by culturing in low-salt to high-salt (5-30%, w/v) environments, and the salt concentration in the medium was 20%. The highest carotenoid production was observed when

최종적으로 기존 ATCC 1176 배지에서 0.2 % (w/v) sucrose, 0.77 % (w/v) yeast extract, 20 % (w/v) NaCl을 첨가한 modified ATCC 1176 배지를 이용하여 카로티노이드 생산량을 비교한 결과 기존 ATCC 1176 배지보다 2.06배 증가한 것을 확인하였다.Finally, the results of comparing carotenoid production using the modified ATCC 1176 medium to which 0.2 % (w/v) sucrose, 0.77 % (w/v) yeast extract, and 20 % (w/v) NaCl were added to the existing ATCC 1176 medium. It was confirmed that it increased by 2.06 times compared to the existing ATCC 1176 medium.

상기 미생물이 카로티노이드를 확인하기 위해 modified ATCC 1176 액체 배지에 배양하여 균체를 회수하고, 회수한 균체에서 카로티노이드를 추출하기 위해 아세톤(Acetone):메탄올(Methanol)(7:3, v/v)을 이용한 용매 추출법을 진행한 뒤, Thin layer chromatography(TLC)를 통해 카로티노이드의 생성 여부를 1차로 확인하였다. 추출된 카로티노이드의 정확한 동정을 위해 HPLC를 이용하여 생성된 카로티노이드가 박테리오루베린임을 확인하였다. In order to confirm the carotenoids in the microorganisms, the cells were recovered by culturing them in modified ATCC 1176 liquid medium, and to extract carotenoids from the recovered cells, acetone: methanol (7:3, v/v) was used. After solvent extraction, the production of carotenoids was first confirmed through thin layer chromatography (TLC). To accurately identify the extracted carotenoid, HPLC was used to confirm that the produced carotenoid was bacterioruberin.

본 발명의 일 실시예에 따르면, 기탁번호 XXX로 기탁된 할로루브럼 소도멘스(Halorubrum sodomense) MBLA0099 균주를 마련하는 단계; 탄소원과 질소원을 포함하며, 염화나트륨(NaCl)을 포함하여 염분이 조절된 배지에 상기 균주를 접종하여 배양하는 단계; 상기 배지에서 균체를 회수하는 단계: 및 상기 회수한 균체에서 용매 추출법에 의해 카로티노이드를 추출하는 단계;를 포함하는 카로티노이드 생산 방법을 제공한다.According to one embodiment of the present invention, preparing a strain of Halorubrum sodomense MBLA0099 deposited with accession number XXX; Inoculating and culturing the strain in a medium that contains a carbon source and a nitrogen source and whose salinity is controlled by including sodium chloride (NaCl); Recovering the bacterial cells from the medium: and extracting carotenoids from the recovered bacterial cells by solvent extraction.

본 발명자들은 상기 균주를 2021년 05월 25일자로 한국종균협회에 수탁번호 KCCM12990P로 기탁하였다.The present inventors deposited the above strain with the Korea Seed Society on May 25, 2021, under accession number KCCM12990P.

본 발명의 일 실시예에 따르면, Halorubrum sodomense MBLA0099의 배양 배지 성분인 탄소원 및 질소원의 종류 및 농도를 최적화하고 염분 농도를 조절함에 따른 카로티노이드 생산 최적화 방법을 제공한다.According to one embodiment of the present invention, a method for optimizing carotenoid production by optimizing the type and concentration of carbon and nitrogen sources, which are culture medium components of Halorubrum sodomense MBLA0099, and controlling salt concentration is provided.

본 발명의 일 실시예에 따르면, 할로루브럼 소도멘스 (Halorubrum sodomense) MBLA0099 균주는 박테리오루베린(bacterioruberin; BR)을 주로 생산하는 것을 확인하였고, 모노안하이드로박테리오루베린(monoanhydrobacterioruberin, MABR), 비스안하이드로박테리오루베린(bisanhydrobacterioruberin, BABAR) 및 2-이소펜테닐-3,4-디하이드로로돕신(2-isopentenyl-3,4-dehydrorhodopsin, IDR)을 생산할 수 있는 것을 확인하였다. According to one embodiment of the present invention, the Halorubrum sodomense MBLA0099 strain was confirmed to mainly produce bacterioruberin (BR), monoanhydrobacterioruberin (MABR), and bis. It was confirmed that bisanhydrobacterioruberin (BABAR) and 2-isopentenyl-3,4-dehydrorhodopsin (IDR) could be produced.

본 발명에 따른 할로루브럼 소도멘스 (Halorubrum sodomense) MBLA0099 균주는 할로루브럼 속의 극호염성 고균을 이용하여 배양 배지 성분 및 C/N ratio에 따른 카로티노이드 생산량을 확인한 첫번째 사례이며, C50 카로티노이드를 생산한다는 첫번째 사례이다. 생산하는 대표적인 C50 카로티노이드인 박테리오루베린, 모노안하이드로박테리오루베린, 비스안하이드로박테리오루베린 및 C45 카로티노이드인 2-이소펜테닐-3,4-디하이드로로돕신이다.The Halorubrum sodomense MBLA0099 strain according to the present invention is the first case of confirming carotenoid production according to culture medium components and C/N ratio using extremely halophilic archaea of the Halorubrum genus, and is the first to produce C50 carotenoids. This is a case. The representative C50 carotenoids produced are bacterioruberin, monoanhydrobacterioruberin, and bisanhydrobacterioruberin, and the C45 carotenoid 2-isopentenyl-3,4-dihydrorhodopsin.

도 1은 시료로부터 분리된 MBLA0099 균주의 16S rRNA 유전자 서열의 이웃 결합 계통수(phylogenetic tree)이다.
도 2는 질소원의 종류 및 농도에 따른 카로티노이드 생산량을 비교한 그래프이다.
도 3은 탄소원의 종류 및 농도에 따른 카로티노이드 생산량을 비교한 그래프이다.
도 4는 sucrose 농도에 따른 카로티노이드 생산량을 비교한 그래프이다.
도 5는 C/N ratio에 따른 카로티노이드 생산량을 비교한 그래프이다.
도 6은 염분 농도에 따른 카로티노이드 생산량을 비교한 그래프이다.
도 7은 Halorubrum sodomense MBLA0099 유래 카로티노이드의 TLC 결과 및 분광광도계를 이용한 스펙트럼 분석 결과이다.
도 8은 TLC를 통해 확인한 4가지 spot의 HPLC 분석 및 주요 피크의 최대 흡광 파장을 분석한 결과이다.
Figure 1 is a neighbor-joining phylogenetic tree of the 16S rRNA gene sequence of strain MBLA0099 isolated from a sample.
Figure 2 is a graph comparing carotenoid production according to the type and concentration of nitrogen source.
Figure 3 is a graph comparing carotenoid production according to the type and concentration of carbon source.
Figure 4 is a graph comparing carotenoid production according to sucrose concentration.
Figure 5 is a graph comparing carotenoid production according to C/N ratio.
Figure 6 is a graph comparing carotenoid production according to salt concentration.
Figure 7 shows the TLC results of carotenoids derived from Halorubrum sodomense MBLA0099 and the results of spectral analysis using a spectrophotometer.
Figure 8 shows the results of HPLC analysis of four spots confirmed through TLC and analysis of the maximum absorption wavelength of the main peak.

이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are only intended to aid understanding of the present invention, and the scope of the present invention is not limited to these examples in any way.

실시예Example

1. 균주의 분리 및 동정1. Isolation and identification of strains

극호염성 고균을 분리하기 위해 국내 염전 시료를 포함한 바닷물, 갯벌 시료, 염생 식물 등을 수집한 후, 각 샘플로부터 극호염성 고균 분리용 배지인 DBCM2를 이용하여 농화 배양을 진행하였다. 그 후 극호염성 고균이 생장 가능하다고 알려진 ATCC 1176 고체 배지에 희석하여 도말한 후 37℃에서 배양하여 붉은색 계열의 균 집락을 가지는 미생물을 대상으로 최소 3번 이상 동일 배지에 streaking하여 극호염성 고균을 순수 분리하였다.To isolate extreme halophilic archaea, seawater, tidal flat samples, and halophytes, including domestic salt farm samples, were collected, and then enrichment culture was performed from each sample using DBCM2, a medium for isolating extreme halophilic archaea. Afterwards, it was diluted and smeared on ATCC 1176 solid medium, which is known to be capable of growing extremely halophilic archaea, and cultured at 37°C. Microorganisms with red-colored bacterial colonies were streaked on the same medium at least three times to produce extremely halophilic archaea. Purely isolated.

분리한 미생물 중 콜로니 색이 가장 붉은 균주를 선별하였고, 동정하기 위해 고균용 16S rRNA 유전자 염기서열을 확인할 수 있는 PCR primer인 0018F (5'-ATTCCGGTTGATCCTGCC-3')과 1518R (5'-AGGAGGTGATCCAGCCGC-3')를 이용하여 동정을 진행하였다.Among the isolated microorganisms, the strain with the reddest colony color was selected, and for identification, 0018F (5'-ATTCCGGTTGATCCTGCC-3') and 1518R (5'-AGGAGGTGATCCAGCCGC-3), PCR primers that can confirm the 16S rRNA gene base sequence for archaea, were used. ') was used for identification.

상기 단편을 Macrogen Co.(Seoul, Korea)에 의해 서열 분석하고 서열 정렬 및 동정은 Bioedit 7.2.6.1 소프트웨어 및 Ezbiocloud (https://www.ezbiocloud.net)에 의하여 수행되었다. 계통수(phylogenetic tree)는 MEGA 7.0 소프트웨어를 사용하여 구축되었다.The fragment was sequenced by Macrogen Co. (Seoul, Korea), and sequence alignment and identification were performed using Bioedit 7.2.6.1 software and Ezbiocloud (https://www.ezbiocloud.net). A phylogenetic tree was constructed using MEGA 7.0 software.

2. 균주의 배양 배지 성분 최적화2. Optimization of culture medium components of the strain

ATCC 1176 배지를 기준으로 One factor at a time (OFAT) 방법을 활용하여 질소원 및 탄소원의 종류와 농도를 선정하기 위해 영양 성분에 따른 균주 생장 및 카로티노이드 생산량을 비교를 진행하였다. 모든 실험은 200 ml erlenmeyer flask에 80 ml 배지를 첨가하여 37℃, 80 rpm, 6일동안 배양을 진행하였으며, 균체량과 카로티노이드 생산량의 경우 배양액 1 ml을 기준으로 UV/Vis spectrophotometer를 활용하여 OD600값과 OD490값을 측정하여 비교하였다.Based on ATCC 1176 medium, the One factor at a time (OFAT) method was used to compare strain growth and carotenoid production according to nutritional components to select the type and concentration of nitrogen and carbon sources. All experiments were performed by adding 80 ml of medium to a 200 ml erlenmeyer flask and culturing at 37°C, 80 rpm for 6 days. For bacterial mass and carotenoid production, OD600 and OD600 values were measured using a UV/Vis spectrophotometer based on 1 ml of culture medium. OD490 values were measured and compared.

기존 ATCC 1176 배지에서 질소원으로 사용되는 yeast extract (0.5 %, w/v)와 미생물이 질소원으로 많이 사용한다고 알려진 beef extract, tryptone, peptone, fish peptone, casamino acid, ammonium sulfate, MSG, sodium nitrate, ammonium citrate를 포함한 10개의 질소원을 각각 0.5 % (w/v)씩 첨가하여 질소원별 균주 생장과 카로티노이드 생산량을 비교하였다.Yeast extract (0.5 %, w/v), which is used as a nitrogen source in the existing ATCC 1176 medium, and beef extract, tryptone, peptone, fish peptone, casamino acid, ammonium sulfate, MSG, sodium nitrate, ammonium, which are known to be widely used as a nitrogen source by microorganisms. Ten nitrogen sources, including citrate, were added at 0.5% (w/v) each, and strain growth and carotenoid production by nitrogen source were compared.

탄소원의 경우 질소원 실험에서 가장 높은 카로티노이드 생산량을 보인 질소원을 ATCC 1176 배지에 첨가하고 기존 탄소원으로 사용되는 glucose (0.1 %, w/v)와 미생물이 탄소원으로 많이 사용한다고 알려진 galactose, strach, maltose, sucrose, mannitol, fructose, mannose, acetate, lactose, glycerol를 포함한 11개의 탄소원을 각각 0.1 % (w/v)씩 첨가하여 동일하게 배양을 진행하여 탄소원 별 카로티노이드 생산량을 비교하였다. 이후 탄소원의 농도에 따른 실험을 진행하기 위해 0-8 % (w/v)까지 다양한 농도로 배지에 탄소원을 첨가하여 탄소원 농도별 카로티노이드 생산량을 비교하였다.For the carbon source, the nitrogen source that showed the highest carotenoid production in the nitrogen source experiment was added to the ATCC 1176 medium, and glucose (0.1%, w/v), which is used as an existing carbon source, and galactose, strach, maltose, and sucrose, which are known to be widely used as carbon sources by microorganisms. , 0.1% (w/v) of each of 11 carbon sources including mannitol, fructose, mannose, acetate, lactose, and glycerol were added and the same culture was performed to compare carotenoid production by carbon source. Afterwards, in order to conduct experiments depending on the concentration of the carbon source, the carbon source was added to the medium at various concentrations ranging from 0-8% (w/v), and the carotenoid production by carbon source concentration was compared.

확정된 탄소원 농도를 고정으로 탄소원:질소원 비율을 정하기 위한 C/N ratio 실험을 위해 분자량을 기준으로 실험을 진행하였다. 10:1, 5:1, 3:1, 2:1 1.5:1, 1:1, 1:1.5, 1:2, 1:3, 1:5, 1:10의 비율로 질소원을 달리 첨가하여 동일하게 배양을 진행하여 카로티노이드 생산량을 비교하였다.For the C/N ratio experiment to determine the carbon source:nitrogen source ratio by fixing the confirmed carbon source concentration, the experiment was conducted based on molecular weight. Nitrogen sources were added at different ratios of 10:1, 5:1, 3:1, 2:1, 1.5:1, 1:1, 1:1.5, 1:2, 1:3, 1:5, and 1:10. Cultivation was performed in the same manner and carotenoid production was compared.

또한, 염분 농도에 따른 균주 생장과 카로티노이드 생산량을 비교하기 위해 5-30 % (w/v)의 다양한 염분 농도별로 균주를 동일하게 배양하여 염분 농도별 카로티노이드 생산량을 비교하였다.In addition, to compare strain growth and carotenoid production according to salt concentration, strains were cultured identically at various salt concentrations of 5-30% (w/v) and carotenoid production according to salt concentration was compared.

상기 실험을 통해 기존 ATCC 1176 배지에서 질소원 및 탄소원의 종류와 농도, 염분 농도가 변화된 modified ATCC 1176 배지를 이용하여 추후 실험에 배양 배지로 사용하였다.Through the above experiment, a modified ATCC 1176 medium in which the type and concentration of nitrogen and carbon sources and salt concentration were changed from the existing ATCC 1176 medium was used as a culture medium in later experiments.

3. 카로티노이드 추출3. Carotenoid extraction

카로티노이드를 추출하기 위해, 분리된 균주를 modified ATCC 1176 액체 배지에 접종하여 180 rpm으로 교반해 주면서 37 ℃에서 배양하였다. 6일 후, 배양액을 10,000 rpm 에서 5분간 원심 분리하였다. 배양 상등액을 제거하고 가라앉은 세포만을 모아 아세톤(Acetone):메탄올(Methanol)(7:3, v/v) 용매를 활용하여 세포의 붉은색이 빠질 때까지 추출을 충분히 진행하였다. 추출된 카로티노이드를 감압 농축기를 활용하여 용매를 제거하여 고체 상태의 카로티노이드를 회수하였다. 이후 100 % 메탄올에 다시 녹인 후 0.2 μm cellulose acetate syringe filter를 통해 잔여 세포 및 염분을 제거하였다.To extract carotenoids, the isolated strain was inoculated into modified ATCC 1176 liquid medium and cultured at 37°C while stirring at 180 rpm. After 6 days, the culture was centrifuged at 10,000 rpm for 5 minutes. The culture supernatant was removed, only the settled cells were collected, and extraction was sufficiently performed using acetone:methanol (7:3, v/v) solvent until the red color of the cells disappeared. The solvent was removed from the extracted carotenoid using a reduced pressure concentrator, and the carotenoid in solid state was recovered. Afterwards, it was re-dissolved in 100% methanol and residual cells and salts were removed through a 0.2 μm cellulose acetate syringe filter.

4. 카로티노이드의 정성 분석4. Qualitative analysis of carotenoids

회수한 카로티노이드를 실리카 TLC 플레이트에 점적한 후 전개용매인 헵테인(heptane):아세톤(acetone)(5:5, v/v)를 통해 전개하였으며 그 결과 공통적으로 4개의 주요 spot을 보이는 것을 확인하였다. TLC 상에서 색을 띄는 각 spot별로 긁어 100% 메탄올로 회수하여 샘플을 준비하고, 분광광도계를 이용하여 A300-600 파장 대에서 스펙트럼을 분석하여 기존에 알려진 극호염성 고균 유래 주요 카로티노이드인 박테리오루베린과 그 유도체의 고유 피크 비교 분석을 수행하였다. The recovered carotenoids were spotted on a silica TLC plate and developed using the developing solvent, heptane:acetone (5:5, v/v). As a result, it was confirmed that four major spots were observed in common. . Samples were prepared by scraping each colored spot on TLC and recovering with 100% methanol, and the spectrum was analyzed in the A300-600 wavelength range using a spectrophotometer to determine bacterioruberin and its Comparative analysis of unique peaks of the derivatives was performed.

또한 각각의 카로티노이드 생산을 YL9100 Plus HPLC System (Younglin, South Korea)를 활용하여 분석하였다. 크로마토그래피 분리는 HPLC 컬럼(C18 5 um, 4.6*250 mm, ThermoFisher)을 사용하여 수행하였고, 유속은 1.0 ml/min, 주입 부피는 20 μl, 이동상은 100% 메탄올로 구성하였다.Additionally, the production of each carotenoid was analyzed using the YL9100 Plus HPLC System (Younglin, South Korea). Chromatographic separation was performed using an HPLC column (C18 5 um, 4.6*250 mm, ThermoFisher), the flow rate was 1.0 ml/min, the injection volume was 20 μl, and the mobile phase consisted of 100% methanol.

실험결과Experiment result

1. C50 카로티노이드 생산균의 분리, 동정 및 배양 최적화1. Isolation, identification and culture optimization of C50 carotenoid producing bacteria

국내 염전 시료를 포함한 바닷물, 갯벌 시료, 염생 식물 등을 수집한 후, 각 샘플로부터 극호염성 고균 분리용 배지인 DBCM2를 이용하여 농화 배양을 진행하였다. 그 후 극호염성 고균이 생장 가능하다고 알려진 ATCC 1176 고체 배지에 희석하여 도말한 후 37℃에서 배양하여 붉은색 계열의 균 집락을 가지는 미생물을 대상으로 최소 3번 이상 동일 배지에 streaking하여 극호염성 고균을 순수 분리하였다. 분리한 균주들 중 색이 가장 붉은 균주를 선별하였고, 동정하기 위하여 고균용 16S rRNA 유전자 염기서열을 확인할 수 있는 PCR primer인 0018F (5'-ATTCCGGTTGATCCTGCC-3')과 1518R (5'-AGGAGGTGATCCAGCCGC-3')를 이용하여 동정을 진행하였다. 16S rRNA 유전자 서열에 기반하여 동정한 결과 선별된 MBLA0099 균주가 극호염성 고균인 할로루브럼 속 할로루브럼 소도멘스(Halorubrum sodomense) 균주와 similarity가 99.05 %로 판명되었다(도 1).After collecting seawater, tidal flat samples, and halophytes, including domestic salt farm samples, enrichment culture was performed from each sample using DBCM2, a medium for isolating extremely halophilic archaea. Afterwards, it was diluted and smeared on ATCC 1176 solid medium, which is known to be capable of growing extremely halophilic archaea, and cultured at 37°C. Microorganisms with red-colored bacterial colonies were streaked on the same medium at least three times to produce extremely halophilic archaea. Purely isolated. Among the isolated strains, the strain with the reddest color was selected, and for identification, 0018F (5'-ATTCCGGTTGATCCTGCC-3') and 1518R (5'-AGGAGGTGATCCAGCCGC-3), PCR primers that can confirm the 16S rRNA gene base sequence for archaea, were used. ') was used for identification. As a result of identification based on the 16S rRNA gene sequence, the selected MBLA0099 strain was found to have 99.05% similarity with the Halorubrum sodomense strain of the Halorubrum genus, an extremely halophilic archaea (Figure 1).

배양 최적화를 위하여 배양 배지 성분 중 탄소원과 질소원의 종류 및 농도에 따른 카로티노이드 생산량을 비교해 본 결과 질소원의 경우 기존 배지 성분인 yeast extract가 카로티노이드 생산량이 0.150(OD490)로 가장 좋았으며(도 2), ammonium sulfate, MSG, sodium nitrate, ammonium citrate에서는 균이 생장하지 않는 것을 확인하였다. 탄소원의 경우 기존 배지 성분인 glucose를 sucrose로 대체한 경우 카로티노이드 생산량이 0.176(OD490)으로 높아지는 것을 확인하였다(도 3). 탄소원의 농도가 0.2-6 % (w/v)의 경우 카로티노이드 생산량은 0.193(OD490)정도임을 확인하였으며, 탄소원의 농도가 7 % (w/v) 이상이 되는 경우 카로티노이드 생산량은 비슷하지만 균체량이 감소하는 것을 확인하였다(도 4). 따라서 첨가한 탄소원의 농도 대비 가장 효율이 좋은 0.2 % (w/v)로 탄소원의 농도를 선정하였다.To optimize culture, we compared carotenoid production according to the type and concentration of carbon and nitrogen sources among the culture medium components. As a result, yeast extract, a component of the existing medium, had the best carotenoid production at 0.150 (OD490) for the nitrogen source (Figure 2), and ammonium It was confirmed that bacteria did not grow on sulfate, MSG, sodium nitrate, and ammonium citrate. In the case of the carbon source, it was confirmed that when glucose, a component of the existing medium, was replaced with sucrose, carotenoid production increased to 0.176 (OD490) (Figure 3). When the concentration of the carbon source was 0.2-6% (w/v), the carotenoid production was confirmed to be about 0.193 (OD490), and when the concentration of the carbon source was more than 7% (w/v), the carotenoid production was similar, but the bacterial mass decreased. It was confirmed that (Figure 4). Therefore, the concentration of the carbon source was selected at 0.2% (w/v), which is the most efficient compared to the concentration of the added carbon source.

C/N ratio의 경우 분자량 비를 기준으로 하여 탄소원인 sucrose의 경우 C의 비율이 0.421 (per g), 질소원인 yeast extract는 N의 비율이 0.109 (per g)이므로 sucrose 2 g/L을 기준으로 yeast extract을 0.77, 1.55, 2.58, 3.86, 5, 7.73, 11.59, 15.45, 23.18, 38.63, 77.25 (g/L)씩 각각 첨가하여 배양을 진행한 결과, 7.73 g/L의 yeast extract를 첨가한 경우 0.218(OD490)으로 가장 높은 카로티노이드 생산량을 보였고 이 때의 C/N ratio는 1:1이고 C/N ratio가 1:2 이상인 경우에는 균이 생장하지 못하여 카로티노이드가 생산되지 않는 것을 확인하였다(도 5).In the case of C/N ratio, based on the molecular weight ratio, the C ratio of sucrose, which is a carbon source, is 0.421 (per g), and the N ratio of yeast extract, which is a nitrogen source, is 0.109 (per g), so based on 2 g/L of sucrose. As a result of cultivating by adding 0.77, 1.55, 2.58, 3.86, 5, 7.73, 11.59, 15.45, 23.18, 38.63, and 77.25 (g/L) of yeast extract, respectively, when 7.73 g/L of yeast extract was added The highest carotenoid production was shown at 0.218 (OD490), and the C/N ratio at this time was 1:1. It was confirmed that when the C/N ratio was more than 1:2, the bacteria could not grow and carotenoids were not produced (Figure 5 ).

염분 농도는 5, 7.5, 10, 12.5, 15, 15.6, 17.5, 20, 22.5, 25, 27.5, 30 % (w/v)로 하여 배양한 경우, 염분 농도가 5 % (w/v)일 때는 균이 생장이 불가하였으며 10 % (w/v) 이하인 경우 균이 거의 생장하지 못하였다. 20 % (w/v)인 경우 카로티노이드 생산량이 0.309(OD490)으로 가장 높은 것을 확인하였다. 25 % (w/v)가 넘어가는 고염 상황에서는 카로티노이드 생산량이 줄어드는 것을 확인하였다(도 6).When cultured at salt concentrations of 5, 7.5, 10, 12.5, 15, 15.6, 17.5, 20, 22.5, 25, 27.5, and 30 % (w/v), when the salt concentration is 5 % (w/v) Bacteria were unable to grow, and if the concentration was less than 10% (w/v), bacteria hardly grew. At 20% (w/v), carotenoid production was confirmed to be the highest at 0.309 (OD490). It was confirmed that carotenoid production decreased in high salt situations exceeding 25% (w/v) (Figure 6).

최종적으로 기존 ATCC 1176 배지에서 탄소원인 0.1 % (w/v) glucose를 0.2 % (w/v) sucrose로, 질소원인 0.5 % (w/v) yeast extract는 0.773 % (w/v)로, 염분농도는 15.6 % (w/v)에서 20 % (w/v)로 바꿔준 modified ATCC 1176 배지를 사용했을 때 카로티노이드 생산량이 0.150(OD490)에서 0.309(OD490)로 2.06배만큼 증가한 것을 확인할 수 있었다.Finally, in the existing ATCC 1176 medium, 0.1% (w/v) glucose as a carbon source was changed to 0.2% (w/v) sucrose, 0.5% (w/v) yeast extract as a nitrogen source was changed to 0.773% (w/v), and salt When using modified ATCC 1176 medium whose concentration was changed from 15.6% (w/v) to 20% (w/v), it was confirmed that carotenoid production increased by 2.06 times from 0.150 (OD490) to 0.309 (OD490).

2. 2. Halorubrum sodomenseHalorubrum sodomense MBLA0099의 C50 카로티노이드 생산 확인 Confirmation of C50 carotenoid production by MBLA0099

Halorubrum 속 미생물의 경우 C50 카로티노이드인 박테리오루베린을 생산한다고 알려져 있으며 박테리오루베린의 전구체인 라이코펜, β-카로틴 등의 카로티노이드도 생산한다고 알려져 있다. Halorubrum sodomense MBLA0099 균주에 의한 C50 카로티노이드 생산은 TLC 분석을 통해 4개의 spot이 확인되었으며, 이를 메탄올에 재추출하여 spectrum 분석을 진행하였다(도 7). Spectrum 분석 이후 4개의 spot별로 HPLC 분석을 진행하였다(도 8). 기존 보고가 된 C50 카로티노이드의 최대 흡광 파장 비교를 통해 Halorubrum sodomense MBLA0099가 C50 카로티노이드인 박테리오루베린과 그 전구체인 모노안하이드로박테리오루베린, 비스안하이드로박테리오루베린 및 2-이소펜테닐-3,4-디하이드로로돕신을 확인하였다.Microorganisms in the Halorubrum genus are known to produce bacterioruberin, a C50 carotenoid, and are also known to produce carotenoids such as lycopene and β-carotene, which are precursors of bacterioruberin. Four spots were identified for C50 carotenoid production by the Halorubrum sodomense MBLA0099 strain through TLC analysis, and these were re-extracted in methanol and spectrum analysis was performed (Figure 7). After spectrum analysis, HPLC analysis was performed for each of the four spots (Figure 8). Through comparison of the maximum absorption wavelength of previously reported C50 carotenoids, Halorubrum sodomense MBLA0099 is a C50 carotenoid, bacterioruberin, and its precursors, monoanhydrobacterioruberin, bianhydrobacterioruberin, and 2-isopentenyl-3,4. -Dihydrorhodopsin was identified.

결과 검토Review results

Halorubrum sodomense MBLA0099은 소래 염전에서 분리되었으며, 붉은색을 콜로니를 띈다. 배양 최적화를 통해 카로티노이드 생산량이 유의미하게 증가하는 것을 확인하였으며 C50 카로티노이드의 생산은 Halorubrum sodomense MBLA0099로부터 용매 추출법을 진행하였고 이를 TLC, spectrum, HPLC 분석에 의해 확인되었다. Halorubrum sodomense MBLA0099 was isolated from Sorae Salt Farm and has red colonies. It was confirmed that carotenoid production significantly increased through culture optimization, and the production of C50 carotenoids was confirmed by solvent extraction from Halorubrum sodomense MBLA0099 and TLC, spectrum, and HPLC analysis.

한국미생물보존센터(국외)Korea Microbiological Conservation Center (Overseas) KCCM12990PKCCM12990P 2021052520210525

<110> INCHEON NATIONAL UNIVERSITY RESEARCH BUSINESS FOUNDATION <120> C50 CAROTENOID PRODUCING OPTIMIZATION METHOD USING AN EXTREMELY HALOPHILIC ARCHAEON HALORUBRUM SODOMENSE STRAIN MLBA0099 <130> P21-0099 <160> 3 <170> KoPatentIn 3.0 <210> 1 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 1 attccggttg atcctgcc 18 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 2 gcggctggat cacctcct 18 <210> 3 <211> 1477 <212> DNA <213> Halorubrum sodomense <400> 3 tattcattcc ggttgatcct gccggaggcc attgctattg ggatccgatt tagccatgct 60 agtcgcacga gttcagactc gtggcgaata gctcagtaac acgtggccaa actacccttc 120 ggaacacaat accctcggga aactgaggct aatagtgtat accacatcac cactggaatg 180 agtgatgtgc caaacgctcc ggcgccgaag gatgtggctg cggccgatta ggtagacggt 240 ggggtaacgg cccaccgtgc caataatcgg tacgggtcat gagagtgaga acccggagac 300 ggaatctgag acaagattcc gggccctacg gggcgcagca ggcgcgaaac ctttacactg 360 cacgacagtg cgataggggg atcccaagtg cacaggcata gcgcctgtgc ttttcggtac 420 cgtaaggtgg taccagaata agggctgggc aagaccggtg ccagccgccg cggtaatacc 480 ggcagcccaa gtgatggccg atcttattgg gcctaaagcg tccgtagctg gccgcgcaag 540 tccatcggga aatccacctg ctcaacaggt gggcgcccgg tagaaactgc gtggcttggg 600 accggaaggc gcgacgggta cgtccggggt aggagtgaaa tcccgtaatc ctggacggac 660 cgccgatggc gaaagcacgt cgcgaggacg gatccgacag tgagggacga aagccagggt 720 ctcgaaccgg attagatacc cgggtagtcc tggccgtaaa caatgtctgc taggtgtggc 780 tcccactacg agtgggtgct gtgccgtagg gaagccgcta agcagaccgc ctgggaagta 840 cgtccgcaag gatgaaactt aaaggaattg gcgggggagc actacaaccg gaggagcctg 900 cggtttaatt ggactcaacg ccggacatct caccagcatc gactgtggta atgacgatca 960 ggttgatgac cttatccgag cctcagagag gaggtgcatg gccgccgtca gctcgtaccg 1020 tgaggcgtcc tgttaagtca ggcaacgagc gagacccgca cccttacttg ccagcagtac 1080 cgcgaggtag ctggggacag tagggggacc gccgtggcta acacggagga aggaacgggc 1140 aacggtaggt cagtatgccc cgaatgtgct gggcaacacg cgggctacaa tggtcgagac 1200 aaagggttcc tactccgaaa ggagacggta atctcagaaa ctcgatcgta gttcggattg 1260 tgggctgcaa ctcgcccaca tgaagctgga ttcggtagta atcgcgtgtc acaagcgcgc 1320 ggtgaatacg tccctgctcc ttgcacacac cgcccgtcaa agcacccgag tgaggtccgg 1380 atgaggcgtt ccacgaacgt cgaatctggg cttcgcaagg gggcttaagt cgtaacaagg 1440 tagccgtagg ggaatctgcg gctggatcac ctccacc 1477 <110> INCHEON NATIONAL UNIVERSITY RESEARCH BUSINESS FOUNDATION <120> C50 CAROTENOID PRODUCING OPTIMIZATION METHOD USING AN EXTREMELY HALOPHILIC ARCHAEON HALORUBRUM SODOMENSE STRAIN MLBA0099 <130>P21-0099 <160> 3 <170> KoPatentIn 3.0 <210> 1 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 1 attccggttg atcctgcc 18 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 2 gcggctggat cacctcct 18 <210> 3 <211> 1477 <212> DNA <213> Halorubrum sodomense <400> 3 tattcattcc ggttgatcct gccggaggcc attgctattg ggatccgatt tagccatgct 60 agtcgcacga gttcagactc gtggcgaata gctcagtaac acgtggccaa actacccttc 120 ggaacacaat accctcggga aactgaggct aatagtgtat accacatcac cactggaatg 180 agtgatgtgc caaacgctcc ggcgccgaag gatgtggctg cggccgatta ggtagacggt 240 ggggtaacgg cccaccgtgc caataatcgg tacgggtcat gagagtgaga acccggagac 300 ggaatctgag acaagattcc gggccctacg gggcgcagca ggcgcgaaac ctttacactg 360 cacgacagtg cgataggggg atcccaagtg cacaggcata gcgcctgtgc ttttcggtac 420 cgtaaggtgg taccagaata agggctgggc aagaccggtg ccagccgccg cggtaatacc 480 ggcagcccaa gtgatggccg atcttattgg gcctaaagcg tccgtagctg gccgcgcaag 540 tccatcggga aatccacctg ctcaacaggt gggcgcccgg tagaaactgc gtggcttggg 600 accggaaggc gcgacgggta cgtccggggt aggagtgaaa tcccgtaatc ctggacggac 660 cgccgatggc gaaagcacgt cgcgaggacg gatccgacag tgagggacga aagccagggt 720 ctcgaaccgg attagatacc cgggtagtcc tggccgtaaa caatgtctgc taggtgtggc 780 tcccactacg agtgggtgct gtgccgtagg gaagccgcta agcagaccgc ctgggaagta 840 cgtccgcaag gatgaaactt aaaggaattg gcgggggagc actacaaccg gaggagcctg 900 cggtttaatt ggactcaacg ccggacatct caccagcatc gactgtggta atgacgatca 960 ggttgatgac cttatccgag cctcagagag gaggtgcatg gccgccgtca gctcgtaccg 1020 tgaggcgtcc tgttaagtca ggcaacgagc gagacccgca cccttacttg ccagcagtac 1080 cgcgaggtag ctggggacag tagggggacc gccgtggcta acacggagga aggaacgggc 1140 aacggtaggt cagtatgccc cgaatgtgct gggcaacacg cgggctacaa tggtcgagac 1200 aaagggttcc tactccgaaa ggagacggta atctcagaaa ctcgatcgta gttcggattg 1260 tgggctgcaa ctcgcccaca tgaagctgga ttcggtagta atcgcgtgtc acaagcgcgc 1320 ggtgaatacg tccctgctcc ttgcacacac cgcccgtcaa agcacccgag tgaggtccgg 1380 atgaggcgtt ccacgaacgt cgaatctggg cttcgcaagg gggcttaagt cgtaacaagg 1440 tagccgtagg ggaatctgcg gctggatcac ctccacc 1477

Claims (9)

기탁번호 KCCM12990P로 기탁된 할로루브럼 소도멘스(Halorubrum sodomense) MBLA0099 균주를 마련하는 단계;
탄소원인 수크로오스(Sucrose)와 질소원인 이스트 추출물(Yeast Extract)을 포함하고, 탄소/질소 비율(C/N ratio)은 1:1이며, 염화나트륨(NaCl)을 포함하여 염분이 조절된 배지에 상기 균주를 접종하여 배양하는 단계;
상기 배지에서 균체를 회수하는 단계: 및
상기 회수한 균체에서 용매 추출법에 의해 카로티노이드를 추출하는 단계;를 포함하는 C50 카로티노이드 생산 방법.
Preparing the Halorubrum sodomense MBLA0099 strain deposited with deposit number KCCM12990P;
The strain is grown in a salt-controlled medium containing sucrose as a carbon source and yeast extract as a nitrogen source, the carbon/nitrogen ratio (C/N ratio) is 1:1, and sodium chloride (NaCl). Inoculating and culturing;
Recovering bacteria from the medium: and
C50 carotenoid production method comprising: extracting carotenoids from the recovered bacterial cells by solvent extraction.
제1항에 있어서,
상기 배지의 염분의 농도는 5% 초과 20% 미만인 것을 특징으로 하는 C50 카로티노이드 생산 방법.
According to paragraph 1,
C50 carotenoid production method, characterized in that the salt concentration of the medium is more than 5% and less than 20%.
제1항에 있어서,
상기 배지는 0.2 %(w/v) 수크로오스(Sucrose)와 0.77 %(w/v) 이스트 추출물(Yeast Extract)을 포함하며, 염분농도가 20 %(w/v)로 조절된 개질 ATCC 1176 배지인 것을 특징으로 하는 C50 카로티노이드 생산 방법.
According to paragraph 1,
The medium is a modified ATCC 1176 medium containing 0.2% (w/v) sucrose and 0.77% (w/v) yeast extract, and the salt concentration is adjusted to 20% (w/v). C50 carotenoid production method, characterized in that.
제1항에 있어서,
상기 카로티노이드는 박테리오루베린, 모노안하이드로박테리오루베린, 비스안하이드로박테리오루베린, 2-이소펜테닐-3,4-디하이드로로돕신 중 어느 하나인 것을 특징으로 하는 C50 카로티노이드 생산 방법.
According to paragraph 1,
The carotenoid is a C50 carotenoid production method, characterized in that any one of bacterioruberin, monoanhydrobacterioruberin, bisanhydrobacterioruberin, and 2-isopentenyl-3,4-dihydrorhodopsin.
제1항에 있어서,
상기 회수한 균체에서 용매 추출법에 의해 카로티노이드를 추출하는 단계는 아세톤(Acetone):메탄올(Methanol)(7:3, v/v) 용액을 이용하는 것을 특징으로 하는 C50 카로티노이드 생산 방법.
According to paragraph 1,
The step of extracting carotenoids from the recovered bacterial cells by solvent extraction is a C50 carotenoid production method, characterized in that using an acetone:methanol (7:3, v/v) solution.
제5항에 있어서,
상기 추출된 카로티노이드를 HPLC를 통해 분석하는 것을 특징으로 하는 C50 카로티노이드 생산 방법.
According to clause 5,
C50 carotenoid production method, characterized in that the extracted carotenoid is analyzed through HPLC.
기탁번호 KCCM12990P로 기탁된 할로루브럼 소도멘스(Halorubrum sodomense) MBLA0099 균주로,
상기 균주는 탄소원인 수크로오스(Sucrose)와 질소원인 이스트 추출물(Yeast Extract)을 포함하고, 탄소/질소 비율(C/N ratio)은 1:1이며, 염화나트륨(NaCl)을 포함하여 염분이 조절된 배지에서 가장 높은 C50 카로티노이드 생산량을 나타내는 것을 특징으로 하는 균주.
Halorubrum sodomense MBLA0099 strain deposited with accession number KCCM12990P,
The strain contains sucrose as a carbon source and yeast extract as a nitrogen source, the carbon/nitrogen ratio (C/N ratio) is 1:1, and the salinity is adjusted including sodium chloride (NaCl). A strain characterized by the highest C50 carotenoid production.
삭제delete 삭제delete
KR1020210074286A 2021-06-08 2021-06-08 C50 carotenoid producing optimization method using an extremely halophilic archaeon halorubrum sodomense strain mlba0099 KR102626229B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210074286A KR102626229B1 (en) 2021-06-08 2021-06-08 C50 carotenoid producing optimization method using an extremely halophilic archaeon halorubrum sodomense strain mlba0099

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210074286A KR102626229B1 (en) 2021-06-08 2021-06-08 C50 carotenoid producing optimization method using an extremely halophilic archaeon halorubrum sodomense strain mlba0099

Publications (2)

Publication Number Publication Date
KR20220165532A KR20220165532A (en) 2022-12-15
KR102626229B1 true KR102626229B1 (en) 2024-01-17

Family

ID=84439520

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210074286A KR102626229B1 (en) 2021-06-08 2021-06-08 C50 carotenoid producing optimization method using an extremely halophilic archaeon halorubrum sodomense strain mlba0099

Country Status (1)

Country Link
KR (1) KR102626229B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT513449A1 (en) * 2012-09-27 2014-04-15 Tech Universität Wien Use of halophilic microorganisms for the production of valuable substances
KR101718611B1 (en) * 2015-05-12 2017-03-22 가천대학교 산학협력단 Novel microorganism producing carotinoid
KR102649548B1 (en) 2019-01-10 2024-03-22 신라대학교 산학협력단 A antimicrobial peptide and a antimicrobial composition containing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Iranian Journal of Microbiology, 2010, Vol.2, No.2, pp.103-109 1부.*
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, Vol.106, pp.99-103 1부.*

Also Published As

Publication number Publication date
KR20220165532A (en) 2022-12-15

Similar Documents

Publication Publication Date Title
Fang et al. Influence of nutritive factors on C50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation
Fazeli et al. Effects of salinity on β-carotene production by Dunaliella tertiolecta DCCBC26 isolated from the Urmia salt lake, north of Iran
Asker et al. Production of canthaxanthin by extremely halophilic bacteria
de la Vega et al. Characterization of a bacterioruberin‐producing H aloarchaea isolated from the marshlands of the O diel river in the southwest of S pain
EP0635576B1 (en) Bacteria belonging to new genus and process for production of carotenoids using same
Fan et al. The biosynthetic pathway of astaxanthin in a green alga Haematococcus pluvialis as indicated by inhibition with diphenylamine
Khanafari et al. Solar salt lake as natural environmental source for extraction halophilic pigments
Thawornwiriyanun et al. Identification of newly zeaxanthin-producing bacteria isolated from sponges in the Gulf of Thailand and their zeaxanthin production
EP1005565A1 (en) Novel carotenoid-producing bacterial species and process for production of carotenoids using same
Abalde et al. β-Carotene, vitamin C and vitamin E content of the marine microalga Dunaliella tertiolecta cultured with different nitrogen sources
Oren The microbiology of red brines
KR100836093B1 (en) 2 Novel Deinococcus sp. strain A2 and method for producing astaxanthin using the same
Sahli et al. Bioprospecting and characterization of pigmented halophilic archaeal strains from Algerian hypersaline environments with analysis of carotenoids produced by Halorubrum sp. BS2
Chaves et al. Isoprene production in Synechocystis under alkaline and saline growth conditions
Godinho et al. Carotenes produced by alkaliphilic orange-pigmented strain of Microbacterium arborescens-AGSB isolated from coastal sand dunes
Marova et al. Influence of exogenous stress factors on production of carotenoids by some strains of carotenogenic yeasts
CN109868227B (en) Method for producing beta-carotene by fermentation
RU2211862C2 (en) (-)-strain of heterothallic phycomycetus blakeslea trispora producing lycopin in pair with different (+)-strains of blakeslea trispora and method for micribiological synthesis of lycopin
KR102626229B1 (en) C50 carotenoid producing optimization method using an extremely halophilic archaeon halorubrum sodomense strain mlba0099
US20110104791A1 (en) Media and Process for Culturing Algae
CN108949888B (en) Method for promoting dunaliella algae to accumulate carotenoids and beta-carotene by utilizing beta-ionone
Barghini et al. High lutein production by a halo-tolerant strain of Dunaliella sp.(Chlorophyceae) isolated from solar salterns in central Italy
Biswas et al. Carotenogenesis in Haloferax sp. strain BKW301, a halophilic archaeon from Indian solar saltarns
JP2012139164A (en) Method for producing carotenoid by using microorganism
Hamidi et al. Halorubrum Sp. TBZ112, an extremely halophilic carotenoid-producing archaeon isolated from Urmia Lake

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right